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Abstract
The spectrum and orthogonal eigenbasis are computed of a tridiagonal matrix encoding a finite-dimensional
reduction of the difference Lamé equation at the single-gap integral value of the coupling parameter. This entails the
exact solution, in terms of single-gap difference Lamé wave functions, for the spectral problem of a corresponding
open inhomogeneous isotropic 𝑋𝑌 chain with coupling constants built from elliptic integers.
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1. Introduction

The homogeneous 𝑋𝑌 model is an exactly solvable quantum spin chain going back to the pioneering
work of Lieb, Schultz and Mattis [LSM61]. Its inhomogeneous isotropic variants, often referred to as
𝑋𝑋 chains in the literature, serve as models for the transfer of qubit states through quantum wires [B07,
BV17, K10]. The computation of the spectrum and eigenstates of such isotropic 𝑋𝑌 chains is achieved
through the diagonalization of the underlying Jacobi matrix of coupling constants (representing the one-
particle Hamiltonian), cf., for example, [A-E04, CV10, HSS12]. It is well known, cf., for example, [W78,
Chapter 2], that both the eigenbasis and spectrum of a Jacobi matrix can be conveniently computed by
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2 J. F. van Diejen

means of orthogonal polynomials and their zero loci. For particular Jacobi matrices stemming from the
hypergeometric orthogonal polynomials in Askey’s scheme [KLS10] the construction of the spectrum
via the zero locus becomes explicit, thus giving rise to a rich family of corresponding inhomogeneous
isotropic XY chains for which spectrum and eigenstates can be determined in closed form [A-E04,
BV17, CV10, CNV19, FG20, GVZ16, GVZ13, JV10, SV11, VZ12].

Recently, the method of orthogonal polynomials was employed to construct the eigenvectors of a
tridiagonal matrix obtained by truncating a discrete variant of the difference Lamé operator [DG21],
but detailed insight into the pertinent zero locus yielding the spectrum has unfortunately remained
somewhat elusive so far. The difference Lamé operator itself had emerged previously as a rank-one
elliptic quantum Ruijsenaars–Schneider Hamiltonian [R90, R99a] that turns out to be deeply connected
to both the representation theory of the Sklyanin algebra [KZ95, R04, S83] and to the representation
theory of elliptic quantum groups [FV96]. An in-depth spectral analysis of the difference Lamé equation
was performed in [R99b] for a dense parameter regime of positive values for the coupling parameter.
Like in the case of the classical Lamé differential equation, at the single-gap integral value of the
coupling parameter this spectral analysis simplifies and the eigensolutions can be expressed compactly
in terms of Jacobi theta functions [R99c]. This opens the way to achieve the main goal of this note:
To compute the spectrum of the truncated discrete Lamé equation of [DG21] at the single-gap integral
value of the coupling parameter and therewith solve the spectral problem for the isotropic 𝑋𝑌 chain
associated with the corresponding Jacobi matrix.

Specifically, we will consider an open chain of m quantum spins placed on the finite integer lattice
{1, 2, . . . , 𝑚} that is characterized by a Hamiltonian of the form

𝑯 (𝑚) =
1
2

𝑚−1∑
𝑙=1

j𝑙
(
𝜎x
𝑙 𝜎

x
𝑙+1 + 𝜎

y
𝑙 𝜎

y
𝑙+1

)
with j𝑙 =

√
𝜗1 (

𝛼
2 𝑙;𝑝) 𝜗1 (

𝛼
2 (𝑚−𝑙);𝑝)

𝜗1 (
𝛼
2 (𝑙+𝑔);𝑝) 𝜗1 (

𝛼
2 (𝑚−𝑙+𝑔);𝑝) ,

where 𝑔 > 0 and 𝛼 = 2𝜋
2𝑔+𝑚−1 . Here, 𝜗1(·; 𝑝) refers to Jacobi’s theta function (2.3) and 𝜎x

𝑙 , 𝜎y
𝑙 denote

the corresponding local spin- 1
2 operators at site l (cf. Equations (4.3a), (4.3b)). Below, the spectrum

and eigenfunctions of this open inhomogeneous isotropic 𝑋𝑌 model will be computed at the single-
gap value 𝑔 = 2 (with 0 < 𝑝 < 1) and also in the trigonometric limit 𝑝 → 0 for arbitrary parameter
values 𝑔 > 0. The rational limit (𝑔 → +∞) recovers the spin couplings of the so-called Krawtchouk
chain: j𝑙 →

√
𝑙 (𝑚 − 𝑙). The latter spin chain has been thoroughly studied in the literature as a model for

perfect state transfer, cf., for example, [A-E04, B07, BV17, CV10, GS18, K10, NPL03, VZ12]. As an
isotropic 𝑋𝑌 Hamiltonian 𝑯 (𝑚) only exhibits nearest neighbor couplings, which contrasts with the long-
range one-dimensional spin models with elliptic couplings found previously by Inozemtsev, cf. [I23,
Chapter 3] and [KL22] (and references therein). Let us recall at this point that the two-magnon wave
functions for Inozemtsev’s spin chain are given by single-gap Lamé functions, while more generally the
n-magnon wave functions are given by eigenfunctions of the corresponding elliptic quantum Calogero–
Moser model.

The material is organized as follows. In Section 2, the difference Lamé equation is recalled together
with the single-gap difference Lamé wave function stemming from [R99c]. At this point, it is pertinent
to emphasize that the difference Lamé equation admits various nonequivalent real forms (i.e., Hilbert
space formulations) each giving rise to a corresponding spectral theory. In terms of the classification
originating from [R90]: Here, we are dealing with an example of the (rank-one) compactified elliptic
quantum Ruijsenaars–Schneider model whereas [R99c] concentrates rather on the more conventional
(but at the same time very intricate) noncompact variant(s). As a consequence, the spectral analysis in
[R99c] does not apply directly to our situation and needs to be adapted. In Section 3, a finite-dimensional
system of real solutions of the single-gap difference Lamé equation is isolated. These solutions are both
smooth and periodic on the real axis. Upon scaling the period of the elliptic functions such that the
difference Lamé equation reduces to a finite-dimensional tridiagonal eigenvalue problem [DG21], these
real solutions provide a complete basis of orthogonal eigenvectors that give rise to explicit formulas
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for the corresponding eigenvalues. In Section 4, the open inhomogeneous isotropic 𝑋𝑌 quantum spin
Hamiltonian 𝑯 (𝑚) associated with the finite Jacobi matrix under consideration is studied. We compute
the n-particle Hamiltonian and construct its eigenfunctions in terms of Slater determinants of single-
gap difference Lamé wave functions. Finally, the discussion is closed by connecting the results on the
quantum spin chain to those in the literature via trigonometric and rational limits. Readers primarily
interested in the spin model are invited to skip straight to Section 4 and skim back over Sections 2 and 3
to pick up some notations and further essentials from the difference Lamé theory when needed.

2. Difference Lamé equation

2.1. Elliptic numbers

For

0 < 𝛼 < 𝜋 and 0 < 𝑝 < 1 , (2.1)

let us recall the definition of the elliptic number associated with 𝑧 ∈ C (cf. [GR04, Section 1.6]):

[𝑧] = [𝑧;𝛼, 𝑝] :=
𝜗1(

𝛼𝑧
2 ; 𝑝)

𝜗1(
𝛼
2 ; 𝑝)

, (2.2)

where 𝜗1 represents the Jacobi theta function [D-F23, Chapter 20]

𝜗1(𝑧; 𝑝) = 2
∞∑
𝑘=0

(−1)𝑘 𝑝
(
𝑘+

1
2
)2

sin(2𝑘 + 1)𝑧 (2.3)

= 2𝑝1/4 sin(𝑧)
∞∏
𝑘=1

(1 − 𝑝2𝑘 ) (1 − 2𝑝2𝑘 cos(2𝑧) + 𝑝4𝑘 ).

All zeros of [𝑧;𝛼, 𝑝] are simple, and their locus is given by the period lattice 2𝜋
𝛼

(
Z+𝜏Z

)
with 𝜏 := log 𝑝

i𝜋 .
We notice that the elliptic numbers are odd in z and quasi-periodic with respect to translations over the
periods:

[−𝑧] = −[𝑧], [𝑧 + 2𝜋
𝛼 ] = −[𝑧], [𝑧 + 2𝜋𝜏

𝛼 ] = − 1
𝑝 𝑒

−i𝛼𝑧 [𝑧] . (2.4)

For 𝛼 → 0 and 𝑝 → 0, the elliptic numbers degenerate to ordinary complex numbers and their q-
deformations, respectively:

lim
𝛼→0

[𝑧;𝛼, 𝑝] = 𝑧 and lim
𝑝→0

[𝑧;𝛼, 𝑝] =
sin( 𝛼𝑧2 )

sin( 𝛼2 )
=

𝑞
𝑧
2 − 𝑞−

𝑧
2

𝑞
1
2 − 𝑞−

1
2

with 𝑞 := 𝑒i𝛼 . (2.5)

2.2. Single-gap wave functions

The difference Lamé equation is an eigenvalue problem for meromorphic functions 𝜓(𝑧) on C of the
form [FV96, KZ95, R90, R99a, R99b]:

[𝑧 + 𝑔]

[𝑧]
𝜓(𝑧 + 1) +

[𝑧 − 𝑔]

