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Abstract. We study the asymptotic behavior of the sequence {�(n)}n∈N from a dynamical
point of view, where �(n) denotes the number of prime factors of n counted with
multiplicity. First, we show that for any non-atomic ergodic system (X, B, μ, T ), the
operators T �(n) : B → L1(μ) have the strong sweeping-out property. In particular, this
implies that the pointwise ergodic theorem does not hold along �(n). Second, we show
that the behaviors of �(n) captured by the prime number theorem and Erdős–Kac theorem
are disjoint, in the sense that their dynamical correlations tend to zero.
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1. Introduction
For n ∈ N, let �(n) denote the number of prime factors of n, counted with multiplicity.
The study of the asymptotic behavior of �(n) has a rich history and finds important
applications to number theory. For instance, the classical prime number theorem is
equivalent to the statement that the set {n ∈ N : �(n) is even} has natural density 1/2
[Lan53, vM97]. Recently, a dynamical approach to this question was introduced by
Bergelson and Richter [BR21]. They show that given a uniquely ergodic dynamical system
(X, μ, T ), the sequence {T �(n)x}n∈N is uniformly distributed in X for every point x ∈ X

(see §2 for relevant definitions). The precise statement is as follows.

THEOREM 1.1. [BR21, Theorem A] Let (X, μ, T ) be uniquely ergodic. Then,

lim
N→∞

1
N

N∑
n=1

g(T �(n)x) =
∫

X

g dμ

for all x ∈ X and g ∈ C(X).
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The purpose of this paper is to continue this dynamical exploration of the properties of
�(n). Relaxing the assumptions of Bergelson and Richter’s theorem, we obtain further
results regarding the convergence of ergodic averages along �(n). In §3.3, we show
that pointwise almost-everywhere convergence for L1 functions does not hold in any
non-atomic ergodic system.

THEOREM 1.2. Let (X, B, μ, T ) be a non-atomic ergodic dynamical system. Then there
is a set A ∈ B such that for almost every (a.e.) x ∈ X,

lim sup
N→∞

1
N

N∑
n=1

1A(T �(n)x) = 1 and lim inf
N→∞

1
N

N∑
n=1

1A(T �(n)x) = 0, (1)

where 1A denotes the indicator function of A.

In particular, Theorem 1.2 demonstrates that the assumptions in Theorem 1.1 that the
system is uniquely ergodic and g is continuous are not only necessary for pointwise
convergence to the proper limit, but for pointwise convergence to hold at all. To prove
Theorem 1.2, the key idea is to approximate the ergodic averages along �(n) by weighted
sums. We show that for all ε > 0 and N ∈ N, there are weight functions w∗(N) : N → R,
supported on large intervals IN , such that

1
N

N∑
n=1

1A(T �(n)x) =
∑
k∈IN

wk(N) 1A(T kx) + O(ε)

as N tends to infinity. Leveraging the size and placement of the intervals IN , we employ
a standard argument to demonstrate the failure of pointwise convergence. Moreover, our
method shows that there is not just one set A ∈ B for which equation (1) holds, but rather
there exists a dense Gδ subset R ⊆ B such that equation (1) holds for every A ∈ R.
Thus, the operators T �(n) : B → L1(μ) defined by T �(n)A(x) := 1A(T �(n)x) are shown
to have the strong sweeping-out property.

In any ergodic system, the set of generic points has full measure. Generic points are
those whose ergodic averages converge to

∫
X

f dμ for every continuous function f (see
§2 for the precise definition). In light of Theorems 1.1 and 1.2, it is natural to wonder
whether convergence still holds when the ergodic averages are taken along the sequence
�(n). However, the answer is no, and in §3.1, we explicitly construct a symbolic system
yielding a counterexample.

Bergelson and Richter show in [BR21] that Theorem 1.1 is a direct generalization of the
prime number theorem. In §4, we demonstrate the relationship of Theorem 1.1 to another
fundamental result from number theory, the Erdős–Kac theorem. Let Cc(R) denote the set
of continuous functions on R of compact support. An equivalent version of the Erdős–Kac
theorem states that for all F ∈ Cc(R),

lim
N→∞

1
N

N∑
n=1

F

(
�(n) − log log N√

log log N

)
= 1√

2π

∫ ∞

−∞
F(x)e−x2/2 dx.

Roughly speaking, this says that for large N, the sequence {�(n) : 1 ≤ n ≤ N} approaches
a normal distribution with mean and variance log log N . We have now introduced two
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sequences describing distinct behaviors of �(n): {F((�(n)− log log N)/
√

log log N)}Nn=1
capturing the Erdős–Kac theorem and {g(T �(n)x)}n∈N capturing Theorem 1.1. Two
sequences a, b : N → C are called asymptotically uncorrelated if

1
N

N∑
n=1

a(n)b(n) =
(

1
N

N∑
n=1

a(n)

)(
1
N

N∑
n=1

b(n)

)
+ o(1).

In §4, we show that Theorem 1.1 and the Erdős–Kac theorem exhibit a form of disjointness,
in that the sequences capturing their behavior are asymptotically uncorrelated.

THEOREM 1.3. Let (X, μ, T ) be uniquely ergodic and let F ∈ Cc(R). Then,

lim
N→∞

1
N

N∑
n=1

F

(
�(n) − log log N√

log log N

)
g(T �(n)x)

=
(

1√
2π

∫ ∞

−∞
F(x)e−x2/2 dx

)( ∫
X

g dμ

)
for all g ∈ C(X) and x ∈ X.

We prove Theorem 1.3 as a corollary of the following more general estimate. For each
N ∈ N, let

ϕN(n) = �(n) − log log N√
log log N

.

Then for any bounded arithmetic function a : N → C and any F ∈ Cc(R),

1
N

N∑
n=1

F(ϕN(n)) a(�(n)) = 1
N

N∑
n=1

F(ϕN(n)) a(�(n) + 1) + o(1). (2)

To prove equation (2), our strategy is to approximate each average by a double average
involving dilations by primes. The key observation is that F(ϕN(n)) is asymptotically
invariant under dilations by primes, whereas �(n) is highly sensitive to such dila-
tions. This sensitivity is particularly noticeable in the case that a(n) = (−1)n, so that
a(�(pn)) = −a(�(n)). We leverage these contrasting behaviors to obtain the desired
invariance in equation (2).

