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Percolation probability and critical
exponents for site percolation
on the UIPT
Laurent Ménard
Abstract. We derive three critical exponents for Bernoulli site percolation on the uniform infinite
planar triangulation (UIPT). First, we compute explicitly the probability that the root cluster is
infinite. As a consequence, we show that the off-critical exponent for site percolation on the UIPT is
β = 1/2. Then we establish an integral formula for the generating function of the number of vertices
in the root cluster. We use this formula to prove that, at criticality, the probability that the root
cluster has at least n vertices decays like n−1/7 . Finally, we also derive an expression for the law of
the perimeter of the root cluster and use it to establish that, at criticality, the probability that the
perimeter of the root cluster is equal to n decays like n−4/3 . Among these three exponents, only the
last one was previously known. Our main tools are the so-called gasket decomposition of percolation
clusters, generic properties of random Boltzmann maps, and analytic combinatorics.

1 Introduction

Percolation on random planar maps has been studied intensively since the pioneering
work of Angel [2]. The main feature of random planar maps making this study so
fruitful is the spatial Markov property. It can be used with two different approaches.
The first approach is to perform an exploration process of percolation interfaces
with the so-called peeling process. This is the approach developed by Angel [2] to
prove that the threshold for Bernoulli site percolation on the uniform infinite planar
triangulation (UIPT; the limit in law of large uniform random triangulations for the
local topology [4]) is 1/2. This approach has been later used by several authors to
study other models of percolation on maps (see, for example, [3, 15, 21, 24, 27] and the
references therein). The second approach is more global and consists in decomposing
the map into the cluster of the root vertex and pieces filling the faces of this cluster.
Such a decomposition is often called the Gasket decomposition (see, for instance,
the works of Borot, Bouttier, Duplantier, and Guitter [8–10]). This second approach
has been used very recently to study percolation on random finite triangulations by
Bernardi, Curien, and Miermont [6], following the previous work by Curien and
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1870 L. Ménard

Kortchemski [16]; and on other natural models of random finite planar maps by
Curien and Richier [17].

This work builds on the article by Bernardi, Curien, and Miermont [6] to study site
percolation on the UIPT (of type 1, with loops and multiple edges allowed). Our first
main result is an explicit formula for the probability that percolation from the root
occurs.

Theorem 1.1 Let Pp
∞ denote the law of the type 1 UIPT, with vertices colored black with

probability p and white with probability 1 − p, and conditioned on the event where the
root edge has both end vertices colored black. Let C denote the site percolation cluster of
the root vertex under Pp

∞. Then, for every p ∈ [0, 1], we have

P
p
∞(∣C∣ = ∞)

= 2
√

2p − 1 (
√

3 − cos3 ( 2
3 arccos(√p))) (cos ( 2

3 arccos(√p)))3/2 + p(2p − 1)
p (2
√

3 − 3(1 − p))
1p≥1/2 .

In particular, the critical exponent is β = 1/2: as p → 1/2+, one has

Pp
∞(∣C∣ = ∞) = 31/4 15

26
(1 + 4

√
3

3
)
√

p − 1
2
+O(p − 1

2
).

To the best of our knowledge, this is the first formula of this type and the first
calculation of the critical exponent β for percolation on the UIPT. A similar formula
was obtained for percolation on the uniform infinite half-plane triangulation (UIHPT)
by Angel and Curien [3] using the peeling process. They also calculate explicitly the
probability that percolation from the root occurs and then obtain β = 1 in the UIHPT
setting. The relation between these two exponents remains quite mysterious, and we
do not know of any strategy to obtain the exponent β without first computing explicitly
the probability of percolation (Figure 1).

Our second main result gathers estimates for the volume and perimeter of critical
percolation clusters.

Theorem 1.2 With the notation of Theorem 1.1, we have, for an explicit constant κ > 0,

P1/2
∞ (∣V(C)∣ ≥ n) ∼

n→∞
κ n−1/7 .

Furthermore, let ∂C denote the root face of C, that is, the face of C containing the root
face of the UIPT. Then there is an explicit constant κ′ > 0 such that

P1/2
∞ (∣V(∂C)∣ = n) ∼

n→∞
κ′ n−4/3 .

The perimeter exponent 4/3 was established by Curien and Kortchemski [16] using
the gasket decomposition but with a different approach than the present work. The
exponent 1/7 was conjectured in [21] using heuristics for the peeling process, and the
present work is the first time it is established rigorously. Previous works that computed
volume exponents for critical percolation models on infinite random planar maps did
so for cluster hulls (part of the maps separated from infinity by a percolation interface).
The reason being that all these works use variations around the peeling process, which
is particularly well suited to study percolation interfaces—and therefore hulls—but not
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Figure 1: Plot of the probability P
p
∞(∣C∣ = ∞) for p ∈ [0, 1].

so useful to study the geometry of the clusters themselves. For instance, let H denote
the hull of the root cluster C in the UIPT; i.e., H is the complement of the only infinite
connected component of T∞/C, where T∞ is the UIPT with a critical site percolation
configuration. Gorny, Maurel-Segala, and Singh [21] proved that

P1/2
∞ (∣V(H)∣ ≥ n) ≍ n−1/8 and P1/2

∞ (∣V(∂H)∣ ≥ n) ≍ n−1/6 ,

where un ≍ vn means that un/vn is bounded.

1.1 Main ingredients and organization of the paper

For every site percolated finite rooted planar triangulation t, we denote by v○(t) and
v●(t) its number of white (resp. black) vertices, and by e(t) its number of edges. For
p ∈ (0, 1) and for t > 0 small enough, we can consider a random finite percolated
triangulation t whose law gives a probability proportional to te(t) pv●(t)(1 − p)v○(t)
to every finite triangulation t. Let us denote by Z the partition function of this model
and by Pp the corresponding probability:

Z(p, t) ∶= ∑
t

te(t) pv●(t)(1 − p)v○(t) < +∞, and Pp (t = t) = te(t) pv●(t)(1 − p)v○(t)
Z(p, t) .

The partition function Z and its generalizations to triangulations with a boundary
(with additional parameters counting, respectively, the number of boundary vertices
and boundary edges) are studied in Section 2. In particular, we establish a rational
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parameterization for the generalized partition function. This parameterization
significantly simplifies the study of its analytic properties started in [6].

The gasket decomposition resides in the following statement. There exists an
explicit sequence of positive numbers (qk(p, t))k≥1 such that, for every finite
nonatomic map m, the probability that the root cluster C(t) of the random triangula-
tion t is equal to m is given by

Pp (C(t) = m) =
∏ f ∈Faces(m) qdeg( f )(p, t)

Z(p, t) .

In this sense, the root cluster is a Boltzmann random planar map associated with the
weight sequence (qk(p, t))k≥1. The properties of such random maps depend on
the asymptotic behavior in k of the weight sequence, which can be inferred from
the generating function of the weights. In our case, the weight generating function
is closely related to the generalized partition function of percolated triangulations
counted by edges, boundary edges, and boundary vertices. A crucial consequence of
this relation is that it allows to calculate explicitly the so-called pointed disk generating
function of the root cluster in terms of the singularities of the generalized partition
function of percolated triangulations in equations (3.9) and (3.10). See Section 3 for
details.

To study the origin cluster of the UIPT, we can condition the random triangulation
t to have 3n edges. By continuity for the local topology, this gives

Pp (C(t) = m∣e(t) = 3n) =
[t3n]∏ f ∈Faces(m) qdeg( f )(p, t)

[t3n]Z(p, t) →
n→∞

Pp
∞(C = m).(1.1)

With a careful study of the dependency in t of the weight sequence (qk(p, t))k≥1
performed in Section 6.1, we are able to compute the above limit, giving the law of
the root cluster in the UIPT on the event where it is finite.

We are then able to establish an integral formula for the sum of the limiting
probability over every finite map, which is the probability that the root cluster of the
UIPT is finite. See Proposition 4.2. In particular, this calculation uses the explicit
universal form of the pointed disk generating functions and cylinder generating
functions of Boltzmann maps. With the help of our rational parameterizations, we can
then calculate explicitly our integral formula for the probability that the root cluster
is finite and establish Theorem 1.1. This is performed in Section 4.

The formula we obtain for the limit (1.1) is quite easy to sum over maps with the
same perimeter. As a consequence, we are also able to calculate explicitly the law of
the perimeter of the root cluster and obtain the second statement of Theorem 1.2 on
the perimeter of the root cluster. This is done at the beginning of Section 5.2.

Finally, to compute the tail probability of the number of vertices in the root cluster
at criticality (p = 1/2), we establish an integral formula for the generating function
E

p
∞ [g ∣V(C)∣] in Section 5.2. See in particular identity (5.7), which also originates from

our explicit formula for the limit (1.1). The expression we get involves two quantities.
The first is the generating series derived from the asymptotics of the coefficients in
t of the weights (qk(p, t))k≥1 studied in Section 6.1 for which we have an explicit
parametric expression. The second quantity involves the pointed disk generating
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functions of Boltzmann maps with modified weight sequence (g(k−2)/2qk(p, t))k≥1.
We can analyze the behavior as g → 1− of these modified pointed disk generating
functions using the bivariate generating functions associated with the Bouttier–
Di Francesco–Guitter bijection [13] presented in Section 5.1 and their singularities
obtained in Section 6.2. We put all that together in Section 5.2 to study the singular
behavior as g → 1− of E1/2

∞ [g ∣V(C)∣] and prove Theorem 1.2.

1.2 On the robustness of our approach

We believe that it should be possible to adapt the strategy of this paper to other models
of random planar maps and other statistical models. Indeed, what is needed first is
the gasket decomposition, which exists, for example, for percolation on other models
of maps [17], or for the O(n) model on maps [8, 9]. We then need information on
the generalized generating series of maps with a boundary and their singularities. In
the present work, we have explicit parametric expressions to simplify calculations, but
we really only need to identify the nature of the singularities for the critical exponents.
Any model for which such information is available should fall into the scope of our
method.

In another article [1], we derive several critical exponents for the sign clusters in
finite and infinite planar triangulations coupled with an Ising model. In particular, we
establish in [1] counterparts for the main results of the present work. Theorem 1.1 and
its counterpart for Ising model are unrelated, but Theorem 1.2 is a particular case of
its Ising version at infinite temperature.

1.3 Links with other critical exponents for percolation on the UIPT

The volume exponent 1/7 of Theorem 1.2 suggests that the scaling limit of a large
critical percolation cluster in the UIPT should be of quantum dimension 7/8. There
is also very strong evidence (see, for instance, the works of Bernardi, Holden, and
Sun [7] and Holden and Sun [22]) that in some sense, this scaling limit is a CLE6 on
an independent pure Liouville Quantum Gravity surface. The quantum dimension 7/8
of the scaling limit of the root cluster and the dimension 91/48 of the gasket of a CLE6
agree with the Knizhnik, Polyakov, and Zamolodchikov (KPZ) [23] relation:

1 − 1
2

91
48
= 2

3
(1 − 7

8
)

2
+ 1

3
(1 − 7

8
).

