
Robotica (2024), 42, pp. 3957–3975
doi:10.1017/S0263574724001760

RESEARCH ARTICLE

Robust approximate constraint following control design
for collaborative robots system and experimental
validation
Haohua Liu1, Shengchao Zhen1,2 , Xiaoli Liu3 , Hongmei Zheng1, Liansheng Gao4 and
Ye-Hwa Chen5

1School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
2Intelligent Manufacturing Institute Of Hefei University Of Technology, Hefei, Anhui 230051, PR China
3School of Artificial Intelligence, Anhui University, Hefei, Anhui 230601, PR China
4Hangzhou Huger Medical Robotics Co., Ltd., Hangzhou, Zhejiang 310002, PR China
5The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Corresponding author: Shengchao Zhen; Email: zhenshengchao@qq.com

Received: 6 May 2024; Revised: 29 August 2024; Accepted: 12 September 2024; First published online: 3 January 2025

Keywords: robust control; U–K equation; Lyapunov method; nonlinear control; constraint following; collaborative robots

Abstract
The paper presents a novel control method aimed at enhancing the trajectory tracking accuracy of two-link mechan-
ical systems, particularly nonlinear systems that incorporate uncertainties such as time-varying parameters and
external disturbances. Leveraging the Udwadia–Kalaba equation, the algorithm employs the desired system trajec-
tory as a servo constraint. First, the system’s constraints to construct its dynamic equation and apply generalized
constraints from the constraint equation to an unconstrained system. Second, we design a robust approximate con-
straint tracking controller for manipulator control and establish its stability using Lyapunov’s law. Finally, we
numerically simulate and experimentally validate the controller on a collaborative platform using model-based
design methods.

1. Introduction
With the development of society, collaborative robots are playing an increasingly important role in the
industrialization process. They have many advantages: lightweight and agile, strong perception capa-
bilities, easy to program, user-friendly, etc., effectively achieving collaboration between humans and
machines. Collaborative robots can help people engage in some repetitive, dangerous work, such as
machining, spraying, and welding. Collaborative robots can be found not only in the industrial field but
also in the fields of healthcare, education, and household. [1, 2].

Considering the use of collaborative robots, it is important to increase speed and accuracy.
Collaborative robot systems have multiple inputs and outputs, and these variables are coupled with each
other, making the collaborative robot system a complex nonlinear system. Moreover, deviations within
the collaborative robot and disturbances in the environment can lead to system uncertainty, which poses
a significant challenge to the design of the controller. Traditional control methods (such as proportional–
integral–derivative (PID) control) are difficult to meet the control requirements [3, 4]; therefore, we must
consider designing an effective nonlinear control algorithm.

Under such conditions, we propose a robust tracking servo constraint control algorithm [5]. This
control method is to control the robotic manipulator system using a dynamic equation-based approach.
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The concept of constrained motion and its solution using Lagrange multipliers was initially introduced
by Lagrange. As a result, numerous scholars have put forward various approaches to handle constrained
systems, including the principles of Maggi, Boltzmann and Hamel, Gibbs and Appell, among others
[6, 7]. Nevertheless, in practice, energy-based Lagrangian methods can rely on either the virtual dis-
placement principle or D’Alembert’s principle, and to some extent, these two principles are equivalent
in their application. Hence, all these approaches encounter a common limitation: while D’Alembert’s
principle is applicable in most cases, it fails to address nonideal constraints.

Not until 1992 did Udwadia et al. introduce the Udwadia–Kalaba (U–K) equations as a solution,
which expanded upon the principle of D’Alembert and the Lagrange equation [8–10]. They pro-
posed a clear and concise set of discrete equations for dynamic systems. Since the motion equations
follow the Gauss principle, this gave us a new perspective – that the Gauss principle can be used
to handle constraints. UK combined the principle of D’Alembert with their previous research and
concluded that the work done by constraint forces under virtual displacements is zero [11, 12]. In addi-
tion, they also extended the application range of the equations, making them suitable for constrained
mechanical systems that do not follow the principle of D’Alembert, such as systems with nonideal
constraints.

In addition to the aforementioned research efforts, there have been other notable contributions in the
field of servo constraint control. For instance, researchers have explored the application of the U–K equa-
tion in various practical scenarios, providing valuable insights and theoretical foundations. Furthermore,
Chen conducted further studies on adaptive robust control for systems with uncertainties [13–15]. Chen
conducted an in-depth study of the servo constraint problem on the basis of the Maggi equation, and then
he argued that a reasonable servo controller design can meet the required constraints [16]. Chen also
conducted research in the area of adaptive robust control of uncertain systems, as stated in references [17,
18]. These investigations aimed to develop control strategies that can effectively handle system uncer-
tainties, providing stability and performance guarantees. Another significant development came from
Schutte, who delved into the theoretical analysis and simulation research of the U–K equation [19]. As
a result, a state feedback controller was proposed, specifically tailored for systems with both holonomic
and nonholonomic constraints. This controller proves beneficial in scenarios where these types of con-
straints are present in nonlinear systems. Overall, the research conducted by Udwadia, Chen, Bajodah,
and Schutte, among others, has significantly advanced the understanding and application of servo con-
straint control. Their work has laid the groundwork for the development of effective control strategies
for addressing dynamic inverse problems and trajectory tracking in nonlinear systems with constraints.