Let λ(n) = (−1)�(n) denote the classical Liouville function. Another equivalent
formulation of the prime number theorem states that

lim
N→∞

1
N

N∑
n=1

λ(n) = 0.

This formulation of the prime number theorem can be seen as a special case of Theorem 1.1
by choosing (X, μ, T ) to be the uniquely ergodic system given by rotation on two points
(see [BR21] or §2 for details). In a similar fashion, we obtain the following corollary of
Theorem 1.3.
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COROLLARY 1.4. Let F ∈ Cc(R). Then,

lim
N→∞

1
N

N∑
n=1

F

(
�(n) − log log N√

log log N

)
λ(n) = 0.

Corollary 1.4 demonstrates that the behaviors of �(n) captured by the Erdős–Kac
theorem and the prime number theorem exhibit disjointness. This can be interpreted as
saying that, for large N, the sequence {�(n) : 1 ≤ n ≤ N , �(n) is even} still approaches a
normal distribution with mean and variance log log N .

2. Background material
2.1. Measure-preserving systems. By a topological dynamical system, we mean a pair
(X, T ), where X is a compact metric space and T a homeomorphism of X. A Borel
probability measure μ on X is called T-invariant if μ(T −1A) = μ(A) for all measurable
sets A. By the Bogolyubov–Krylov theorem (see, for instance, [Wal82, Corollary 6.9.1]),
every topological dynamical system has at least one T-invariant measure. When a
topological system (X, T ) admits only one such measure, (X, T ) is called uniquely
ergodic.

By a measure-preserving dynamical system, we mean a probability space (X, B, μ),
where X is a compact metric space and B the Borel σ -algebra on X, accompanied by
a measure-preserving transformation T : X → X. We often omit the σ -algebra B when
there is no ambiguity. A measure-preserving dynamical system is called ergodic if for any
A ∈ B such that T −1A = A, one has μ(A) = 0 or μ(A) = 1. Though unique ergodicity
was defined above as a topological property, it is easy to verify that the unique invariant
measure is indeed ergodic.

One of the most fundamental results in ergodic theory is the Birkhoff pointwise ergodic
theorem, which states that for any ergodic system (X, μ, T ) and f ∈ L1(μ),

lim
N→∞

1
N

N∑
n=1

f (T nx) =
∫

X

f dμ

for a.e. x ∈ X.
A point x ∈ X is called generic for the measure μ if

lim
N→∞

1
N

N∑
n=1

f (T nx) =
∫

X

f dμ

for all f ∈ C(X), where C(X) denotes the space of continuous functions on X. Thus,
generic points are those for which pointwise convergence holds for every continuous
function. When μ is ergodic, the set of generic points has full measure.

2.2. Symbolic systems. Let A be a finite set of symbols. Let AN denote the set of all
infinite sequences with entries in A. The set AN is endowed with the product topology
coming from the discrete topology on the alphabet A. In fact, this forms AN into a compact
metric space. Denote an element in AN by x = (x(i))i∈N. One equivalent choice of metric
generated by this topology is given by
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d(x, y) = 2− min{i∈N : x(i) 	=y(i)}.

This space carries a natural homomorphism σ : AN → AN, called the left shift, defined
by (σx)(i) = x(i + 1).

2.3. Background on �(n). Let �(n) denote the number of prime factors of n, counted
with multiplicity. One equivalent formulation of the prime number theorem states that
asymptotically, �(n) is even exactly half the time [Lan53, vM97]. This statement can be
expressed by the classical Liouville function λ(n) = (−1)�(n):

lim
N→∞

1
N

N∑
n=1

λ(n) = 0.

This formulation involving averages is useful from a dynamical point of view. However,
a rephrasing of this statement leads to several naturally stated generalizations. For a set
E ⊆ N, the natural density of E in N is defined to be

lim
N→∞

|E ∩ {1, . . . , N}|
N

.

For m ∈ N, define Em := {n ∈ N : �(n) ≡ 0 (mod m)}. The prime number theorem
states that E2 has natural density 1/2. In other words, �(n) distributes evenly over residue
classes mod 2. The following theorem due to Pillai and Selberg [Pil40, Sel39] states that
�(n) distributes evenly over all residue classes.

THEOREM 2.1. (Pillai, Selberg) For all m ∈ N and r ∈ {0, . . . , m − 1}, the set {n ∈ N :
�(n) ≡ r mod m} has natural density 1/m.

Complementing this result is a theorem due to Erdős and Delange. A sequence
{a(n)}n∈N ⊆ R is uniformly distributed mod 1 if

lim
N→∞

1
N

N∑
n=1

f (a(n) mod 1) =
∫ 1

0
f dμ

for all continuous functions f : [0, 1] → C. Erdős mentions without proof [Erd46, p. 2]
and Delange later proves [Del58] the following statement.

THEOREM 2.2. (Erdős, Delange) Let α ∈ R \ Q. Then, {�(n)α}n∈N is uniformly dis-
tributed mod 1.

Bergelson and Richter’s Theorem 1.1 uses dynamical methods to provide a simultaneous
generalization of these number theoretic results [BR21, p. 3]. We review their argument
for obtaining the prime number theorem from Theorem 1.1, as we use a similar argument
in §4.2 to obtain Corollary 1.4 from Theorem 1.3. Let X = {0, 1} and define T : X → X

by T (0) = 1 and T (1) = 0. Let μ be the Bernoulli measure given by μ({0}) = 1/2 and
μ({1}) = 1/2. This system is commonly referred to as rotation on two points and is
uniquely ergodic. Define a continuous function F : X → R by F(0) = 1 and F(1) = −1.
Then,
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∫
X

F(x) dμ(x) = 1
2F(0) + 1

2F(1) = 0.

Finally, one can check that

λ(n) = (−1)�(n) = F(T �(n)0).

Hence,

lim
N→∞

1
N

N∑
n=1

λ(n) = lim
N→∞

1
N

N∑
n=1

F(T �(n)0) = 0,

where the last equality follows by Theorem 1.1.
We now state two theorems that give further insight into the statistical properties of

�(n). Hardy and Ramanujan showed that for large N and almost all 1 ≤ n ≤ N , �(n)

falls within a specified interval centered at log log N [HR17, Theorem C].

