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Linear dynamics in turbulent stratified plane
Poiseuille flow
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We investigate a turbulent stratified plane Poiseuille flow using linear models and nonlinear
simulations. We propose the first complete explanation for the prolific and coherent
backward (BWs)- and forward-propagating waves (FWs), which have been observed in
these flows. We demonstrate a significant presence of oblique waves in the channel core,
particularly for the FWs. Critically, we show that neglect of spanwise structure leads to
a distorted dispersion relation due to its strong dependence on the angle of obliquity.
Interestingly, solutions to the Taylor–Goldstein equations show that wave dynamics is
strongly dependent on shear, with only a weak dependence on buoyancy for the BWs at low
and order-one wavenumbers, when the wavenumber is scaled by the channel half-height.
As the wavenumber increases, waves transition from a shear-dominated regime to
a buoyancy-dominated regime, with their dispersion relation tending towards that of
idealised internal waves subject to a shear-free and constant-buoyancy-gradient flow, with
a characteristic velocity and buoyancy frequency corresponding to respective centreline
values in the channel. Finally, we show that the dominance of the BWs arises due to the
external forcing of the system, whereby turbulent fluid ejected into the core has a lower
momentum when compared with the local flow, therefore preferentially generating BWs in
the channel. Qualitatively, channel-core dynamics can be reproduced with low-momentum
forcing to a velocity profile with a velocity maximum and a corresponding negative second
derivative intersecting a region of strong buoyancy gradient. This structure is inherent to
a wide variety of jet-like environmental, atmospheric and industrial flows, suggesting that
BWs are a critical control on dynamics of such flows.
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1. Introduction

Stable density stratification is a key control on the dynamics of a wide range of natural and
industrial settings, including: zonal winds (Dunkerton 1997) and atmospheric boundary
layer flows (Mahrt 2014); oceanic exchange flows (Káse, Girton & Sanford 2003) and
gravity currents (Wells & Dorrell 2021); and in manufacturing processes, bioreactors
and heating. Stratification provides a restorative buoyancy force which suppresses internal
mixing and has a profound impact on shear flows by introducing, for example, anisotropy,
intermittency, layering and internal waves (Caulfield 2021). Understanding these processes
is vital for predictions of scalar transport (e.g. temperature, salinity, particulates),
entrainment of ambient fluids and energy transport Winters et al. 1995; Wells, Cenedese
& Caulfield 2010; Garaud 2018; Hung, Niu & Chou 2020. Due to their importance and
complexity, many decades have been spent attempting to understand stratified turbulence
in canonical flows.

Here we focus on the idealised case of turbulent, stratified, plane Poiseuille (or channel)
flow. The (unstratified) plane Poiseuille flow has received considerable interest over the
last few decades, simulated with a doubly periodic domain bounded by no-slip walls in
the vertical direction (here the y direction) and driven by a constant negative streamwise
pressure gradient to achieve a fully developed and statistically steady state. Studies of
turbulent channel flows have made key contributions to our understanding of wall-bounded
turbulence (Kim, Moin & Moser 1987; Moser, Kim & Mansour 1999; Del Alamo &
Jiménez 2003; Vreman & Kuerten 2014; Jiménez 2022). Yet its stratified counterpart has
received comparatively little interest, despite being deeply rich in dynamics (Armenio &
Sarkar 2002; Garcia-Villalba & Del Alamo 2011; Lloyd, Dorrell & Caulfield 2022; Zonta,
Sichani & Soldati 2022). In this case, stratification is imposed through a fixed density
difference between upper and lower walls. A key feature of the stratified channel flow is
that there is zero shear at the channel centreline, intersecting a region of strong buoyancy
gradient. In natural flows such buoyancy and shear profiles can occur in gravity currents
and jets, both of which are prolific in oceanic, atmospheric and Earth surface systems
(Dorrell et al. 2019). Further, such natural flows are crucial for transporting sediment,
salinity, heat, carbon, oxygen, nutrients and pollutants throughout the world’s oceans,
and are crucial for regulating global climate, influencing weather patterns and supporting
marine ecosystems (Baines 1998; Simpson 1999; Talling et al. 2012; Azpiroz-Zabala et al.
2017). A deeper comprehension of such systems in idealised settings is essential to advance
our understanding of complex real-world flows. This motivates our present study which
aims to quantify the nature of coherent structures that emerge in stratified channel flow,
and their dependence on shear and buoyancy.

The stratified channel flow is characterised by a Reynolds number, a Richardson number
and a Prandtl number:

Reτ = uτ δ
ν
, Riτ = δg�ρ

ρ0u2
τ

and Pr = ν

κ
, (1.1a–c)

where uτ is the friction velocity, δ the channel half-height, ν represents the kinematic
viscosity, g is acceleration due to gravity (acting normal to the walls), �ρ is the density
difference between the upper and lower walls, ρ0 is a reference density and κ represents
mass diffusivity. Under suitably high Reynolds and Richardson numbers (although not so
high that buoyancy forces globally suppress turbulence) a regime arises where turbulent
processes dominate near the walls and buoyancy forces dominate near the centreline of
the channel, dampening turbulence, restricting vertical mixing and sustaining large-scale
coherent waves (Armenio & Sarkar 2002; Garcia-Villalba & Del Alamo 2011; Lloyd et al.
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Linear dynamics in turbulent stratified plane Poiseuille flow

2022; Zonta et al. 2022). Lloyd et al. (2022), through simulations at Reτ = 550 and
Riτ = 480, classified these regions as the inner region (y ≤ 0.2 and y ≥ 1.8) comprising
the viscosity-affected boundary layer, the intermediate outer region (0.2 < y ≤ 0.8 and
1.2 ≤ y < 1.8) and the buoyancy-dominated channel core (0.8 < y < 1.2). Here, the
vertical coordinate y has been made dimensionless by the channel half-height, δ. Despite
near-wall activity comprising strongly nonlinear dynamics, Lloyd et al. (2022) showed that
the channel core was well described a series of linear waves. Analysis of the dispersion
relation for these waves revealed two modes: ‘backward’-travelling waves (BWs) and
‘forward’-travelling waves (FWs), relative to the mean flow (i.e respectively with negative
and positive intrinsic frequencies). The BWs were found to dominate the channel core
with spectral energies several orders of magnitude higher than those of the FWs. Despite
the strong spatial variance in the background shear and buoyancy profiles, the dispersion
relation for the most dominant waves agreed reasonably well with the idealised dispersion
relations for internal waves with constant convective velocity U0 and buoyancy frequency
N0,

ω ≈ U0kx ± N0, (1.2)

where ω represents temporal frequency and kx represents the streamwise wavenumber.
The appropriate values of U0 and N0 were shown to be the vertically averaged values
of U and N in the channel core (0.8 < y < 1.2), where U and N respectively represent
the vertically varying temporally and planar-averaged streamwise velocity and buoyancy
(Brunt–Väisälä) frequency. It remains unclear why such an idealised linear dispersion
is appropriate for describing channel core dynamics. Lloyd et al. (2022) investigated
generation of these waves by analysing the system of equations, linearised about the
temporally and planar-averaged flow profiles, formulated as both a differential eigenvalue
problem (the viscous Taylor–Goldstein (vTG) equations) and a stochastically forced
initial-value problem. Through investigation of systems linearised about the temporally
and planar-averaged flow profiles Lloyd et al. (2022) found that BWs were generated due
to a sensitive response of the mean flow profiles to turbulent perturbations, originating in
the outer regions of the flow, at the edge of the channel core. The continuous turbulent
forcing in the outer regions of the flow excited stable coherent structures in the channel
core.

Critically the two-dimensional (2-D) linearised framework used was unable to
adequately explain the presence of the FWs observed in fully resolved simulations. Here
the higher-frequency, forward-propagating, modes of the linearised system collapsed on
ω ≈ Umaxkx, indicative of centreline flow structures Doppler-shifted by the local flow
velocity with an intrinsic frequency of zero. It remains unclear why backward modes
are well predicted by linear theory while forward modes are not, unless the structures or
mechanisms generating such waves are different. There are also open questions regarding
how background shear and buoyancy forces affect the dominant modes, and why backward
modes should dominate over forward modes in fully nonlinear simulations. Better
understanding of such processes is essential to provide a more complete understanding
of mixing in turbulent flows (Fukuda et al. 2023).

The present study is focused on characterising both sets of waves in the stratified channel
flow, regarding their dispersion relation and their dependence on the background flow
profiles and forcing mechanisms, providing clear insight into where such structures could
be expected to emerge in natural flows. This is achieved using a suite of linear models with
solutions compared against those of nonlinear simulations. Our methodology is detailed in
§ 2. We first introduce the nonlinear simulations in § 2.1 which are an extension of those of
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Lloyd et al. (2022), integrated further in time to enable convergence of high-dimensional
energy spectra, and then the linear framework and associated numerical methodology
based upon the three-dimensional (3-D) vTG equations in § 2.2. Our findings are presented
in § 3. In § 3.1 we compare nonlinear simulation spectra with solutions obtained using the
vTG framework subject to background flow profiles obtained from the simulations, finding
that both the BWs and FWs are well predicted by the linearised framework once spanwise
structure has been taken into account. The sensitivity of solutions to the background shear
and buoyancy profiles is explored in § 3.2. In addition, solutions are obtained for a simple
piecewise inviscid system in § 3.3 to complement the vTG results. The linear models all
show that there is an imbalance between the role of shear on the BWs when compared to
the FWs, where the BWs are strongly dependent on shear at low wavenumbers. In § 3.4
we investigate the dependence of coherent structures on different forcing mechanisms,
potentially providing an explanation to the dominance of the BWs, arising as a result of
the precise nature of the forcing, where crucially low-momentum fluid is ejected into the
channel core from the outer regions of the flow, preferentially generating BWs, relative
to the local high-velocity flow. Finally, we discuss our findings in the wider context of
stratified flows in § 4, concluding this study.