In a similar fashion, the perimeter exponent 4/3 of Theorem 1.2 agrees with the KPZ
relation and the dimension 7

4 of an SLE6 curve [5].
The value of the critical exponent β agrees heuristically with known quantities of

the UIPT and Kesten’s scaling relations. Indeed, Bernardi, Holden, and Sun [7] and
Holden and Sun [22] established that the number of percolation pivotal points in a
random triangulation of size n is of order n1/4. In this sense, the quantum dimension
of the set of pivotal points of critical percolation on the UIPT should be 1 (the map itself
having dimension 4). This dimension can also be predicted with the KPZ relation and
the dimension 3/4 of critical percolation pivotal points in Euclidean geometry [20].
On the other hand, the one-arm exponent α1 of critical percolation on the UIPT
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should be 1/2 from the quantum dimension 7/8 of the clusters. Kesten’s scaling relation
then states that the dimension of pivotal points should be α1/β, giving 1 with the
exponent of Theorem 1.1.

2 Generating series

Let T be the generating series of rooted triangulations with a (not necessarily simple)
boundary counted by edges (variable t), boundary length (parameter y), and boundary
vertices (parameter p). That is, we define

T(p, t, y) = ∑
k≥1
∑
t∈Tk

te(t)pvout(t)yk = ∑
k≥1

Tk(p, t) yk ,

where Tk is the set of all rooted triangulations with a boundary face of degree k, and
where e(t) and vout(t) denote, respectively, the total number of edges and number of
boundary vertices of the triangulation with a boundary t.

From [6, Lemma 3.1], we have the following equation for T(p, t, y):

T(p, t, y) = p + y2 tT2(p, t, y) + (p − 1)t (T(p, t, y) − p)2
pyT(p, t, y)

+ t
py
(T(p, t, y) − p − y T1(p, t)).(2.1)

Using the quadratic method, the authors of [6] establish the following algebraic
equation for T1 ≡ T1(p, t) that will be our starting point:

64 T3
1 t5 − 27 p3 t5 − 96 T2

1 p t4 + 30 T1 p2 t3 + p3 t2 + T2
1 p t − T1 p2 = 0.

Up to a multiplicative constant p, the series T1 is simply the generating series of trian-
gulations of the 1-gon counted by edges and admits a proper rational parameterization.

Lemma 2.1 Let U be the unique power series in t3 having constant term 0 and satisfying

t3 = ŵ(U) ∶= 1
2

U(1 −U)(1 − 2U).

The series t T1(p, t) seen as a series in t3 admits the following proper rational parame-
terization in U:

t T1(p, t) = T̂1(p, U) ∶= p U 1 − 3U
1 − 2U

.

Furthermore, the series U(t3) has a unique dominant singularity at t3 = (tc)3 ∶=
√

3
36

with the following singular behavior:

U(t3) = 3 −
√

3
6
−
√

2
6
(1 − ( t

tc
)

3
)

1/2

+
√

3
54
(1 − ( t

tc
)

3
)

− 5
√

2
648
(1 − ( t

tc
)

3
)

3/2

+O(1 − ( t
tc
)

3
)

2

.

(2.2)
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Proof This result could be qualified as folklore since the series T1 is just the
generating series of triangulations of the 1-gon multiplied by p. The rational param-
eterization given is also the classical one. The fact that U(t3) is unique comes from
the Lagrangian form of the equation that defines it. We can also see that the algebraic
equation satisfied by t T1(t) has a unique solution that is a power series with constant
term 0. By composition and unicity, we can see that indeed tT1(t) = T̂1(p, U(t3)) as
power series in t since both verify the algebraic equation and have constant term 0.
The singular behavior of U is also very classical and without difficulties. See the Maple
companion file [26] for details. ∎

Injecting the parameterization of t3 and t T1 by U in the equation for T then allows
to establish a proper rational parameterization for T.

Lemma 2.2 Recall the definition of the power series U ≡ U(t3) from Lemma 2.1.
Let V ≡ V(p, U , y) be the unique power series in Q[p, U][[y]] ⊂ Q[p][[t3 , y]] with
constant term in y equal to 0 satisfying

y = ŷ(p, U , V) ∶= 2 V (2 − 4 U − V)
4 p U (1 −U) (1 − 2U) + 2 U (1 − 3U)V + 2 (1 − 3U)V 2 − V 3 .

The series T(p, t, ty) seen as a series in t3 and y is algebraic and admits the following
proper rational parameterization in U and V:

T(p, t, ty) = T̂(p, U , V)

∶= 4 p U (1 −U) (1 − 2U) + 2 U (1 − 3U)V + 2 (1 − 3U)V 2 − V 3

4 U (1 −U) (1 − 2U) .

In addition, for any p ∈ (0, 1] and any fixed t ∈ (0, tc], the series V(p, U(t3), y)
and T(p, t, ty) seen as series in y both have radius of convergence y+(p, t) > 1 where
it is singular. Furthermore, both series can be analytically continued in the domain
C/ ((−∞, y−(p, t)] ∪ [y+(p, t),+∞)), where y−(p, t) is on the negative real line
(−∞ included) and is such that y−(p, t) < −y+(p, t).
Proof All computations are available in the Maple companion file [26].

The fact that V is uniquely defined as a power series comes from the Lagrangian
form of the equation V = y × R(p, U , V) with R a rational fraction such that
R(p, U , 0) ≠ 0. This form also implies by inductive calculation of the coefficients in y
of V that they are all rational in p and U. Similarly, equation (2.1) verified by T(p, t, ty)
takes the form

p(T(p, t, ty) − p)(T(p, t, ty) − (1 − p))
= y T(p, t, ty) (tT1(p, t) − p(T(p, t, ty) − p) − y2 p t3 T(p, t, ty)2).

Here again, by inductive calculation of the coefficients, we can see that this last
equation has a unique solution that is a power series in t3 and y with constant term in y
equal to p. Note that since the series tT1(p, t) is algebraic, this equation also ensures
that T(p, t, ty) is algebraic. By composition, T̂ (p, U(t3), V(p, U(t3), y)) is a power
series in t3 and y with constant term in y equal to p. We can verify that it satisfies
the same algebraic equation as T(p, t, ty), and therefore the two power series are
identical.
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Now, fix t3 ∈ (0, tc]. The function V ↦ ŷ(p, U(t3), V) has poles and station-
ary points that we can locate. Let us start with the poles. The denominator of
ŷ(p, U(t3), V) is a polynomial of degree 3 in V. It is positive with positive derivative
at V = 0, and changes signs between 1 − 2U and 2(1 − 2U). Since the coefficient of V 3

is −1, this leaves two possibilities for the poles of ŷ(p, U(t3), V): there is always a pole
between 1 − 2U and 2(1 − 2U), and either there is no additional real pole or there are
two negative poles.

The stationary points of ŷ(p, U(t3), V) are the roots of the polynomial −2V 4 +
(−16U + 8)V 3 − 4(3U − 1)(3U − 2)V 2 − 16U p(2U − 1)(U − 1)V − 16U p(U − 1)
(2U − 1)2, where U stands for U(t3). By computing the values of the polynomial at 0,
1 − 2U , and 2(1 − 2U), we can see that it has four real roots V−(p, U) < 0 < V+(p, U) ≤
1 − 2U ≤ Vl(p, U) < 2(1 − 2U) < Vr(p, U) (the case of a double root at 1 − 2U only
happens when U = Uc and is treated separately in the Maple file). It is also easy to see
that ∂V ŷ(p, U(t3), 0) > 0, and therefore y+(p, t) ∶= ŷ(p, U(t3), V+(p, U(t3))) > 0.
We can define y−(p, t) ∶= ŷ(p, U(t3), V−(p, U(t3))) < 0 when ŷ(p, U(t3), V) has
no pole between V−(p, U(t3)) and 0, and y−(p, t) ∶= −∞ when it has such a pole. By
singular inversion, the inverse function V(p, U(t3), y) of ŷ(p, U(t3), V) is analytic
in the domain C/ ((−∞, y−(p, t)] ∪ [y+(p, t),+∞)) and singular at both points
y±(p, t) when they are finite.

By composition, y ↦ T(p, t, ty) is analytic in the same domain. Since it has
nonnegative coefficients, we know that it is singular at its radius of convergence.
Therefore, y+(p, t) is its radius of convergence and y−(p, t) ≤ −y+(p, t). Checking
that y−(p, t) < −y+(p, t) just with our current material is cumbersome but could be
done. However, we do not need to go through this since this inequality is a direct con-
sequence of equations (3.10) established with no computations at the end of Section 3.
Finally, to see that y+(p, t) > 1, we first note that for p fixed, y+(p, t) is nonincreasing
with respect to ∣t∣ and then check y+(p, tc) > 1 by direct computation. ∎

3 The root cluster as a Boltzmann map

In this whole section, p ∈ (0, 1) and t ∈ (0, tc] are fixed.

3.1 The weight sequence from [6] with the edge parameter

In [6, Section 2.2], it was established that for a random site-percolated triangulation
(conditioned on the event where both ends of the root edge are colored in black),
the cluster of the root is a random Boltzmann map with weight sequence q(p, t) =
(qk(p, t))k≥1 given by

qk(p, t) = 1
p
((pt)3/2δ{k=3} + (pt3)k/2∑

l≥0
(k + l − 1

k − 1
)[y l ]T(1 − p, t, ty)),(3.1)

for k ≥ 1 (see [6, equation (9)]). We briefly recall here what this statement means and
how to obtain it.

For every percolated rooted planar triangulation t, we denote, respectively, by
v○(t) and v●(t) the number of white (resp. black) vertices. Let Tperc be the set of all
percolated rooted triangulations with both end vertices of the root edge black. For
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Figure 2: Gasket decomposition: A face of the root cluster (black vertices in the figure) is filled
with a triangulation with arbitrary white boundary (upper-right figure, gray vertices can be
either black or white) and a necklace (lower-right figure) triangulating the region between the
two.

every t ∈ Tperc, we denote by C(t) the cluster of its root edge viewed as a planar rooted
map (whose root is the root edge of the triangulation). The fact that the root cluster is
a random Boltzmann map comes from the following identity (see equation (7) of [6]):
for every nonatomic map m, one has

∑
t∈Tperc ∶C(t)=m

te(t)pv●(t)(1 − p)v○(t) = p2 ⋅ ∏
f ∈F(m)

qdeg( f )(p, t).(3.2)

This identity stems from the classical gasket decomposition [9] sometimes called
island decomposition [6], and we briefly explain how it is obtained in the following
lines (see Figure 2 for an illustration of these arguments). Fix m a nonatomic map
and t a site-percolated triangulation with root cluster m colored black. For such a
triangulation t, each face of its root cluster is filled with a triangulation with an
arbitrary boundary of white vertices, and a necklace of triangles with no additional
vertices between this triangulation with a boundary and the cluster. For each cluster
face of degree k ≥ 1 filled with a triangulation with perimeter l ≥ 1, there are (k+l−1

k−1 )
different possible necklaces, and each of these necklaces requires an additional k + l
edges. Taking into account the case where the cluster face has degree 3 and can be part
of the triangulation, this writes

∑
t∈Tperc ∶C(t)=m

te(t)pv●(t)(1 − p)v○(t)

= p∣V(m)∣ t∣e(m)∣

× ∏
f ∈F(m)

(1deg( f )=3 +∑
l≥0
(deg( f ) + l − 1

deg( f ) − 1
)tdeg( f )+l [y l ]T(1 − p, t, y)),
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= p2 ⋅ ∏
f ∈F(m)

1
p
(pt)deg( f )/2

× (1deg( f )=3 +∑
l≥0
(deg( f ) + l − 1

deg( f ) − 1
)tdeg( f )+l [y l ]T(1 − p, t, y)),

where we used Euler’s relation ∣V(m)∣ − 2 = ∑ f ∈F(m) (deg( f )/2 − 1) in the last
display. The expression (3.2) follows easily, and we refer the reader to [6, Section 2.2]
for additional details. Note for future reference that for any k ≥ 1, the weight qk(p, t)
is 1/p times the generating series of all triangulations of the k-gon with a weight t
per inner edge, a weight

√pt per boundary edge, and a weight 1 − p per inner vertex
adjacent to the boundary.