THEOREM 2.3. (Hardy–Ramanujan theorem) For C > 0, define gC : N → N by

gC(N) = #{n ≤ N : |�(n) − log log N | > C
√

log log N}.
Then for all ε > 0, there is some C ≥ 1 such that

lim sup
N→∞

gC(N)

N
≤ ε.

Erdős and Kac later generalized this theorem to show that �(n) actually becomes
normally distributed within such intervals [EK40].

THEOREM 2.4. (Erdős–Kac theorem) Define KN : Z × Z → N by

KN(A, B) =
∣∣∣∣
{
n ≤ N : A ≤ �(n) − log log N√

log log N
≤ B

}∣∣∣∣.
Then,

lim
N→∞

KN(A, B)

N
= 1√

2π

∫ B

A

e−t2/2 dt .

Thus, the Erdős–Kac theorem states that for large N, the number of prime factors of an
integer n ≤ N becomes roughly normally distributed with mean and variance log log N .
Recall that the prime number theorem has an equivalent formulation in terms of averages
of the Liouville function, making it well suited for dynamical settings. The Erdős–Kac
theorem has a similar formulation. Let Cc(R) denote the set of continuous functions on R

with compact support and let F ∈ Cc(R). Theorem 2.4 is equivalent to the statement

lim
N→∞

1
N

N∑
n=1

F

(
�(n) − log log N√

log log N

)
= 1√

2π

∫ ∞

−∞
F(x)e−x2/2 dx.

One direction of this equivalence follows by a standard argument approximating the
indicator function on the interval [A, B] by continuous compactly supported functions.
The other follows by the fact that any compactly supported continuous function can be
approximated by simple functions of the form
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M∑
k=1

1[Ak ,Bk](x),

where 1E(x) denotes the indicator function of the set E.

2.4. Mean convergence. We show that mean convergence holds along �(n).

THEOREM 2.5. Suppose (X, μ, T ) is ergodic and let f ∈ L2(μ). Then,

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

T �(n)f −
∫

X

f dμ

∥∥∥∥
2

= 0.

This statement seems to be well known, but we were unable to find a proof, so one is
included here for completeness.

Proof of Theorem 2.5. By a standard argument applying the spectral theorem, it is enough
to check that for any β ∈ (0, 1),

lim
N→∞

1
N

N∑
n=1

e2πiβ�(n) = 0.

First, suppose that β ∈ (0, 1) \ Q. By Theorem 2.2, the sequence {�(n)β} is uniformly
distributed mod 1. Then the Weyl equidistribution criterion (see, for instance, [Wey16] or
[EW11, Lemma 4.17]) implies that

lim
N→∞

1
N

N∑
n=1

e2πi�(n)β = 0,

as desired. Now, suppose that β = p/q, where p, q ∈ Z are coprime. By Theorem 2.1,
�(n) distributes evenly over residue classes mod q. It is straightforward to check this is
equivalent to the statement

lim
N→∞

1
N

N∑
n=1

ζ�(n) = 0,

where ζ is a primitive qth root of unity. Since gcd(p, q) = 1, e2πip/q is a primitive qth
root of unity, and we are done.

3. Counterexamples to convergence
The condition of unique ergodicity is essential to the proof of Theorem 1.1. In this section,
we show that, removing this assumption, convergence need not hold for an arbitrary generic
point and pointwise almost-everywhere convergence does not hold in any non-atomic
ergodic system.

3.1. Counterexample for generic points. We show that convergence need not hold for
generic points.
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PROPOSITION 3.1. There exists an ergodic system (X, μ, T ), a generic point x ∈ X for
the measure μ, and a continuous function F ∈ C(X) such that the averages

1
N

N∑
n=1

F(T �(n)x)

do not converge.

We explicitly construct a symbolic system, generic point, and continuous function for
which the above averages do not converge.

Proof. Let (X, σ) be the one-sided shift on the alphabet {0, 1} and let δ0 denote the delta
mass at 0 = (.00 . . .) ∈ X. Notice that δ0 is σ -invariant and trivially ergodic. Define a
sequence a ∈ X by

a(n) =
{

1, n ∈ [3k − 2k , 3k + 2k] for some k ∈ N,

0, else.

We claim that a is generic for δ0, meaning that for any f ∈ C(X),

lim
N→∞

1
N

N∑
n=1

f (σna) =
∫

X

f d(δ0) = f (0).

Fix ε > 0. For N ∈ N, define

AN := {n ≤ N : |f (σna) − f (0)| > ε}
and

BN := {n ≤ N : |f (σna) − f (0)| ≤ ε}.
Then for each N,∣∣∣∣ 1

N

N∑
n=1

f (σna) − f (0)

∣∣∣∣ ≤ 1
N

∑
n∈AN

|f (σna) − f (0)| + 1
N

∑
n∈BN

|f (σna) − f (0)|.

It is immediate from the definition of BN that

1
N

∑
n∈BN

|f (σna) − f (0)| ≤ ε. (3)

We now consider the sum over AN . Let M > 0 be a bound for |f |. Since f is
continuous, there is some δ > 0 such that d(σna, 0) ≤ δ implies |f (σna) − f (0)| ≤ ε.
Define CN ⊆ N by

CN := {n ≤ N : d(σna, 0) > δ}.
Notice that AN ⊆ CN for all N. Then,

1
N

∑
n∈AN

|f (σna) − f (0)| ≤ 2M|AN |
N

≤ 2M|CN |
N

. (4)
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Let m ∈ N be the smallest integer such that 2−(m+1) ≤ δ. Then d(σn(a), 0) > δ when

n ∈ [3k − 2k − m, 3k + 2k]

for some k. Hence,

|CN | ≤
∑

{k:3k≤N}
(2k+1 + m) ≤ log3 N(2log3 N+1 + m). (5)

Combining equations (4) and (5), we obtain

1
N

∑
n∈AN

|f (σna) − f (0)| ≤ ε (6)

for large enough N. Combining the estimates from equations (3) and (6), and letting ε → 0,
this completes the proof of the claim.