2. Methodology

In this section we provide an overview of the nonlinear model in § 2.1 and the linear
framework in § 2.2.

2.1. Simulation details
We integrate the nonlinear model of Lloyd et al. (2022) further in time sampling data over
a period T = 75, increased from T = 40, to enable calculation of high-dimensional energy
spectra, without requiring spatial averaging. The simulation solves the dimensionless
momentum and continuity equations with a scalar transport equation for density:

∂u
∂t

+ (u · ∇)u = −∇p − Riτ ρ′ey + 1
Reτ

∇2u + f , (2.1)

∇ · u = 0 (2.2)

and
∂ρ

∂t
+ (u · ∇)ρ = 1

Pr Reτ
∇2ρ. (2.3)

Here, u = (u, v,w) represents the three-component velocity field, p the pressure, ρ the
density field and ey = (0, 1, 0) the vertical unit vector. The coordinate system (x, y, z)
corresponds to streamwise, vertical and spanwise directions, respectively. The density field
ρ is related to the buoyancy b by b = −Riτ ρ and primes denote fluctuating components
of a variable away from its planar and temporally averaged mean (ρ = ρ̄ + ρ′). The
forcing term f = (1, 0, 0) is a (negative) streamwise constant pressure gradient. The
dimensionless parameters are the Reynolds number with Reτ = 550, the Richardson
number with Riτ = 480 and the Prandtl number with Pr = 1. Equations are solved on
an Lx × Ly × Lz = 8π × 2 × 3π domain, with periodic boundary conditions applied in
the streamwise (x) and spanwise (z) directions and no-slip conditions on the y-normal
boundaries, u = 0 at y = 0 and y = 2. Stratification is imposed using Dirichlet boundary
conditions for the density field with ρ = −1

2 at y = 0 and ρ = 1
2 at y = 2. Equations are
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discretised using Nx × Ny × Nz = 80 × 44 × 40 spectral elements, vertically distributed
with a hyperbolic stretching function to refine near-wall elements. Each element is further
discretised by 83 Gauss–Lobatto–Legendre nodes, and solved using NEK5000 (Version
19.0, Argonne National Laboratory, IL, USA). Equations are integrated in time using
third-order backward differencing with a time step �t = 1 × 10−4. This grid resolution
is sufficient to fully resolve flow dynamics in the vertical direction, but insufficient in
the horizontal directions. Subsequently we adopt modal-based explicit filtering to account
for unresolved dissipation. Further simulation details and validation are reported in Lloyd
et al. (2022). Pseudo-steady data are collected over an integration time of T = 75, sampled
on a y-normal slice at y = 1.0 and a z-normal slice at z = Lz/2 every 20 time steps. For
clarity we describe the notation used in regard to spectra throughout this paper. We present
either 2-D or 3-D spectra in this paper, with the dimensions relating to those that have been
Fourier-transformed. With temporal windowing, z-normal snapshots enable calculation
of 2-D spectra, E2D(kx, y, ω) at z = Lz/2, while y-normal snapshots enable 3-D spectra
calculations, E3D(kx, kz, ω) at y = 1.

While uτ is the obvious velocity scale for numerical simulation, we find that the
planar and temporally averaged velocity maximum, uc/uτ = ūmax = 40.49, is the more
appropriate velocity scale for characterising waves in the channel core (note that the
overbar represents a planar and temporally averaged variable). For this reason, all data
presented in the following sections, unless otherwise stated, are rescaled by the centreline
(maximum) velocity, uc. This is particularly useful for comparison against idealised
systems in §§ 3.2 and 3.3. We therefore define U = ūuτ /uc with Umax = 1, and B =
−Ricρ̄, where Ric = Riτu2

τ /u
2
c = 0.293. The Reynolds number based on the centreline

velocity is Rec = Reτuc/uτ = 22 270.

2.2. Formulation of the linear framework
Following Liu, Thorpe & Smyth (2012) and Lloyd et al. (2022), the dimensionless
governing momentum transport equation (2.1) is reformulated such that turbulence is
assumed small scale, acting through vertically varying coefficients of effective viscosity:

∂u∗

∂t
+ (u∗ · ∇)u∗ = −∇p∗ + b∗ey + ∇H · (AH∇Hu∗)+ ∂

∂y

(
AV
∂u∗

∂y

)
. (2.4)

Here the superscript ∗ represents a field once its small-scale turbulent component has been
subtracted and the velocity scale for non-dimensionalisation is taken as the centreline
velocity, uc. All remaining scalings are as per § 2.1. Terms AH and AV represent the
resultant vertically varying horizontal and vertical eddy coefficients of effective viscosity,
respectively. These effective viscosities comprise turbulent and viscous components, and
are assumed to be independent of the horizontal (x, z) directions. The gradient operators
are defined as ∇ = (∂/∂x, ∂/∂y, ∂/∂z) and ∇H = (∂/∂x, 0, ∂/∂z). Mass continuity is
imposed with a divergence-free velocity field,

∇ · u∗ = 0, (2.5)

and buoyancy transport is governed by

∂b∗

∂t
+ (u∗ · ∇)b∗ = ∇H · (KH∇Hb∗)+ ∂

∂y

(
KV
∂b∗

∂y

)
, (2.6)

where KH and KV are horizontal and vertical eddy coefficients of effective diffusivity,
respectively. Like AH and AV these are assumed independent of horizontal directions.
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Equations are linearised about steady background vertically varying velocity, kinematic
pressure and buoyancy profiles, U = (U( y), 0, 0), P( y) and B( y), with perturbations from
these profiles given by u′′, p′′ and b′′. Neglecting nonlinearity, and assuming mean flow
terms are in balance, allows transport equations for the vertical velocity and buoyancy
perturbations to be decoupled from spanwise and streamwise velocity perturbations:

∂

∂t
∇2v′′ + U

∂

∂x
∇2v′′ − d2U

dy2
∂v′′

∂x
= ∇2

Hb′′ + Dvv′′ (2.7)

and
∂b′′

∂t
+ v′′ dB

dy
+ U

∂b′′

∂x
= Dbb′′. (2.8)

The diffusive operators Dv and Db are defined as

Dv = AH∇4
H + ∇2

H
∂

∂y

(
(AH + AV)

∂

∂y

)
+ ∂2

∂y2

(
AV

∂2

∂y2

)
(2.9)

and

Db = ∇H · (KH∇H)+ ∂

∂y

(
KV

∂

∂y

)
. (2.10)

General normal mode solutions are are sought of the form v′′ = v̂( y) exp(ikxx + ikzz +
λt) and b′′ = b̂( y) exp(ikxx + ikzz + λt), allowing for general vertical dependence of the
complex amplitudes or eigenfunctions v̂ and b̂. Here kx and kz represent streamwise and
spanwise wavenumbers, and λ = σ − iω represents a complex growth rate or eigenvalue
related to the real growth rate σ and the temporal frequency ω. Substitution into the linear
equations leads to

λ�v̂ =
(

−ikxUΔ+ ikx
d2U
dy2 + D̂v

)
v̂ − k̃2b̂, (2.11)

λb̂ = −dB
dy
v̂ + (−ikxU + D̂b)b̂, (2.12)

where Δ = d2/dy2 − k̃2, k̃ =
√

k2
x + k2

z represents the wavenumber magnitude and the
diffusive operators are defined as

D̂v = k̃4AH − k̃2 d
dy

(
(AH + AV)

d
dy

)
+ d2

dy2

(
AV

d2

dy2

)
(2.13)

and

D̂b = k̃2KH + d
dy

(
KV

d
dy

)
. (2.14)

These equations can subsequently be reformulated as an eigenvalue problem:

λ

[
Δ 0
0 I

] [
v̂

b̂

]
=

⎡
⎢⎢⎣−ikxUΔ+ ikx

d2U
dy2 + D̂v −k̃2

−dB
dy

−ikxU + D̂b

⎤
⎥⎥⎦
[
v̂

b̂

]
, (2.15)

where I represents the identity matrix. This form of the eigenvalue problem advances on
previous work (Lloyd et al. 2022) by including dependence on a spanwise wavenumber.
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Linear dynamics in turbulent stratified plane Poiseuille flow

Assuming diffusive operators take contributions only from molecular viscous/diffusive
processes reduces the eigenvalue problem (2.15) to that derived in Smyth & Carpenter
(2019), equations (6.14) and (6.15).

For given kx and kz (or wavenumber magnitude k̃ and angle of obliquity θ =
arctan kz/kx), and specified vertically varying profiles of background velocity U, buoyancy
B and effective viscosities/diffusivities AH , AV , KH and KV , the differential eigenvalue
problem (2.15) can be (numerically) solved to obtain the complex growth rates
(eigenvalues) λ and associated structure functions (eigenvectors) v̂ and b̂. The background
velocity and buoyancy profiles are taken as the temporally and planar-averaged simulation
profiles. To ensure the background flow profiles satisfy the leading-order balance of (2.4)
to (2.6), the effective viscosity and diffusivities are taken as AH = AV = 1/Rec + νt and
KH = KV = 1/Pr Rec + κt, where νt = −u′v′/ūy and κt = −b′v′/b̄y represent turbulent
contributions. It should be noted, however, that solutions are insensitive to this particular
choice of coefficients. The inclusion of viscosity is primarily for numerical regularisation,
particularly in regions of critical layers which are singular in the inviscid TG equations. As
we show in §§ 3.1 and 3.2, inclusion of νt and κt has a minimal influence on the dominant
modes, since they arise in the channel core where turbulence is suppressed. In addition,
the sensitivity of solutions to Rec is explored in this study, finding that its influence on the
dispersion relation is negligible for the large Rec investigated herein.