We can define the partition function of our percolated triangulations by

Z(p, t) = 1
p2 ⋅ ∑

t∈Tperc
te(t)pv●(t)(1 − p)v○(t) .(3.3)

From identity (3.2), denoting byM the set of all nonatomic rooted planar maps, we see
that

Z(p, t) = ∑
m∈M

∏
f ∈F(m)

qdeg( f )(p, t).(3.4)

Notice that this sum is finite when p ∈ (0, 1) and t ∈ (0, tc], meaning that the weight
sequence q(p, t) is admissible in the sense of [25]. We will need the asymptotic
behavior of the coefficients in t3 of the series Z(p, t).

Proposition 3.1 Fix p ∈ (0, 1), we have

[t3n]Z(p, t) ∼
n→∞

√
2 (3p − 3 + 2

√
3)

2p
√

π
t−3n

c n−5/2 .

Proof By opening the root edge of the triangulations appearing in the sum (3.3),
we can see that, for p ∈ (0, 1) and ∣t∣ ≤ tc , the partition function Z(p, t) is given by

Z(p, t) = 1
p2 t

T2(p, t) = 1
p2 t3 t2T2(p, t) = 1

t3 tT1(p, t)(1 + 1 − p
p3 tT1(p, t)).(3.5)

From Lemma 2.1, the function tT1(t) seen as a series in t3 has a unique dominant
singularity at t3

c and we can obtain its asymptotic expansion at t3
c from the expansion

of U. As a consequence, the function Z(p, t) also has a unique dominant singularity
at t3

c and we can easily obtain the following asymptotic expansion:

Z(p, t) =
3
√

3 (7 − 4
√

3) + p
4p

−
√

3 (3p − 27 + 16
√

3)
4p

(1 − t3/t3
c)

+
2
√

2 (3p − 3 + 2
√

3)
3p

(1 − (t/tc)3)3/2) +O ((1 − t3/t3
c)2)).

The asymptotic behavior of [t3n]Z(p, t) then follows from the classical transfer
theorem [19, Theorem VI.4]. ∎
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3.2 Generating series of the weights and of the associated Boltzmann maps

The generating series of the weight sequence q(p, t) is straightforward to compute.
As shown by the following lines, the expression we obtain is valid for every p ∈ (0, 1),
t in the greater domain of analyticity of U(t3), and z close enough to 0. More
precisely, we need

√
pt3z ∈ C/[1,+∞) and (1 −

√
pt3z)

−1
must belong to the domain

of analyticity in y of T(t, 1 − p, ty), which was studied in the previous section. Under
these conditions for p, t, and z, the computation of the weight sequence generating
function is as follows:

Fq(p,t)(z) ∶ = ∑
k≥1

qk(p, t)zk ,

= 1
p
(pt)3/2z3 + 1

p∑l≥0
[y l ]T(1 − p, t, ty)∑

k≥1
(k + l − 1

k − 1
)(pt3)k/2zk ,

= 1
p
(pt)3/2z3 + 1

p
√

pt3z∑
l≥0
[y l ]T(1 − p, t, ty) (1 −

√
pt3z)

−l−1
,

= 1
p
(pt)3/2z3 + 1

p

√
pt3z

1 −
√

pt3z
T
⎛
⎝

1 − p, t, t
1 −
√

pt3z
⎞
⎠

.(3.6)

We will need expressions for the pointed and unpointed disk generating functions
associated with the weight sequence q(p, t). For every l ≥ 0, let Ml denote the set of
all rooted planar maps with root face of degree l (for l = 0, this set contains only the
atomic map). The unpointed disk generating function is defined as follows for ∣z∣ large
enough:

Wq(p,t)(z) ∶= ∑
l≥0

⎛
⎝ ∑
m∈Ml

∏
f ∈F(m)/{ fr}

qdeg( f )(p, t)
⎞
⎠

z−l−1 ,

where we denote the root face of a planar map by fr . From our discussion establishing
(3.2), we can compute the coefficients of these series. Indeed, from equation (3.2) and
the fact that q l is 1/p times the generating series of triangulations with a boundary of
perimeter l counted with a weight t per inner edge, a weight

√pt per boundary edge,
and a weight 1 − p per inner vertex adjacent to the boundary, we have

∑
m∈Ml

∑
t∈Tperc ∶C(t)=m

te(t)pv●(t)(1 − p)v○(t) = p
√

p t
−l

q l(p, t) ∑
t∈Tl

te(t)pvout(t) .

Comparing with the right-hand side of (3.2), this gives, for every l ≥ 1,

∑
m∈Ml

∏
f ∈F(m)/{ fr}

qdeg( f )(p, t) = 1
p√pt l [y

l ]T(p, t, y),(3.7)

and thus

Wq(p,t)(z) =
1

p z
T
⎛
⎝

p, t, t√
pt3z
⎞
⎠

.(3.8)

https://doi.org/10.4153/S0008414X22000554 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000554


1880 L. Ménard

The pointed disk generating function is defined similarly:

W●
q(p,t)(z) = ∑

l≥0

⎛
⎝ ∑
m∈Ml

∣V(m)∣ ∏
f ∈F(m)/{ fr}

qdeg( f )(p, t)
⎞
⎠

z−l−1 .

It has the following universal form: for p ∈ (0, 1) and t ∈ (0, tc] fixed, there exists
real numbers c+(p, t) > 2 and c−(p, t) ∈ (−c+(p, t), c+(p, t)) (the lower bound is
excluded since our maps are not bipartite) such that for z ∈ C/[c−(p, t), c+(p, t)], one
has

W●
q(p,t)(z) =

1√
(z − c+(p, t))(z − c−(p, t))

.(3.9)

This expression, sometimes called the one-cut lemma, appears in several references.
See, for example, [14, Proposition 12] or [11, Section 6.1]. It is also established in
these articles that the two disk generating functions W and W● have the same
domain of analyticity. Comparing our two expressions (3.8) and (3.9), we see that as a
consequence

c±(p, t) = 1√
p t3 y±(p, t)

,(3.10)

where y±(p, t) are the respective positive and negative singularities in y of the series
T(p, t, ty) defined in Lemma 2.2. Note that, as mentioned in the proof of Lemma 2.2,
this directly implies that y−(p, t) < −y+(p, t).

4 Percolation probability

Recall that for any triangulation with a site percolation configuration, C denotes the
percolation cluster of its root vertex. Moreover, recall that Pp

∞ denotes the law of the
UIPT with vertices colored independently black with probability p and white with
probability 1 − p, conditioned on the event where the root edge has both end vertices
colored black. We want to identify the law ofC underPp

∞ on the event where it is finite.
To express that law, we will need some additional notation.

Fix p ∈ (0, 1) and recall the definition of the power series V(p, U , y) of Lemma 2.2.
Define Vc ≡ Vc(p, z) as the following power series in z:

Vc(p, z) = V (1 − p, U(t3
c),

1
1 − z
).(4.1)

From Lemma 2.2, we know that this series is analytic on C/ [1 − 1
y+(1−p,tc) ,+∞).

Now, let Δ(p, z) be the power series in z defined as

Δ(p, z)
= Δ̂(p, Vc)

∶= 3
Vc (2
√

3 − 3Vc) (9V 3
c − 9(

√
3 + 1)V 2

c + 3(3 + 2
√

3)Vc − 2(1 − p)
√

3)

(3(p − 1) + 2
√

3) (
√

3 − 3Vc)
3 (9V 3

c − 9V 2
c
√

3 + 4(1 − p)
√

3)
.(4.2)
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We will see in Lemma 6.1 that z ↦ Δ(p, z) is also analytic on

C/ [1 − 1
y+(1 − p, tc)

,+∞) = C/ [ 1
y+(p, tc)

,+∞),(4.3)

and in Lemma 6.2 that it is the generating series of positive numbers (δk(p))k≥1
verifying

[t3n]qk(p, t)
√

pt3−k

[t3n]Z(p, t) →
n→∞

δk(p),(4.4)

for every k ≥ 1.
We can now identify the law of the root cluster on the event where it is finite.

Proposition 4.1 For every p ∈ (0, 1) and every nonatomic rooted finite mapm, we have

Pp
∞ (C = m) =

⎛
⎝ ∏f ∈F(m)

qdeg( f )(p, tc)
⎞
⎠
⋅ ∑

f ∈F(m)

(pt3
c)deg( f )/2δdeg( f )(p)

qdeg( f )(p, tc)
.

Proof For p ∈ (0, 1) and n ≥ 1, we denote by Pp
n the law of a uniform triangulation of

the sphere with 3n edges and vertices colored independently black with probability p
and white with probability 1 − p, conditioned on the event where both end vertices of
the root edge are colored black. From equation (3.4), we can write that for every finite
nonatomic rooted map m, we have

P
p
n (C = m) =

[t3n]∏ f ∈F(m) qdeg( f )(p, t)
[t3n]Z(p, t) .(4.5)

Since the event {C = m} is continuous for the local topology, the limit as n →∞ of
the previous display gives access to the annealed law of the percolation cluster of the
root in the UIPT.

As can be seen from Proposition 3.1 and Lemma 6.2, the asymptotic behaviors of
[t3n]Z(p, t) and of [t3n](pt3)−k/2qk(p, t) for every fixed k ≥ 1 are all of the form
Cst ⋅ t−3n

c n−5/2. It is then very classical to establish the limit

lim
n→∞

[t3n]∏ f ∈F(m) qdeg( f )(p, t)
[t3n]Z(p, t)

= lim
n→∞

[t3n](pt3)e(m)∏ f ∈F(m)(pt3)−deg( f )/2qdeg( f )(p, t)
[t3n]Z(p, t) ,

= ∑
f ∈F(m)

(pt3
c)deg( f )/2δdeg( f )(p) ∏

f ′∈F(m), f ′≠ f
qdeg( f )(p, tc),

proving the proposition. ∎

Our next result is an integral formula for the probability that the root cluster C of
the UIPT is infinite.
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Proposition 4.2 Recall the definition of the quantities c+(p, tc) and c+(p, tc) given in
equations (3.9) and (3.10). For every p ∈ (0, 1), one has

Pp
∞ (∣C∣ < ∞) =

1
2π ∫

c+(p,tc)

c−(p,tc)

dz
z

Δ (p,
√

pt3
c z)(z + c+(p, tc) + c−(p, tc)

2
)

×
√
(c+(p, tc) − z)(z − c−(p, tc)),

(4.6)

where the function Δ(p, z) is defined in equation (4.2).