Mechanical arm systems are a common type of mechanical system, and many researchers are now
looking for and exploring different control theories in various environments, hoping to achieve better
dynamic control of mechanical arms. These control theories include classical PID control, derivative-
enhanced PID control, neural network theory [20, 21], reinforcement learning methods [22], H-infinity
control [23, 24], adaptive control [25, 26], and sliding mode theory [27, 28].

Collaborative robotic arm, as a typical effective nonlinear control system, has been a hotspot of
research for many scholars [29, 30]. The U–K equation provides a new method for solving the servo
constraint control problem, by which the trajectory tracking problem in nonlinear systems can be solved
effectively. The notion of servo binding control was introduced by Chen [13, 31] utilizing the U–K
equation. Establishing a dynamic model is the first step in designing control strategies for mechanical
systems. This will help ensure that the control strategies can effectively meet constraints and handle
uncertainties. Therefore, the model should accurately capture the dynamic performance of the system,
especially the effects of constraints and uncertainties. Once the dynamic model is established, constraint
equations can be transformed into a second-order form, making the development of control strategies
more clear. At the same time, this method can also improve the accuracy and tracking capabilities
of the system, enabling mechanical systems to achieve higher performance and reliability in practical
applications.

This study makes three main contributions: i) first, the U–K equation is introduced, and the analytical
expression of constraint forces for ideal systems is derived based on this equation. ii) Then, a novel

https://doi.org/10.1017/S0263574724001760 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001760


Robotica 3959

Figure 1. The collaborative robot plotform.

robust controller (RC) for mechanical systems with uncertainties is proposed and proven to be stable.
iii) Finally, we used this controller to resolve the trajectory tracking accuracy issue of the collaborative
robots.

2. Dynamic model and constraint analysis
2.1. The two-link manipulator dynamic model
As shown in Fig. 1, it is a physical picture of the collaborative manipulator, which has three degrees of
freedom (three rotating joints), each joint is mainly controlled by the internal frameless torque motor and
servo drive. Attached to the base is the first joint with no limit of rotation angle, followed by the second
and third joints. Considering the difficulty of algorithm verification and the importance of affecting
motion accuracy in practical applications, we selectively fixed the first joint and only considered the
second and third joints.

Figure 2 is a simplified collaborative robotic arm modeling where m1 and m1 are the masses of link 2
and link 3, m3 is the mass of the second joint module, and m4 is the mass of the third joint joint module
motor. l1 and l2 represent the lengths of links two and three, respectively, and lc1 and lc2 are the lengths
from the center of mass to the center of rotation of each joint. alpha1 is the angle between joint 2 and
the X-axis, and alpha2 is the angle between joint 3 and joint 2.

A simplified model of a robotic arm has been established, and we now proceed to introduce the
Lagrange energy method for conducting dynamic modeling of the robotic arm. The expression for a
general mechanical system is as follows:
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Figure 2. The simplified model of two-DOF collaborative robot.

d

dt

(
∂L(p, ṗ, t)

∂ ṗi

)
− ∂L(p, ṗ, t)

∂pi

= Q (1)

Q = τi(t) − τfi(t), i = 1, 2, · · · , n (2)

In the above equation, L(p, ṗ, t) is the Lagrangian operator, which is defined as the difference between
the kinetic and potential energy of a mechanical system. Q corresponds to the generalized force, where
is the difference between the input torque and the external disturbance torque:

L(p, ṗ, t) = T(p, ṗ, t) − V(p, t) (3)

and T(p, ṗ, t) means for system kinetic energy and V(p, t) means for system potential energy. pi ∈ Rn is
the generalized coordinates of the system and ṗi ∈ Rn is the generalized velocity of the system. τi ∈ Rn

and τfi ∈ Rn mean the input torque and the external interference torque, respectively. Because the motor
of joint 2 is built at the origin of the coordinate system, m3 can be ignored in the derivation of the
equation. By combining equation (1), equation (2), and equation (3), we can get the dynamics model of
the collaborative manipulator:

τ (t) =H(p, t)p̈ + C(p, ṗ, t)ṗ + F(ṗ, t) + G(p, t), p ∈ Rn (4)

t denotes time and p = [p1, p2]T is the angular displacement of two joints and also an output parameter
of the system. ṗ = [ṗ1, ṗ2]T and p̈ = [p̈1, p̈2]T represent the angular acceleration and angular velocity of
the joints, respectively. ε is an uncertain term. τ (t) represents the joint torque of the two-axis arm,
and H(·) ∈ Rn represents the inertia matrix. Matrix C(·) represents the Coriolis and centrifugal force
terms, while matrix C(·) represents frictional forces and external disturbances. Matrix G(·) represents
the gravitational terms.