We should also comment on the appropriateness of linearisation over the entire channel
height despite nonlinear dynamics dominating the flow near the walls. We justify this by
noting that the dominant modes that arise are limited to the channel core region where
turbulence is suppressed by strong buoyancy gradients. While this region is coupled to
the outer regions of the flow, the nature of the channel core dynamics has been shown to
be insensitive to the precise form of this coupling, where stochastic excitement leads to
structures consistent with those of nonlinear simulations (Lloyd et al. 2022).

The eigenvalue problem (2.15) is numerically solved, with discrete operators derived
using Chebyshev polynomials with a y-directional resolution of N = 401 grid points.
Six boundary conditions are required to close the system. Consistent with the nonlinear
simulation boundary conditions we specify v̂ = 0, v̂y = 0 and b̂ = 0 at the lower and upper
boundaries (y = 0 and y = 2, with y made dimensionless by the channel half-height δ),
implemented using a ‘give-back’ matrix, following the procedure outlined by Lian, Smyth
& Liu (2020). Solutions to the eigenvalue problem (2.15) for a given kx and kz are the
growth rates σ and the frequencies ω with associated structure functions v̂ and b̂.

3. Results

To provide context for the analysis of the linear models in this paper, we first reproduce
some of the key findings of Lloyd et al. (2022) in figure 1, which presents time- and
planar-averaged statistics as a function of vertical coordinate y, and 2-D spectra E2D(kx, ω)

at the channel centreline y = 1, obtained from the nonlinear simulations. Consistent with
previous findings (Armenio & Sarkar 2002; Garcia-Villalba & Del Alamo 2011; Lloyd
et al. 2022; Zonta et al. 2022), the flow is characterised by the steep buoyancy gradient in
the core of the channel, the high velocity gradients at the walls and the velocity maximum
at the centreline which corresponds to a negative minimum in Uyy. While the motivation
for the choice of bounds for the channel core (0.8 < y < 1.2) in Lloyd et al. (2022) was
qualitative, figure 1(b) shows that the core of the channel, characterised by the strong
negative peak in Uyy, is bounded by positive maxima in Uyy at y ≈ 0.8 and y ≈ 1.2.
These local maxima arise due to the jet-like sharpening of the velocity profile in the core,
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Figure 1. Time- and planar-averaged profiles of (a) velocity and buoyancy, (b) buoyancy derivative and second
velocity derivative and (c) eddy viscosity/diffusivity. Shaded regions represent approximate bounds of the
inner region (y ≤ 0.2 and y ≥ 1.8), the outer region (0.2 < y ≤ 0.8 and 1.2 ≤ y < 1.8) and the channel core
(0.8 < y < 1.2). (d) Spanwise-averaged 2-D energy spectra of buoyancy perturbations at y = 1, as a function
of streamwise wavenumber kx and intrinsic temporal frequency ω − Umaxkx. The lines represent different
dispersion relations. Subscript ‘max’ denotes maximum values and subscript ‘mean’ denotes the average value
in the channel core region.

a result of the strong buoyancy gradients and therefore suppressed turbulent viscosity.
Indeed, the eddy viscosity and diffusivities shown in figure 1(c) are smaller than those of
corresponding molecular processes (νt/ν ≈ κt/κ � 1) in the channel core, by at least an
order of magnitude near the centreline.

Spanwise (z)-averaged 2-D spectra E2D
bb (kx, ω) are presented in figure 1(d), calculated

using y-normal snapshots at the channel centreline, y = 1. Spectra are calculated using
the method of Welch (1967) with a 50 % overlap Hamming window of length 4096
snapshots in time. Here the dispersion relation is shown as a function of the intrinsic
frequency, ω − Umaxkx; positive values indicate structures propagating faster than the local
(maximum) flow speed, while negative values indicate structures propagating backwards
relative to the local flow. Backward-propagating structures dominate dynamics in the core,
although note that relative to the strong local streamwise velocity, vertical perturbations
are reasonably small, with rms(v)/Umax � 0.02 (Lloyd et al. 2022). Following Lloyd et al.
(2022), three linear dispersion relations are also plotted in figure 1(d), with N2 = By: ω =
Umaxkx, ω = Umaxkx ± Nmax and ω = Umeankx ± Nmean, where subscript ‘max’ represents
the maximum value of a variable (for N and U this corresponds to their values at y = 1)
and subscript ‘mean’ represents variables spatially averaged in the channel core region,
0.8 < y < 1.2. The dispersion relations ω = Umaxkx ± Nmax and ω = Umeankx ± Nmean
correspond to highly idealised linear internal waves derived assuming the system has a
constant buoyancy frequency and velocity. While these are sweeping assumptions, the
simulation spectra show reasonable agreement with the dispersion relation ω = Umeankx −
Nmean where the spectral energy is largest, corresponding to a ‘backward’-travelling
essentially linear internal wave, relative to the mean flow. ‘Forward’-travelling waves are
also present in the flow, although their peak in spectral energy is at least an order of
magnitude lower than that of the BWs. In this paper, we show that while the idealised linear
dispersion relation based upon the maximum values in the channel is a good approximation
to the limiting behaviour of the dominant modes, the dispersion relation at low k̃ is strongly
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Figure 2. Dispersion relation predictions for 3-D vTG solutions, visualised using the growth rate σ ,
with background profiles and parameters taken from simulation data. Solutions obtained with spanwise
wavenumbers of (a) kz = 0, (b) kz = 2, (c) kz = 8 and (d) kz = 40. Dash-dotted lines are marked in each
panel representing the dominant modes: FW and BW. Horizontal lines are as per figure 1(c).

dependent on the background shear profile rather than mean values across the channel
core. We therefore omit the dispersion relation ω = Umeankx ± Nmean from the remaining
figures in the rest of the paper.

3.1. Linear model predictions
Dispersion relations obtained using the 3-D vTG framework subject to the nonlinear
simulation base profiles are presented in figure 2. Solutions are obtained for four spanwise
wavenumbers kz over a wide range of streamwise wavenumbers kx, and visualised using the
log-scaled growth rate, σ . Note that all modes are stable (σ < 0), and while the logarithmic
scaling on the growth rate of figure 2 emphasises the differences in growth rates between
the dominant modes, both are reasonably close to marginally stable, particularly when kx
and kz are small.

Solving the 3-D vTG equations with increasing values of kz (figure 2) leads to a
significant deviation from the kz = 0 solutions, particularly for the forward-propagating
modes. As kz increases, the two dominant modes migrate towards the idealised dispersion
relation, ω = Umaxkx ± Nmax. This limiting behaviour is explained when investigating
idealised systems in § 3.2. Interestingly the forward modes maintain their near-zero
(marginally stable) growth rates as kz increases, while the backward modes weaken.

The solution with kz = 0 (figure 2a) is a reproduction of the 2-D vTG predictions
adopted by Lloyd et al. (2022). When compared against the 2-D spanwise-averaged spectra
of figure 1 it is clear that while the form of the BW dispersion relation is well predicted, that
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Figure 3. The 3-D energy spectra of buoyancy perturbations at y = 1, as a function of streamwise wavenumber
kx, spanwise wavenumber kz and temporal frequency ω. Spectra obtained for spanwise wavenumbers of
(a) kz = 0, (b) kz = 2, (c) kz = 8 and (d) kz = 40. Dash-dotted lines represent the dominant modes obtained
from the vTG solutions of figure 2. Lines are as per figure 1(c).

of the FW is not. This poor prediction is entirely due to the spanwise-averaging performed
on the spectra. To directly compare with nonlinear simulations we have calculated 3-D
spectra E3D

bb (kx, kz, ω) at y = 1. To improve convergence, the temporal Hamming window
has been halved to 2048 snapshots with respect to the 2-D spectra calculations of
figure 1. Spectra are shown in figure 3 for the same four kz values as in figure 2 and
directly compared against the dominant vTG modes, marked by the dash-dotted lines.
The 3-D energy spectra indicate excellent agreement between the simulations and the
vTG solutions, with both the FWs and BWs migrating towards ω = Umaxkx ± Nmax as kz
increases. In addition, the FWs are detected over the full frequency axis limits in figure 3,
unlike figure 1 where spectral energies decay significantly as kx increases. The backward
waves are largely 2-D, demonstrated by their substantial decrease in energy content as kz
increases. In contrast, the spectral energy content of the forward waves is considerably less
sensitive to kz, even for kz = 8 (figure 3c). In agreement with vTG solutions, the spectral
energy of the forward waves grows in amplitude relative to that of the backward waves
as kz increases; while they never dominate over the backward waves, they do become an
important feature.

Clearly, spanwise structure is a vital component for both the nonlinear simulations and
the vTG solutions; accounting for kz leads to excellent agreement between linear stability
analysis and fully nonlinear simulations, for both sets of waves. When neglecting spanwise
information by averaging in z (as per figure 1) the FWs are smeared out due to their
presence over a wider range of kz, and the dependence of their dispersion relation on kz.
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Figure 4. Dispersion relation predictions for vTG solutions, visualised using the growth rate σ , with
background profiles and parameters taken from simulation data. Solutions obtained with increasing angles
of obliquity: (a) tan θ = 0, (b) tan θ = 1, (c) tan θ = 2 and (d) tan θ = 4. Lines are as per figure 2.