[𝑧]
𝜓(𝑧 − 1) = e𝜓(𝑧), (2.6)

where 𝑔 ∈ C and e ∈ C denote the coupling parameter and the eigenvalue, respectively. The following
elementary solution of the difference Lamé equation at 𝑔 = 2 can be readily gleaned from [R99c].
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Proposition 2.1 (Wave Functions). For − 2𝜋
𝛼 < 𝜉 < 2𝜋

𝛼 and − 𝜋𝜏
i𝛼 < 𝑥 < 𝜋𝜏

i𝛼 , the wave function

𝜓(𝑧; 𝜉, 𝑥) :=
[i𝑥 − 𝑧] exp

( i𝑧
2 (

𝛼𝜉
2 − 𝜋)

)
[𝑧 + 1] [𝑧] [𝑧 − 1]

(2.7a)

provides a meromorphic solution of the difference Lamé equation (2.6) at the single-gap coupling value
𝑔 = 2 with eigenvalue

e(𝑥) :=
[2] [i𝑥]

i| [1 + i𝑥] |
, (2.7b)

provided the position of the imaginary node i𝑥 is related to the real-valued spectral parameter 𝜉 via the
nonlinear constraint

[1 + i𝑥]
[1 − i𝑥]

= exp
( i𝛼𝜉

2
)
. (2.7c)

Proof. If the wave function 𝜓(𝑧; 𝜉, 𝑥) (2.7a) is substituted into the difference Lamé equation (2.6) with
𝑔 = 2, then one arrives at following relation upon dividing by 𝜓(𝑧; 𝜉, 𝑥):

e =
[𝑧 + 2]
[𝑧]

𝜓(𝑧 + 1; 𝜉, 𝑥)
𝜓(𝑧; 𝜉, 𝑥)

+
[𝑧 − 2]
[𝑧]

𝜓(𝑧 − 1; 𝜉, 𝑥)
𝜓(𝑧; 𝜉, 𝑥)

=
1

i[𝑧] [i𝑥 − 𝑧]

(
[𝑧 − 1] [i𝑥 − 𝑧 − 1]𝑒

i𝛼𝜉
4 − [𝑧 + 1] [i𝑥 − 𝑧 + 1]𝑒−

i𝛼𝜉
4

)
.

The right-hand side is an elliptic function of z with period lattice 2𝜋
𝛼

(
Z + 𝜏Z

)
that has at most simple

poles congruent to 𝑧 = 0 and 𝑧 = i𝑥. The constraint (2.7c) is seen to guarantee that the residues at
𝑧 = 0 and 𝑧 = i𝑥 vanish, so the singularities are in fact removable and the right-hand side is thus a
constant function of z. This verifies that 𝜓(𝑧; 𝜉, 𝑥) (2.7a) satisfies the Lamé equation with 𝑔 = 2 provided
Equation (2.7c) holds. To compute the corresponding eigenvalue it suffices to evaluate the right-hand
side under consideration at 𝑧 = −1:

e =
[2] [i𝑥]𝑒

i𝛼𝜉
4

i[1] [1 + i𝑥]
,

which readily passes over into Equation (2.7b) when rewriting the exponential factor in terms of x with
the aid of Equation (2.7c). �

2.3. On the spectral parametrization of the node

The relation stemming from the constraint (2.7c) between the value of the spectral parameter 𝜉 and the
position of the node i𝑥 (and therewith the eigenvalue e(𝑥)) is determined by the function

f(𝑥) :=
2
i𝛼

Log
(
[1 + i𝑥]
[1 − i𝑥]

)
, −

𝜋𝜏

i𝛼
≤ 𝑥 ≤

𝜋𝜏

i𝛼
. (2.8)

Proposition 2.2 (Monotonicity). Upon varying the argument x over the interval − 𝜋𝜏
i𝛼 ≤ 𝑥 ≤ 𝜋𝜏

i𝛼 , the
functions f(𝑥) (2.8) and e(𝑥) (2.7b) strictly increase smoothly from −f( 𝜋𝜏i𝛼 ) to f( 𝜋𝜏i𝛼 ) and from −e( 𝜋𝜏i𝛼 )

to e( 𝜋𝜏i𝛼 ), respectively. Moreover, the extremal values are given explicitly by

f( 𝜋𝜏i𝛼 ) = 2( 𝜋𝛼 − 1) (2.9a)
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and

e( 𝜋𝜏i𝛼 ) =
[2] [ 𝜋𝜏𝛼 ]

i| [1 + 𝜋𝜏
𝛼 ] |

=
e′(0)√

℘(1; 2𝜋
𝛼 , 2𝜋𝜏

𝛼 ) − ℘( 𝜋𝜏𝛼 ; 2𝜋
𝛼 , 2𝜋𝜏

𝛼 )

, (2.9b)

with e′(0) = 𝛼𝜗1 (𝛼;𝑝)𝜗′
1 (0;𝑝)

2𝜗2
1 (

𝛼
2 ;𝑝) and 𝜗′

1(0; 𝑝) = 2𝑝1/4 ∏∞
𝑘=1(1 − 𝑝2𝑘 )3, where ℘(𝑧; 2𝜔, 2�̃�) denotes the

Weierstrass ℘-function associated with half-periods 𝜔 = 𝜋
𝛼 and �̃� = 𝜋𝜏

𝛼 [D-F23, Chapter 23].

Proof. For x on the real axis the quotient [1+i𝑥 ]
[1−i𝑥 ] belongs to the unit circle, so the function f(𝑥) is

real-valued and odd. The value at 𝑥 = 𝜋𝜏
i𝛼 can be computed via the quasi-periodicity (2.4):

f( 𝜋𝜏i𝛼 ) =
2
i𝛼

Log
(
[1 + 𝜋𝜏

𝛼 ]

[1 − 𝜋𝜏
𝛼 ]

)
=

2
i𝛼

Log
(
−

1
𝑝
𝑒−i𝛼(1− 𝜋𝜏

𝛼 )

)
=

2
𝛼
(𝜋 − 𝛼).

To analyze the monotonicity, we first compute the derivative of f(𝑥) for − 𝜋𝜏
i𝛼 < 𝑥 < 𝜋𝜏

i𝛼 in terms of
Jacobi theta functions:

f′(𝑥) =
𝜗′

1(
𝛼
2 + i𝛼𝑥

2 ; 𝑝)
𝜗1(

𝛼
2 + i𝛼𝑥

2 ; 𝑝)
+
𝜗′

1(
𝛼
2 − i𝛼𝑥

2 ; 𝑝)
𝜗1(

𝛼
2 − i𝛼𝑥

2 ; 𝑝)
, (2.10)

which is smooth because the zero loci of the denominators are avoided for x on the real axis. The
product representation of the Jacobi theta function (2.3) entails the following series for the logarithmic
derivative of the Jacobi theta function [D-F23, (20.5.10)]

𝜗′
1(𝑧; 𝑝)

𝜗1(𝑧; 𝑝)
= cot(𝑧) + 4 sin(2𝑧)

∞∑
𝑘=1

𝑝2𝑘

1 − 2𝑝2𝑘 cos(2𝑧) + 𝑝4𝑘 , (2.11)

which converges uniformly on compacts within the strip |Im(𝑧) | < 𝜋 Im(𝜏) = −Log (𝑝). Upon plugging
Equation (2.11) into Equation (2.10), one sees that the derivative of F remains positive within the interval
− 𝜋𝜏

i𝛼 < 𝑥 < 𝜋𝜏
i𝛼 :

f′(𝑥) =
sin𝛼

| sin 𝛼
2 (1 + i𝑥) |2

+ 8 sin𝛼
∞∑
𝑘=1

𝑝2𝑘 ((1 + 𝑝4𝑘 ) cosh(𝛼𝑥) − 2𝑝2𝑘 cos𝛼
)

|1 − 2𝑝2𝑘 cos𝛼(𝑥 + i𝑥) + 𝑝4𝑘 |2
> 0

because (1+ 𝑝4𝑘 ) cosh(𝛼𝑥)−2𝑝2𝑘 cos𝛼 ≥ 1+ 𝑝4𝑘 −2𝑝2𝑘 = (1− 𝑝2𝑘 )2 > 0 and sin𝛼 > 0 for 0 < 𝛼 < 𝜋.
Regarding the eigenvalue, it is clear that e(𝑥) (2.7b) constitutes a smooth real-valued function of

𝑥 ∈ R that is odd, while at the same time being strictly increasing in a neighborhood of 𝑥 = 0:

e′(0) = lim
𝑥→0

e(𝑥)
𝑥

= [2] lim
𝑥→0

[i𝑥]
i𝑥

=
𝛼𝜗1(𝛼; 𝑝)𝜗′

1(0; 𝑝)
2𝜗2

1 (
𝛼
2 ; 𝑝)

> 0.