During continuous operation of collaborative robots, friction becomes a critical factor that cannot
be overlooked. Inaccurately identifying the friction force can cause structural damage, joint jitter, and
instability in the end effector’s motion and accuracy. Therefore, it is essential to precisely calculate the
friction force as the robot moves. Joint friction performance, however, is especially complicated. Most
extant literature assumes that friction is a function of velocity. However, after performing a parameter
identification analysis, we discovered that Coulomb friction force and viscous friction force have the
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biggest effects on the movement of collaborative robot joints. As a result, we can derive a specific model
of force of friction as follows:

Fi(ṗ) = δviṗi + δcisign (ṗi) , i = 1, . . . n (5)

Here, δvi and δci represent the viscous friction matrices and the coefficients of Coulomb friction,
respectively.

The conventional friction models are frequently irregular and discontinuous in character, and
Coulomb friction is frequently represented using a symbolic function. In order to solve this issue, the
sign function is approximated using the function of hyperbolic tangent, as shown in equation (6) [32]:

sign(ṗi) ≈ tanh(γ ṗi), i = 1, . . . n (6)

To ensure that the function of hyperbolic tangent closely approximates the sign function, the value
of “γ ” must be chosen to be sufficiently large.

The Lagrange equation can be further expanded:

H(p, t) =
[

H11 H12

H21 H22

]
(7)

where ⎧⎪⎪⎨
⎪⎪⎩

H11 = I1 + I2 + (m2 + m4)l2
2 + m3l

2
1 + m2l2

c2 + m4l2
2 + 2(m2l1lc2 + m4l1l2)cosp2

H12 = H21 = I2 + m2l
2
c2 + m4l2

2 + (m2l1lc2 + m4l1l2)cosp2

H22 = I2 + m2l2
c2 + m4l

2
2

(8)

and

C(p, ṗ, t) =
[

C11 C12

C21 C22

]
(9)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C11 = − 2(m2l1lc2 + m4l1l2)sinp2p̈2

C12 = − (m2l1lc2 + m4l1l2)sinp2p̈2

C21 =(m2l1lc2 + m4l1l2)sinp2p̈1

C22 =0.

(10)

and

G(p, ṗ, t) =
[

G11

G12

]
(11)

{
G21 =(m2l1lc2 + m4l1l2)sinp2p̈1

G22 =0.
(12)

In the actual working environment, it is difficult to obtain accurate system parameters, and it is also
necessary to consider that the system will be affected by some uncertain factors such as mechanical
structure and unknown disturbance. Therefore, we introduce the parameter σ ∈ R2 to describe these
uncertainties, and the kinetic equation can be written as:

H(p, σ , t)p̈(t) + C(p, ṗ, σ , t)ṗ(t) + F(p, ṗ, σ , t) = τ (t) (13)
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2.2. Constraint equations in mechanical systems
In order to simplify the analysis process, we first consider the constraint equation of the nondeterministic
mechanical system, that is, the fully smooth, ideal state. According to the U–K equation:

H(p, t)p̈ = U(p, ṗ, t) (14)

In the above equation, H(p, t) ∈ Rn represents the symmetric positive definite inertia matrix, and
U(p, ṗ, t) ∈ Rn stand for the generalized active moment matrix which acts on the system to release
constraint forces. Then, we can get

p̈ = H−1U(p, ṗ, t) = α(p, ṗ, t) (15)

The above expression is the generalized acceleration expression for unconstrained systems. Based on
the UK equations and without considering friction, the motion equations of a general unconstrained sys-
tem without uncertainty can be derived. The representation of these control parameters can be expressed
in matrix form as follows:

E(p, t) = a(p, t) (16)

where E = [Eji]m×n and a = [a1, a2, . . . , am]m×n. We first take the derivative of the time t with respect to
the constraint equation, which can give us its second-order form. Then we analyze the constraint equation
so that we can obtain the performance of the second-order constraint form. The specific process is as
follows:

Consider the servo restriction as follows:
n∑

i=1

Eji(p, t) = aj(p, t), j = 1, . . . , m (17)

We take the derivative of equation (17) with respect to time t and get:
n∑

i=1

d

dt
Eji(p, t) = d

dt
aj(p, t) (18)

We rewrite Eq. (18) as:
n∑

i=1

Dji(p, t)ṗ = dj(p, t) (19)

Eq. (19) provides the constraint’s first-order form. Differentiating Eq. (19) with respect to time, we
obtain the following equation:

n∑
i=1

(
d

dt
Dji(p, t)

)
ṗi +

n∑
i=1

Dji(p, t)p̈i = d

dt
dj(p, t) (20)