Proof We start with the formula established in Proposition 4.1. Summing over every
finite nonatomic map gives, for every p ∈ (0, 1),

Pp
∞ (∣C∣ < ∞) = ∑

m∈M
∑

f ∈F(m)
(pt3

c)deg( f )/2δdeg( f )(p) ∏
f ′∈F(m)/{ f }

qdeg( f ′)(p, tc).

By opening the root edges of the maps m involved in the previous display, the sum
transforms into a sum over maps in M2, the set of all rooted planar maps with root
face of degree 2:

Pp
∞ (∣C∣ < ∞)
= ∑

m∈M2
∑

f ∈F(m)/{ fr}
(pt3

c)deg( f )/2δdeg( f )(p) ∏
f ′∈F(m)/{ f , fr}

qdeg( f ′)(p, tc),

where fr denotes the root face of a map. By rooting the nonroot face f involved in the
last sum (so that f lies on the right-hand side of this additional root), we can transform
the sum into a sum over maps of the cylinder. For l1, l2 ≥ 1, let M(l1 , l2) denote the set
of all planar maps with two distinct marked rooted faces f1 , f2 of respective degree
l1 , l2 (rooted so that the corresponding marked faces lie on the right-hand side of
their respective root). Taking into account the deg( f ) possible roots for the face f in
the sum, we have

Pp
∞ (∣C∣ < ∞) = ∑

k≥1

1
k ∑

m∈M(2,k)

(pt3
c)k/2δk(p) ∏

f ′∈F(m)/{ f1 , f2}
qdeg( f ′)(p, tc).(4.7)

Setting for every k ≥ 0

φk(p) =
1
k ∑

m∈M(2,k)
∏

f ′∈F(m)/{ f1 , f2}
qdeg( f ′)(p, tc),

and denoting the generating series of these numbers by

Φ(p, z) = ∑
k≥1

φk(p)zk ,

the sum in (4.7) takes the form of the Hadamard product of Δ(p,
√

pt3
c z) and Φ(p, z)

evaluated at z = 1:

Pp
∞ (∣C∣ < ∞) = ∑

k≥1
(pt3

c)k/2δk(p) ⋅ φk(p) = Δ (p,
√

pt3
c z) ⊙Φ(p, z)∣z=1 .
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We will compute this Hadamard product with the help of its contour integral
representation:

Pp
∞ (∣C∣ < ∞) =

1
2iπ ∮γ

dz
z

Δ (p,
√

pt3
c z) Φ(p, 1/z),

where the contour γ must lie in a region enclosing 0 where both functions
z ↦ Δ (p,

√
pt3

c z) and z ↦ Φ(p, 1/z) are analytic (see, for example, [19, Section
VI.10.2]).

To compute this integral, we first have to compute Φ. To this end, we introduce the
cylinder generating functions of Boltzmann planar maps. It is defined for ∣z1∣ and ∣z2∣
large enough by

W cyl
q(p,t)(z1 , z2) = ∑

l1 , l2≥0

∑m∈M(l1 , l2) ∏ f ′∈F(m)/{ f1 , f2} qdeg( f ′)(p, t)
z l1+1

1 z l2+1
2

.

In a similar fashion than the pointed disk generating function W● of Section 2, this
series has a universal form involving the two constants c±(p, t):

W cyl
q(p,t)(z1 , z2)

= 1
2(z1 − z2)2

⎛
⎝

W●
q(p,t)(z1)W●

q(p,t)(z2)(z1z2 −
c+(p, t) + c−(p, t)

2
(z1 + z2)

+ c+(p, t)c−(p, t)) − 1
⎞
⎠

.

This formula appears in [12, 18] and a multitude of other references. We refer to [1] for
a proof and a review of the literature on this matter.

Of particular interest to us will be the generating function where the first root face
has degree 2:

[z−3
1 ]W

cyl
q(p,t)(z1 , z)

= ∑
k≥0

z−k−1 ∑
m∈M(2,k)

∏
f ′∈F(m)/{ f1 , f2}

qdeg( f ′)(p, t),

= −z +W●
q(p,t)(z)

⎛
⎝

z2 − c+(p, t) + c−(p, t)
2

z + 1
4

c+(p, t)c−(p, t)

− 1
8
(c2
+(p, t) + c2

−(p, t))
⎞
⎠

.

The antiderivative of this function has a simple expression giving the identity:

Φ(p, 1/z) = ∑
k≥0

1
k

z−k ∑
m∈M(2,k)

∏
f ′∈F(m)/{ f1 , f2}

qdeg( f ′)(p, tc),

= z2

2
−

z + c+(p,tc)+c−(p,tc)
2

2
√
(z − c+(p, tc))(z − c−(p, tc)).
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From this expression, we see that the function z ↦ Φ(p, z) is analytic on
C/[c−(p, tc), c+(p, tc)]. From Lemma 6.1, we know that z ↦ Δ(p,

√
pt3

c z) is analytic
on C/ [c+(p, tc),+∞). We cannot directly pick an appropriate contour γ to compute
our Hadamard product of series evaluated at 1; however, if we take w ∈ (0, 1), we have

Δ (p,
√

pt3
c z) ⊙Φ(p, z)∣z=w =

1
2iπ ∮γ(w)

dz
z

Δ (p, w
√

pt3
c z) Φ(p, 1/z),(4.8)

where the contour γ(w) encloses the interval [c−(p, tc), c+(p, tc)] and crosses the
positive real line at some point inside the interval (c+(p, tc), c+(p, tc) + ε) for some
ε > 0. Note that in the last display, the function z ↦ Δ(p, w

√
pt3

c z)/z is well defined
and continuous at z = 0. Using the fact that Δ(p, w

√
pt3

c z) is analytic inside γ(w)
and deforming the contour gives, for every w ∈ (0, 1),

Δ (p,
√

pt3
c z) ⊙Φ(p, z)∣z=w

= 1
2iπ ∮γ(w)

dz
z

Δ (p, w
√

pt3
c z)

×
⎛
⎝

z2

2
−

z + c+(p,tc)+c−(p,tc)
2

2
√
(z − c+(p, tc))(z − c−(p, tc))

⎞
⎠

= − 1
4iπ ∮γ(w)

dz
z

Δ (p, w
√

pt3
c z)(z + c+(p, tc) + c−(p, tc)

2
)

×
√
(z − c+(p, tc))(z − c−(p, tc))

= 1
2π ∫

c+(p,tc)

c−(p,tc)

dz
z

Δ (p, w
√

pt3
c z)(z + c+(p, tc) + c−(p, tc)

2
)

×
√
(c+(p, tc) − z)(z − c−(p, tc)).

Taking the limit as w → 1 finally gives the proposition. ∎

We are now ready to prove our first main result.

Proof of Theorem 1.1 The proof basically consists on computing the integral (4.6),
which still requires some work. The change of variables z = (1 − 1/ ȳ)(pt3

c)−1/2 gives

Pν
∞(∣C∣ < ∞)

= 1
2π p t3

c
∫

y+(p,tc)
y+(p,tc)−1

y−(p,tc)
y−(p,tc)−1

d ȳ
ȳ( ȳ − 1) Δ̂ (p, V(1 − p, U(t3

c), ȳ))

× ( ȳ − 1
ȳ
+ 1

2y−(p, tc)
+ 1

2y+(p, tc)
)

×
1
223( 1

y+(p, tc)
− ȳ − 1

ȳ
)( ȳ − 1

ȳ
− 1

y−(p, tc)
),

where Δ̂ is defined in equation (4.2) and V(1 − p, U , ȳ) is defined in Lemma 2.2.
To calculate this new integral, we want to do the change of variables ȳ = ŷ(1 − p,
U(t3

c), 2
√

3/3 − V), where ŷ is defined in Lemma 2.2 (as we will see shortly, this
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change of variables instead of simply ȳ = ŷ(1 − p, U(t3
c), V) simplifies calculations a

bit more).
Recall that, from Lemma 2.2 and its proof, the function V ↦ ŷ(1 − p, U(t3

c), V) is
an increasing bijection from [V−(1 − p, U(t3

c)), V+(1 − p, U(t3
c))] onto [y−(1 − p, tc),

y+(1 − p, tc)], and is analytic on (V−(1 − p, U(t3
c)), V+(1 − p, U(t3

c))). In view of
this, for our change of variables, we want 2

√
3/3 − V to be in a subinterval of

[V−(1 − p, U(t3
c)), V+(1 − p, U(t3

c))]. This will also enable us to use the rational
parameterization of the series Δ of Lemma 6.2. The details of the calculations that
follow are available in the Maple file [26].

We have to solve for V the two equations

ŷ (1 − p, U(t3
c),

2
√

3
3
− V) = y±(p, tc)

y±(p, tc) − 1
.

There is an interesting symmetry to exploit: for every p ∈ (0, 1) and every V ∈ C,
one has

ŷ (p, U(t3
c), V) =

ŷ(1 − p, U(t3
c), 2

√
3

3 − V)
ŷ(1 − p, U(t3

c), 2
√

3
3 − V) − 1

;

therefore, we want to solve for V the two equations

ŷ (p, U(t3
c), V) = y±(p, tc).(4.9)

Since ŷ (p, U(t3
c), V) is a rational fraction in V of degree 2 for its numerator and

3 for its denominator, the solutions of equation (4.9) are the roots of a polynomial
of degree 3. By definition, one of the roots of this polynomial is V±(p, U(t3

c)), and
it will even be a double root except for V−(p, U(t3

c)) when it is a negative pole of ŷ.
Fortunately, we can compute explicitly these values. Indeed, the stationary points of
V ↦ ŷ(p, U(t3

c), V) are the roots of the polynomial

(9V 3 − 9V 2√3 + 4p
√

3) (V −
√

3/3).

The roots of the polynomial of degree 3 are given by

Vm(p) = −
√

3
3

√p

cos( arccos(√p)
3 )

< 0,

Vl(p) =
√

3
3

√p

cos( arccos(√p)
3 − π

3 )
∈ [0, 2

√
3/3],

Vr(p) =
2
√

3
3
− Vm(p) ≥ 2

√
3/3.

From there, we see that V−(p, U(t3
c)) = Vm(p) when ŷ has no negative pole, which is

the case when p > 1
2 −

5
√

3
18 ∼ 0.018. Since we are interested in p ≥ 1/2, the case when

ŷ has negative poles will not bother us. The positive singularity is given by
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V+(p, U(t3
c)) =

⎧⎪⎪⎨⎪⎪⎩

√
3

3 , when p ≥ 1/2,
Vl(p), when p ≤ 1/2.

We can compute the third root of equation (4.9) from the constant term of the
polynomial, which is always − 2

√
3p

9 . When p > 1
2 −

5
√

3
18 , this root is given by

V i
±(p) =

2
√

3p
9V±(p, U(t3

c))2
.

Since V±(p, U(t3
c)) ≤

√
3/3, we can see that 2

√
3/3 − V±(p, U(t3

c)) is always
larger than

√
3/3, and therefore V+(1 − p, U(t3

c)). From the explicit expression of
V±(p, U(t3

c)), we can also check that 2
√

3/3 − V i
±(p) is always between 0 and

V+(1 − p, U(t3
c)). The correct bounds for our change of variables are then V i

±(p) since
they are the only solutions inside the interval [V−(1 − p, U(t3

c)), V+(1 − p, U(t3
c))].