To justify the asserted monotonicity globally in the interval − 𝜋𝜏
i𝛼 < 𝑥 < 𝜋𝜏

i𝛼 , it therefore suffices to
check that

1
e2 (𝑥)

=
1

[2]2
[1 + i𝑥] [1 − i𝑥]

[i𝑥] [−i𝑥]

is strictly decreasing for 0 < 𝑥 < 𝜋𝜏
i𝛼 . To this end, we notice that

[1 + 𝑧] [1 − 𝑧]

[𝑧] [−𝑧]
=

(
2𝜗1 (

𝛼
2 ;𝑝)

𝛼𝜗′
1 (0;𝑝)

)2 (
℘(1; 2𝜋

𝛼 , 2𝜋𝜏
𝛼 ) − ℘(𝑧; 2𝜋

𝛼 , 2𝜋𝜏
𝛼 )

)
. (2.12)
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Indeed, the left-hand side of Equation (2.12) defines an elliptic function of order two in z with period
lattice 2𝜋

𝛼

(
Z+ 𝜏Z

)
; it has zeros congruent to 𝑧 = 1 and 𝑧 = −1 and a double pole congruent to 𝑧 = 0 with

lim𝑧→0 𝑧
2 [1+𝑧 ] [1−𝑧 ]

[𝑧 ] [−𝑧 ] = −
(

2𝜗1 (
𝛼
2 ;𝑝)

𝛼𝜗′
1 (0;𝑝)

)2
. When z moves from 𝑧 = 0 to 𝑧 = 𝜋𝜏

𝛼 along the imaginary axis,
the Weierstrass ℘-function increases monotonically from −∞ to ℘( 𝜋𝜏𝛼 ; 2𝜋

𝛼 , 2𝜋𝜏
𝛼 ) < ℘( 𝜋𝛼 ; 2𝜋

𝛼 , 2𝜋𝜏
𝛼 ) <

℘(1; 2𝜋
𝛼 , 2𝜋𝜏

𝛼 ) (cf., e.g., [L89, Chapter 6.11]). Hence, for 0 < 𝑥 < 𝜋𝜏
i𝛼 the value of 1

e2 (𝑥)
decreases

monotonically from +∞ to 1
[2]2

(
2𝜗1 (

𝛼
2 ;𝑝)

𝛼𝜗′
1 (0;𝑝)

)2 (
℘(1; 2𝜋

𝛼 , 2𝜋𝜏
𝛼 ) − ℘( 𝜋𝜏𝛼 ; 2𝜋

𝛼 , 2𝜋𝜏
𝛼 )

)
> 0. �

One learns from Proposition 2.2 that for any value of the spectral parameter−2( 𝜋
𝛼−1) ≤ 𝜉 ≤ 2( 𝜋

𝛼−1)
there exists a unique − 𝜋𝜏

i𝛼 ≤ 𝑥(𝜉) ≤ 𝜋𝜏
i𝛼 such that

2
i𝛼

Log
(
[1 + i𝑥(𝜉)]
[1 − i𝑥(𝜉)]

)
= 𝜉, (2.13a)

that is,

𝑥(𝜉) := f−1(𝜉) for −2( 𝜋𝛼 − 1) ≤ 𝜉 ≤ 2( 𝜋𝛼 − 1). (2.13b)

When combining with Proposition 2.1, this entails the following family of solutions to the difference
Lamé equation at 𝑔 = 2.

Corollary 2.3 (Parametrized wave functions). For −2( 𝜋𝛼 − 1) < 𝜉 < 2( 𝜋𝛼 − 1), the single-gap wave
function 𝜓

(
𝑧; 𝜉, 𝑥(𝜉)

)
provides a meromorphic solution to the difference Lamé equation (2.6) with 𝑔 = 2

and eigenvalue −e( 𝜋𝜏i𝛼 ) < e(𝑥(𝜉)) < e( 𝜋𝜏i𝛼 ).

Notice that in Corollary 2.3 the dependence of 𝑥(𝜉) (and thus of 𝜓
(
𝑧; 𝜉, 𝑥(𝜉)

)
) on the spectral

parameter 𝜉 is smooth in view of the inverse function theorem.

3. Finite-dimensional reduction

3.1. Smooth periodic wave functions

The wave function in Corollary 2.3 has simple poles in C congruent to 𝑧 = 0, 𝑧 = 1 and 𝑧 = −1 (modulo
2𝜋
𝛼

(
Z + 𝜏Z

)
). To get rid of the singularities at 𝑧 = 0 and 𝑧 = ±1, we extract the even part of the wave

function:

𝜙(𝑧; 𝜉, 𝑥) := 𝜓(𝑧; 𝜉, 𝑥) + 𝜓(−𝑧; 𝜉, 𝑥) (3.1)

=
[i𝑥 − 𝑧] exp

( i𝑧
2 (

𝛼𝜉
2 − 𝜋)

)
− [i𝑥 + 𝑧] exp

(
− i𝑧

2 (
𝛼𝜉
2 − 𝜋)

)
[𝑧 + 1] [𝑧] [𝑧 − 1]

.

Notice that for z on the real axis 𝜙(𝑧; 𝜉, 𝑥) = 2Re
(
𝜓(𝑧; 𝜉, 𝑥)

)
. At discrete values of the spectral variable

of the form

𝜉𝑘 := 2( 𝜋𝛼 − 1 − 𝑘) (𝑘 ∈ Z), (3.2)

the even wave function 𝜙
(
𝑧; 𝜉, 𝑥(𝜉)

)
becomes periodic or antiperiodic in z with period 2𝜋

𝛼 (depending
on the parity of k), which gets rid of all singularities on the real axis.

Proposition 3.1 (Smooth periodic wave functions). (i) For−2( 𝜋𝛼 −1) < 𝜉 < 2( 𝜋𝛼 −1), the wave function
𝜙
(
𝑧; 𝜉, 𝑥(𝜉)

)
solves the difference Lamé equation (2.6) with 𝑔 = 2 and eigenvalue −e( 𝜋𝜏i𝛼 ) < e

(
𝑥(𝜉)

)
<

e( 𝜋𝜏i𝛼 ).
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(ii) For any integer 0 < 𝑘 < 2( 𝜋𝛼 − 1), the wave function 𝜙
(
𝑧; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
is (anti)periodic in z with

period 2𝜋
𝛼 :

𝜙
(
𝑧 + 2𝜋

𝛼 ; 𝜉𝑘 , 𝑥(𝜉𝑘 )
)
= (−1)𝑘−1𝜙

(
𝑧; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
. (3.3)

(iii) When restricting to the real axis, the (anti)periodic meromorphic wave function 𝜙
(
𝑧; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
in part (ii) extends continuously to a smooth function of 𝑧 ∈ R (which subsequently will be denoted by
𝜙
(
𝑧; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
as well).

Proof. (i) In the situation of Corollary 2.3, it is plain that for z on the real axis 𝜙
(
𝑧; 𝜉, 𝑥(𝜉)

)
=

2Re
(
𝜓
(
𝑧; 𝜉, 𝑥(𝜉)

) )
solves the difference Lamé equation with 𝑔 = 2 and eigenvalue −e( 𝜋𝜏i𝛼 ) < e(𝑥(𝜉)) <

e( 𝜋𝜏i𝛼 ) (because the imaginary parts of the coefficients of the difference equation vanish on the real
axis). This real meromorphic solution 𝜙

(
𝑧; 𝜉, 𝑥(𝜉)

)
extends in turn from the real axis to the complex

plane by analyticity in z.
(ii) To ensure that 𝜙

(
𝑧; 𝜉, 𝑥(𝜉)

)
is (anti)periodic in z with period 2𝜋

𝛼 it suffices to choose the spectral
parameter 𝜉 such that the exponential factor exp

( i𝑧
2 (

𝛼𝜉
2 − 𝜋)

)
is (anti-)periodic. This is achieved for

𝜉 ∈ 2𝜋
𝛼 + 2Z. The requirement in Corollary 2.3 that −2( 𝜋

𝛼 − 1) < 𝜉 < 2( 𝜋𝛼 − 1) narrows this down to
the spectral values 𝜉𝑘 (3.2) with 0 < 𝑘 < 2( 𝜋𝛼 − 1). The value of the sign follows from the observation
that exp

( i𝑧
2 (

𝛼𝜉𝑘
2 − 𝜋)

)
= (−1)𝑘−1 at 𝑧 = 2𝜋

𝛼 .
(iii) The wave function 𝜙

(
𝑧; 𝜉, 𝑥(𝜉)

)
has simple poles on the real axis arising from the denominator

at 𝑧 = 0mod 2𝜋
𝛼 Z and 𝑧 = ±1mod 2𝜋

𝛼 Z. Since 𝜙
(
𝑧; 𝜉, 𝑥(𝜉)

)
is even in z, it is clear that its residue at 𝑧 = 0

vanishes. The vanishing of the residues of 𝜙
(
𝑧; 𝜉, 𝑥(𝜉)

)
at 𝑧 = ±1 follows in turn via relation (2.7c).

By picking the spectral parameter 𝜉 such that 𝜙
(
𝑧; 𝜉, 𝑥(𝜉)

)
is (anti-)periodic in z with period 2𝜋

𝛼 , one
guarantees that the residues of all poles on the real axis vanish. In other words, at these spectral values
the wave function extends to a smooth function of 𝑧 ∈ R. �

3.2. Truncated discretization

Given 𝑔 > 0 and 𝑚 ∈ Z>1, we will from now on scale the periods by putting

𝛼 =
2𝜋

2𝑔 + 𝑚 − 1
. (3.4)

It was shown in [DG21] that then the difference Lamé equation can be truncated onto the space of
complex functions supported on {𝑔, 𝑔 + 1, . . . , 𝑔 + 𝑚 − 1}. Indeed, by substituting 𝑧 = 𝑔 + 𝑙 − 1 in
the difference Lamé equation (2.6) and writing Ψ𝑙 := 𝜓(𝑔 + 𝑙 − 1), one arrives at a finitely truncated
discrete Lamé equation of the form

[𝑚 − 𝑙]

[𝑔 + 𝑚 − 𝑙]
Ψ𝑙+1 +

[𝑙 − 1]
[𝑔 + 𝑙 − 1]

Ψ𝑙−1 = eΨ𝑙 , 𝑙 = 1, . . . , 𝑚, (3.5)

where the coefficient of Ψ𝑙+1 was simplified by means of the reflection relation [ 2𝜋
𝛼 − 𝑧] = [𝑧] (cf.