Rewrite Eq. (20) as:
n∑

i=1

Dji(p, t)p̈i = cj(p, ṗ, t) (21)

The second-order form of the constraint is represented by Eq. (21). The constraint equation is then
stated as follows after this equation:

D(p, t)ṗ = d(p, t)
(22)

D(p, ṗ, t)p̈ = c(p, ṗ, t) (23)

where A = [Aji]m×n, d = [d1, d2, . . . , dm]T , and c = [c1, c2, . . . , cm]T . When the uncertainty is known by
[14], we can now obtain the constraint force.
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Remark 1. When creating a dynamic model, the state variables of the system must adhere to specific
constraints as outlined in the constraint equations. These typically include holonomic constraints, rheo-
nomic constraints, nonholonomic constraints, and other constraints. The constraint forces and active
forces jointly influence the motion of the system.

3. Robust approximate constraint tracking control with uncertain parameters
3.1. In the absence of uncertainty, constraint force
When there is no uncertainty in the system and the initial conditions are compatible, we analyze the
constraints within the system.

Assumption 1. For each (p, t) ∈ Rn × R, σ ∈ Σ , H(p, σ , t) > 0.

Definition 1. If equation (19) has at least one solution, the constraint equation (19) is said to be
consistent.

Assumption 2. Constraint equation (23) is consistent.

Theorem 1. Taking into account both the dynamics equation (13) and the constraint equation (23), the
expression for the constraint force of the system can be derived under the Assumption 1 and 2 as follows:

Uc(p, ṗ, t) = H̄1/2(p, t)(A(p, t)H̄−1/2(p, t))+[c(p, ṗ, t)

+D(p, t)H̄−1(p, t)(C̄(p, ṗ, t)ṗ + Ḡ(p, t)) + F̄(p, t))] (24)

In the above equation, the symbol ¯(·) represents a nominal term, and the symbol ()+ represents the
Moore–Penrose generalized inverse. This constraint equation constitutes the first part of the controller.

Remark 2. By utilizing the Lagrangian form of D’Alembert’s principle, the constraint force Equation
(22) is identified as one among several potential alternative forces that possess the minimum norm.
Additionally, these alternative forces are capable of satisfying Equation (23) as well.

3.2. Robust servo control design
In practical mechanical systems, we need to consider the uncertainty of the controlled object. We divide
the terms in the dynamic equation into deterministic and stochastic parts, as shown below:

H(p, σ , t) = H̄(p, t) + ΔH(p, σ , t)

U(p, ṗ, σ , t) = Ū(p, ṗ, t) + ΔU(p, ṗ, σ , t)

Uc(p, ṗ, σ , t) = Ūc(p, ṗ, t) + ΔUc(p, ṗ, σ , t) (25)

where H̄, Ū, Ūc are the nominal portions, ΔH̄, ΔŪ, ΔŪc stand for the uncertain parts in the constraint
system. And H̄, Ū, Ūc and ΔH, ΔU, ΔUc are continuous. We let

E(p, t) = H̄−1(p, t)

ΔE(p, σ , t) = H−1(p, σ , t) − H̄−1(p, t)

K(p, σ , t) = H̄(p, t)H−1(p, σ , t) − I (26)

Therefore,

ΔE(p, σ , t) = E(p, t)K(p, σ , t)

H−1(p, σ , t) = E(p, t) + ΔE(p, σ , t) (27)
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Assumption 3. E(p, t) is full rank for every (p, t) ∈ Rn × R. Therefore, D(p, t)DT(p, t) is invertible.

Assumption 4. Considering the condition stated in Assumption 3, let P ∈ Rn×n be a positive definite
matrix:

W(p, σ , t) = PD(p, t)E(p, t)K(p, σ , t)H̄(p, t)DT(p, t)(D(p, t)DT(p, t))−1P−1 (28)

For every (p, t) ∈ Rn × R,ρ̂E( • ):Rn × R −→ (−1, ∞) is real:
1

2
min
σ∈∑ λm

(
W(p, σ , t) + WT(p, σ , t)

) ≥ ρ̂E(p, t) (29)

where min( • ) represents the smallest integer and λm( • ) represents the smallest eigenvalue.

Remark 3. Due to the unknown nature of the uncertainty bound, the constant ρ̂E( • ) remains unknown
as well. In the absence of uncertainty in the system, where H̄ is equal to H, K is equal to 0, and W is
equal to 0, it is possible to choose ρ̂E( • ) = 0. Therefore, by continuity, this assumption implies that
the presence of uncertainty affects the potential deviations of H from H̄ within a specific threshold. It
is crucial to highlight that this threshold is unidirectional, indicating that there are no restrictions or
limitations in one particular direction.