While fixing kz for each panel of figures 2 and 3 is a natural choice for the nonlinear
simulation data, interpretation of the dispersion relations is difficult due to the changing
angle of obliquity θ as kx increases, where tan θ = kz/kx or cos θ = kx/k̃. At low kx the
modes of figures 2 and 3 are more oblique (higher θ ) than at high kx. To resolve this we
present the dispersion relations for the vTG solutions with constant angles of obliquity in
figure 4: tan θ = 0, 1, 2 and 4, as a function of the wavenumber magnitude, k̃. First note
that the dispersion relations of all modes intersect the origin with k̃ = 0 and ω = 0, unlike
figures 2 and 3. In addition, θ has a smaller influence on the dispersion relation than k̃; its
influence is restricted primarily to the BW in the region k̃ � 25. The (negative) intrinsic
frequency of the BW reduces as k̃ increases from zero until it reaches its maximum growth
rate, at which point its intrinsic frequency starts increasing with increasing k̃. This turning
point is not present in the FW dispersion relation. As we show in § 3.2, the turning point
in the BW dispersion relation at low k̃ is strongly dependent on the background shear.

At high k̃ the BWs and FWs very clearly tend towards ω = Umaxkx ± Nmax,
demonstrating that the wavenumber magnitude k̃ is the key control on limiting behaviour.
As k̃ and θ increase, the growth rate of the FW monotonically decreases. In contrast,
the BW has a maximum growth rate at k̃ ≈ 4 which decays as k̃ increases further. Both
the BW and FW become more stable as k̃ increases, and are therefore likely to quickly
decay when compared with the near marginally stable modes at low k̃. These features are
consistent with the simulation spectra of figure 3. A clear discrepancy between the linear
stability analysis and the simulations is the dominance of the FW over the BW in the linear
solutions; this is revisited in § 3.4.
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Figure 5. The 2-D energy spectra obtained on a spanwise normal slice at z = Lz/2. For a given kx, spectra
are shown as a function of height y and frequency ω. (a,c) Spectra for kx = 2; (b,d) energy spectra for kx = 4.
(a,b) Spectra based on vertical velocity fluctuations; (c,d) spectra based on buoyancy fluctuations. Labels of
(c) indicate signals arising from BWs, FWs and hairpin vortex ejection events (HP). Horizontal lines represent
bounds of the channel core region: y = 0.8 and y = 1.2.

The vertical structure of the dominant modes is assessed by calculating E2D
vv (kx, y, ω)

and E2D
bb (kx, y, ω) using z-normal snapshots. These spectra are reported as a function of

frequency ω and height y for a given wavenumber kx in figure 5, and compared against the
vertically varying dispersion relations Ukx and Ukx ± N. It is important to note, however,
that spanwise structure cannot be assessed using the z-normal slice data. Nevertheless,
the vertical dependence of E2D does reveal some additional insights. The BWs appear
to have a near-constant frequency for a given kx, with its main spectral energy bound by
the channel core 0.8 < y < 1.2 before reducing in magnitude in the outer regions. The
backward wave has a frequency a little less than the average of Ukx − N, for these values
of kx. The FWs are less well defined, due to the lack of spanwise structure information.
Like the backward waves, the forward waves have wave speeds a little less than Ukx + N,
for these values of kx. The vertical bounds of the forward waves are also less clear, but
appear narrower in form than those of the backward waves, particularly at kx = 4, with
most energy concentrated near y = 1. In addition to the channel core waves two peaks are
revealed near the bounds of the core with wave speeds matching the mean flow velocity,
U, particularly in the buoyancy spectra. We speculate that these peaks are associated with
the hairpin vortices that are ejected into the core from the outer region of the flow (Lloyd
et al. 2022). In penetrating the strongly stratified core they generate large-scale waves
whilst being accelerated to the local mean flow velocity before dissipating their kinetic
energy.

The vertically varying simulation spectra of figure 5 can be compared against vTG
solutions by slicing through the dataset at the frequencies associated with the BW and FW,
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Figure 6. Comparison between simulation energy spectra and vTG structure functions for BW and FW (see
figure 5). (a,c,e,g) The vTG eigenvalue solutions, growth rate σ as a function of temporal frequency ω, for
given wavenumbers kx and kz. Lines represent simulation 2-D energy spectra E2D

vv (kx, y, ω) at y = 1 and the
same kx as the vTG solutions. (b,d,f,h) Comparison of the vertical velocity (i) and buoyancy (ii) structure
function energies (v̂†v̂ and b̂†b̂) as a function of height y, for the FW and BW modes marked by a cross (×) in
(a,c,e,g), respectively. The BW and FW frequencies obtained from the 2-D spanwise-averaged energy spectra
of figure 5 for the given kx are marked as stars () in (a,c,e,g). Panels (b,d,f,h) compare their corresponding
vertically varying energy spectra E2D

vv (i) and E2D
bb (ii) at the marked frequencyωwith vTG solutions. In (b,d,f,h),

simulation data are marked with solid lines, while vTG solutions are marked with dashed lines.

for a given kx, observed in figure 6. The vTG solution growth rates are directly compared
against energy spectra at y = 1 with kx = 2 and kx = 4. The BWs and FWs are marked
with crosses for the vTG solutions and stars for the spectra. The energy contained in the
vertically varying structure functions of the identified FW and BW vTG modes, v̂†v̂ for
vertical velocity and b̂†b̂ for buoyancy, are reported in figure 6(b,d, f,h), and compared
against E2D

vv (kx, y, ω) and E2D
bb (kx, y, ω) at the identified ω and kx. Direct comparisons are

limited by the lack of spanwise structure in the simulation spectra, yet there is reasonable
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agreement between vTG solutions and simulations when observing their vertical modal
structure for the marked modes (figure 6), which peak in the channel core and reduce to
zero in the outer regions of the flow. Despite the lack of spanwise structure in the spectra,
we see reasonable agreement between linear stability solutions and the spectra for most
modes. The BWs are well reproduced aside from buoyancy structure at (kx, kz) = (4, 8),
where we see instability in the outer regions of the flow. This arises due to critical levels,
where the local wave speed of the modes matches the background velocity. This behaviour
was also reported by Lloyd et al. (2022). The majority of the FWs are reasonably well
predicted, particularly for the buoyancy structure, although less so than the BWs. We
expect that the poorer agreement between vertical velocity spectra and vTG solutions
for the FWs is due to the lack of spanwise structure in the spectra, which, as previously
discussed, significantly smears the dispersion relation of the FWs. This smearing of the
modes could also explain the broader peaks in spectra when compared with vTG solutions,
although this could also be due to nonlinear processes at the edge of the core, where
interactions with turbulent structures diffuse the sharp peaks.

The linear stability analysis gives a good prediction of channel core dynamics
(particularly the dispersion relations of figures 2 and 3), for both the BWs and FWs,
once spanwise structure has been taken into account. There are, however, several key open
questions regarding the nature of these waves. What are the key processes governing the
dispersion and structure of these waves? What are the key parameters and features of the
background flow profiles that lead to such a dispersion relation? And what governs the
limiting behaviour of the modes, ω = Umaxkx ± Nmax?

The first of these questions can be answered by assessing the balance between diffusive
processes, shear and buoyancy on the vTG solutions. This is achieved by computing the
balance of their corresponding terms in the vTG eigenvalue problem (2.15):

−(λ+ ikxU)�v̂︸ ︷︷ ︸
Cv

+−k̃2b̂︸ ︷︷ ︸
Bv

+ D̂vv̂︸︷︷︸
Dv

+ ikx
d2U
dy2 v̂︸ ︷︷ ︸
Sv

= 0 (3.1)

and

−(λ+ ikxU)b̂︸ ︷︷ ︸
Cb

+−dB
dy
v̂︸ ︷︷ ︸

Bb

+ D̂bb̂︸︷︷︸
Db

= 0, (3.2)

where C represents convective terms, B represents buoyancy terms, S represents shear
terms, D represents diffusive terms and the subscripts represent budgets for either the
vertical velocity equation (v̂) or the buoyancy equation (b̂). The balance of these terms at
two different values of k̃ and tan θ can be observed in figures 7 and 8. The spatial structures
of the eigenfunctions for the marked eigenvalues in panels (a) and (b) are reported in panels
(c) and (d) for the BW and (e) and ( f ) for the FW. Here we only report the streamwise
and vertical spatial structure of the modes for brevity. The particular values of k̃ and
tan θ in figures 7 and 8 are chosen as representative of two different regimes. The FW
for both small and large k̃ is vertically narrow, particularly for the buoyancy structure,
peaking at y = 1. The vertical structure of the BW appears much wider, and experiences
some shearing across the critical levels. When comparing the modal structure of the FW
between figures 7 and 8 it is clear that increasing k̃ and tan θ leads to a narrower structure.
As k̃ grows further and the dispersion relations of both dominant modes tend towards

999 A104-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1000


Linear dynamics in turbulent stratified plane Poiseuille flow

BW FW BW FW

0 10 20 30 40

−2

−1

0

1

(a)

−0.75 −0.50 −0.25 0

σ

−2

−1

0

1

(b)

−100

−10−1

−10−2

σ

0

1

2

y

(c)
BW v′′(x, y) BW b′′(x, y) FW v′′(x, y) FW b′′(x, y)

(d )

0.6

0.8

1.0

1.2

1.4

0

1

2

0.6

0.8

1.0

1.2

1.4

y

(g) (h)

0

1

2

(e) ( f )

1

x/λx
1

x/λx
1

x/λx
1

x/λx

0.6

0.8

1.0

1.2

1.4

0

1

2

0.6

0.8

1.0

1.2

1.4

(i)

−1 0 1 −1 0 1 −1 0 1 −1 0 1

( j)

ω
 −

 U
m

ax
k x

Cv, Bv, Dv, Sv Cb, Bb, Db Cv, Bv, Dv, Sv Cb, Bb, Db

k̃

Figure 7. Modal structure and budgets for the vTG solutions of figure 4 with tan θ = 0. (a) As per figure 4(a).
(b) The growth rate as a function of intrinsic frequency for k̃ = 4. The horizontal lines added to (a,b)
are as per figure 4. The BWs and FWs are marked with crosses in (a,b), and have their spatial structure
and associated budgets reported in (c–j). (c,d,g,h) Associated with BW and (e, f,i,j) associated with FW.
(c,e) The vertical velocity spatial structure v′′(x, y) = Re(v̂ exp(ikxx)) and (d,f ) the buoyancy spatial structure
b′′(x, y) = Re(b̂(exp ikxx)). (g,i) Vertical velocity budgets in the channel core with labels corresponding
to (3.1). (h, j) Buoyancy budgets in the channel core with labels corresponding to (3.2). Line styles in
(g–j) represent real components (solid) and imaginary components (dashed). Horizontal dashed lines in
(c,d,g,h) represent critical levels where c = U.

the idealised dispersion relation, their spatial structure narrows and focuses more tightly
around the centreline (not shown).