Equation (2.4)). Notice in this connection that the coefficients of Ψ𝑙+1 and of Ψ𝑙−1 vanish when 𝑙 = 𝑚
and when 𝑙 = 1, respectively.

Specifically, for 𝑔 = 2 (so 𝛼 = 2𝜋
𝑚+3 and Ψ𝑙 = 𝜓(𝑙 + 1)) the truncated discrete Lamé equation amounts

to the following m-dimensional tridiagonal eigenvalue problem:

𝑳 (𝑚)Ψ (𝑚) = eΨ (𝑚) , (3.6a)
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with

𝑳 (𝑚) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 [𝑚−1]
[𝑚+1] 0 · · · 0

[1]
[3] 0

. . .
...

0 [2]
[4]

. . . [2]
[4] 0

...
. . . 0 [1]

[3]
0 · · · 0 [𝑚−1]

[𝑚+1] 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Ψ (𝑚) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ1
Ψ2
Ψ3
...
...

Ψ𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.6b)

We will now show that by restricting the smooth (anti)periodic solutions 𝜙
(
𝑧; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
of the dif-

ference Lamé equation from Proposition 3.1 to the lattice {2, 3, . . . , 𝑚 + 1}, one arrives at the
spectrum and a corresponding eigenbasis for the matrix 𝑳 (𝑚) (3.6b). To this end, let us write for
1 ≤ 𝑙, 𝑘 ≤ 𝑚

(
= 2( 𝜋𝛼 − 1) − 1

)
:

Φ(𝑚) (𝜉𝑘 ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Φ1(𝜉𝑘 )
Φ2(𝜉𝑘 )

...
Φ𝑚(𝜉𝑘 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with Φ𝑙 (𝜉𝑘 ) := 𝜙

(
𝑙 + 1; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
, (3.7)

where 𝜉𝑘
(3.2) , (3.4)

= 𝑚 + 1 − 2𝑘 .

Theorem 3.2 (Diagonalization of 𝑳 (𝑚) ). (i) The vectors Φ(𝑚) (𝜉1), . . . ,Φ(𝑚) (𝜉𝑚) (3.7) constitute an
eigenbasis for 𝑳 (𝑚) (3.6b) such that

𝑳 (𝑚)Φ(𝑚) (𝜉𝑘 ) = e
(
𝑥(𝜉𝑘 )

)
Φ(𝑚) (𝜉𝑘 ) for 𝑘 = 1, . . . , 𝑚. (3.8a)

(ii) The corresponding eigenvalues are evenly distributed around the origin and numbered in de-
creasing order: e(𝑥(𝜉𝑚+1−𝑘 )) = −e(𝑥(𝜉𝑘 )) and

e
(
𝜋𝜏
i𝛼

)
> e

(
𝑥(𝜉1)

)
> e

(
𝑥(𝜉2)

)
> · · · > e

(
𝑥(𝜉𝑚)

)
> −e

(
𝜋𝜏
i𝛼

)
(3.8b)

(where the bound on the spectrum is of the form e
(
𝜋𝜏
i𝛼

)
= e

(
𝑥(𝑚 + 1)

)
= e

(
𝑥(𝜉0)

)
).

(iii) The matrix of eigenvectors 𝚽(𝑚) =
[
Φ𝑙 (𝜉𝑘 )

]
1≤𝑙,𝑘≤𝑚 enjoys the following palindromic

(anti)symmetries along the rows and columns:

Φ𝑙 (𝜉𝑚+1−𝑘 ) = (−1)𝑙−1Φ𝑙 (𝜉𝑘 ) and Φ𝑚+1−𝑙 (𝜉𝑘 ) = (−1)𝑘−1Φ𝑙 (𝜉𝑘 ). (3.8c)

Proof. (i) Since the matrix 𝑳 (𝑚) and the vectors Φ(𝑚) (𝜉𝑘 ) were obtained by restricting the difference
Lamé equation and its smooth solutions on the real axis taken from Proposition 3.1, the eigenvalue
equations (3.8a) are satisfied manifestly. Furthermore, Proposition 2.2 ensures that the mapping 𝜉 →

e(𝑥(𝜉)), −𝑚−1 ≤ 𝜉 ≤ 𝑚+1 = 2( 𝜋𝛼 −1) is injective, so the eigenvalues e(𝜉𝑘 ) are all distinct. To confirm
that the vectors in question indeed constitute a complete eigenbasis it remains to infer that none of them
is equal to the zero vector. To this end, we will check thatΦ1(𝜉𝑘 ) = 𝜙

(
2; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
≠ 0 for 𝑘 = 1, . . . , 𝑚.

Indeed, if 𝜙(2; 𝜉, 𝑥) = 0 for 𝜉, 𝑥 ∈ C subject to the constraint (2.7c), then we see from (3.1) that

[i𝑥 + 2]
[i𝑥 − 2]

= 𝑒i𝛼𝜉 (2.7c)
=⇒

[i𝑥 + 2]
[i𝑥 − 2]

[i𝑥 − 1]2

[i𝑥 + 1]2 = 1. (3.9)

The left-hand side of the latter equation is an elliptic function of i𝑥 of order 3, so (when counting with
multiplicity) this equation has three solutions modulo the period lattice 2𝜋

𝛼

(
Z + 𝜏Z

)
. It is readily seen

that the identity in fact holds at the three half-periods, so the three solutions are i𝑥 = 𝜋
𝛼 , i𝑥 = 𝜋

𝛼 𝜏 and
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i𝑥 = 𝜋
𝛼 (1 + 𝜏). In other words, for −(𝑚 + 1) < 𝜉 < 𝑚 + 1 = 2( 𝜋𝛼 − 1) the function 𝜙(2; 𝜉, 𝑥(𝜉)) does not

vanish (while in the limit 𝜉 → ±2( 𝜋𝛼 − 1)
Proposition. 2.2

=⇒ 𝑥(𝜉) → ± 𝜋𝜏
i𝛼 and thus 𝜙(2; 𝜉, 𝑥(𝜉)) → 0). In

particular, one has that 𝜙
(
2; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
≠ 0 for 𝑘 = 1, . . . , 𝑚 (while lim𝜉→𝜉𝑘 𝜙

(
2; 𝜉, 𝑥(𝜉)

)
= 0 if 𝑘 = 0

or 𝑘 = 𝑚 + 1).
(ii) First, since

2( 𝜋
𝛼 − 1) = 𝑚 + 1 = 𝜉0 > 𝜉1 > 𝜉2 > · · · > 𝜉𝑚 > 𝜉𝑚+1 = −𝜉0 = −2( 𝜋

𝛼 − 1),

the ordering of the eigenvalues in (3.8b) is immediate from Proposition 2.2. Secondly, the mapping
𝜉 → e(𝑥(𝜉)) is odd in 𝜉, so the eigenvalues inherit the manifest antisymmetry 𝜉𝑚+1−𝑘 = −𝜉𝑘 .

(iii) Since 𝜙
(
𝑧; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
is even in z, the palindromic (anti)symmetry along the columns follows

from the (anti)periodicity:

Φ𝑚+1−𝑙 (𝜉𝑘 )
(3.7)
= 𝜙

(
𝑚 + 2 − 𝑙; 𝜉𝑘 , 𝑥(𝜉𝑘 )

) (3.3)
= (−1)𝑘−1𝜙

(
− 𝑙 − 1; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
= (−1)𝑘−1𝜙

(
𝑙 + 1; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
= (−1)𝑘−1Φ𝑙 (𝜉𝑘 ).

The palindromic (anti)symmetry along the rows is verified similarly:

Φ𝑙 (𝜉𝑚+1−𝑘 ) = Φ𝑙 (−𝜉𝑘 )
(3.7)
= 𝜙

(
𝑙 + 1;−𝜉𝑘 ,−𝑥(𝜉𝑘 )

)
(3.1)
= (−1)𝑙−1𝜙

(
𝑙 + 1; 𝜉𝑘 , 𝑥(𝜉𝑘 )

)
= (−1)𝑙−1Φ𝑙 (𝜉𝑘 ). �

3.3. Orthogonality

In [DG21], the solutions of the finitely truncated discrete Lamé equation (3.5) were constructed for
𝑔 > 0 in terms of polynomials on the spectrum. In this context, the Christoffel–Darboux formula
gives rise to an orthogonality relation for the eigenfunctions in question. Theorem 3.2 provides for
𝑔 = 2: (i) an alternative compact representation for the eigenfunctions in terms of elliptic numbers
(i.e., theta functions) and (ii) formulas parametrizing the corresponding eigenvalues explicitly (barring
the inversion of f(𝑥) (2.8)). By applying [DG21, Proposition 7] in the case 𝑔 = 2, one establishes the
following orthogonality relation for the eigenbasis Φ(𝑚) (𝜉𝑘 ), 𝑘 = 1, . . . , 𝑚.