Now, define F : X → R by F(x) = x(0), so that a(n) = F(σna). Since a is generic for
the measure δ0,

lim
N→∞

1
N

N∑
n=1

a(n) = lim
N→∞

1
N

N∑
n=1

F(σna) = F(0) = 0.

Define a subsequence {Nk}k∈N ⊆ N by log log Nk = 3k . We first estimate the sum

1
Nk

Nk∑
n=1

a(log log n)

for fixed k. Let Ik = [3k − 2k , 3k + 2k]. It is easy to check that for n ≤ Nk , log log n lands

in the interval Ik when n ≥ N
1/(22k

)
k . Then,

|{n ≤ Nk : log log n ∈ Ik}| = Nk − 
N1/(22k
)

k �.

Since a(n) = 1 on Ik ,

Nk − 
N1/(22k
)

k �
Nk

≤ 1
Nk

Nk∑
n=1

a(log log n) ≤ 1.

Hence,

lim
k→∞

1
Nk

Nk∑
n=1

a(log log n) = 1. (7)

We now replace log log n by �(n) in equation (7). Furthering Theorem 2.3, Hardy and
Ramanujan showed that the same result holds replacing log log N by log log n [HR17,
Theorem C′]. Let ε > 0, and let C > 0 be the constant guaranteed by this variant of
Theorem 2.3. Set

GC(N) := {n ≤ N : |�(n) − log log n| ≥ C
√

log log n},
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so that |GC(N)| = gC(N). Define

I ′
k := [3k − 2k + C

√
3k , 3k + 2k − C

√
3k].

Notice that for 1 ≤ n ≤ Nk , we have
√

log log n ≤ √
3k . Then,

1
Nk

Nk∑
n=1

a(�(n)) ≥ 1
Nk

∑
log log n∈I ′

k

a(log log n) − 1
Nk

∑
log log n∈I ′

k
n∈GC(Nk)

a(log log n)

≥ |{n ≤ Nk : log log n ∈ I ′
k}|

Nk

− gC(Nk)

Nk

.

One directly calculates

|{n ≤ Nk : log log n ∈ I ′
k}| = Nk − 
N2(−2k+C

√
3k)

k �,

so that

lim sup
k→∞

1
Nk

Nk∑
n=1

a(�(n)) ≥ lim sup
k→∞

[
Nk − 
N2(−2k+C

√
3k)

k �
Nk

− gC(Nk)

Nk

]
≥ 1 − ε,

where the last inequality follows from Theorem 2.3. This indicates that the averages along
�(n) either converge to 1 or do not converge at all. However, consider the subsequence
{Mk}k∈N given by log log Mk = 2(3k − 2k−1), so that log log Mk lands in the middle of
the kth interval of zero’s in the definition of a. By an analogous argument,

lim sup
k→∞

1
Mk

Mk∑
n=1

a(�(n)) ≤ ε.

Hence, the averages along �(n) do not converge.

Proposition 3.1 tells us that for a given point, convergence of the Birkhoff averages is not
enough to guarantee convergence of the Birkhoff averages along �(n). However, given a
stronger assumption on the convergence of the standard Birkhoff averages, convergence
along �(n) does hold. In fact, this follows from a more general result on bounded
arithmetic functions. Let a : N → C be a bounded arithmetic function. We say that the
averages of a converge uniformly to zero if

lim
N→∞ sup

M>0

∣∣∣∣ 1
N

N+M∑
n=M+1

a(n)

∣∣∣∣ = 0.

See, for instance, [HK09, Definition 2.7].

PROPOSITION 3.2. Suppose a : N → C is a bounded arithmetic function whose averages
converge uniformly to zero. Then, limN→∞(1/N)

∑N
n=1 a(�(n)) = 0.

https://doi.org/10.1017/etds.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.81


A dynamical approach to the asymptotic behavior of �(n) 3695

Proof. It follows from [Ric21, Theorem 1.1] that for any fixed k ∈ N,

lim
N→∞

∣∣∣∣ 1
N

N∑
n=1

a(�(n)) − 1
N

N∑
n=1

a(�(n) + k)

∣∣∣∣ = 0.

Hence,

lim
K→∞ lim

N→∞
1
K

K∑
k=1

1
N

N∑
n=1

a(�(n) + k) = lim
N→∞

1
N

N∑
n=1

a(�(n)),

assuming the limits exist. Let ε > 0. Since the averages of a converge uniformly to zero,
there is some K0 ∈ N such that for K ≥ K0,

sup
M>0

∣∣∣∣ 1
K

M+K∑
k=M+1

a(k)

∣∣∣∣ ≤ ε.

Then, for any fixed K ≥ K0,

lim
N→∞

∣∣∣∣ 1
K

K∑
k=1

1
N

N∑
n=1

a(�(n) + k)

∣∣∣∣ = lim
N→∞

∣∣∣∣ 1
N

N∑
n=1

(
1
K

�(n)+K∑
k=�(n)+1

a(k)

)∣∣∣∣ ≤ ε.

Hence,

lim
K→∞ lim

N→∞
1
N

N∑
n=1

(
1
K

�(n)+K∑
k=�(n)

a(k)

)
≤ ε

for all ε > 0 and we are done.

COROLLARY 3.3. Let (X, μ, T ) be ergodic. Suppose x ∈ X and f ∈ C(X) are such that
the averages 1

N

∑N
n=1 f (T nx) converge uniformly to zero. Then,

lim
N→∞

1
N

N∑
n=1

f (T �(n)x) = 0.

3.2. A transition to weighted sums. From this point on, we denote

logm N := log log . . . log︸ ︷︷ ︸
m times

N .

Most commonly, we take m = 2, 3. To study pointwise convergence without the condition
of unique ergodicity, we first introduce a different formulation of the ergodic averages
along �(n). Let a : N → C be a bounded arithmetic function. We show that there are
weight functions wk(N) such that

1
N

N∑
n=1

a(�(n)) =
∑
k≥0

wk(N)a(k).