The corresponding budgets of the BW and FW are markedly different from each other
for the two choices of k̃ and tan θ . At low k̃ and tan θ , the vertical velocity budget for the
BW is balanced primarily by the shear and convective terms, with only a small influence
of buoyancy and viscosity. In contrast, buoyancy dominates the transport of v̂ for the FW,
balanced primarily by shear with a weak contribution from convection, at low k̃ and tan θ .
The wavenumber magnitude has a strong influence on this balance. The role of shear is
minor for both the FW and the BW at high k̃ and tan θ , where both modes are governed
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Figure 8. Modal structure and budgets for the vTG solutions of figure 4 with tan θ = 4. The marked modes
and corresponding spatial structure and budget plots have k̃ = 16. Further details are as per figure 7.

by the balance between convective and buoyancy terms, with only a small contribution
from diffusion and shear. Note that the diffusive term is small at y = 1 and only influences
the solution near the edges of the core where the critical levels are present (y ≈ 0.75 and
y ≈ 1.25).

The BW therefore transitions from a shear-dominated regime at low k̃ and tan θ to a
buoyancy-dominated regime at high k̃ and tan θ . While not shown here, this transition is
primarily controlled by k̃, although θ does play a role by increasing the effective strength
of the background stratification, and therefore increasing the buoyancy term of (3.1), as
per the Squire transform (Smyth & Carpenter 2019). In contrast to the BW, buoyancy
dominates the dynamics of the FW even at low k̃, but shear also influences its dispersion
relation until k̃ is large.

It is also informative to assess the influence of the Reynolds and Richardson numbers
on the vTG solutions. Noting that the dominant modes are only weakly dependent on the
diffusive terms (figures 8 and 9) we approximate the viscous and diffusive coefficients by
Ah = Av = Kh = Kv = 1/Rec. This has a negligible influence on the dispersion relation

999 A104-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1000


Linear dynamics in turbulent stratified plane Poiseuille flow

0 5000 10 000 15 000 20 000

Rec Ric

−2

−1

0

1

−2

−1

0

1
(a)

0 0.25 0.50 0.75 1.00

(b)

−0.4

−0.2

0

0.2
σ

ω
 −

 U
m

ax
k x

Figure 9. Reynolds (a) and Richardson (b) number dependence of the vTG solutions with background profiles
taken from simulation spectra for kx = 4 and kz = 0, as a function of intrinsic frequency ω − Umaxkx. The
horizontal line represents ω = Umaxkx = 0.

(further evidence for this is provided in § 3.2, where we investigate solution sensitivity to
the background buoyancy and shear profiles), and enables a direct control of the magnitude
of the viscous/diffusive terms through Rec. Figure 9 reports the dependence of vTG
solutions on Rec and Ric for kx = 4 and kz = 0. First note that the Reynolds number only
has a weak influence on the solution, only influencing dynamics when Rec � 1000. It
should, however, be appreciated that its influence scales like k̃2, from inspection of the
eigenvalue problem (2.15). We therefore expect the Reynolds number to become more
important for large k̃.

In contrast to the Reynolds number, it is clear that the Richardson number has a great
influence on the dispersion relation. As Ric increases, the intrinsic frequency deviates
further from zero for both the BW and FW. Perhaps the most surprising result from figure 9
is that the BW is present, and in fact has its highest (and unstable) growth rate when
Ric = 0. The FW is also present and approximately critically stable, but converges towards
ω − Umaxkx = 0 as Ric reduces. A third mode, between BW and FW, emerges at small
Richardson number. This mode (not shown) corresponds to an asymmetric mode with
peaks near the edge of the channel core corresponding to the maxima in Uyy (figure 1).
This mode is also present in other vTG solutions (e.g. figure 4) but is significantly weaker
than the dominant modes in the channel.

Of course, the background flow profiles are also sensitive to changes in the Reynolds
and Richardson numbers. However, the sensitivity of the modes to Ric in isolation of
background profiles is highly informative; buoyancy is not a vital component for the BW
to emerge, but does have a strong influence on its dispersion. This implies, from inspection
of the vTG equations (2.15), that the background shear profile Uyy is the vital component
for producing these modes. Indeed, assessment of the balance between vTG terms reveals
that the BW transitions from a shear-dominated regime to a buoyancy-dominated regime
as k̃ increases. Given the BW is primarily governed by shear in the k̃ regime where
it dominates, it is perhaps more suitable to refer to these modes as vorticity–gravity
waves. While buoyancy is necessary for the suppression of turbulence in the core, and
therefore the development of the jet-like velocity profile, shear is the primary control on
the development of the dominant backward-propagating vorticity–gravity wave. To further
our understanding of the role of buoyancy and shear in the dispersion relation, and vertical
structure of the modes, we investigate numerical solutions to the vTG equations using
idealised background flow profiles in the following section.
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Figure 10. Velocity and buoyancy profiles with their derivatives, for the idealised stability problems (§ 3.2).
(a) Velocity profiles for the log-sech function (3.3) represented with dash-dotted lines, the sech function (3.5)
represented with dashed lines and the simulation data represented with solid lines. The log-sech profile is
calculated with w1

u = 12.8 and the sech profile with w2
u = 3.6. (b) First and (c) second derivatives of the velocity

profiles in (a). (d) Buoyancy profiles for the tanh function (3.4) represented with dotted lines and the simulation
data represented with solid lines. Idealised profiles are calculated with Ric = 0.293 and wb = 3.9. (e) The first
derivative of the buoyancy profiles in (d). ( f ) Gradient Richardson number profiles for the simulation data and
the continuous idealised profiles.

3.2. Linear solutions with idealised base flows
So far we have demonstrated that large-scale waves dominate the core of stratified channel
flow, with a strong presence of oblique waves, governed by linear mechanisms. Both
forward and backward waves are present, and have a distinct dispersion relation, but it
is unclear what properties of the velocity and density profiles lead to such behaviour.
This section will develop our understanding of these waves by investigating the numerical
solutions to the vTG equations, subject to the flow profiles of figure 10. In addition, we
demonstrate that solutions are insensitive to the inclusion of eddy diffusivity. We therefore
set AH = AV = KH = KV = 1/Rec with Rec = 22 270, for the idealised flow profiles.

All idealised profiles are based upon the characteristics of those obtained through the
nonlinear simulations, with a velocity maximum at y = 1 and no-slip boundaries at y = 0
and y = 2, normalised by the channel half-height. Here, the velocity scale is taken as the
velocity maximum, uc, such that Ric = �ρgδ/ρ0u2

c . Assuming the velocity maximum and
corresponding negative Uyy are the key drivers governing the dispersion of these waves,
we first obtain solutions for a log-sech velocity profile and a tanh buoyancy profile:

U = 1
ln(cosh(w1

u))
ln
(

sech(w1
u( y − 1))

sech(w1
u)

)
(3.3)

and
B = Ric 1

2 tanh(wb( y − 1)). (3.4)

Here w1
u and wb control the ‘sharpness’ of the velocity and buoyancy interfaces at y = 1.

This particular choice of buoyancy profile is well motivated due to the close agreement
with simulation data, aside from near-wall statistics far from the channel core. The velocity
profile is chosen assuming that the key feature required to reproduce the dominant modes
is the large negative peak in Uyy at the centreline, and other complexities can be neglected.
Like the nonlinear simulation profiles, at y = 1 these idealised profiles have a velocity
maximum, a minimum in Uyy and a maximum in By. Parameter values are chosen such
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that Uyy and By coincide with simulation data at y = 1 (figure 10): w1
u = 12.8, wb = 3.9

and Ric = 0.293.
In addition to the log-sech velocity profile, solutions are also sought for sech profiles of

the form

U = sech(w2
u( y − 1))− sech(w2

u)

1 − sech(w2
u)

. (3.5)

This choice leads to both a minimum in Uyy at y = 1 and two maxima either side of the
core region. With w2

u = 3.6 the minimum in Uyy matches that of the simulation data. The
magnitudes of the two maxima in Uyy are approximately consistent with simulation data
(figure 10), although their location is further from the centreline than simulation profiles.
Regardless, this choice of profile enables assessment of the role of these maxima on the
dominant modes.

Figure 10( f ) shows the gradient Richardson number, Rig = N2/S2 with S = Uy, for the
simulation solutions and the analytical profiles, as a measure of stability. All three sets of
profiles obtain a buoyancy-dominated core region (high Rig) and a shear-dominated outer
region (low Rig). The two sets of idealised profiles show lower Rig in the outer regions than
the simulation profiles, but do obtain a similar y value where Rig ≈ 0.2, before rapidly
increasing in the channel core.

Solutions to the vTG equations are sought for both sets of profiles, following the
numerical procedure outlined in § 2.2.