Based on the analysis and assumptions mentioned above, we propose the following RC:

τ (t) = y1(p(t), ṗ(t), t) + y2(p(t), ṗ(t), t) + y3(p(t), ṗ(t), t) (30)

where

y1(p(t), ṗ(t), t) = H̄1/2(p, t)
(
A(p, t)H̄−1/2(p, t)

)+[
c(p, ṗ, t)

+D(p, t)H̄−1(p, t)
(
C̄(p, ṗ, t)ṗ + Ḡ(p, t)

) + F̄(p, t))
]

(31)

that is, y1(p, ṗ, t) = Qc(p, ṗ, t).

y2(p(t), ṗ(t), t) = −kH̄(p, t)DT(p, t)
(
D(p, t)DT(p, t)

)−1

P−1η(p, ṗ, t) (32)

y3(p(t), ṗ(t), t) = −
[
H̄(p, t)DT(p, t)

(
D(p, t)DT(p, t)

)−1
P−1

]
γ (p, ṗ, t)δ(p, ṗ, t)ρ(p, ṗ, t) (33)

where ε, k > 0,

γ (p, ṗ, t) =

⎧⎪⎨
⎪⎩

(1 + ρ̂E(p, t))−1

‖δ(p, ṗ, t)‖ ‖δ(p, ṗ, t)‖ > ε

(1 + ρ̂E(p, t))−1

ε
‖δ(p, ṗ, t)‖ ≤ ε

(34)

δ(p, ṗ, t) = η(p, ṗ, t)ρ(p, ṗ, t),

η(p, ṗ, t) = D(p, t)ṗ − d(p, t) (35)

The function ρ( • ):Rn × Rn × R −→ R+ is seleced so that

ρ(p, ṗ, t) ≥ max
σ∈Σ

‖PD(p, t)ΔE(p, t)(−Uṗ + y1(p, ṗ, t)

+ y2(p, ṗ, t)) + PD(p, t)E(p, t)ΔQ(p, ṗ, t))‖ (36)

Eq. (28) gives the upper bound of the expression on the right.

Remark 4. Equation (30) represents the RC that we ultimately propose, which consists of three compo-
nents. The nominal control term y1, based on the U–K equation, is used to achieve the desired control
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of the system. By introducing y2, we can compensate for the actual initial conditions. The term y3 is
used as a control measure to compensate for uncertainties in the controlled system.

Theorem 2. Assuming that Assumptions 1, 2, 3, and 4 is met, the control error arising from mechanical
system uncertainty is represented by η.

i UB: For any given r > 0, there is a finite d(r) so that if ‖η(p(t0), ṗ(t0), t0)‖ ≤ r, then for all t ≥ t0,
it holds that ‖η(p(t), ṗ(t), t)‖ ≤ d(r).

ii UUB: There exists a d > 0 such that ‖η(p(t), ṗ(t), t)‖ ≤ d(r) for every d̄ > d as t ≥ t0T(d̄, r), where
T(d̄, r) < ∞ occurs for any r > 0 with ‖η(p(t0), ṗ(t0), t0)‖ ≤ r. In addition, d̄ → 0 as ε → 0.

Proof. A valid Lyapunov function candidate is constructed as demonstrated below:
V(η) = ηTPη (37)

Take the devirative of V with respect to t, then we get
V̇ = 2ηTP(Dp̈ − c) (38)

According to the previous analysis, we can obtain p̈ = H−1(U + y1 + y2 + y3). Substituting it into the
equation and combining with formulas (25) and (27), we can get

V̇ = 2ηTP(Dp̈ − c)

= 2ηTP
{
D[H−1(U + y1 + y2 + y3) − b

}
= 2ηTP

{
D

[
(E + ΔE)(U + y1 + y2 + y3)

] − b
}

= 2ηTP
[
DE(Ū + y1) − a

]
= 2ηTPD

[
EΔŪ + ΔE(U + y1 + y2)

]
= 2ηTPDEy2

= 2ηTPD(E + ΔE) y3

=
4∑

i=1

Γi(η, t) (39)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γ1(η, t) = 2ηTP
[
DE(Ū + y1) − a

]
Γ2(η, t) = 2βTPD

[
EΔŪ + ΔE(U + y1 + y2)

]
Γ3(η, t) = 2βTPDEy2

Γ4(η, t) = 2βTPD(E + ΔE)y3

(40)

Decompose V̇(η, t) into four parts as above and prove and analyze them separately. �
When not considering uncertainty, the equation of motion of the system is

H̄p̈ = Ū + Uc (41)
where Uc = y1, that is,

p̈ = H̄−1(Ū + y1) (42)
Combined with the constraint equation Eq. (23), it can be obtained as:

D
[
H̄J

−1
(Ū + y1)

]
− c = 0 (43)

that is,
Γ1(η, t) = 2ηTP

[
DE(Ū + y1) − a

] = 0 (44)
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For Γ2(η, t), and by Eq. (36), there is

Γ2(η, t) = 2ηTPD
[
EΔU + ΔE(U + y1 + y2)

]
≤ 2‖η‖ ∥∥PD

[
EΔU + ΔE(U + y1 + y2)