Regrouping the terms by the value of �(n) yields an exact formulation for these weights.
Let πk(N) denote the number of integers not exceeding N with exactly k prime factors,
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counted with multiplicity. Then,

1
N

N∑
n=1

a(�(n)) =
∑
k≥0

πk(N)

N
a(k)

so that wk(N) = πk(N)/N . However, this exact formulation does not give much insight
into the shape of these weight functions. Instead, we rely on an estimate of Erdős
[Erd48, Theorem II] to show that on large intervals, the weight functions wk(N) can be
approximated by a Gaussian with mean and variance log2 N .

LEMMA 3.4. Let πk(N) be defined as above. Then there exists C > 0 such that

πk(N)

N
= 1√

2π log2 N

e−(1/2)((k−log2 N)/
√

log2 N)2
(1 + oN→∞(1))

uniformly for k ∈ [log2 N − C

√
log2 N , log2 N + C

√
log2 N ].

Remark 3.5. Lemma 3.4 can be shown using probability theory. Erdős’s estimate can be
viewed as approximating πk(N)/N by a Poisson distribution with parameter log2 N . Since
log2 N tends to infinity with N, for large values of N, this Poisson distribution can be
approximated by a Gaussian distribution with mean and variance log2 N . However, since
we do not take a probabilistic viewpoint in this paper, the computation is included for
completeness.

Proof of Lemma 3.4. Let C > 0 be that given by Theorem 2.3 and set

IN =
[

log2 N − C

√
log2 N , log2 N + C

√
log2 N

]
.

By an estimate of Erdős [Erd48, Theorem II],

πk(N)

N
= 1

log N

(log2 N)k−1

(k − 1)!
(1 + o(1)).

This estimate is uniform for k ∈ IN . Applying Stirling’s formula,

1
log N

(log2 N)k−1

(k − 1)!
= 1

log N

(log2 N)k−1ek−1

(k − 1)k−1
√

2π(k − 1)
(1 + o(1)).

We now rewrite k in the following form:

k = log2 N + A

√
log2 N ,

for some A ∈ R. For such values of k,

log
(

1
log N

(log2 N)k−1

(k − 1)!

)
= −

(
log2 N + A

√
log2 N − 1

2

)
log

(
1 + A

√
log2 N − 1

log2 N

)

− 1
2 log3 N + A

√
log2 N − 1 − 1

2 log(2π) + o(1).
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By the quadratic approximation log(1 + ε) = ε − ε2/2 + O(ε3) for ε < 1, we obtain

log
(

1
log N

(log2 N)k−1

(k − 1)!

)

= −
(

log2 N + A

√
log2 N − 1

2

)(
A

√
log2 N − 1

log2 N
− (A

√
log2 N − 1)2

2(log2 N)2

)

− 1
2

log3 N + A

√
log2 N − 1 − 1

2
log(2π) + o(1).

= −1
2
A2 − 1

2
log3 N − 1

2
log(2π) + o(1).

Exponentiating, we obtain the following estimate for πk(N)/N :

πk(N)

N
= 1

log N

(log2 N)k−1

(k − 1)!
(1 + o(1)) = 1√

2π

1√
log2 N

e−(1/2)A2
(1 + o(1)).

Rewriting A in terms of k,

πk(N)

N
= 1√

2π

1√
log2 N

e−(1/2)((k−log2 N)/
√

log2 N)2
(1 + o(1)).

3.3. Failure of pointwise convergence. We conclude this section by demonstrating
the failure of pointwise convergence along �(n) in every non-atomic ergodic system. The
strategy is to first approximate the ergodic averages using Lemma 3.4. We then use the
Rokhlin lemma to construct a set of small measure on which the ergodic averages along
�(n) become large. A lemma from functional analysis then implies the failure of pointwise
convergence. This lemma is proven in much greater generality in [RW94, Theorem 5.4],
but here we state it only for the averaging operators TN : B → L1(μ) defined by

TNA(x) := 1√
2π log2 N

�log2 N+C
√

log2 N�∑
k=
log2 N−C

√
log2 N�

e−(1/2)((k−log2 N)/
√

log2 N)2
1A(T kx), (8)

where C > 0 is a constant to be chosen later.

LEMMA 3.6. Let TN be defined as in equation (8) and let N0 ∈ N. Assume that for all
ε > 0 and N ≥ N0, there is a set A ∈ B with μ(A) < ε and

μ{x ∈ X : sup
n≥N

TnA(x) > 1 − ε} ≥ 1 − ε.

Then, there is a dense Gδ subset R ⊂ B such that for A ∈ R,

lim sup
n→∞

TnA(x) = 1 for a.e. x ∈ X

and

lim inf
n→∞ TnA(x) = 0 for a.e. x ∈ X.
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Operators satisfying the conclusion of Lemma 3.6 are said to have the strong
sweeping-out property. As we demonstrate in the case of the operators TN , averaging
operators with strong sweeping-out property fail for pointwise convergence.

Proof of Theorem 1.2. We want to find a set A ∈ B such that for a.e. x ∈ X, the averaging
operators

T ′
N(A) := 1

N

N∑
n=1

1A(T �(n)x)

satisfy equation (1). For each N ∈ N, define

IN = [log2 N − C

√
log2 N , log2 N + C

√
log2 N],

where the constant C is chosen later. Then for all A ∈ B,

T ′
NA(x) = 1

N

∑
k≥0

πk(N)1A(T kx)

= 1
N

∑
k∈IN

πk(N)1A(T kx) + 1
N

∑
k /∈IN

πk(N)1A(T kx).

Let ε ∈ (0, 1). Choose C > 0 satisfying Theorem 2.3. Then,

lim inf
N→∞

∣∣∣∣ 1
N

∑
k /∈IN

1A(T kx)πk(N)

∣∣∣∣ ≤ lim inf
N→∞

1
N

∑
k /∈IN

πk(N) = lim inf
N→∞

gC(N)

N
≤ ε. (9)

For k ∈ IN , we approximate πk(N)/N using Lemma 3.4. Since this estimate is uniform
over k ∈ IN , there are εN : N → R such that limN→∞ supk∈IN

|εN(k)| = 0 and

∑
k∈IN

πk(N)

N
1A(T kx)

=
∑
k∈IN

[
1√

2π log2 N

e−(1/2)((k−log2 N)/
√

log2 N)2
(1 + εN(k))

]
1A(T kx).