Note that we have 0 < V i
+(p) < V i

−(p). This discussion also provides the following nice
factorizations:

ŷ(1 − p, U(t3
c), 2

√
3

2 − V)) − 1

ŷ(1 − p, U(t3
c), 2

√
3

2 − V))
− 1

y±(p, tc)
= 1

ŷ(p, U(t3
c), V)) −

1
y±(p, tc)

,

=
(V − V i

±(p)) (V − V±(p, U(t3
c)))

2

2 V (V − 2
√

3
3 )

.

With the explicit expression for Δ̂ in terms of V given in Lemma 6.2, it is easy to check

Δ̂ (p, V) ∂V ŷ(1 − p, U(t3
c), V)

ŷ(1 − p, U(t3
c), V) ( ŷ(1 − p, U(t3

c), V) − 1)

= 1

3 (2
√

3 − 3(1 − p)) (V −
√

3
3 )

2 .

Using the change of variables ȳ = ŷ(1 − p, U(t3
c), 2
√

3/3 − V), we finally get

Pν
∞(∣C∣ < ∞)

= 1
12 p t3

c (2
√

3 − 3(1 − p)) π

∫
V i
−(p)

V i
+(p)

dV
√
(V i
−(p) − V)(V − V i

+(p))

× (V − V+(p, U(t3
c)))(V − V−(p, U(t3

c)))

V ( 2
√

3
3 − V) (V −

√
3

3 )
2

× ( 1
ŷ(p, U(t3

c), V) +
1
2
( 1

y+(p, tc)
+ 1

y−(p, tc)
)).

Embarrassingly, we were not able to simplify directly this integral (it is equal to 1
when p < 1/2 since we know that the critical percolation threshold is 1/2 !). Fortu-
nately, when p > 1/2, Maple is able to give an expression in terms of V±(p, U(t3

c)).
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Using basic trigonometric identities, we can further simplify this expression into the
one given in the theorem after injecting the expressions for V±(p, U(t3

c)). ∎

5 Cluster volume and perimeter

5.1 Admissibility equations and volume-modified weight sequence

We review in this section additional background on Boltzmann planar maps that we
will use in the proof of Theorem 1.2. We refer the reader to the references [6, 14, 25]
for details.

For p ∈ (0, 1) and t ∈ (0, tc], consider the two following bivariate power series in
(z1 , z2):

f ●(p, t; z1 , z2) = ∑
k ,k′≥0

zk
1 zk′

2 (
2k + k′ + 1
k + 1, k, k′

)q2+2k+k′(p, t),

f ◇(p, t; z1 , z2) = ∑
k ,k′≥0

zk
1 zk′

2 (
2k + k′

k, k, k′
)q1+2k+k′(p, t).

These two functions are linked with Boltzmann maps with weight sequence
(qk(p, tc))k≥1 by the Bouttier–Di Francesco–Guitter bijection [13] and will be instru-
mental in the remaining of this work. In our case, we can compute alternative expres-
sions for these functions that will be more amenable to analysis (see Lemma 6.4).

Recall the parameters c+(p, t) and c−(p, t) defined in equation (3.10). Since the
weight sequence q(p, t) is admissible, the two functions defined above are well defined
at least in the domain ∣z1∣ ≤ z+(p, t) and ∣z2∣ ≤ z◇(p, t)where z+(p, t) and z◇(p, t) are
positive real numbers defined by

c±(p, t) = z◇(p, t) ± 2
√

z+(p, t).(5.1)

Furthermore, from Proposition 4.2 and Lemma 4.4 of [6], (z+(p, t), z◇(p, t)) is the
minimal solution of the system of equations

⎧⎪⎪⎨⎪⎪⎩

f ●(p, t; z+(p, t), z◇(p, t)) = 1 − 1
z+(p,t)) ,

f ◇(p, t; z+(p, t), z◇(p, t)) = z◇(p, t).
(5.2)

In addition, when p = 1/2 and t = tc , the weight sequence is critical (see Theorem 1.1
of [6]), and (z+(1/2, tc), z◇(1/2, tc)) is the unique solution of the system of equations
(5.2) such that

(∂z2 +
√

z1∂z1) f ◇(p, t; z+(p, t), z◇(p, t)) = 1.(5.3)

For g ∈ (0, 1], let (z+(p, t; g), z◇(p, t; g)) be the unique solution in (0, z+(p, t)] ×
(0, z◇(p, t)] of the system of equations

⎧⎪⎪⎨⎪⎪⎩

f ●(p, t; z+(p, t; g), z◇(p, t; g)) = 1 − g
z+(p,t;g)) ,

f ◇(p, t; z+(p, t; g), z◇(p, t; g)) = z◇(p, t; g).
(5.4)
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Define

c±(p, t; g) = 1
√g
(z◇(p, t; g) ± 2

√
z+(p, t; g)).

From, e.g., [6, equations (4.3) and (4.4)], the pointed disk generating function of
Boltzmann maps with modified weight sequence q(p, t; g) ∶= (g(k−2)/2 qk(p, t))k≥1
defined as in (3.7) is given by

W●
q(p,t;g)(z) =

1√
(z − c+(p, t; g))(z − c−(p, t; g))

.(5.5)

5.2 Proof of Theorem 1.2

We start with the perimeter exponent as it is the easiest of the two. From equations
(3.2) and (3.7), we can write

P
p
n (∣V(∂C)∣ = k) =

[t3n] (qk(p, t) ⋅ [z−(k+1)]Wq(p,t)(z))
[t3n]Z(p, t)

= 1
p

[t3n] (
√

pt3−k
qk(p, t) ⋅ [yk]T(p, t, ty))

[t3n]Z(p, t) .

Applying Lemmas 6.2 and 6.3 directly gives the limit of the previous display as
n →∞. Indeed, the series

√
pt3−k

qk(p, t) and [yk]T(p, t, ty) have the same unique
dominant singularity in t3 and it is easy to get an asymptotic expansion at t3

c of
the product at this singularity from the two separate expansions. By continuity for
the local topology, this limit is the probability that ∣V(∂C)∣ = k in the UIPT:

Pp
∞ (∣V(∂C)∣ = k) = 1

p
(δk(p) tk

c Tk(p, tc) +
√

pt3
c
−k

qk(p, tc) θk(p)).

Using the asymptotics (6.7), (6.9), (6.11), and (6.13) derived in Section 6.3 gives that
for p = 1/2,

P1/2
∞ (∣V(∂C)∣ = k) ∼

k→∞
κ′ k−4/3

with

κ′ = −8 1
Γ(4/3) (

8 3 5
6

351
+ 2 3 1

3

117
) 35/6

2Γ(−2/3) ≃ 0.454,(5.6)

proving the second statement of Theorem 1.2.
We now turn on the first statement of the theorem on the volume of the root cluster.

Although we are only interested in the case p = 1/2, we start the proof with a generic
p ∈ (0, 1) as it will be easier to follow. From Proposition 4.1, we have, for every g ≤ 1,

Ep
∞ [g ∣V(C)∣]
= ∑

m∈M
g ∣V(m)∣ ∑

f ∈F(m)
(pt3

c)deg( f )/2δdeg( f )(p) ∏
f ′∈F(m)/{ f }

qdeg( f ′)(p, tc).
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Applying Euler’s formula then gives

Ep
∞ [g ∣V(C)∣] = g ∑

m∈M
∑

f ∈F(m)
(g pt3

c)deg( f )/2δdeg( f )(p)

× ∏
f ′∈F(m)/{ f }

g(deg( f ′)−2)/2 qdeg( f ′)(p, tc).

Using the exact same line of reasoning as in the proof of Theorem 1.1, we can
compute this sum as the Hadamard product evaluated at z = 1 of the functions
z ↦ Δ(p,

√
g pt3

c) and the function z ↦ Φ(p, z) where c+(p, tc) and c−(p, tc) are
replaced by the two constants c+(p, tc ; g) and c−(p, tc ; g) associated with the pointed
disk generating function ((z − c+(p, tc ; g))(z − c−(p, tc ; g) − z))−1/2 of Boltzmann
maps with weight sequence q(p, tc ; g) = (g(k−2)/2 qk(p, tc))k≥1 introduced in Sec-
tion 5.1. Indeed, the first function should be obvious, and the second comes from the
antiderivative of cylinder generating functions associated with the weight sequence
q(p, tc ; g) instead of the weight sequence q(p, tc ; 1), which has the same universal
form. Of course, it remains to calculate these two constants, which are less explicit
than their counterparts c+(p, tc) and c−(p, tc). Nevertheless, after mimicking the part
of the proof of Theorem 1.1 leading to (4.6), we arrive at the formula

Ep
∞ [g ∣V(C)∣] =

g
2π ∫

c+(p,tc ;g)

c−(p,tc ;g)

dz
z

Δ (p,
√

g pt3
c z)(z + c+(p, tc ; g) + c−(p, tc ; g)

2
)

×
√
(c+(p, tc ; g) − z)(z − c−(p, tc ; g)).(5.7)

We want to study the asymptotic behavior of the integral (5.7) when g → 1−. To
do so, we must first study the dependency in g of the two constants c±(p, tc ; g).
We do not have a simple formula for the unpointed or pointed disk generating
function of the Boltzmann maps as was the previously the case. However, the two
constants can be studied via the solution of the system of equation (5.4). Let us denote
z+(g) = z+(1/2, tc ; g) and z◇(g) = z◇(1/2, tc ; g) the solution of this system. We can
calculate an expansion as g → 1− of these two quantities with Lemma 6.5. Indeed, the
development of f ◇ gives

z◇ − z◇(g) = ∂z1 f ◇(z+, z◇) (z+ − z+(g)) + (1 −
√

z+∂z1 f ◇(z+, z◇)) (z◇ − z◇(g))

− κ◇ ((z+ − z+(g)) +
√

z+(z◇ − z◇(g)))
7/6

+ o (((z+ − z+(g)) +
√

z+(z◇ − z◇(g)))
7/6
).

This yields in turn

z+ −z+(g) =
√

z+ (z◇−z◇(g)) + κ◇

∂z1 f ◇(z+, z◇) ((z
+−z+(g)) +

√
z+(z◇ − z◇(g)))

7/6

+ o (((z+ − z+(g)) +
√

z+(z◇−z◇(g)))
7/6
).
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Therefore, we have

z◇ − z◇(g) = 1√
z+
(z+ − z+(g))

− κ◇√
z+ ∂z1 f ◇(z+, z◇)

(2(z+ − z+(g)))7/6 + o ((z+ − z+(g))7/6).(5.8)

Now, the development of f ● gives

1
z+
− g

z+(g) = −
1
(z+)2 (z

+ − z+(g))

+ ( κ◇√
z+
+ κ●)(2(z+ − z+(g)))7/6 + o ((2(z+ − z+(g)))7/6).