]∥∥
≤ 2‖η‖ρ

(45)

Next, for Γ3(η, t), based on Eq. (26) and Eq. (32)

Γ3(η, t) = 2ηTPDEy2

= 2ηTPDE
(−kH̄DT(DDT)−1P−1η

)
= −2kηTη

= −2k‖η‖2

(46)

Finally, for Γ4(β, t), by Eq. (25)–(29), Eq. (33), and Eq. (35), we can get

Γ4(η, t) = 2ηTPD(E + ΔE)y3

= −2ηTPD(H̄−1 + EK)
[
H̄DT(DDT)−1P−1

]
γ δρ

= −2γ δTδ − 2δT
[
PDEKH̄DT(DDT)−1P−1

]
γ δ

= −2γ δTδ − γ δT(W + WT)δ

≤ −2γ ‖δ‖2 − γ λm(W + WT)‖δ‖2

≤ −2γ (1 + ρ̂E)‖δ‖2

(47)

Combining Eq. (44)–(47), there is

V̇(η, t) ≤ 2‖η‖ρ − 2k‖η‖2 − 2γ (1 + ρ̂E)‖δ‖2 (48)

when ‖δ‖ > ε, that is, γ = (1 + ρ̂E)−1/‖δ‖

V̇(η, t) ≤ −2k‖η‖2 − 2
(1 + ρ̂E)−1

‖δ‖ (1 + ρ̂E)‖δ‖2 + 2‖η‖ρ

= −2k‖η‖2

(49)

when ‖δ‖ ≤ ε, that is, γ = (1 + ρ̂E)−1/ε

V̇(η, t) ≤ 2‖η‖ρ − 2k‖η‖2 − 2
(1 + ρ̂E)−1

ε
(1 + ρ̂E)‖δ‖2

= 2‖δ‖ − 2k‖η‖2 − 2
‖δ‖2

ε

≤ ε

2
− 2k‖η‖2

(50)

Finally, based on Eq. (49) and Eq. (50), we conclude that

V̇ ≤ −2k‖η‖2 + ε/2 (51)

It is clear from the preceding analysis that the controlled system demonstrates uniform boundedness:

d(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r

[
λM(P)

λm(P)

]1/2

r = R

R

[
λM(P)

λm(P)

]1/2

r ≤ R

(52)
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where

R =
[ ε

4k

]1/2

(53)

Additionally, the verification of uniform ultimate boundedness is conducted. That is,

d̄ > d = R

[
λM(P)

λm(P)

]1/2

(54)

T(d̄, r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 r ≤ d̄

[
λM(P)

λm(P)

]1/2

λM(P)r2 − (
λ2

m(P)/λM(P)
)

d̄2

2kd̄2 (λm(P)/λM(P)) − (ε/2)
otherwise

(55)

The appropriate design parameter ε can be used to predetermine the size of the ultimate boundedness
ball d̄.According to the above analysis and derivation, the design process of RC can be summarized as
the following steps:

1. First, we disregard the constraint and obtain its equation of motion through Newton–Lagrange
mechanics.

2. Then consider the existing constraints, such as holonomic constraints, nonholonomic constraints,
hardening constraints, etc., exist alone or together. Obtain the constraint equation(22).

3. Write the constraint equation as second order to get equation (23) and then get the binding force
based on equation (24). Then the RC is designed according to equations (31)–(33).

4. Simulation and experimental validation
During the numerical simulation and experimental validation stages, we compared our algorithm with
other controllers to verify its effectiveness. We evaluated the dynamic tracking performance and steady-
state error of the robotic arm to highlight the superiority of our controller. In the comparison process,
we selected the classical PID controller as well as our proposed RC and its components (y1 (RC1) and
y1+y2 (RC12)). Additionally, to validate the robustness of this control algorithm, we applied different
loads to the robotic arm to observe the performance of the controller.

4.1. Parameters selection
The selection of different parameters can have different effects on the performance of the controller,
so choosing appropriate parameters is an important part of the experiment. In practical working envi-
ronments, the collaborative robotic arm will be affected by various factors. Therefore, it is necessary
to thoroughly consider the selection of optimal parameters to compare the performance of various
algorithms. Table I shows the dynamic parameters, such as mass and arm length, obtained from the
three-dimensional model of the collaborative robotic arm. As discussed earlier, the F term in the dynamic
equation represents frictional force. Therefore, the selection of suitable friction type and parameters can
also affect the performance of the collaborative robotic arm. Based on literature review and analysis, we
have listed the reference values of Coulomb coefficient and viscosity coefficient for joint friction of the
collaborative robotic arm in Table II.

4.2. Computer simulations
In this section, we use computer modeling to simulate the robotic arm system and demonstrate the
feasibility of the proposed controller through simulation results.

https://doi.org/10.1017/S0263574724001760 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001760


3968 Haohua Liu et al.

Table I. The parameters and variables of a robotic manipulator system with two
links.