Since |εN(k)| tends to zero uniformly in k as N tends to infinity,∑
k∈IN

πk(N)

N
1A(T kx)

= 1√
2π log2 N

�log2 N+C
√

log2 N�∑
k=
log2 N−C

√
log2 N�

e−(1/2)((k−log2 N)/
√

log2 N)2
1A(T kx) + o(1).

(10)

By equations (9) and (10),

lim sup
N→∞

TNA(x) ≤ lim sup
N→∞

T ′
NA(x) ≤ 1, (11)
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and

0 ≤ lim inf
N→∞ T ′

NA(x) = lim inf
N→∞ TNA(x) + ε (12)

for all A ∈ B. The upper bound in equation (11) and the lower bound in equation (12) are
trivial. Now, fix N0 ∈ N such that for all M ≥ N0,

∣∣∣∣
(

1√
2π log2 M

�log2 M+C
√

log2 M�∑
k=
log2 M−C

√
log2 M�

e−((k−log2 M)/
√

log2 M)2
)

− 1
∣∣∣∣ < ε.

Let N ≥ M ≥ N0. By the Rokhlin lemma, there is a set E ∈ B such that the sets T kE are

pairwise disjoint for k = 0, . . . , �log2 N + C

√
log2 N� and

1 − ε ≤ μ

( �log2 N+C
√

log2 N�⋃
k=0

T kE

)
≤ 1.

Note the upper bound is trivial. Using the disjointness condition, we obtain bounds for the
measure of E:

1 − ε

�log2 N + C

√
log2 N�

≤ μ(E) ≤ 1

�log2 N + C

√
log2 N�

. (13)

Define AN := ⋃�log2 N+C
√

log2 N�
k=
log2 N−C

√
log2 N� T kE. Using the upper bound given in equa-

tion (13),

μ(AN) ≤ 2C

√
log2 N μ(E) ≤ 2C

√
log2 N

�log2 N + C

√
log2 N�

.

Hence, the measure of AN tends to zero as N tends to infinity, so that, for large N, AN

satisfies the first condition of Lemma 3.6. We now construct sets BN such that μ(BN) →
1 − ε as N → ∞ and

μ
{

sup
M≤k≤N

TkAN(x) ≥ 1 − ε
}

≥ μ(BN).

Let j ∈ {0, . . . , N − M}. Then, M ≤ N − j ≤ N . Define

κ(j) := �log2 N − C

√
log2 N� − �log2(N − j) − C

√
log2(N − j)� ∈ Z.

For x ∈ T κ(j)E, we have T kx ∈ AN for k = 
log2(N − j) − C

√
log2(N − j)�, . . . ,

�log2(N − j) + C

√
log2(N − j)� so that
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TN−jAN(x) = 1√
2π log2(N − j)

×
�log2(N−j)+C

√
log2(N−j)�∑

k=
log2(N−j)−C
√

log2(N−j)�
e−(1/2)((k−log2(N−j))/

√
log2(N−j))2

1AN
(T kx)

= 1√
2π log2(N − j)

×
�log2(N−j)+C

√
log2(N−j)�∑

k=
log2(N−j)−C
√

log2(N−j)�
e−(1/2)((k−log2(N−j))/

√
log2(N−j))2

≥ 1 − ε,

where the last inequality holds since N − j ≥ M ≥ N0. Then for all j ∈ {0, . . . , N − M},
each x ∈ T κ(j)E is such that

sup
M≤k≤N

TkAN(x) ≥ 1 − ε.

Define BN := ⋃N−M
j=0 T κ(j)E. Since 0 ≤ κ(j) ≤ κ(N − M) are all integer valued, BN is

the union of κ(N − M) disjoint sets. Using the lower bound in equation (13),

μ
{

sup
M≤k≤N

TkAN(x) ≥ 1 − ε
}

≥ μ(BN) ≥ κ(N − M)(1 − ε)

�log2 N + C

√
log2 N�

.

Hence, μ(BN) tends to 1 − ε. Now, take N ≥ N0 large enough that μ(AN) ≤ ε and
μ(BN) ≥ 1 − 2ε. Set A = AN . Then A satisfies the hypothesis of Lemma 3.6, and we
obtain a dense Gδ subset R ⊂ B such that for A ∈ R and a.e. x ∈ X,

lim sup
N→∞

TNA(x) = 1 and lim inf
N→∞ TNA(x) = 0.

Equations (11) and (12) then yield

lim sup
N→∞

T ′
NA(x) = 1 for a.e. x ∈ X

and

lim inf
N→∞ T ′

NA(x) ≤ ε for a.e. x ∈ X

for all ε > 0.

4. Independence of the Erdős–Kac theorem and Theorem 1.1
4.1. A logarithmic version of prime number theorem. Let B ⊂ N be a finite, non-empty
subset of the integers. For a function f : B → C, we define the Cesáro averages of f over
B by
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E
n∈B

f (n) := 1
|B|

∑
n∈B

f (n)

and the logarithmic averages of f over B by

Elog
n∈B

f (n) := 1∑
n∈B 1/n

∑
n∈B

f (n)/n.

Define [N] := {1, 2, . . . , N}. Let P denote the set of primes. For k ∈ N, let Pk denote the
set of k-almost primes, the integers with exactly k prime factors, not necessarily distinct.
Our averaging set B is often chosen from the aforementioned sets.

Before proving Theorem 1.3, we first present a proof of a logarithmic version of the
prime number theorem. This statement is well known and follows directly from the Cesáro
version of the prime number theorem. However, we include the following method of proof,
as it illustrates a streamlined version of the core ideas that arise in the proof of Theorem 1.3.

THEOREM 4.1. (Logarithmic prime number theorem) Let λ(n) denote the Liouville
function. Then,

lim
N→∞ Elog

n∈[N]
λ(n) = 0.

The following standard trick allows us to simplify the argument in the case of
logarithmic averages.

LEMMA 4.2. Let a : N → C be a bounded arithmetic function. Then for any p ∈ N,

lim
N→∞

∣∣∣ Elog
n∈[N/p]

a(n) − Elog
n∈[N]

a(n)

∣∣∣ = 0.