Proposition 3.3 (Orthogonality relation). The eigenbasis Φ(𝑚) (𝜉1), . . . ,Φ(𝑚) (𝜉𝑚) (3.7) satisfies the
following orthogonality relation:

𝑚∑
𝑙=1

Φ𝑙 (𝜉𝑘 )Φ𝑙 (𝜉�̃� )Δ 𝑙 =

{
Δ̂−1

𝑘 Φ2
1(𝜉𝑘 ) if �̃� = 𝑘,

0 if �̃� ≠ 𝑘,
(3.10a)

where the orthogonality measure is of the following palindromic form

Δ 𝑙 :=
[𝑙 + 1]
[2]

[
𝑚 − 1
𝑙 − 1

]
with

[
𝑚 − 1
𝑙 − 1

]
:=

∏𝑚−1
𝑗=1 [ 𝑗]∏𝑙−1

𝑗=1 [ 𝑗]
∏𝑚−𝑙

𝑗=1 [ 𝑗]
(3.10b)

(so Δ𝑚+1−𝑙 = Δ 𝑙), and the quadratic norms factorize in terms of

Δ̂ 𝑘 :=
1
[3]

𝑚∏
𝑖=1
𝑖≠𝑘

��e(𝑥(𝜉𝑘 )) − e
(
𝑥(𝜉𝑖)

) ��−1 (3.10c)
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and

Φ1(𝜉𝑘 ) =
2

[3] [2]
Re

(
[2 − i𝑥(𝜉𝑘 )]𝑒

i𝛼
2 𝜉𝑘

)
. (3.10d)

Proof. Proposition 7 of [DG21] furnishes an orthogonality relation for the eigenvectors of the matrix in
[DG21, Eqs. (2.8a), (2.8b)] with 𝑔 > 0, where it is assumed that the eigenvectors are normalized such
that their first component is equal to 1. The asserted orthogonality relation for Φ(𝑚) (𝜉1), . . . ,Φ(𝑚) (𝜉𝑚)
readily follows from this proposition upon substituting 𝑔 = 2, m = 𝑚 − 1, and accommodating for the
current normalization stemming from Equation (3.1). �

4. Isotropic XY chain

4.1. Hamiltonian

Upon assuming that 𝛼 is of the form in Equation (3.4) with 𝑔 = 2 (so 𝛼 = 2𝜋
𝑚+3 ), we consider the

Hamiltonian of an open quantum spin chain on the finite lattice {1, 2, . . . , 𝑚} with positive coupling
constants expressed in terms of elliptic integers

𝑯 (𝑚) :=
1
2

𝑚−1∑
𝑙=1

j𝑙
(
𝜎x
𝑙 𝜎

x
𝑙+1 + 𝜎

y
𝑙 𝜎

y
𝑙+1

)
with j𝑙 =

√
[𝑙] [𝑚−𝑙]

[𝑙+2] [𝑚+2−𝑙] . (4.1)

This inhomogeneous quantum spin Hamiltonian acts in a 2𝑚-dimensional state space

F (𝑚) = C2 ⊗ · · · ⊗ C2︸�����������︷︷�����������︸
𝑚 times

(4.2a)

that is endowed with the standard sesquilinear inner product determined by

〈𝑢1 ⊗ · · · ⊗ 𝑢𝑚 |𝑣1 ⊗ · · · ⊗ 𝑣𝑚〉 =
𝑚∏
𝑙=1

〈𝑢𝑙 |𝑣𝑙〉, (4.2b)

with 𝑢𝑙 =

[
(𝑢𝑙)1
(𝑢𝑙)2

]
∈ C2, 𝑣𝑙 =

[
(𝑣𝑙)1
(𝑣𝑙)2

]
∈ C2and 〈𝑢𝑙 |𝑣𝑙〉 := (𝑢𝑙)1(𝑣𝑙)1+ (𝑢𝑙)2(𝑣𝑙)2. The local spin operators

at site l act by means of Pauli matrices:

𝜎w
𝑙 := 𝐼 ⊗ · · · ⊗ 𝐼︸�������︷︷�������︸

𝑙−1 times

⊗𝜎w ⊗ 𝐼 ⊗ · · · ⊗ 𝐼︸�������︷︷�������︸
𝑚−𝑙 times

(w ∈ {x, y, z}), (4.3a)

with

𝐼 =

[
1 0
0 1

]
𝜎x =

[
0 1
1 0

]
𝜎y =

[
0 −i
i 0

]
𝜎z =

[
1 0
0 −1

]
. (4.3b)

Following [LSM61], the quantum spin Hamiltonian (4.1) can be rewritten in terms of fermionic
creation– and annihilation operators (cf., e.g., [W17, Chapter 27]):

𝑯 (𝑚) =
𝑚−1∑
𝑙=1

j𝑙
(
𝑐∗𝑙 𝑐𝑙+1 + 𝑐∗𝑙+1𝑐𝑙

)
, (4.4a)
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where

𝑐∗𝑙 := (−1)𝑙−1 𝜎z ⊗ · · · ⊗ 𝜎z︸�����������︷︷�����������︸
𝑙−1 times

⊗𝜎+ ⊗ 𝐼 ⊗ · · · ⊗ 𝐼︸�������︷︷�������︸
𝑚−𝑙 times

, (4.4b)

𝑐𝑙 := (−1)𝑙−1 𝜎z ⊗ · · · ⊗ 𝜎z︸�����������︷︷�����������︸
𝑙−1 times

⊗𝜎− ⊗ 𝐼 ⊗ · · · ⊗ 𝐼︸�������︷︷�������︸
𝑚−𝑙 times

, (4.4c)

with

𝜎+ =
1
2
(𝜎x + i𝜎y) =

[
0 1
0 0

]
and 𝜎− =

1
2
(𝜎x − i𝜎y) =

[
0 0
1 0

]
. (4.4d)

The fermionic creation – and annihilation operators satisfy the canonical anticommutation relations

{𝑐∗𝑙 , 𝑐
∗

𝑙
} = 0 {𝑐𝑙 , 𝑐𝑙} = 0 {𝑐∗𝑙 , 𝑐𝑙} = 𝛿𝑙,𝑙 Id, (4.5)

where {𝑎, 𝑏} := 𝑎𝑏 + 𝑏𝑎 and 𝛿𝑙,𝑙 represents the Kronecker delta. Moreover, since the coupling constants
j𝑙 are positive and the operators 𝑐∗𝑙 and 𝑐𝑙 are adjoints in F (𝑚) , that is,

∀𝑢, 𝑣 ∈ F (𝑚) : 〈𝑢 |𝑐∗𝑙 𝑣〉 = 〈𝑣 |𝑐𝑙𝑢〉, (4.6a)

it is clear that the Hamiltonian 𝑯 (𝑚) (4.4a)–(4.4d) is self-adjoint:

∀𝑢, 𝑣 ∈ F (𝑚) : 〈𝑢 |𝑯 (𝑚)𝑣〉 = 〈𝑣 |𝑯 (𝑚)𝑢〉. (4.6b)

4.2. n-particle Hamiltonian

Starting from a normalized vacuum vector that is annihilated by 𝑐𝑙 (𝑙 = 1, . . . , 𝑚)

|∅〉 :=
[
0
1

]
⊗

[
0
1

]
⊗ · · · ⊗

[
0
1

]
︸����������������������︷︷����������������������︸

𝑚 times

, (4.7a)

the standard orthonormal basis forF (𝑚) (4.2a), (4.2b) can be generated by acting with fermionic creation
operators associated with strict partitions 𝜆 = (𝜆1, . . . , 𝜆𝑛) that have bounded row- and column sizes
≤ 𝑚:

|𝜆〉 := 𝑐∗𝜆𝑛
· · · 𝑐∗𝜆2

𝑐∗𝜆1
|∅〉. (4.7b)

Here, the parts of the strict partition (𝜆1, . . . , 𝜆𝑛) labeling the basis vector |𝜆〉 represent the coordinates

of 𝑛 ≤ 𝑚 places on the lattice {1, 2, . . . , 𝑚}, where in the vaccum vector |∅〉 the local state
[
0
1

]
has

been flipped to
[
1
0

]
. This gives rise to the following orthogonal decomposition of the state space F (𝑚)

in n-particle subspaces:

F (𝑚) =
𝑚⊕
𝑛=0

F (𝑚,𝑛) with F (𝑚,𝑛) := SpanC{|𝜆〉 | 𝜆 ∈ Λ(𝑚,𝑛) }, (4.8a)
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where

Λ(𝑚,𝑛) := {(𝜆1, . . . , 𝜆𝑛) ∈ Z
𝑛 | 𝑚 ≥ 𝜆1 > 𝜆2 > · · · > 𝜆𝑛 ≥ 1} (4.8b)

with the convention that Λ(𝑚,0) := {∅}. Notice that the
(𝑚
𝑛

)
-dimensional n-particle subspace F (𝑚,𝑛) is

stable with respect to the action of 𝑯 (𝑚) (4.4a)–(4.4d).

Proposition 4.1 (Matrix elements of the Hamiltonian). The matrix elements of the quantum spin Hamil-
tonian 𝑯 (𝑚) (4.1) with respect to the standard basis |𝜆〉 (4.7a), (4.7b) read for 𝜆 ∈ Λ(𝑚,𝑛) with
0 < 𝑛 < 𝑚:

𝑯 (𝑚) |𝜆〉 =
∑

1≤ 𝑗≤𝑛

𝜆+𝑒 𝑗 ∈Λ(𝑚,𝑛)

j𝜆 𝑗 |𝜆 + 𝑒 𝑗〉 +
∑

1≤ 𝑗≤𝑛

𝜆−𝑒 𝑗 ∈Λ(𝑚,𝑛)

j𝜆 𝑗−1 |𝜆 − 𝑒 𝑗〉 (4.9)

(while 𝑯 (𝑚) |𝜆〉 = 0 for 𝜆 ∈ Λ(𝑚,𝑛) if 𝑛 = 0 or 𝑛 = 𝑚). Here, the vectors 𝑒1, . . . 𝑒𝑛 refer to the standard
unit basis of Z𝑛.