Expanding the left-hand side of this identity then gives

1 − g
z+
+ 1 − g
(z+)2 (z

+ − z+(g))

= ( κ◇√
z+
+ κ●)(2(z+ − z+(g)))7/6 + o ((2(z+ − z+(g)))7/6),

which in turns gives

z+(g) = z+ − 1
2
(κ◇
√

z+ + κ●z+)
−6/7
(1 − g)6/7 + o ((1 − g)6/7).

Plugging this expression in equation (5.8) gives

z◇(g) = z◇ − 1
2
√

z+
(κ◇
√

z+ + κ●z+)
−6/7
(1 − g)6/7 + o ((1 − g)6/7).

We finally get an expansion for c±(g):

c+(g) = z◇(g) + 2
√

z+(g)

= c+(1) −
1√
z+
(κ◇
√

z+ + κ●z+)
−6/7
(1 − g)6/7 + o ((1 − g)6/7),

c−(g) = z◇(g) − 2
√

z+(g)

= c−(1) + o ((1 − g)6/7).

The change of variable z = ϕ(g , ξ) ∶= c−(g) + (c+(g) − c−(g)) ξ in equation (5.7)
gives

Ep
∞ [g ∣V(C)∣]

= g(c+(g) − c−(g))2
2π ∫

1

0
dξ
√

ξ(1 − ξ)
Δ (1/2,

√
g t3

c/2 ϕ(g , ξ))
ϕ(g , ξ)

× (ϕ(g , ξ) + c+(g) + c−(g)
2

),
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= (c+(1) − c−(1))2
2π ∫

1

0
dξ
√

ξ(1 − ξ)
Δ (1/2,

√
g t3

c/2 ϕ(g , ξ))
√g ϕ(g , ξ)

× (ϕ(1, ξ) + c+(1) + c−(1)
2

) +O ((1 − g)6/7),

where we used the developments of c±(g) to obtain the second equality. In a similar
fashion than in the proof of Lemma 6.5, the dominant singular term of the integral

comes for the singularity at g = 1 and ξ = 1 of the term
Δ(1/2,

√
g t3

c/2 ϕ(g ,ξ))
√g ϕ(g ,ξ) . The

asymptotic expansion (6.10) established in Section 6.3 gives

Δ (1/2, z)
z

∼
z→1/2
( 16 3 5

6

351
+ 4 3 1

3

117
) (1 − 2z)−4/3 .

Applying the same techniques as in the proof of Lemma 6.5, we see that the main
singular term of the expansion of Ep

∞ [g ∣V(C)∣] comes from the integral

κ̃

π ∫
1

0
dξ
√

ξ(1 − ξ) (1 − 2
√

g t3
c/2 ϕ(g , ξ))

−4/3

= κ̃

8 (1 − 2
√

g t3
c/2c−(g))

4/3 2F1
⎛
⎝

4
3

, 3
2

; 3;
2
√

g t3
c/2 (c+(g) − c−(g))

1 − 2
√

g t3
c/2c−(g)

⎞
⎠

,

with

κ̃ =
(c+(1) − c−(1))2 (ϕ(1, 1) + c+(1)+c−(1)

2 )
√

t3
c/2

2
(4 3 5

6

351
+ 3 1

3

117
).

Using the singular expansion of the hypergeometric function at 1 and the develop-
ments of c±(g), we finally get

Ep
∞ [g ∣V(C)∣]

= 1 − κ̃

8 (1 − 2
√

t3
c/2c−(1))

4/3
36
√

3 Γ( 5
6) Γ( 2

3)
π 3

2

⎛
⎝

2
√

t3
c/2

1 − 2
√

t3
c/2c−(1)

1√
z+
(κ◇
√

z+ + κ●z+)
−6/7
(1 − g)6/7

⎞
⎠

1/6

+ o (1 − g)1/7 .

This expansion is unfortunately not enough to extract the asymptotic behavior of
the probabilities P1/2

∞ (∣V(C)∣ = n) as n →∞. Indeed, the generating series of these
probabilities is Ep

∞ [g ∣V(C)∣], but this function could have singularities of modulus 1
other than 1 contributing to the asymptotic. However, we do not have this problem for
tail probabilities. For every n, denote pn = P1/2

∞ (∣V(C)∣ ≥ n). A simple computation
gives

∑
n≥0

pn gn =
1 − g Ep

∞ [g ∣V(C)∣]
1 − g

∼
g→1−

κ1 (1 − g)−6/7 ,
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with

κ1 =
κ̃

8 (1 − 2
√

t3
c/2c−(1))

4/3
36
√

3 Γ( 5
6) Γ( 2

3)
π 3

2

×
⎛
⎝

2
√

t3
c/2

1 − 2
√

t3
c/2c−(1)

1√
z+
⎞
⎠

1/6

(κ◇
√

z+ + κ●z+)
−8/7

.

From there, a classical Tauberian theorem (see, e.g., Theorem VI.13 of [19] and the
following discussion) establishes the asymptotic behavior of pn given in the theorem
with

κ = κ1

Γ(8/7) =
63(3 1

3 + 4 3
5
6

3 ) 3 17
21 7 1

7 137 6
7 Γ( 2

3)
18
7 2 3

14 5 13
14

56, 992π 12
7 Γ( 1

7)
≃ 0.278.(5.9)

6 Technical lemmas

6.1 Dependency in t of the weights

Recall that Vc be the power series in z defined in (4.1) by Vc(p, z) = V(1 − p, U(t3
c),

1/(1 − z)), where V is defined in Lemma 2.2. Furthermore, recall that Δ(p, z) is the
power series in z defined in (4.2) as

Δ(p, z)
= Δ̂(p, Vc(p, z))

∶= 3
Vc (2
√

3 − 3Vc) (9V 3
c − 9(

√
3 + 1)V 2

c + 3(3 + 2
√

3)Vc − 2(1 − p)
√

3)

(3(p − 1) + 2
√

3) (
√

3 − 3Vc)
3 (9V 3

c − 9V 2
c
√

3 + 4(1 − p)
√

3)
= ∑

k≥0
δk(p) zk .

Lemma 6.1 Fix p ∈ (0, 1). The series Δ(p, z) is analytic in the domain

C/ [1 − 1
y+(1 − p, tc)

,+∞) = C/ [ 1
y+(p, tc)

,+∞).

Proof By definition, the series z ↦ Vc(p, z) is analytic on C/ [1 − 1
y+(1−p,tc) ,+∞).

In addition, if z is in this domain, the denominator of Δ̂ does not vanish (see the
discussion in the proof of Theorem 1.1 after equation (4.9)). The only statement left to
prove is the equality

1 − 1
y+(1 − p, tc)

= 1
y+(p, tc)

.

Since we have an explicit expression for y+(p, tc) (again, see the discussion in the
proof of Theorem 1.1 after equation (4.9)), it is a straightforward verification. ∎
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Lemma 6.2 Fix p ∈ (0, 1). For every k ≥ 1, one has

[t3n]qk(p, t)
√

pt3−k

[t3n]Z(p, t) →
n→∞

δk(p).

Proof In the whole proof, p ∈ (0, 1) is fixed. All calculations are available in the
Maple companion file [26]. We start by proving that, for every k ≥ 1, the series

q̃k(p, t) =
√

pt3
−k
⋅ (qk(p, t) − (pt)3/21k=3)

seen as a series in t3 is algebraic and has a unique dominant singularity at t3
c . In view

of (3.6), the generating series of these modified weights is given by

F̃(p, t, z) = ∑
k≥1

q̃k(p, t) zk−1 = 1
p

1
1 − z

T (1 − p, t, t
1 − z
).(6.1)

Injecting this into the algebraic equation verified by T, we get an algebraic equation
verified by F̃:

(p F̃(p, t, z) − T(1 − p, t, t)) Pol1(p F̃(p, t, z), p, t3 , T(1 − p, t, t), tT1(p, t))
= z ⋅ Pol2(p F̃(p, t, z), p, z),

where Pol1 and Pol2 are explicit polynomials. The form of this equation has the
following consequences. First, using Lemma 2.2, the series F̃(p, t, z) is algebraic.
Second, it is the unique solution of this equation with constant term in z equal to
T(1 − p, t, t)/p, and we can compute its coefficients in z inductively. These coefficients
are the modified weights q̃k(p, t) and their expressions are then rational fractions in
p, t3, tT1(p, t), and T(1 − p, t, t), whose denominator (up to a factor p) are the kth
power of

Pol1(F̃(p, t, 0), p, t3 , T(1 − p, t, t), tT1(p, t))
= Pol1(T(1 − p, t, t), p, t3 , T(1 − p, t, t), tT1(p, t)),
= 3t3(p − 1)T2(1 − p, t, t) + p(p − 1) + tT1(t).

A quick glance at equation (2.1) with y = 1 shows that the last display is the derivative
of the algebraic equation verified by T(1 − p, t, t) with respect to T. Therefore, this
quantity can only be 0 at singularities of T(1 − p, t, t), which leaves only t3

c according
to Lemma 2.2. As a consequence, we just proved that the series q̃(p, t) are all algebraic
series in t3 and all have a unique dominant singularity at t3

c .
Now that we know that q̃k(p, t) has a unique dominant singularity at t3

c , it
will follow from the general form of Puiseux expansions of algebraic series near
their singularities (see [19, Theorem VII.7, p. 498]) that [t3n]q̃k(p, t) has the same
asymptotic behavior as [t3n]Z(p, t) if we can prove that there exist two positive
constants c, c′, depending on k and p such that, for n large enough,

c ⋅ [t3n]Z(p, t) ≤ [t3n]q̃k(p, t) ≤ c′ ⋅ [t3n]Z(p, t).
The upper bound is easily obtained by putting a triangulation of the 1-gon with a white
boundary vertex inside a cycle of k black vertices and summing over every possible
necklace between the two. The lower bound is obtained similarly starting from cycle of
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k black vertices by putting a single white vertex inside the cycle and an edge joining
this additional vertex to every boundary vertex, and putting an arbitrary triangulation
with white boundary together with a matching necklace on the outside of the cycle.
To sum up, we have proved that for every k, q̃k(p, t) seen as a series in t3 has a unique
dominant singularity at t3

c and that its asymptotic expansion at t3
c is of the form

q̃k(p, t) = q̃k(p, tc) − ãk(p)(1 −
t3

t3
c
) + b̃k(p)(1 −

t3

t3
c
)

3/2

+ o(1 − t3

t3
c
)

3/2

.(6.2)

This finishes the proof of the first statement (4.4) of the lemma, and we now have to
identify the generating series of the numbers δk(p) = b̃k(p)/κ(p), where κ(p) is the

coefficient of the term (1 − t3

t3
c
)

3/2
in the asymptotic expansion of Z(p, t) calculated in

Proposition 3.1.
Using the rational parameterization of Lemma 2.2, we can find a rational param-

eterization for F̃. Indeed, if V = V(1 − p, U , y) is the power series in Q[p, U][[y]] ⊂
Q[p][[t3 , y]] defined in Lemma 2.2, we have

F̃(p, t, z) = 1
p

ŷ (1 − p, U(t3), V(1 − p, U(t3), 1/(1 − z)))