Intuitively, this is due to the weight of 1/n in the definition of the logarithmic average.
As N becomes large, the terms between N/p and N are weighted so heavily that they
contribute very little to the overall average.

Proof. Let M > 0 be a bound for |a|. For N ∈ N, define AN := ∑N
n=1 1/n. We calculate:

| Elog
n∈[N]

a(n) − Elog
n∈[N/p]

a(n)| ≤
(

1
A�N/p�

− 1
AN

) �N/p�∑
n=1

|a(n)|
n

+ 1
AN

N∑
n=�N/p�

|a(n)|
n

≤ M

[(
1 − A�N/p�

AN

)
+ 1

AN

N∑
n=�N/p�

1
n

]

= 2M

(
1 − A�N/p�

AN

)
.

We now use the fact that

lim
N→∞ |log N − AN | = γ ,
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where γ denotes the Euler–Mascheroni constant. Then,

lim
N→∞

A�N/p�
AN

= lim
N→∞

log�N/p�
log N

= lim
N→∞

(
1 − log p

log N

)
= 1,

so that limN→∞ | Elog
n∈[N]

a(n) − Elog
n∈[N/p]

a(n)| = 0.

We also require the following proposition, which can be thought of as estimating the
average number of divisors of an integer n that come from a specified set.

PROPOSITION 4.3. Let B ⊆ N be finite and non-empty. Define 
(n, m) = gcd(n, m) − 1
and let 1m|n take value 1 if m divides n and zero otherwise. Then:
(i) lim supN→∞ E

n∈[N]
|Elog
m∈B

(1 − m1m|n)| ≤ (Elog
m∈B

Elog
n∈B


(n, m))1/2;

(ii) lim supN→∞ Elog
n∈[N]

|Elog
m∈B

(1 − m1m|n)| ≤ (Elog
m∈B

Elog
n∈B


(n, m))1/2.

Proof. A proof of statement (i) can be found in [BR21, Proposition 2.1]. The proof of (ii)
is completely analogous, replacing Cesáro averages by logarithmic averages.

In the following, we often choose the set B so that the quantity Elog
m∈B

Elog
n∈B


(n, m) is

small. Intuitively, this means that two random elements from B have a high chance of
being coprime.

Proof of Theorem 4.1. Let ε > 0. By definition,

Elog
m∈P∩[s]

Elog
n∈P∩[s]


(m, n) = 1( ∑
m∈P∩[s] 1/m

)2

∑
m,n∈P∩[s]


(m, n)

mn
.

Notice that for m and n from P ∩ [s],


(m, n) =
{

m − 1, m = n,

0, m 	= n.

Then,

1( ∑
m∈P∩[s] 1/m

)2

∑
m,n∈P∩[s]


(m, n)

mn
= 1( ∑

m∈P∩[s] 1/m
)2

∑
m∈P∩[s]

m − 1
m2

≤ 1∑
m∈P∩[s] 1/m

,

so that

lim sup
s→∞

Elog
m∈P∩[s]

Elog
n∈P∩[s]


(m, n) = 0.

Take s0 ∈ N such that for all s ≥ s0,

Elog
m∈P∩[s]

Elog
n∈P∩[s]


(m, n) ≤ ε2.
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Fix s ≥ s0. By Proposition 4.3,

lim sup
N→∞

Elog
n∈[N]

∣∣∣ Elog
s∈P∩[s]

(1 − 1p|n)
∣∣∣ < ε.

Then by a direct calculation,∣∣∣ Elog
n∈[N]

λ(n) − Elog
p∈P∩[s]

Elog
n∈[N/p]

λ(pn)

∣∣∣
=

∣∣∣ Elog
n∈[N]

λ(n) − Elog
p∈P∩[s]

Elog
n∈[N]

p1p|nλ(n)

∣∣∣ + O(1/ log N)

≤ Elog
n∈[N]

∣∣∣ Elog
p∈P∩[s]

(1 − 1p|n)
∣∣∣ + O(1/ log N)

≤ ε + O(1/ log N).

Hence,

lim
N→∞

∣∣∣ Elog
n∈[N]

λ(n) − Elog
p∈P∩[s]

Elog
n∈[N/p]

λ(pn)

∣∣∣ ≤ ε.

Since λ(pn) = −λ(n) for any prime p, this reduces to

lim
N→∞

∣∣∣ Elog
n∈[N]

λ(n) + Elog
p∈P∩[s]

Elog
n∈[N/p]

λ(n)

∣∣∣ ≤ ε.

Finally, applying Lemma 4.2 to λ(n), we remove the dependence of the inner logarithmic
average on p:

lim
N→∞

∣∣∣ Elog
n∈[N]

λ(n) + Elog
p∈P∩[s]

Elog
n∈[N]

λ(n)

∣∣∣ ≤ ε.

Letting ε → 0, we conclude that limN→∞ Elog
n∈[N]

λ(n) = 0.

4.2. Proof of Theorem 1.3. A more technical version of this argument can be applied to
obtain Theorem 1.3. The main difficulty arises in the last two steps, in which we remove
the dependence of the inner average on the primes p. To get around this, we rely on the
following technical proposition.

PROPOSITION 4.4. For all ε ∈ (0, 1) and ρ ∈ (1, 1 + ε], there exist finite, non-empty sets
B1, B2 ⊆ N with the following properties:
(i) B1 ⊂ P and B2 ⊂ P2;

(ii) B1 and B2 have the same cardinality when restricted to ρ-adic intervals:
|B1 ∩ (ρj , ρj+1]| = |B2 ∩ (ρj , ρj+1]| for all j ∈ N ∩ {0};

(iii) Elog
m∈Bi

Elog
n∈Bi


(m, n) ≤ ε for i = 1, 2;

(iv) for any a : N → C with |a| ≤ M for some M > 0,∣∣∣Elog
p∈B1

E
n∈[N/p]

a(n) − Elog
p∈B2

E
n∈[N/p]

a(n)

∣∣∣ ≤ 3Mε.