Proof. Let us act with 𝑯 (𝑚) (4.4a)–(4.4d) on |𝜆〉 with 𝜆 ∈ Λ(𝑚,𝑛) . For 0 < 𝑛 < 𝑚 and 1 ≤ 𝑙 < 𝑚, it is
seen from the anticommutation relations (4.5) that the term

j𝑙𝑐∗𝑙 𝑐𝑙+1 |𝜆〉 = j𝑙𝑐∗𝑙 𝑐𝑙+1𝑐
∗
𝜆𝑛

· · · 𝑐∗𝜆 𝑗+1
𝑐∗𝜆 𝑗

· · · 𝑐∗𝜆1
|∅〉

vanishes unless 𝑙 ∉ {𝜆1, . . . , 𝜆𝑛} and 𝑙 +1 ∈ {𝜆1, . . . , 𝜆𝑛}, that is, unless ∃1 ≤ 𝑗 ≤ 𝑛 such that 𝑙 = 𝜆 𝑗 −1
and 𝜆 𝑗+1 < 𝑙 (with the convention that 𝜆𝑛+1 := 0), or equivalently: Unless ∃1 ≤ 𝑗 ≤ 𝑛 such that
𝑙 = 𝜆 𝑗 − 1 and 𝜆 − 𝑒 𝑗 ∈ Λ(𝑚,𝑛) . In this case, one has that

j𝑙𝑐∗𝑙 𝑐𝑙+1 |𝜆〉 = j𝑙𝑐∗𝜆𝑛
· · · 𝑐∗𝜆 𝑗+1

𝑐∗𝑙 𝑐𝑙+1𝑐
∗
𝜆 𝑗
𝑐∗𝜆 𝑗−1

· · · 𝑐∗𝜆1
|∅〉

= j𝜆 𝑗−1𝑐
∗
𝜆𝑛

· · · 𝑐∗𝜆 𝑗+1
𝑐∗𝜆 𝑗−1𝑐𝜆 𝑗 𝑐

∗
𝜆 𝑗
𝑐∗𝜆 𝑗−1

· · · 𝑐∗𝜆1
|∅〉

= j𝜆 𝑗−1𝑐
∗
𝜆𝑛

· · · 𝑐∗𝜆 𝑗+1
𝑐∗𝜆 𝑗−1𝑐

∗
𝜆 𝑗−1

· · · 𝑐∗𝜆1
|∅〉 = j𝜆 𝑗−1 |𝜆 − 𝑒 𝑗〉.

In the same manner, one deduces that for 0 < 𝑛 < 𝑚 and 1 ≤ 𝑙 < 𝑚 the term j𝑙𝑐∗𝑙+1𝑐𝑙 |𝜆〉 vanishes
unless 𝑙 ∈ {𝜆1, . . . , 𝜆𝑛} and 𝑙 + 1 ∉ {𝜆1, . . . , 𝜆𝑛}, that is, unless ∃1 ≤ 𝑗 ≤ 𝑛 such that 𝑙 = 𝜆 𝑗 and
𝜆 𝑗−1 > 𝑙 + 1 (with the convention that 𝜆0 := 𝑚 + 1), or equivalently: Unless ∃1 ≤ 𝑗 ≤ 𝑛 such that 𝑙 = 𝜆 𝑗

and 𝜆 + 𝑒 𝑗 ∈ Λ(𝑚,𝑛) . In this case, one has that

j𝑙𝑐𝑙𝑐∗𝑙+1 |𝜆〉 = j𝑙𝑐∗𝜆𝑛
· · · 𝑐∗𝜆 𝑗+1

𝑐∗𝑙+1𝑐𝑙𝑐
∗
𝜆 𝑗
𝑐∗𝜆 𝑗−1

· · · 𝑐∗𝜆1
|∅〉

= j𝜆 𝑗 𝑐
∗
𝜆𝑛

· · · 𝑐∗𝜆 𝑗+1
𝑐∗𝜆 𝑗+1𝑐𝜆 𝑗 𝑐

∗
𝜆 𝑗
𝑐∗𝜆 𝑗−1

· · · 𝑐∗𝜆1
|∅〉

= j𝜆 𝑗 𝑐
∗
𝜆𝑛

· · · 𝑐∗𝜆 𝑗+1
𝑐∗𝜆 𝑗+1𝑐

∗
𝜆 𝑗−1

· · · 𝑐∗𝜆1
|∅〉 = j𝜆 𝑗 |𝜆 + 𝑒 𝑗〉.

Notice that in both cases the relation between the pertinent values of 1 ≤ 𝑙 < 𝑚 and 1 ≤ 𝑗 ≤ 𝑛 is
one-to-one given 𝜆 (since our partitions are strict); hence, by summing over all terms from 1 ≤ 𝑙 < 𝑚
the asserted formula for the matrix elements in Equation (4.9) follows. �

Remark 4.2. In the formulas for the Hamiltonian 𝑯 (𝑚) (4.4a)–(4.4c) and for the standard basis |𝜆〉 (4.7a),
(4.7b) (as well as in the proof of Proposition 4.1), the fermionic operators 𝑐∗𝑙 and 𝑐𝑙 can in principle
be replaced simply by the spin raising and lowering operators 𝜎+

𝑙 = 𝜎x
𝑙 + i𝜎y

𝑙 and 𝜎−
𝑙 = 𝜎x

𝑙 − i𝜎y
𝑙 ,

respectively. Indeed, in view of the ordering of the parts of the strict partition one has in particular that
for any 𝜆 ∈ Λ(𝑚,𝑛) : 𝑐∗𝜆𝑛

· · · 𝑐∗𝜆2
𝑐∗𝜆1

|∅〉 = 𝜎+
𝜆𝑛

· · ·𝜎+
𝜆2
𝜎+
𝜆1
|∅〉. However, by employing fermionic operators

instead it is automatic that all results below apply verbatim to the free-fermion description of the spin
model under consideration.
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Let ℓ2(Λ(𝑚,𝑛) ) denote the (n-magnon) Hilbert space of complex functions 𝜆
Ψ
↦→ Ψ𝜆, 𝜆 ∈ Λ(𝑚,𝑛)

endowed with the inner product

〈Ψ̃,Ψ〉 :=
∑

𝜆∈Λ(𝑚,𝑛)

Ψ̃𝜆Ψ𝜆
(
∀Ψ, Ψ̃ ∈ ℓ2(Λ(𝑚,𝑛) )

)
. (4.10)

It is evident from the orthonormality of the standard basis |𝜆〉, 𝜆 ∈ Λ(𝑚,𝑛) that the injection I (𝑚,𝑛) :
ℓ2(Λ(𝑚,𝑛) ) → F (𝑚,𝑛) given by

I (𝑚,𝑛) (Ψ) :=
∑

𝜆∈Λ(𝑚,𝑛)

Ψ𝜆 |𝜆〉
(
∀Ψ ∈ ℓ2(Λ(𝑚,𝑛) )

)
(4.11)

defines an Hilbert-space isomorphism between ℓ2(Λ(𝑚,𝑛) ) and F (𝑚,𝑛) .

Definition 4.1 (n-particle Hamiltonian). Let us define the n-particle Hamiltonian 𝑯 (𝑚,𝑛) :
ℓ2(Λ(𝑚,𝑛) ) → ℓ2(Λ(𝑚,𝑛) ) as the pull-back of the restriction of the quantum spin Hamiltonian 𝑯 (𝑚) (4.1)
to the n-particle subspace F (𝑚,𝑛) (4.8a), (4.8b) with respect to the isomorphism I (𝑚,𝑛) : ℓ2(Λ(𝑚,𝑛) ) →

F (𝑚,𝑛) (4.11):

𝑯 (𝑚,𝑛) =
(
I (𝑚,𝑛) )−1

◦ 𝑯 (𝑚)
���
F (𝑚,𝑛)

◦ I (𝑚,𝑛) . (4.12)

It is clear from this definition that 𝑯 (𝑚,𝑛) inherits the self-adjointness of 𝑯 (𝑚) . With the aid of
Proposition 4.1, we arrive at the following explicit formula for the action of 𝑯 (𝑚,𝑛) in ℓ2(Λ(𝑚,𝑛) ).

Proposition 4.3 (Action of the n-particle Hamiltonian). For 0 < 𝑛 < 𝑚, one has that

(𝑯 (𝑚,𝑛)Ψ)𝜆 =
∑

1≤ 𝑗≤𝑛

𝜆+𝑒 𝑗 ∈Λ(𝑚,𝑛)

j𝜆 𝑗Ψ𝜆+𝑒 𝑗 +
∑

1≤ 𝑗≤𝑛

𝜆−𝑒 𝑗 ∈Λ(𝑚,𝑛)

j𝜆 𝑗−1Ψ𝜆−𝑒 𝑗 (4.13)

(∀Ψ ∈ ℓ2(Λ(𝑚,𝑛) )).