× T̂ (1 − p, U(t3), V(1 − p, U(t3), 1/(1 − z))),

where ŷ and T̂ are rational fractions defined in Lemma 2.2. For z fixed such
that ∣1/(1 − z)∣ < y+(1 − p, tc) (which includes a neighborhood of 0 for z since
y+(1 − p, tc) > 1), the series F̃(p, t, z) seen as a series in t3 has nonnegative coefficients
and has radius of convergence t3

c . In addition, this implies that (t3 , z) ↦ F̃(p, t, z)
is analytic in the larger domain D(0, t3

c) ×D(0, y+(1 − p, tc)/(y+(1 − p, tc) − 1)).
We will produce an asymptotic expansion of F̃(p, t, z) near t3

c using our rational
parameterization. To do so, we start by computing the asymptotic expansion of
V(p, U(t3), 1/(1 − z)) near t3

c , with z fixed.
First, writing

1
1 − z
= ŷ (1 − p, U(t3), V(1 − p, U(t3), 1/(1 − z)))

= ŷ (1 − p, U(t3
c), V(1 − p, U(t3

c), 1/(1 − z))),

we get an algebraic equation between V z
c = V(1 − p, U(t3

c), 1/(1 −z)), V(1 − p, U(t3),

1/(1 − z)), and U(t3). Plugging the asymptotic expansion (2.2) of U(t3) in this

equation, we obtain an asymptotic expansion for V(p, U(t3), 1/(1 − z)) of the form:

V(1 − p, U(t3), 1/(1 − z)) = V z
c − a1(V z

c )(1 −
t3

t3
c
)

1/2

+ a2(V z
c )(1 −

t3

t3
c
)

+ a3(V z
c )(1 −

t3

t3
c
)

3/2

+ o(1 − t3

t3
c
)

3/2

,

https://doi.org/10.4153/S0008414X22000554 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000554


Percolation probability and critical exponents for site percolationon the UIPT 1895

where the a i ’s are explicit rational fractions whose expressions are given in the Maple
companion file [26]. Injecting in turn the asymptotic expansions in t3 of U and V in
T̂ and ŷ, we find an asymptotic expansion for F̃ of the form:

F̃(p, t, z) = F̃(p, tc , z) + Ã(p, V z
c )(1 −

t3

t3
c
) + B̃(p, V z

c )(1 −
t3

t3
c
) + o(1 − t3

t3
c
)

3/2

,

where Ã and B̃ are explicit rational functions, and are analytic on the disk
D(0, y+(1 − p, tc)/(y+(1 − p, tc) − 1) (this is obvious from their expressions: z ↦ V z

c
is analytic in this region, and the poles of Ã and B̃ fall outside it; see the Maple
companion file [26]). Note that the error term in the previous expansion is a priori
not uniform in z. To ensure that Ã and B̃ are the respective generating series of the
numbers ãk and b̃k , we see that, as power series in (z, t3), we have

Ã(p, V z
c ) = lim

t→tc
(F̃(p, t, z) − F̃(p, tc , z)) ⋅ (1 − t3/t3

c)−1 ,

and

B̃(p, V z
c ) = lim

t→tc
(F̃(p, t, z) − F̃(p, tc , z) − Ã(p, V z

c )(1 −
t3

t3
c
)) ⋅ (1 − t3/t3

c)−3/2 .

Combined with the analyticity properties of these series, this ensures that Ã(p, V z
c )

and B̃(p, V z
c ) are indeed the generating series of the numbers ãk and b̃k .

Finally, the generating series of the numbers δk is then given by

Δ(p, z) = z
κ(p) (1 − z) B̃(p, V z

c ) =
ŷ (1 − p, U(t3

c), V z
c ) − 1

κ(p) B̃(p, V z
c ),

giving the expression of the lemma. See the Maple file [26] for detailed
computations. ∎

Applying the same proof to the function T(p, t, ty) instead of F̃(p, t, z) defined in
equation (6.1) allows to establish the asymptotic behavior in n of [t3n]tk Tk(p, t) for
every k ≥ 0. We do not reproduce the proof as it will be almost exactly the same as the
proof of Lemma 6.2, with no additional difficulties but with the function

1 − p
y

F̃ (1 − p, t, 1 − 1
y
)

instead of F̃(p, t, z). The statement is as follows.

Lemma 6.3 Fix p ∈ (0, 1) and k ≥ 1. One has

[t3n]tk Tk(p, t)
[t3n]Z(p, t) →

n→∞
θk(p),(6.3)

where the generating series of the numbers θk(p) is given by

Θ(p, y) ∶= ∑
k≥0

θk(p) yk = 1 − p
y

Δ(1 − p, 1 − 1
y
),(6.4)

which is analytic on C/ [y+(p, tc),+∞).
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6.2 BDFG functions

We start with an integral formula for the functions f ● and f ◇.

Lemma 6.4 Fix p ∈ (0, 1) and t ∈ (0, tc]. Then, for 0 < z1 ≤ z+(p, t) and 0 < z2 ≤
z◇(p, t), we have

f ●(p, t; z1 , z2)

=
√

pt3 2z2 +
t3

π ∫
(1−
√

pt3(z2+2√z1))
−1

(1−
√

pt3(z2−2√z1))
−1 dz

1 −
√

pt3z2 − 1
z

2pt3 z1

⋅ T(1 − p, t, tz)√
(1 − z (1 −

√
pt3(z2 + 2

√z1))) (z (1 −
√

pt3(z2 − 2
√z1)) − 1)

,

f ◇(p, t; z1 , z2)

=
√

pt3 (2z2 + z2
1 ) +
√

t3/p
π ∫

(1−
√

pt3(z2+2√z1))
−1

(1−
√

pt3(z2−2√z1))
−1 dz

⋅ T(1 − p, t, tz)√
(1 − z (1 −

√
pt3(z2 + 2

√z1))) (z (1 −
√

pt3(z2 − 2
√z1)) − 1)

.

Proof Fix p ∈ (0, 1) and t ∈ (0, tc]. Replacing the weights by their expression (3.1) in
the definitions of the two functions gives

f ●(p, t; z1 , z2)

= 1
p

2(pt)3/2z2

+ pt3

p ∑
k ,k′ , l≥0

(2k + k′ + l + 1
k + 1, k, k′ , l

)(pt3 z1)k (
√

pt3 z2)k
′

[y l ]T(1 − p, t, ty),

f ◇(p, t; z1 , z2)

= 1
p
(pt)3/2(2z2 + z2

1 )

+
√

pt3

p ∑
k ,k′ , l≥0

(2k + k′ + l
k, k, k′ , l

)(pt3 z1)k (
√

pt3 z2)k
′

[y l ]T(1 − p, t, ty).

We can express these two functions as Hadamard products. Indeed, define the trivari-
ate power series in (z1 , z2; z):

h●(z1 , z2; z)

∶= ∑
k ,k′ , l≥0

(2k + k′ + l + 1
k + 1, k, k′ , l

)(pt3 z1)k (
√

pt3 z2)k
′

z l ,

= 1
2pt3 z1

⎛
⎜
⎝

1 − z −
√

pt3z2√
(1 − z −

√
pt3(z2 + 2

√z1)) (1 − z −
√

pt3(z2 − 2
√z1))

− 1
⎞
⎟
⎠

,
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and

h◇(z1 , z2; z) ∶= ∑
k ,k′ , l≥0

(2k + k′ + l
k, k, k′ , l

)(pt3 z1)k (
√

pt3 z2)k
′

z l ,

= 1√
(1 − z −

√
pt3(z2 + 2

√z1)) (1 − z −
√

pt3(z2 − 2
√z1))

.

Then we have

f ●(p, t; z1 , z2) =
√

pt3 2z2 + t3 T(1 − p, t, tz) ⊙ h●(z1 , z2; z)∣z=1 ,

f ◇(p, t; z1 , z2) =
√

pt3 (2z2 + z2
1 ) +
√

pt3

p
T(1 − p, t, tz) ⊙ h◇(z1 , z2; z)∣z=1 .

We can calculate these two Hadamard products as contour integrals in a sim-
ilar fashion than in the proof of Theorem 1.1 where we established (4.8). For
(z1 , z2) ∈ (0, z+(p, t)] × (0, z◇(p, t)], the functions h● and h◇ are analytic in the
domain ∣z∣ < 1 −

√
pt3(z2 + 2

√z1) that contains the domain ∣z∣ < 1 −
√

pt3c+(p, t) =
1 − 1

y+(p,t) . This last domain is not empty since y+(p, t) > 1 from Lemma 2.2. There-
fore, we can represent the Hadamard product as a contour integral similar to (4.8)
if (1 − 1

y+(p,t))
−1
≤ y+(1 − p, t). We can check that this is the case since we have

explicit formulas for y+(p, tc) and y+(p, t) is increasing in t (see the Maple file
[26] for details). Therefore, for a contour γ enclosing 0 and a point in the interval
[(1 − 1

y+(p,t))
−1

, y+(1 − p, t)], we have

f ●(p, t; z1 , z2) =
√

pt3 2z2 +
t3

2iπ ∮γ

dz
z

T(1 − p, t, tz) h●(z1 , z2 , 1/z),

f ◇(p; z1 , z2) =
√

pt3 (2z2 + z2
1 ) +
√

t3
c/p

2iπ ∮γ

dz
z

T(1 − p, t, tz) h◇(z1 , z2 , 1/z).

We obtain the expressions of the lemma after simplifications and taking contours
converging to the cut [(1 −

√
pt3(z2 − 2

√z1))
−1

, (1 −
√

pt3(z2 + 2
√z1))

−1
]. ∎

When p = 1/2 and t = tc , we can compute explicitly an asymptotic expansion of f ●
and f ◇ at the point (z+(p, t), z◇(p, t)) that will be used in the proof of Theorem 1.2.

Lemma 6.5 Write f ●(z1 , z2) = f ●(1/2, tc ; z1 , z2), f ◇(z1 , z2) = f ◇(1/2, tc ; z1 , z2),
z+ = z+(1/2, tc), and z◇ = z◇(1/2, tc). Then z+ = 27

√
3

32 and z◇ = 31/4√2
4 and we have

the following asymptotic expansions at (z+, z◇)−:

f ●(z1 , z2)

= 1 − 1
z+
+ 1

z+
( 1

z+
−√z+∂z1 f ◇(z+ , z◇)) (z1 − z+) + ∂z1 f ◇(z+ , z◇) (z2 − z◇)

+ κ● ((z+ − z1) +
√

z+(z◇ − z2))
7/6
+ o (((z+ − z1) +

√
z+(z◇ − z2))

7/6
),
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f ◇(z1 , z2)

= z◇ + ∂z1 f ◇(z+, z◇) (z1 − z+) + (1 −
√

z+∂z1 f ◇(z+ , z◇)) (z2 − z◇)

+ κ◇ ((z+ − z1) +
√

z+(z◇ − z2))
7/6
+ o (((z+ − z1) +

√
z+(z◇ − z2))

7/6
),

where

κ◇ =
4 2 1

6 Γ( 2
3)

3 3 2
3
√

5
63π2 and κ● = 512 3 1

4
√

2
81

κ◇ .

Proof The respective values of z+ and z◇ are computed from (3.10) and the
explicit values of the singularities y+(1/2, tc) = 2 and y−(1/2, tc) = −4 of the function
y ↦ T(1/2, tc , tc y) (see the Maple file [26] for details):

z+ = c+(1/2, tc) + c−(1/2, tc)
2

= 27
√

3
32

,

z◇ = ( c+(1/2, tc) − c−(1/2, tc)
4

)
2

= 33/4√2
4

.