Parameter Definition Value unit
p1 The angular displacement of joint 1 deg
p2 The angular displacement of joint 2 deg
m1 Joint 1’s mass 0.672 kg
m2 Joint 2’s mass 0.712 kg
m3 The quality of motor 1 0.837 kg
m4 The quality of motor 2 0.901 kg
l1 Length of joint 1 0.351 m
l2 Length of joint 2 0.407 m
lc1 Length of joint 1 0.250 m
lc2 Length of joint 2 0.312 m

Table II. The initial parameters of a collaborative manipulator.

Parameter Definition Value Unit
g Gravitational acceleration 9.8 m/s2

fv1 Viscous friction coefficient 0.02 Pa · s
fv2 Viscous friction coefficient 0.04 Pa · s
fc1 Coulomb friction coefficient 0.15 N
fc2 Coulomb friction coefficient 0.18 N
r 20 N · m
τ1 Joint 1’s input torque N · m
τ2 Joint 2’s input torque N · m

The structure of the two-link manipulator can be similar to the human arm. Compared with the
complex multi-degree-of-freedom collaborative manipulator, the manipulator has simple structure and
convenient operation. Fig. 2 shows the simplified model and overall structure of the two-degree-of-
freedom manipulator. The dynamic equation of the manipulator is established using Newton–Lagrange
method. The following table shows the parameters and variables of each joint of the manipulator.

We know that a typical PID control system consists of three variables: Kp, Ki, and Kd, which cor-
respond to the proportional, integral, and derivative control parameters, respectively. They respectively
affect the response speed, steady-state error, and disturbance rejection capability of the mechanical sys-
tem. Therefore, for the RC we proposed, we can also control it from these three aspects. Based on
the previous analysis and assumptions, p is the given parameter matrix of the RC controller, which is
directly proportional to the system’s response speed. However, if it is too large, it may lead to instability
and increased cost. K is the gain coefficient used to solve the problem of incompatible initial conditions.
An excessively large K will reduce the tracking accuracy of the mechanical system. The parameter a
represents the size of the ultimate boundedness radius, and it can be designed to improve the overall
performance of the system (stability, convergence speed, and robustness). A value of a that is too small
may result in system instability. In this case, the p and K parameters of the RC12 controller are the same
as those of the RC controller.

Table III presents the parameter values for different controllers that exhibit relatively good control
performance. In the process of parameter selection, we first adjust the parameters that have a significant
impact to make the response signal follow the desired output. Then, we fine-tune the other parameters
to improve tracking performance. Throughout this process, we conducted multiple experiments and
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Table III. Selecting control parameters for a controller.

Control algorithm Corresponding control parameters
PID Kp = diag[24; 16]

Ki = diag[1; 0.7]
Kd = diag[4; 3.6]

RC1 –
RC12 P = diag[14; 5.5]

κ = 6.8
RC P = diag[14; 5.5]

κ = 6.9
ε = 0.01

adjustments, simulating different algorithms with various parameters, and eventually obtained a set of
parameters that yielded a favorable overall performance.

4.3. Numerical simulations and result
To validate the effectiveness of the controller, we applied a sine signal to link 1, causing it to oscillate
back and forth in a regular manner. Similarly, link 2 also oscillates back and forth, with the sum of
their angles satisfying the condition of being zero. Thus, it is assumed that the two-axis arm meets the
following servo constraints:

p1 + p2 = 0

p1 = 3

2
sin

(π

6
t
)

(56)

By taking the second derivative of Eq. (51) with respect to time, we obtain⎧⎨
⎩

ṗ1 + ṗ2 = 0

ṗ1 = π

4
cos

(π

6
t
) (57)

Taking the derivative of the above equation with respect to time t, we obtain

p̈1 + p̈2 = 0

p̈1 = −π 2

24
sin(

π

6
t) (58)

Once the constraint equations are determined, we can use the previous formulas to obtain the solution:

D =
[

1 1

1 0

]
, d =

[
0

π

4
cos( π

6
t)

]
, c =

[
0

− π2

24
sin( π

6
t)

]
(59)

The computer simulation results are shown below. In this simulation, we introduce variations in the
mass of the connecting rod and the motor to mimic uncertain parameters within the system. By adjusting
these parameters, we can assess the robustness and adaptability of the control algorithm in the face of
such uncertainties. The change rule is mactual = mnominal + 0.01cos(t), which indicates that the mass of
the mechanical arm changes with the change of time t. The simulation results demonstrate a significant
impact of this change on the system’s stability, thereby enabling a better verification of the proposed
controller’s robustness. Taking into account the situation where the initial conditions of the system are
incompatible, we set the initial angles of the system to be nonzero. Joint 1 is given angle π

9
, and joint 2

is given angle − π

9
.
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Figure 3. The experimental chart of collaborative robot joint 1.
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Figure 4. The experimental chart of collaborative robot joint 1.
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Figure 5. Sum of link 1 and link 2’s angular displacements.