Proof. Definition 4.1 implies that ∀Ψ ∈ ℓ2(Λ(𝑚,𝑛) ):

I (𝑚,𝑛)𝑯 (𝑚,𝑛)Ψ = 𝑯 (𝑚)I (𝑚,𝑛)Ψ,

or more explicitly (cf. Equation (4.11)):∑
𝜆∈Λ(𝑚,𝑛)

(𝑯 (𝑚,𝑛)Ψ)𝜆 |𝜆〉 = 𝑯 (𝑚)

( ∑
𝜆∈Λ(𝑚,𝑛)

Ψ𝜆 |𝜆〉

)
. (4.14)

With the aid of Proposition 4.1 the right-hand side of this intertwining relation is rewritten as

∑
𝜆∈Λ(𝑚,𝑛)

Ψ𝜆

!""""#
∑

1≤ 𝑗≤𝑛

𝜆+𝑒 𝑗 ∈Λ(𝑚,𝑛)

j𝜆 𝑗 |𝜆 + 𝑒 𝑗〉 +
∑

1≤ 𝑗≤𝑛

𝜆−𝑒 𝑗 ∈Λ(𝑚,𝑛)

j𝜆 𝑗−1 |𝜆 − 𝑒 𝑗〉

$%%%%&
,

which is equal to ∑
𝜆∈Λ(𝑚,𝑛)

1≤ 𝑗≤𝑛

Ψ𝜆
(
j𝜆 𝑗 |𝜆 + 𝑒 𝑗〉 + j𝜆 𝑗−1 |𝜆 − 𝑒 𝑗〉

)
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with the convention that |𝜆 ± 𝑒 𝑗〉 = 0 if 𝜆 ± 𝑒 𝑗 ∉ Λ(𝑚,𝑛) . The translations 𝜆 → 𝜆 − 𝑒 𝑗 and 𝜆 → 𝜆 + 𝑒 𝑗

recast the respective terms in the form∑
𝜆∈Λ(𝑚,𝑛)

1≤ 𝑗≤𝑛

(
j𝜆 𝑗−1Ψ𝜆−𝑒 𝑗 + j𝜆 𝑗Ψ𝜆+𝑒 𝑗

)
|𝜆〉

with the convention that Ψ𝜆±𝑒 𝑗 = 0 if 𝜆 ± 𝑒 𝑗 ∉ Λ(𝑚,𝑛) . When comparing with the left-hand side of
Equation (4.14), the asserted action of 𝑯 (𝑚,𝑛) in ℓ2(Λ(𝑚,𝑛) ) given by Equation (4.13) follows. �

4.3. Spectrum and orthonormal eigenbasis

In the homogeneous case with j1 = j2 = · · · = j𝑚−1, a standard method for diagonalizing 𝑯 (𝑚) (4.4a)–
(4.4c) hinges on performing a (discrete) Fourier transform of the fermionic operators. In the inhomo-
geneous situation with site-dependent coupling constants, this discrete Fourier transform is replaced by
the pertinent Bogoliubov transformation stemming from the eigenfunction transform diagonalizing the
one-particle Hamiltonian (cf., e.g., [HSS12, Section 4]). Here, we will follow an alternative path, which
is based on the observation that Theorem 3.2 and Proposition 3.3 allow for an explicit construction of
an orthonormal eigenbasis diagonalizing the n-particle Hamiltonian 𝑯 (𝑚,𝑛) (4.13) in terms of Slater
determinants.

To this end, some further notation is needed. For any 𝜆, 𝜅 ∈ Λ(𝑚,𝑛) , let us define

𝜉 (𝑚,𝑛)
𝜅 :=

(
𝜉𝜅1 , 𝜉𝜅2 , . . . , 𝜉𝜅𝑛

)
, (4.15a)

Δ (𝑚,𝑛)
𝜆 :=

∏
1≤ 𝑗≤𝑛

Δ𝜆 𝑗 and Δ̂ (𝑚,𝑛)
𝜅 :=

∏
1≤ 𝑗≤𝑛

Δ̂ 𝜅 𝑗 , (4.15b)

where (as before) 𝜉𝑘 = 2( 𝜋
𝛼 − 1 − 𝑘)

��
𝛼= 2𝜋

𝑚+3
= 𝑚 + 1 − 2𝑘 while Δ 𝑙 and Δ̂ 𝑘 are of the form detailed in

Proposition 3.3. The corresponding spectrum will be given by eigenvalues of the form

𝑬 (𝑚,𝑛) (𝜉 (𝑚,𝑛)
𝜅

)
:=

∑
1≤ 𝑗≤𝑛

e
(
𝑥(𝜉𝜅 𝑗 )

)
(4.15c)

(with e
(
𝑥(𝜉1)

)
, . . . , e

(
𝑥(𝜉𝑚)

)
as in Theorem 3.2).

We define the n-particle wave function Ψ (𝑚,𝑛)
(
𝜉 (𝑚,𝑛)
𝜅

)
∈ ℓ2(Λ(𝑚,𝑛) ) by means of its values on Λ(𝑚,𝑛)

in terms of the following normalized Slater determinant:

Ψ (𝑚,𝑛)
𝜆

(
𝜉 (𝑚,𝑛)
𝜅

)
:=

√
Δ (𝑚,𝑛)
𝜆 Δ̂ (𝑚,𝑛)

𝜅 det
[
Φ𝜆 𝑗 (𝜉𝜅𝑘 )

Φ1(𝜉𝜅𝑘 )

]
1≤ 𝑗 ,𝑘≤𝑛

(4.16)

(with Φ1(𝜉𝑘 ), . . . ,Φ𝑚(𝜉𝑘 ) taken from Equation (3.7)). So here and below, when the superscripted
dimensions (𝑚, 𝑛) are omitted we are referring to the components of the eigenvectors, the eigenvalues
and the weights of the orthogonality measures associated with the truncated difference Lamé matrix
𝑳 (𝑚) (3.6b) to be imported from Section 3.

Theorem 4.4 (Diagonalization of 𝑯 (𝑚,𝑛) ). For 0 < 𝑛 < 𝑚, the wave functions Ψ (𝑚,𝑛)
(
𝜉 (𝑚,𝑛)
𝜅

)
, 𝜅 ∈

Λ(𝑚,𝑛) constitute and orthogonal eigenbasis diagonalizing 𝑯 (𝑚,𝑛) (4.13) in ℓ2(Λ(𝑚,𝑛) ), that is, ∀𝜅, 𝜅 ∈

Λ(𝑚,𝑛) :

𝑯 (𝑚,𝑛)Ψ (𝑚,𝑛) (𝜉 (𝑚,𝑛)
𝜅

)
= 𝑬 (𝑚,𝑛) (𝜉 (𝑚,𝑛)

𝜅

)
Ψ (𝑚,𝑛) (𝜉 (𝑚,𝑛)

𝜅

)
(4.17a)
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and 〈
Ψ (𝑚,𝑛) (𝜉 (𝑚,𝑛)

𝜅

)
,Ψ (𝑚,𝑛) (𝜉 (𝑚,𝑛)

𝜅

)〉
=

{
1 if 𝜅 = 𝜅,

0 if 𝜅 ≠ 𝜅.
(4.17b)

Proof. Let us act with 𝑯 (𝑚,𝑛) (4.13) on Ψ (𝑚,𝑛)
(
𝜉 (𝑚,𝑛)
𝜅

)
(4.16), and evaluate the result at 𝜆 ∈ Λ(𝑚,𝑛) :∑

1≤𝑖≤𝑛
𝜆+𝑒𝑖 ∈Λ(𝑚,𝑛)

j𝜆𝑖 det
[
Δ1/2
𝜆 𝑗+𝛿𝑖, 𝑗

Δ̂1/2
𝜅𝑘

Φ𝜆 𝑗+𝛿𝑖, 𝑗 (𝜉𝜅𝑘 )

Φ1(𝜉𝜅𝑘 )

]
1≤ 𝑗 ,𝑘≤𝑛

+
∑

1≤𝑖≤𝑛
𝜆−𝑒𝑖 ∈Λ(𝑚,𝑛)

j𝜆𝑖−1 det
[
Δ1/2
𝜆 𝑗−𝛿𝑖, 𝑗

Δ̂1/2
𝜅𝑘

Φ𝜆 𝑗−𝛿𝑖, 𝑗 (𝜉𝜅𝑘 )

Φ1(𝜉𝜅𝑘 )

]
1≤ 𝑗 ,𝑘≤𝑛

.

By means of the relations j𝜆𝑖Δ
1/2
𝜆𝑖+1 = Δ1/2

𝜆𝑖

[𝑚−𝜆𝑖 ]
[𝑚+2−𝜆𝑖 ] for 1 ≤ 𝜆𝑖 < 𝑚 and j𝜆𝑖−1Δ

1/2
𝜆𝑖−1 = Δ1/2

𝜆𝑖

[𝜆𝑖−1]
[𝜆𝑖+1] for

1 < 𝜆𝑖 ≤ 𝑚, the expression in question is rewritten as

=
∑

1≤𝑖≤𝑛
det

⎡⎢⎢⎢⎢⎣Δ1/2
𝜆 𝑗

Δ̂1/2
𝜅𝑘

( [𝑚−𝜆𝑖 ]
[𝑚+2−𝜆𝑖 ]

) 𝛿𝑖, 𝑗Φ𝜆 𝑗+𝛿𝑖, 𝑗 (𝜉𝜅𝑘 )

Φ1(𝜉𝜅𝑘 )

⎤⎥⎥⎥⎥⎦1≤ 𝑗 ,𝑘≤𝑛

+
∑

1≤𝑖≤𝑛
det

⎡⎢⎢⎢⎢⎣Δ1/2
𝜆 𝑗

Δ̂1/2
𝜅𝑘

( [𝜆𝑖−1]
[𝜆𝑖+1]

) 𝛿𝑖, 𝑗Φ𝜆 𝑗−𝛿𝑖, 𝑗 (𝜉𝜅𝑘 )

Φ1(𝜉𝜅𝑘 )