The dispersion relation obtained using the log-sech velocity profile and tanh buoyancy
profile is shown in figure 11, and directly compared with the dominant modes of § 3.1.
There are clear similarities between these solutions and the nonlinear simulations. The
simplified system obtains the same two dominant modes and correctly predicts their
limiting behaviour at large k̃. The FW is predicted in excellent agreement with the
reference profiles. There are two notable differences between figures 11 and 4. Firstly,
while there is a turning point in the dispersion relation for the BW in both the idealised
vTG solutions and those based on simulation profiles, the idealised system reaches the
turning point at a lower k̃ than the simulation-based solutions. Secondly, the reduced
system has a third dominant mode at a very low and negative intrinsic frequency. This
mode corresponds to instabilities at the boundaries rather than the core of the channel and
is therefore ignored in this study.

The dispersion relations obtained using the sech velocity profile are shown in figure 12.
Solutions are similar to those of the log-sech profiles and the simulation data; at high k̃
both dominant modes collapse to the same limiting behaviour, and the FW is reproduced
over the full k̃ and θ range. The only region where differences emerge is for the BW at
low θ and low k̃, where the sech profile leads to a larger deviation from the reference
dispersion relation. Given the buoyancy profile is reasonably consistent between both
idealised profiles and the reference profile (figure 10), the deviation of BW solutions from
the reference data at low θ and k̃ is consistent with previous findings, since this is the
region where shear is the dominant mechanism generating the BW.

Solutions obtained for the two idealised profiles and profiles of the nonlinear simulations
are directly compared in figure 13, for θ = 0. Dispersion relations for the dominant modes
are directly compared in figure 13(a), and the vertically varying structure functions for
the BW and FW at k̃ = 4 are compared in figure 13(b–e). In addition to the data obtained
using vertically varying eddy viscosity/diffusivity coefficients (detailed in § 2.2) solutions
are also shown for constant coefficients (ν = κ = 1/Rec) respectively denoted turb. and
lam. in figure 13. Dispersion relations for the two sets of solutions are indistinguishable, as
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Figure 11. Dispersion relation predictions for vTG solutions, visualised using the growth rate σ , for the
idealised log-sech velocity profile (3.3) and tanh buoyancy profile (3.4). Solutions obtained with increasing
angles of obliquity: (a) tan θ = 0, (b) tan θ = 1, (c) tan θ = 2 and (d) tan θ = 4. Dashed lines represent
reference leading-order modes (BW and FW) obtained for the system using nonlinear simulation profiles
(figure 4). Horizontal lines represent idealised dispersion relations based on Umax and Nmax, as detailed in
figure 1(c).

are their structure functions, aside from the buoyancy functions for the BW in the region
of the critical levels, where the increased viscosity associated with the turb. solutions
smooths the local peak. This further justifies the choice of constant viscosity/diffusivity
for the idealised solutions. Of particular note is the close agreement between the structure
functions of all four sets of solutions, aside from the buoyancy structure for the BW at
the region of the critical levels. Differences in the shear profiles leads to only minor
differences in the vertical structure of the dominant modes. Qualitatively, the dominant
modes observed in the channel core of nonlinear simulations can be reproduced with
a simple idealised velocity and buoyancy profile consisting of a velocity maximum, a
negative Uyy and maximum in By, at the centreline.

The limiting behaviours of the dispersion relations for both the FW and BW have
been consistent for all vTG solutions so far, tending towards ω − Umaxkx = ±Nmax as
k̃ → ∞. Given that buoyancy dominates the flow over buoyancy at large k̃ (figures 7
and 8) four further vTG solutions are sought for shear-free velocity profiles (U = 1) and
tanh buoyancy profiles (3.4), with varying values of Ric and wb, hypothesising that the
thickness of the buoyancy interface, and the buoyancy gradient at the centreline, are the
key controls on this limiting behaviour. The dispersion relations for these additional cases
can be observed in figure 14.

The four values of Ric and wb have been chosen such that Nmax = max(By) = 1
2 wbRic

is consistent for all cases, and with the nonlinear simulation data. The dispersion relations
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Figure 12. Dispersion relation predictions for vTG solutions, visualised using the growth rate σ , for the
idealised sech velocity profile (3.5) and tanh buoyancy profile (3.4). Solutions obtained with increasing angles
of obliquity: (a) tan θ = 0, (b) tan θ = 1, (c) tan θ = 2 and (d) tan θ = 4. Dashed lines represent reference
leading-order modes (BW and FW) obtained for the system using nonlinear simulation profiles (figure 4).
Horizontal lines represent idealised dispersion relations based on Umax and Nmax, as detailed in figure 1(c).
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Figure 13. Comparisons between vTG solutions obtained using nonlinear simulation profiles and idealised
profiles for θ = 0. Reference profiles are obtained with a constant viscosity/diffusivity (lam.) and a turbulent
viscosity/diffusivity (turb.). Idealised profiles are the log-sech and sech velocity profiles with the tanh buoyancy
profile. (a) The dispersion relations for the dominant modes and (b–e) vertically varying structure functions at
k̃ = 4, marked by the vertical dashed line in (a).
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Figure 14. Dispersion relation predictions for vTG solutions, visualised using the growth rate σ , based upon
a shear-free (U = 1) flow with a tanh buoyancy profile (3.4). All solutions are obtained with tan θ = 0.
(a–d) Solutions obtained with different values of wb and Ric, but with consistent buoyancy gradients at the
centreline, max(By) = 1

2 Ricwb. Lines represent idealised dispersion relations based on Umax and Nmax, detailed
in figure 4.

obtained for the flows free from shear are symmetric about ω − Umaxkx = 0; the BW and
FW modes are equal but opposite in sign. This is an unsurprising result, but confirms that
the asymmetry between the FW and BW of the non-uniform velocity profiles arises due to
the influence of shear (this is revisited in § 3.3). The FW and BW dispersion relations of
the shear-free flows tend towards the same solutions as those with shear of figures 11 and
12 at high k̃. The key difference between the four cases of figure 14 is the rate at which
the FWs and BWs converge towards the limiting behaviour, ω − Umaxkx = ±Nmax as k̃
increases. A small value of wb leads to quicker convergence towards the high-k̃ limit than
when wb is larger. In other words, the sharper the density interface (higher wb), the slower
the convergence towards the idealised dispersion relation.

The limiting behaviour of the shear-free system can be explained by this behaviour,
noting that as k̃ increases, the vertical extent of the dominant modes reduces and focuses
more tightly around the channel centreline (see figures 7 and 8, and related discussion). As
this occurs, the buoyancy gradient across the vertical extent of the dominant modes tends
towards an approximately constant value, depending on the interface thickness (controlled
by wb). Therefore, as k̃ increases, the dominant modes tend towards the idealised
dispersion relation for a system with a constant buoyancy gradient. A thinner buoyancy
interface (higher wb) requires narrower spatial modes before this limit is reached, shifting
convergence towards the limiting behaviour towards higher k̃. This can be readily extended
to the sheared profiles of the nonlinear simulations and the idealised systems, given that
the influence of shear reduces as k̃ increases, until eventually buoyancy dominates the
flow. Therefore, as k̃ is increased, the system behaves as if shear were negligible and the
buoyancy frequency was constant, leading to the limit ω = Umaxkx ± Nmax.

To summarise this section, it has been demonstrated that the crucial ingredients required
to qualitatively reproduce the dominant modes observed in the core of turbulent stratified
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plane Poiseuille flow are a velocity maximum, with a corresponding negative Uyy,
intersecting a region of strong buoyancy gradient. The limiting behaviour of the dominant
mode dispersion relations, ω − Umaxkx = ±Nmax, at high k̃ arises due to the negligible
influence of shear at high wavenumbers, and the reduced vertical extent of the dominant
modes, such that the local flow tends towards that of a shear-free flow with a constant
buoyancy gradient. Changes in the shear profile affect the backward-propagating mode at
low wavenumbers, but have little influence on the forward-propagating mode. A potential
explanation for this asymmetry is provided in the following section, where we explore
analytical solutions to the inviscid TG equations using piecewise profiles.

3.3. Analytical inviscid solutions

An open question remains regarding the differences between the FW and BW at low k̃,
where the BW is governed primarily by shear with a weak dependence on buoyancy and
the FW is governed by buoyancy with a weaker dependence on shear. Here we explore
analogous solutions to the inviscid TG equations using piecewise velocity and buoyancy
profiles as an approximation to the smooth profiles of § 3.2 (figure 10). Inviscid analytical
solutions to the piecewise TG equations have been invaluable for the study of instabilities
in stratified shear flows (Baines & Mitsudera 1994; Caulfield 1994; Carpenter et al. 2011;
Smyth & Carpenter 2019), and are particularly insightful due to their interpretability. It
is of course anticipated that resultant dispersion relations will comprise interfacial waves,
with dispersion relations largely inconsistent with those obtained for the smooth profiles of
§§ 3.1 and 3.2. Yet despite this, this section shows that there are key similarities between
the solutions, offering a potential explanation to the disparity between the influence of
shear on the BW and FW.

The inviscid TG equations are obtained from the vTG eigenvalue problem (2.15).
Neglecting the terms D̂vv̂ and D̂bb̂, and relating the eigenvalues λ to the wave speed c
by λ = −ikxc leads to the differential eigenvalue problem (Smyth & Carpenter 2019)

v̂yy +
[

k̃2

k2
x

By

(U − c)2
− Uyy

(U − c)
− k̃2

]
v̂ = 0. (3.6)

Note that the wave-vector angle appears only through the buoyancy term, k̃2/k2
x =

1/ cos2 θ . We seek solutions to piecewise velocity and buoyancy profiles:

U =
{

2 − y, y ≥ 1,
y, y ≤ 1,

(3.7)

where Umax = 1, and

B = Ric

{
0.5, y ≥ 1,
−0.5, y ≤ 1.