The figures display the simulation results. Figs. 3–6 represent the simulation result graphs. Figure 3(a)
and (b) show the angular displacement variation curve and error of link 1. Fig. 4(a) and (b) depict
the angular displacement variation curve and error of link 2. Figure 5 represents the sum of angular
displacement variation curves for link 1 and link 2. Figure 6(a) and (b), respectively, illustrate the control
torque output curves for the two joints.

From Figs 3–6, it can be seen that when only y1 is applied, when ignoring the issue of incompatible
initial conditions and uncertain influences, the collaborative robotic arm completely fails to produce the
desired tracking trajectory, and the error increases with time. However, when both y1 and y2 are applied
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Figure 6. The experimental chart of collaborative robot joint 1.

Figure 7. Experimental platform of collaborative robot.

simultaneously, the robotic arm is able to track the trajectory within a certain range of error, showing
some superiority compared to the PID controller. If we also consider y1, y2, and y3 simultaneously, the
collaborative robotic arm, under the control of servo constraints, achieves the desired trajectory with a
tracking error less than 0.05.

According to the above analysis, the proposed controller can track the desired trajectory quickly
and accurately, has good robustness, and still has small steady-state error under the interference of
uncertainty. Therefore, the controller we designed is reasonable and effective.

4.4. Experimental platform introduction
As shown in Fig. 7, the experimental apparatus for this experiment consists of a load,
MATLAB/Simulink software, a collaborative three-axis robotic arm, and a CSPACE control system.
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Figure 8. The flow chart for developing algorithms using CSPACE control system.
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Figure 9. The experimental chart of collaborative robot joint 1.

The collaborative robotic arm has three rotational degrees of freedom, and in this experiment, the last
two axes are utilized. The joints are directly driven by motors and provide real-time joint position feed-
back. The graphical user interface (GUI) and the CSPACE control platform make up the CSPACE control
system simultaneously. The CSPACE controller is equipped with a powerful signal processor that can
be employed to validate the control performance of algorithms.

The design and control process of the algorithm for this control platform are shown in Fig. 8, and the
approximate steps for development and validation are as follows:

• First, use MATLAB/Simulink to model the collaborative robotic arm.
• Based on the DSP development board, convert the dynamic model into C code.
• Download the compiled files to the CSPACE controller through a host computer.
• The GUI allows for real-time monitoring of the mechanical object’s dynamic performance.

Control parameters can be continuously adjusted to achieve the desired results.
• Store and handle data from experiments.
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Figure 10. The experimental chart of collaborative robot joint 2.
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Figure 11. Position error curves of collaborative manipulator under different loads.

4.5. Experimental verification
In order to verify the control effectiveness of this algorithm, we choose a three-axis robot arm to fix
the robot arm connected to the base and use two arms at the end to verify. The control parameters used
in this part are consistent with the simulation process. According to the simulation, it can be seen that
the control algorithm using y1 alone cannot meet the tracking performance and may have unpredictable
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risks. Therefore, in the experiment, we only compared the dynamic performance of y1y2 and y1y2y3
control algorithms and compared them with PID.

We give the system a fixed sine wave and then use different control algorithms to control the robot
arm to track this trajectory, so as to verify the control performance of different algorithms. Figure 9
show the angular displacement tracking performance and error of joint 1, and Fig. 10 show the tracking
performance and error of joint 2. According to Figs. 9 and 10, it can be seen that under the y1y2y3
control algorithm, the tracking performance of joint 1 is the best, with an error of about ±0.05, followed
by the y1y2 algorithm, which is slightly worse than the y1y2y3 algorithm, but its error can also be
maintained at about ±0.1. Compared with the two, the error of PID algorithm is relatively large. At the
same time, in order to verify the robustness of the controller, we apply different loads to the manipulator
system, respectively, and make the manipulator track the desired trajectory under different loads. As can
be seen from Figs. 11(a) –11(f), loads of 0 kg, 0.5 Kg, and 1.5 Kg are applied to the system, respectively.
According to the experimental data, it can be seen that with the increase of load, the experimental error
also increases gradually, and the fluctuation of joint 2 is larger. The results show that the controller
proposed in this paper can track the trajectory well under different loads, indicating that the controller
has strong robustness.

5. Conclusions
The study proposes a novel robust control algorithm for mechanical systems with uncertainty and
validates its stability and practicality through experiments on a two-axis arm platform.

The controller consists of three components. The initial component, y1, represents the fundamen-
tal aspect of the RC control algorithm. It is the analytical form of the nominal constraint force of the
system, obtained using the UK equation with ideal constraints. The second component, y2, handles the
incompatibility issue under initial conditions. The final component, y3, is presented to compensate for
the affect of vulnerability on the framework when considering bounded instability. After designing the
controller, the Lyapunov method is used to prove that the system is uniformly bounded and ultimately
bounded.
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