Proof. Statements (i)–(iii) can be found in [BR21, Lemma 2.2]. Statement (iv) follows
from statement (iii). The proof for arithmetic functions of modulus 1 can be found
in [BR21, Lemma 2.3]. The argument for bounded arithmetic functions is completely
analogous.

https://doi.org/10.1017/etds.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.81


3704 K. Loyd

PROPOSITION 4.5. Define ϕN(n) := (�(n) − log log N)/
√

log log N . Then for any
bounded arithmetic function a : N → C and F ∈ Cc(R),

1
N

N∑
n=1

F(ϕN(n)) a(�(n)) = 1
N

N∑
n=1

F(ϕN(n)) a(�(n) + 1) + o(1).

Proof. Let ε ∈ (0, 1) and ρ ∈ [1, 1 + ε). Let B1 and B2 be finite, non-empty sets
satisfying the conditions of Proposition 4.4. Let M1 be a bound for |F | and M2 a bound
for |a|. Then,∣∣∣ E

n∈[N]
F(ϕN(n)) a(�(n) + 1) − Elog

p∈B1
E

n∈[N/p]
F(ϕN(pn)) a(�(pn) + 1)

∣∣∣
≤ E

n∈[N]
M1M2

∣∣∣Elog
p∈B1

(1 − p1p|n)
∣∣∣ + O(1/N)

≤ M1M2ε + O(1/N),

where the last inequality follows by Proposition 4.3. Hence,

E
n∈[N]

F(ϕN(n)) a(�(n) + 1) = Elog
p∈B1

E
n∈[N/p]

F(ϕN(pn)) a(�(pn) + 1) + O(ε + 1/N).

(14)

Replacing B1 by B2 in the above argument, we obtain

E
n∈[N]

F(ϕN(n)) a(�(n)) = Elog
p∈B2

E
n∈[N/p]

F(ϕN(pn)) a(�(pn)) + O(ε + 1/N). (15)

Since B1 consists only of primes and B2 consists only of 2-almost primes, equations
(14) and (15) yield

E
n∈[N]

F(ϕN(n)) a(�(n) + 1) = Elog
p∈B1

E
n∈[N/p]

F(ϕN(pn))a(�(n) + 2) + O(ε + 1/N)

(16)

and

E
n∈[N]

F(ϕN(n)) a(�(n)) = Elog
p∈B2

E
n∈[N/p]

F(ϕN(pn)) a(�(n) + 2) + O(ε + 1/N), (17)

respectively. Since limN→∞ |F(ϕN(pn)) − F(ϕN(n))| = 0 for each p ∈ Bi , we can find
an N0 ∈ N such that for N ≥ N0, |F(ϕN(pn)) − F(ϕN(n))| ≤ ε for all p ∈ B1, B2. Then
for i = 1, 2,∣∣∣Elog

p∈Bi

E
n∈[N/p]

F(ϕN(pn))a(�(n) + 2) − Elog
p∈Bi

E
n∈[N/p]

F(ϕN(n))a(�(n) + 2)

∣∣∣
≤ Elog

p∈Bi

E
n∈[N/p]

M2|F(ϕN(pn)) − F(ϕN(n))|

≤ 1
N

Elog
p∈Bi

pM2

N0∑
n=1

|F(ϕN(pn)) − F(ϕN(n))| + Elog
p∈Bi

pM2ε

≤ C1

N
+ C2ε,
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where C1 and C2 do not depend on N or ε. Hence, we can remove the dependence on p
from the summands of equations (16) and (17), yielding

E
n∈[N]

F(ϕN(n)) a(�(n) + 1) = Elog
p∈B1

E
n∈[N/p]

F(ϕN(n))a(�(n) + 2) + O(ε + 1/N)

(18)

and

E
n∈[N]

F(ϕN(n)) a(�(n)) = Elog
p∈B2

E
n∈[N/p]

F(ϕN(n)) a(�(n) + 2) + O(ε + 1/N). (19)

Finally, Proposition 4.4 yields

Elog
p∈B1

E
n∈[N/p]

F(ϕN(n))a(�(n) + 2) = Elog
p∈B2

E
n∈[N/p]

F(ϕN(n)) a(�(n) + 2) + O(ε).

(20)

Combining equations (18), (19), and (20), and letting N → ∞, ε → 0, we are done.

Proof of Theorem 1.3. Fix F ∈ Cc(R) and x ∈ X. We first perform a reduction using the
condition of unique ergodicity. For N ∈ N, set ϕN(n) = (�(n) − log log N)/

√
log log N

and define the measure μN by

1
N

N∑
n=1

F(ϕN(n)) g(T �(n)x) =
∫

X

g dμN .

Explicitly, μN = (1/N)
∑N

n=1 F(ϕN(n)) δT �(n)x , where δy denotes the point mass at y.
Now, define

μ′ :=
(

1√
2π

∫ ∞

−∞
F(t)e−t2/2 dt

)
· μ.

Then the conclusion of the theorem is equivalent to convergence of the sequence {μN }n∈N
to μ′ in the weak-* topology. Notice that if each limit point of {μN }n∈N is T-invariant,
then since μ is uniquely ergodic, each limit point is equal to μ′ and we are done. Hence,
it remains to show that each limit point is T-invariant. To do this, we show that for all
g ∈ C(X),

lim
N→∞

∣∣∣∣
∫

X

g dμN −
∫

X

g ◦ T dμN

∣∣∣∣ = 0.

By definition of the measures μN , we need to show that for all g ∈ C(X),

lim
N→∞

∣∣∣∣ 1
N

N∑
n=1

F(ϕN(n)) g(T �(n)x) − 1
N

N∑
n=1

F(ϕN(n)) g(T �(n)+1x)

∣∣∣∣ = 0.

Fix g ∈ C(X). By Proposition 4.5 applied to a(n) = g(T nx), we are done.

Proof of Corollary 1.4. Let (X, μ, T ) be the uniquely ergodic system given by rotation
on two points (see §2.3 for the precise definition). Define g : X → {−1, 1} by g(0) = −1
and g(1) = 1. Then,

λ(n) = g(T �(n)(0)).
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By Theorem 1.3 followed by the prime number theorem,

lim
N→∞

1
N

N∑
n=1

F

(
�(n) − log log N√

log log N

)
λ(n)

=
(

1√
2π

∫ ∞

−∞
F(t)e−t2/2 dt

)(
lim

N→∞

N∑
n=1

λ(n)

)

= 0.
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