(3.8)

These profiles are discontinuous in Uy and B, such that Uyy = −2δ( y − 1) and By =
Ricδ( y − 1), where δ() is the Dirac delta function and Ric = 0.293, consistent with vTG
solutions of §§ 3.1 and 3.2. These profiles are a piecewise approximation to the log-sech
velocity and tanh buoyancy profiles of figure 10, with a velocity maximum and a buoyancy
interface at the channel centreline. We seek solutions to the TG equations subject to the
piecewise profiles with Dirichlet boundary conditions v̂ = 0 at y = 0 and y = 2.
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The general solution to (3.6) for the piecewise velocity (3.7) and buoyancy (3.8) profiles
is

v̂ =
{

A e−k̃( y−1) − A ek̃( y−3) y ≥ 1,
A ek̃( y−1) − A e−k̃( y+1) y ≤ 1,

(3.9)

where A is a constant. The dispersion relation is obtained by substitution of v̂ into the TG
equations (3.6) and integrating over the interface at y = 1, with Uyy = −2δ( y − 1) and
By = Ricδ( y − 1), derived from (3.7) and (3.8), leading to

(c − 1)2 + cv(c − 1)− c2
g = 0, (3.10)

assuming Ric /= 0. The wave speeds cv = F/k̃ and c2
g = FRic/2k̃ cos2 θ represent the

solutions obtained if the system were solved for either Ric = 0 or U = 1, respectively,
resulting in a backward-propagating isolated vorticity wave with c − 1 = −cv , or two
interfacial gravity waves with c − 1 = ±cg. Note that only a single vorticity wave
is produced when Ric = 0, travelling backwards relative to the background flow. The
factor F = (1 − e−2k̃)/(1 + e−2k̃) arises due to the imposed boundary conditions, and is
bounded between 0 and 1 for k ∈ [0,∞), respectively. If the system were instead solved
for boundary conditions where v̂ → 0 at y → ±∞, the dispersion relation would satisfy
(3.11) with F = 1; thus the Dirichlet boundary conditions only affect the solution for small
k̃. This is reasonable given that small instabilities (large k̃) are more isolated from the
boundaries than larger instabilities (small k̃).

Subsequently, the dispersion relation can be obtained, assuming Ric > 0:

c − 1 = c − Umax = −cv ±
√

c2
g + c2

v. (3.11)

The wave speed c is purely real (assuming Ric > 0), such that the system is marginally
stable with ω = kx Re(c) = kxc and σ = 0.

The dispersion relation ω(kx) of the piecewise system is visualised in figure 15. Here
we report the intrinsic frequency at y = 1, ω − Umaxkx, as a function of wavenumber
magnitude k̃, for varying angles of obliquity θ and Richardson numbers Ric. These are
compared against the frequencies obtained for isolated vorticity and interfacial gravity
waves ω − Umaxkx = −ωv and ω − Umaxkx = ±ωg, respectively, where ωv = cvkx =
F cos θ and ω2

g = c2
gk2

x = Fk̃Ric/2. By construction, two modes are present for a given k̃: a
forward-propagating mode with positive intrinsic frequency and a backward-propagating
mode with negative intrinsic frequency. At high k̃ both modes tend towards the dispersion
relation for interfacial gravity waves, ±ωg. At low k̃ the BW dispersion relation tends
towards −ωv , most clear in figure 15(a) at tan θ = 0. The transition of the BW between
ω − Umaxkx ≈ −ωv at low k̃ and ω − Umaxkx ≈ −ωg at high k̃ represents a transition
between shear-controlled and buoyancy-controlled flow, which is dependent on θ and Ric;
increasing these parameters increases the rate of transition towards buoyancy-dominant
flow, both through an increase of c2

g relative to c2
v in the dispersion relation (3.11). The

influence of shear on the FW is not so clear but is certainly less than on the BW (see
figure 15a with tan θ = 0); at low k̃, the discrepancy between the dispersion relation and
that of an interfacial gravity wave is larger for the BW than the FW. This asymmetry can be
explained by the lack of a FW when the flow is free from a buoyancy interface, where only
a backward-propagating isolated vorticity wave is present. In addition, from inspection
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Figure 15. Dispersion relation obtained for the piecewise velocity and buoyancy profiles (3.11) visualised
using the intrinsic frequency ω − Umaxkx as a function of the wavenumber magnitude k̃ (solid lines).
(a) Dispersion relation for Ric = 0.293 over a range of tan θ ; (b) dispersion relation for Ric = 1 over a range
of tan θ ; (c) dispersion relation for θ = 0 over a range of Ric. Dashed lines represent the dispersion relation
for isolated vorticity waves, ω − Umaxkx = −cvkx, and dash-dotted lines represent the dispersion relation for
interfacial gravity waves, ω − Umaxkx = ±cgkx.

of the dispersion relation (3.11), one notes that the two contributions of shear (cv) have
opposite signs when the positive FW root is taken, thus partially cancelling out, unlike the
negative BW root. This is complicated by the nonlinearity of the dispersion relation, but
is supported by the limiting behaviour observed in figure 15(a). Asymmetry between the
BW and FW therefore arises due to the imbalance between shear contributions towards the
FW and the BW.

There are clear similarities between the dispersion relation for the piecewise system
and that of the smooth vTG solutions, particularly the log-sech velocity profile and tanh
buoyancy profile (figure 11). Both systems lead to two dominant modes with σ ≤ 0: a
forward-propagating wave and a backward-propagating wave, relative to the velocity at
the centre of the channel. Buoyancy dominates the dispersion relation of these two modes
at high k̃, while shear becomes important for small k̃. The transition between these two
regimes is controlled by Ric and θ . In addition, both systems lead to a clear asymmetry
between the two modes at low k̃ due to the influence of shear, which dominates the
dispersion relation for the BW at low k̃. For Ric = 0.293 and θ = 0 there is evidence
that the BW transitions away from the shear-dominant regime for k̃ ≈ O(1) (see figures 11
and 15).

However, there is a clear disagreement between the two systems regarding the limiting
behaviour of the dispersion relations: the dispersion relation for the piecewise system tends
towards that of interfacial gravity waves while the smooth system tends to that of idealised
gravity waves in a region of zero shear and constant buoyancy frequency. Nevertheless, the
similarities between the two systems regarding the role of shear and buoyancy provides
a potential explanation to the importance of shear for the BW and the asymmetry that
develops between the two leading-order modes. The piecewise system shows that the BW
emerges as a vorticity wave at low k̃ with only a minor influence from buoyancy, while the
FW is dependent on buoyancy to propagate.

However, the linear framework so far has been unable to establish why the BWs
dominate spectra in the nonlinear simulations, with energy several orders of magnitude
larger than their forward-propagating counterpart. In the following section we revisit the
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stochastic models developed by Lloyd et al. (2022) and demonstrate that it is the nature of
the forcing to the linear system that leads to the disparity in energy content between the
two waves.

3.4. Stochastically forced simulations
So far, we have demonstrated that both the BW and FW of the nonlinear system are well
predicted by linear stability analysis in all but their respective energy content. Here we
revisit the stochastically forced 2-D linear framework of Lloyd et al. (2022) to investigate
the influence of the forcing structure on channel core dynamics. This framework is
developed from the perturbation equations (2.7) and (2.8) but approximates inner- and
outer-region turbulence using white-noise forcing. With this model, Lloyd et al. (2022)
were able to predict the BW in excellent agreement with nonlinear simulations, but were
unable to explain the weaker mode with positive intrinsic frequency which was seemingly
in disagreement with simulation spectra. Now recognising that differences arose due to
the neglect of spanwise structure in the interpretation of simulation spectra, it is worth
revisiting this body of work since, despite the model neglecting nonlinear terms, it was
able to predict the dominance of the BW compared with the weaker mode, which we
now recognise as the FW with kz = 0. Despite the two dominant modes arising with
similar growth rates in the vTG solutions (or, indeed, with growth rates favouring the
FW), the stochastic model of Lloyd et al. (2022) was able to predict the dominance of
the BW observed in nonlinear simulations. We therefore hypothesise that the dominance
of the BW must arise through the forcing conditions of stratified channel flow, but is
ultimately still governed by linear processes. In particular, the inner-/outer-layer turbulence
perturbs the channel core with ejections of low-momentum fluid into the channel core;
such low-momentum fluid preferentially generates BWs, due to its low velocity compared
with the faster jet-like core.