Now, the change of variable

z = ϕ(z1 , z2; ξ)

∶= 1
1 −
√

pt3(z2 − 2
√z1)

+
⎛
⎝

1
1 −
√

pt3(z2 + 2
√z1)

− 1
1 −
√

pt3(z2 − 2
√z1)
⎞
⎠

ξ

in the expressions of Lemma 6.4 gives

f ●(p, t; z1 , z2)

=
√

pt3 2z2 +
1

2pz1

1
π ∫

1

0
dξ ξ−1/2(1 − ξ)−1/2 ϕ(z1 , z2; ξ)(1 −

√
pt3z2) − 1

ϕ(z1 , z2; ξ)
× T (1 − p, t, t ϕ(z1 , z2; ξ)),

f ◇(p, t; z1 , z2)

=
√

pt3 (2z2 + z2
1 ) +
1
223 t3

p
1
π ∫

1

0
dξ ξ−1/2(1 − ξ)−1/2 T (1 − p, t, t ϕ(z1 , z2; ξ)).

We will see that, when p = 1/2 and t = tc , the main term in the expansion of these
functions stems from the singular behavior of T at y+ = 2.

From Lemma 6.6 and the discussion that follows, we know that the function y ↦
T(1/2, tc , tc y) is analytic for y ∈ [0, 2) and has the following expansion as y → 2−:

T(1/2, tc , tc y)

=
√

3
2
− 35/6

2
(1 − y

2
)

2/3
+
√

3
2
(1 − y

2
) − 31/6 (1 − y

2
)

4/3
+O((1 − y

2
)

5/3
).
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The function

φ(y) ∶= T(1/2, tc , tc y) − (
√

3
2
− 35/6

2
(1 − y

2
)

2/3
+
√

3
2
(1 − y

2
) + 31/6 (1 − y

2
)

4/3
)

is twice differentiable on [0, 2). In addition, for ξ ∈ (0, 1) and if (z1 , z2) ∈ [0, z+] ×
[0, z◇], the quantity ϕ(z1 , z2; ξ) varies in a subset of (0, (1 − 1/y+(1/2, tc))−1) = (0, 2).
We then have

∫
1

0
dξ ξ−1/2(1 − ξ)−1/2 ∣φ′ (ϕ(z1 , z2; ξ))∣ < +∞

and

∫
1

0
dξ ξ−1/2(1 − ξ)−1/2 ∣φ′′ (ϕ(z1 , z2; ξ))∣ < +∞.

As a consequence, the function

Φ(z1 , z2) =
1
π ∫

1

0
dξ ξ−1/2(1 − ξ)−1/2φ (ϕ(z1 , z2; ξ))

is twice differentiable on [0, z+] × [0, z◇] and has the following asymptotic expansion
when (z1 , z2) → (z+, z◇):

Φ(z1 , z2)
= Φ(z+ , z◇) + ∇Φ(z+, z◇) ⋅ (z1 − z+, z2 − z◇) +O ((z1 − z+)2 + (z2 − z◇)2).

The singular parts of the expansions of f ● and f ◇ come from the singularities of the
form (1 − y/2)α in the development of T(1/2, tc , tc y) at y = 2 for α ∈ {2/3, 4/3} (it is
straightforward to check that the linear term (1 − y/2) contributes only to nonsingular
parts in the expansion). Indeed, for α ∈ {2/3, 4/3}, set

Iα(z1 , z2)

= 1
π ∫

1

0
dξ ξ−1/2(1 − ξ)−1/2 (1 − ϕ(z1 , z2; ξ)

2
)

α

,

=
⎛
⎝

1 − 1
2(1 −
√

t3
c/2(z2 − 2

√z1))
⎞
⎠

α
1
π ∫

1

0
dξ ξ−1/2(1 − ξ)−1/2

⋅
⎛
⎜⎜
⎝

1 − ξ
1−
√

t3
c/2(z2−2√z1)

1−
√

t3
c/2(z2+2√z1)

− 1

1 − 2
√

t3
c/2(z2 − 2

√z1)

⎞
⎟⎟
⎠

α

,

=
⎛
⎝

1 − 1
2(1 −
√

t3
c/2(z2 − 2

√z1))
⎞
⎠

α

2F1

⎛
⎜⎜
⎝
−α, 1

2
; 1;

1−
√

t3
c/2(z2−2√z1)

1−
√

t3
c/2(z2+2√z1)

− 1

1 − 2
√

t3
c/2(z2 − 2

√z1)

⎞
⎟⎟
⎠

,

where we used Euler’s integral representation of the hypergeometric function 2F1 in
the last line. This last equality is valid when 0 < z1 ≤ z+ and 0 < z2 ≤ z◇ since in this
case
√

t3
c/2(z2 + 2

√z1) ≤ 1/2 and the variable in the hypergeometric function is in
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(0, 1]. Furthermore, using the values of z+ and z◇, a simple computation done in the
Maple file [26] gives

1−
√

t3
c/2(z2−2√z1)

1−
√

t3
c/2(z2+2√z1)

− 1

1 − 2
√

t3
c/2(z2 − 2

√z1)

= 1 − 20
√

3
81
((z+ − z1) +

√
z+(z◇ − z2)) +O ((z+ − z1)2 + (z◇ − z2)2).

Using the standard asymptotic development of hypergeometric functions at 1, we see
that the first singular term in the development of I2/3 is

−κ ((z+ − z1) +
√

z+(z◇ − z2))
7/6

withκ =
18 2 1

3 Γ( 2
3)

3

7π2 (3
5
)

2/3
(20
√

3
81
)

7/6

.

The first singular term of I4/3(z1 , z2) is similar, but with exponent 11/6 instead of 7/6.
This means that the first singular term in the development of f ◇(1/2, z1 , z2) is from
− 35/6

2

√
t3

c/p I2/3(z1 , z2), and we have

f ◇(z1 , z2) = f ◇(z+ , z◇) + ∇ f ◇(z+, z◇) ⋅ (z1 − z+ , z2 − z◇)

+ 35/6

2
√

2t3
c κ ((z+ − z1) +

√
z+(z◇ − z2))

7/6

+ o (((z+ − z1) +
√

z+(z◇ − z2))
7/6
).

The statement for f ◇ follows using the fact that f ◇(z+, z◇) = z◇ and the criticality
equation (5.3).

The expansion for f ●(1/2, z1 , z2) is obtained similarly by replacing φ by

1 −
√

pt3
c z2 − 1

y

2pt3
c z1

T(1/2, tc , tc y) −
1 −
√

t3
c/2z2 − 1

2
t3

c z1

⎛
⎝

√
3

2
− 35/6

2
(1 − y

2
)

2/3

+
√

3
2
(1 − 1

2t3
c z1
)(1 − y

2
) − 31/6 (1 − y

2
)

4/3 ⎞
⎠

.

The first singular term in the development of f ● is then the one from
− 35/6

2
1−
√

t3
c/2z◇− 1

2
t3

c z+
1

z+ I2/3, and we have

f ●(z1 , z2) = f ●(z+, z◇) + ∇ f ●(z+, z◇) ⋅ (z1 − z+ , z2 − z◇)

+ 35/6

2
1 − 2
√

t3
c/2z◇

2t3
c (z+)2

κ ((z+ − z1) +
√

z+(z◇ − z2))
7/6

+ o (((z+ − z1) +
√

z+(z◇ − z2))
7/6
).

The statement for f ● the follows from f ●(z+, z◇) = 1 − 1
z+ and from the identities

∂z2 f ● = ∂z1 f ◇ and z1∂z1 f ● + f ● = ∂z2 f ◇. ∎
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6.3 Perimeter asymptotics at criticality

We gather in this section asymptotics of several quantities appearing in this paper
when p = 1/2 and t = tc . They are all consequences of the following lemma character-
izing the singularities of the function y ↦ V(1/2, U(t3

c), y) defined in Lemma 2.2.

Lemma 6.6 The function y ↦ V(1/2, U(t3
c), y) is analytic on C/((−∞,−4] ∪

[2,+∞)). In addition, it has the following asymptotic expansion in a slit neighborhood
of 2:

V(1/2, U(t3
c), y) =

√
3

3
− 1

3 1
3
(1 − y

2
)

1
3
+ 1

3
(1 − y

2
) − 1

3 4
3
(1 − y

2
)

4
3
+O((1 − y

2
)

5
3
).

(6.5)

Proof From Lemma 2.2, we already know that y ↦ V(1/2, U(t3
c), y) is ana-

lytic on the domain C/ ((−∞, y−(1/2, tc)] ∪ [y+(1/2, tc),+∞)). We also know that
y±(1/2, tc) are the values of ŷ(1/2, U(t3

c), V) at V = V±(1/2, tc) the two stationary
points of ŷ enclosing 0. We can easily compute the corresponding values in the Maple
file [26]. The expansion is then easily obtained by singular inversion. ∎

This lemma combined with the rational expressions in terms of V that we
have allows to immediately compute asymptotic expansions. Indeed, the expressions
T̂(1/2, U(t3

c), V) and Δ̂(1/2, V) defined, respectively, in Lemmas 2.2 and 6.2 are
singular only when V is singular, and we can get an asymptotic expansion at their
unique dominant singularity by plugging the expansion of V in their expression. As
usual, calculations are available in the Maple companion file [26].

We get the following expansion for T:

T(1/2, tc , tc y)

=
√

3
2
− 35/6

2
(1 − y

2
)

2/3
+
√

3
2
(1 − y

2
) − 31/6 (1 − y

2
)

4/3
+O((1 − y

2
)

5/3
),(6.6)

and as a consequence,

tk
c Tk(1/2, tc) ∼

k→∞

−35/6

2Γ(−2/3) 2k k−5/3 .(6.7)

Similarly, using the expression (6.1) gives the asymptotic expansion of the weights√
t3

c/2
−k

qk(1/2, tc):

F̃(1/2, tc , z) = 2
√

3 − 2 35/6 (1 − 2z)2/3 + +O((1 − 2z)5/3),(6.8)

and as a consequence,
√

t3
c/2
−k

qk(1/2, tc) ∼
k→∞

−2 35/6

Γ(−2/3) 2−k k−5/3 .(6.9)

Note that these two singular expansions and the corresponding asymptotics were
established in [6] using different and more involved techniques. The rational param-
eterization that we have simplifies this analysis a lot.
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Using Δ̂, we get the following expansion:

Δ (1/2, z) ∼
z→1/2
(32 3 5

6

351
+ 8 3 1

3

117
) (1 − 2z)−4/3 ,(6.10)

giving

δk(1/2) ∼
k→∞

1
Γ(4/3) (

32 3 5
6

351
+ 8 3 1

3

117
) 2−k k1/3 .(6.11)

Finally, using the expression (6.4), we get

Θ (1/2, y) ∼
y→2
(8 3 5

6

351
+ 2 3 1

3

117
) (1 − y/2)−4/3 ,(6.12)

giving

θk(1/2) ∼
k→∞

1
Γ(4/3) (

8 3 5
6

351
+ 2 3 1

3

117
) 2k k1/3 .(6.13)
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