To test this hypothesis we repeat the simulations of Lloyd et al. (2022) but with
forcing applied directly to the channel core, with no external inner/outer forcing. In this
way, BW and FW should be generated with approximately equal energy content. For
clarity we briefly describe the model here, and refer the reader to Lloyd et al. (2022)
for further details. We introduce the streamfunction ψ+, where (u′′)+ = ∂ψ+/∂y and
(v′′)+ = −∂ψ+/∂x. The superscript + represents variables scaled by the friction velocity
uτ , noting this is a more appropriate scale for the inner- and outer-region turbulence.
The difference in spectral energy content between the FW and BW is largest for purely
streamwise-propagating flow (kz = 0); thus we restrict our stochastic formulation to
two dimensions. While we have shown that three-dimensionality is critical for a clear
interpretation of the dominant modes in the nonlinear simulations, the aim of the section
is to test the hypothesis that the spatial location of the stochastic forcing is a key control
on the energy content of the two resultant modes, which, as we show, can be convincingly
demonstrated using the 2-D model. Rescaling and substituting ψ+ into the perturbation
equations (2.7) and (2.8) leads to

∂

∂t+
∇2ψ+ + U+ ∂

∂x
∇2ψ+ − d2U+

dy2
∂ψ+

∂x
= −∂b+

∂x
+ 1

Reτ
∇4ψ+ + W( y) (3.12)

and
∂(b′′)+

∂t+
+ U+ ∂(b′′)+

∂x
− dB+

dy
∂ψ+

∂x
= 1

Pr Reτ
∇2(b′′)+. (3.13)
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Here the buoyancy fluctuations are given by (b′′)+ = −Riτ ρ′ and W( y) represents
vertically correlated stochastic forcing to the linear system, approximating nonlinear
processes. These simulations use the background flow parameters and profiles of the
nonlinear simulations (figure 1), and specify

W( y) = ξ( y)N (0, 1/�t), (3.14)

where N represents a normal distribution with a variance scaled by the simulation time
step�t. The function ξ( y) defines the vertical structure of W( y). We investigate solutions
using two smooth structure functions which respectively force either the inner/outer
regions of the flow or the channel core. Following Lloyd et al. (2022), the first function,
termed ‘outer forced’, is given by ξo( y) = νt/max(νt), where νt = −u′v′/ūy. The second
function, termed ‘core forced’, is taken as

ξc( y) = 1
2 tanh(100( y − 0.98))− 1

2 tanh(100( y − 1.02)), (3.15)

such that forcing is applied only to a narrow region in the core of the channel. Subscripts o
and c refer to either ‘outer’ or ‘core’ forcing. The ‘outer’ forcing is designed to approximate
the perturbations felt in the nonlinear simulations due to outer-region turbulence, while the
‘core’ forcing is a hypothetical alternative where perturbations are generated at the region
of maximum velocity, or the centre of the BW and FW eigenfunctions.

The system of equations is discretised and solved using Dedalus (Burns et al. 2020).
Equations are solved on a 2-D domain of size Lx × Ly = 8π × 2, discretised using a
Fourier basis in the periodic (x) direction and a Chebyshev basis in the vertical (y)
direction, dealiased using the 3/2 rule. The grid resolution is set to Nx × Ny = 512 × 256
approximately equal to the grid resolution of the nonlinear simulations (§ 2.1). At each
time step the stochastic forcing is generated on a grid half this size: W( y) is calculated
from the normal distribution N at each grid point of the coarse grid before up-sampling
to the correct resolution. The initial-value problem, initially at rest, is integrated in time
using a first-order Runge–Kutta scheme for a total simulation time of T+ = 100, where
the flow reaches a pseudo-steady state at T+ ≈ 20.

Snapshots of instantaneous data from the stochastically forced simulations are presented
in figure 16. Under ‘outer’ forcing conditions, there is a clear dominant streamwise
wavenumber in the core of the channel, corresponding to the BW. In contrast, ‘core’
forcing leads to a clear presence of multiple streamwise wavenumbers with different
vertical extent. The lower magnitude of modes in the ‘core’ forced simulations can be
explained by the lower energy input of W( y), which acts only in a narrow region in the
channel core. Despite this, there is a clear signal from multiple modes for the ‘core’ forced
simulation.

The 2-D energy spectra for the buoyancy fluctuations are presented in figure 17 showing
clear agreement with vTG solutions and nonlinear simulation spectra (figures 2a and 3a).
Consistent with nonlinear simulations (figure 3) and the stochastic model of Lloyd et al.
(2022), ‘outer’ forcing leads to a dominant BW with an energy several orders of magnitude
higher than that of the FW. By forcing the system directly at the channel core, we find that
both the BW and the FW are strongly present in the spectra. Further, while both modes are
clearly present and near equal in order of magnitude, the FW has a higher energy content
than the BW, in agreement with the vTG solutions which show a marginally lower growth
rate for the BW across most k̃ (figure 4).

These simulations therefore demonstrate that the dominance of the BWs in the core of
stratified channel flow can potentially be explained by the low momentum of outer-region
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Figure 16. Snapshots of instantaneous data from the stochastically forced simulations. (a,c,e) ‘Outer’ forced
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(e, f ) white noise forcing functions, scaled by the simulation time step.
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activity, relative to the high momentum of the channel core. If instead perturbations were
centred at the region of highest velocity, both sets of waves would be approximately equal
in energy content.

4. Discussion

Coherent structures in stably stratified shear flows have long been a focus of extensive
research due to their importance in scalar and energy transport dynamics (Baines
1998; Garaud 2018; Caulfield 2021; Wells & Dorrell 2021). This work is focused on
understanding the coherent waves generated in the core of stratified channel flow, where
a jet-like velocity profile intersects a region of strong buoyancy gradient. Such shear
and buoyancy profiles occur in natural systems such as oceanic jets and gravity currents
(Dorrell et al. 2019), critical for global climate regulation, heat and nutrient transport and
supporting ecosystems (Baines 1998; Simpson 1999; Talling et al. 2012; Azpiroz-Zabala
et al. 2017).

Our study primarily adopts linearised frameworks to analyse stratified channel flow of
high Reynolds (Reτ = 550) and Richardson (Riτ = 480) numbers, using the inviscid TG
and vTG equations, and a stochastically forced linear model developed by Lloyd et al.
(2022). These are compared against nonlinear simulations which capture the 3-D energy
spectra E(kx, kz, ω) at the channel centreline y = 1, such that the dispersion relation of
the dominant modes can be calculated. Crucially we show that oblique waves are prolific
in the core of the channel; spanwise averaging of such coherent spanwise structures leads
to significant smearing and distortion of the dominant mode dispersion relations. This is
particularly clear for the FWs where their energy content is approximately constant over
a wide range of θ , the angle of obliquity. Backward-travelling waves are affected less
by such averaging due to their strong presence in spectra at θ = 0, and their decay in
energy at high θ . When three-dimensionality is taken into account, the linear models are
able to accurately capture channel core dynamics, particularly the BW and FW dispersion
relations which are strongly affected by θ and k̃.

We find that at high wavenumber magnitude k̃ both sets of waves tend
towards the idealised dispersion relation for internal waves in a shear-free and
constant-buoyancy-gradient flow: ω = Umaxkx ± Nmax. This limiting behaviour appears
to arise due to the changing balance between shear and buoyancy forces in the equations
governing wave dynamics. Both numerical solutions to idealised continuous profiles and
analytical inviscid solutions to piecewise approximations of the flow show that at low
and order-one k̃ shear is crucial for the propagation of these waves. In particular, shear
dominates the dynamics of the BW with a negligible contribution from buoyancy forces.
As k̃ increases, shear becomes less important while buoyancy begins to dominate the
balance. In addition, as k̃ increases modes become spatially narrower, and confined to
a thinner region around y = 1. When the vertical scale of modes is sufficiently small
compared with the buoyancy interface thickness, the buoyancy gradient appears locally
constant. The limiting behaviour, ω = Umaxkx ± Nmax, is therefore explained by the low
contribution of shear at high k̃ and that the buoyancy gradient varies sufficiently slowly
compared with the vertical extent of the modes. While the piecewise analytical model
is able to correctly predict the two pairs of waves, their marginal stability and their
dependence on shear and buoyancy, it is unable to predict this limiting behaviour due
to the discontinuous buoyancy interface and resultant interfacial waves.

Through exploration of vTG solutions based on idealised background flow profiles,
we have found that channel core dynamics can be qualitatively reproduced by a velocity
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profile with a velocity maximum and a corresponding negative Uyy, intersecting a region of
strong buoyancy gradient. More complex shear profiles that include the positive maxima
in Uyy at the core edge (figure 1) have some influence on the dispersion relation of the
BW at low k̃, but are not required to qualitatively reproduce the channel core dynamics
of nonlinear simulations. Analysis of the two dominant modes, using both vTG and TG
formulations, reveals that the BW exists even in the absence of buoyancy, as a result of
the velocity maximum and corresponding negative Uyy in the core. Of course, strong
buoyancy gradients are required to produce such a quiescent channel core where the BW
can freely propagate, but given the mode arises primarily through shear, particularly for
k̃ � O(1) where the BW dominates, it is perhaps more suitable to refer to the mode as a
vorticity–gravity wave, as opposed to an internal wave.

A key result from this analysis is that BWs and FWs emerge in the linear stability
analysis as stable or marginally stable modes, following a distinct dispersion relation.
One may therefore expect such structures to decay in stratified plane Poiseuille flow, yet
a highly energetic wave field is produced due to the continuous turbulent activity in the
outer regions of the flow perturbing the edge of the channel core. Local intermittency in
the wave field occurs during periods of particularly enhanced turbulent activity, potentially
driven by coupled interactions between hairpin vortices and channel core waves (Lloyd
et al. 2022). In this work we have provided a potential explanation for the dominance
of the BWs in the core: the system is excited by crucially low-momentum activity from
the outer regions of the flow, which preferentially generates BWs over FWs, despite
both linear modes arising with similar growth rates. Backward-travelling waves should
therefore dominate the core of ‘jet-like’ natural stratified flows if the density gradient is
perturbed externally rather than internally.

A key question that is critical to understanding stratified channel flow is the role of the
dimensionless parameters Ric, Pr and Rec. For the idealised continuous and piecewise
systems of §§ 3.2 and 3.3 the qualitative behaviour does not change under varying flow
parameters. We have shown that varying the width of the buoyancy interface leads to
qualitatively the same dispersion relation with the same limiting behaviour. We expect
the same to be true for the shear profile, although note that a length scale based on
these interface widths would be more appropriate for scaling the problem than the
channel half-height. We have found that the dispersion relation is highly dependent on the
buoyancy gradient, with instabilities present for low Ric for the planar-averaged simulation
profiles. However, this analysis has been conducted with fixed background flow profiles.
Further studies are needed to quantify the influence of flow parameters over a wider phase
space, building on the work of Garcia-Villalba & Del Alamo (2011), to understand their
influence on channel core dynamics.
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