⎤⎥⎥⎥⎥⎦1≤ 𝑗 ,𝑘≤𝑛

,

where the restrictions on the summations in i were suppressed in the end since the resulting determinants
vanish manifestly for 𝜆 ∈ Λ(𝑛,𝑚) with 𝜆 + 𝑒𝑖 ∉ Λ(𝑛,𝑚) or with 𝜆 − 𝑒𝑖 ∉ Λ(𝑛,𝑚) , respectively (either
because of a vanishing ith row or because of rows i and 𝑖 − 1 or i and 𝑖 + 1 being linearly dependent).
Upon exploiting the linearity in the ith row, the determinants can be merged pairwise

=
∑

1≤𝑖≤𝑛
det

⎡⎢⎢⎢⎢⎢⎢⎣
Δ1/2
𝜆 𝑗

Δ̂1/2
𝜅𝑘

Φ1 ( 𝜉𝜅𝑘 )2
1−𝛿𝑖, 𝑗

( ( [𝑚−𝜆𝑖 ]
[𝑚+2−𝜆𝑖 ]

) 𝛿𝑖, 𝑗Φ𝜆 𝑗+𝛿𝑖, 𝑗 (𝜉𝜅𝑘 )

+
( [𝜆𝑖−1]
[𝜆𝑖+1]

) 𝛿𝑖, 𝑗Φ𝜆 𝑗−𝛿𝑖, 𝑗 (𝜉𝜅𝑘 )

)⎤⎥⎥⎥⎥⎥⎥⎦1≤ 𝑗 ,𝑘≤𝑛

,

so as to enable invoking of the eigenvalue equations from Theorem 3.2 on each element of the ith row

=
∑

1≤𝑖≤𝑛
det

[
Δ1/2
𝜆 𝑗

Δ̂1/2
𝜅𝑘

(
e
(
𝑥(𝜉𝜅𝑘 )

) ) 𝛿𝑖, 𝑗 Φ𝜆 𝑗 (𝜉𝜅𝑘 )

Φ1(𝜉𝜅𝑘 )

]
1≤ 𝑗 ,𝑘≤𝑛

. (4.18)

By first expanding the latter determinants along the ith row and then interchanging the or-
der of the two summations, a comparison of the result with the expansion of the determinant
det

[
Δ1/2
𝜆 𝑗

Δ̂1/2
𝜅𝑘

Φ𝜆 𝑗 ( 𝜉𝜅𝑘 )

Φ1 ( 𝜉𝜅𝑘 )

]
1≤ 𝑗 ,𝑘≤𝑛

along the kth column readily reveals that Equation (4.18) can be rewrit-
ten as

=

( ∑
1≤𝑘≤𝑛

e
(
𝑥(𝜉𝜅𝑘 )

))
det

[
Δ1/2
𝜆 𝑗

Δ̂1/2
𝜅𝑘

Φ𝜆 𝑗 (𝜉𝜅𝑘 )

Φ1(𝜉𝜅𝑘 )

]
1≤ 𝑗 ,𝑘≤𝑛

,

which settles the proof of the eigenvalue equation (4.17a).
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The proof of the orthogonality relation (4.17b) hinges in turn on Proposition 3.3 and the Cauchy–
Binet formula. Indeed, ∀𝜅, 𝜅 ∈ Λ(𝑚,𝑛) :〈

Ψ (𝑚,𝑛) (𝜉 (𝑚,𝑛)
𝜅

)
,Ψ (𝑚,𝑛) (𝜉 (𝑚,𝑛)

𝜅

)〉
=

∑
𝜆∈Λ(𝑚,𝑛)

Ψ (𝑚,𝑛)
𝜆

(
𝜉 (𝑚,𝑛)
𝜅

)
Ψ (𝑚,𝑛)
𝜆

(
𝜉 (𝑚,𝑛)
𝜅

)
(𝑖)
=

∑
𝑚≥𝜆1> · · ·>𝜆𝑛≥1

det
[
Δ̂1/2

𝜅 𝑗

Φ𝜆𝑘 (𝜉𝜅 𝑗 )

Φ1(𝜉𝜅 𝑗 )
Δ1/2
𝜆𝑘

]
1≤ 𝑗 ,𝑘≤𝑛

det
[
Δ1/2
𝜆 𝑗

Φ𝜆 𝑗 (𝜉𝜅𝑘 )

Φ1(𝜉𝜅𝑘 )
Δ̂1/2

𝜅𝑘

]
1≤ 𝑗 ,𝑘≤𝑛

(𝑖𝑖)
= det!"#

[
Δ̂1/2

𝜅 𝑗

Φ𝑙 (𝜉𝜅 𝑗 )

Φ1(𝜉𝜅 𝑗 )
Δ1/2
𝑙

]
1≤ 𝑗≤𝑛
1≤𝑙≤𝑚

[
Δ1/2
𝑙

Φ𝑙 (𝜉𝜅𝑘 )

Φ1(𝜉𝜅𝑘 )
Δ̂1/2

𝜅𝑘

]
1≤𝑙≤𝑚
1≤𝑘≤𝑛

$%&
(𝑖𝑖𝑖)
= det

[
Δ̂1/2

𝜅 𝑗 Δ̂
1/2
𝜅𝑘

Φ1(𝜉𝜅 𝑗 )Φ1(𝜉𝜅𝑘 )

∑
1≤𝑙≤𝑚

Φ𝑙 (𝜉𝜅 𝑗 )Φ𝑙 (𝜉𝜅𝑘 )Δ 𝑙

]
1≤ 𝑗 ,𝑘≤𝑛

(𝑖𝑣)
= det

[
𝛿𝜅 𝑗 ,𝜅𝑘

]
1≤ 𝑗 ,𝑘≤𝑛

(𝑣)
=

{
1 if 𝜅 = 𝜅,

0 if 𝜅 ≠ 𝜅.

The algorithm to justify the above chain of equalities reads as follows. (i) Use the definitions (4.15b) and
(4.16), where the first matrix was replaced by the transposed and the complex conjugation was omitted
because all functions are real-valued. (ii) Apply the Cauchy–Binet formula. (iii) Perform the matrix
multiplication. (iv) Apply the orthogonality relation of Proposition 3.3. (v) Observe that if 𝜅1 ≠ 𝜅1, then
either all elements in the first row (if 𝜅1 > 𝜅1) or all elements in the first column (if 𝜅1 < 𝜅1) of the
matrix in question are equal to zero; next, if 𝜅1 = 𝜅1, proceed inductively in the dimension. �

The diagonalization of the quantum spin hamiltonian 𝑯 (𝑚) is immediate from Theorem 4.4 via the
isomorphism (4.11).

Corollary 4.5 (Diagonalization of 𝑯 (𝑚) ). In addition to the vacuum all-spins-down state |∅〉 (4.7a) and
the m-particle fully flipped all-spins-up state

| (𝑚, 𝑚 − 1, . . . , 2, 1)〉 =
[
1
0

]
⊗ · · · ⊗

[
1
0

]
︸�������������︷︷�������������︸

𝑚 times

, (4.19a)

which both belong to the kernel of 𝑯 (𝑚) (4.1), orthonormal eigenvectors and corresponding eigenvalues
diagonalizing our quantum spin Hamiltonian in the state space F (𝑚) (4.2a), (4.2b) are given by∑

𝜆∈Λ(𝑚,𝑛)

Ψ (𝑚,𝑛)
𝜆

(
𝜉 (𝑚,𝑛)
𝜅

)
|𝜆〉 and 𝑬 (𝑚,𝑛) (𝜉 (𝑚,𝑛)

𝜅

)
, (4.19b)

with 𝜅 ∈ Λ(𝑚,𝑛) and 0 < 𝑛 < 𝑚.

The monotonicity of the eigenvalues in Theorem 3.2 makes it straightforward to read-off the highest
– and lowest – eigenvalues of 𝑯 (𝑚,𝑛) and 𝑯 (𝑚) from Theorem 4.4 and Corollary 4.5.

Corollary 4.6 (Highest – and lowest – eigenvalues). (i) For 0 < 𝑛 < 𝑚 the highest and lowest eigenvalues
of 𝑯 (𝑚,𝑛) (4.13) in ℓ2(Λ(𝑚,𝑛) ) are given by

𝑬 (𝑚,𝑛) (𝜉 (𝑚,𝑛)
(𝑛,𝑛−1,...,1)

)
=

∑
1≤𝑘≤𝑛

e
(
𝑥(𝜉𝑘 )

)
(4.20a)
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and

𝑬 (𝑚,𝑛) (𝜉 (𝑚,𝑛)
(𝑚,𝑚−1,...,𝑚+1−𝑛)

)
= −

∑
1≤𝑘≤𝑛

e
(
𝑥(𝜉𝑘 )

)
, (4.20b)

respectively.
(ii) The highest and lowest eigenvalues of 𝑯 (𝑚) (4.1) in F (𝑚) are given for m odd by

𝑬 (𝑚, 𝑚+1
2 )

(
𝜉
(𝑚, 𝑚+1

2 )

( 𝑚+1
2 ,...,2,1)

)
= 𝑬 (𝑚, 𝑚−1

2 )
(
𝜉
(𝑚, 𝑚−1

2 )

( 𝑚−1
2 ,...,2,1)

)
=

∑
1≤𝑘≤𝑚−1

2

e
(
𝑥(𝜉𝑘 )

)
(4.21a)

and

𝑬 (𝑚, 𝑚+1
2 )

(
𝜉
(𝑚, 𝑚+1

2 )

(𝑚,𝑚−1,..., 𝑚+1
2 )

)
= 𝑬 (𝑚, 𝑚−1

2 )
(
𝜉
(𝑚, 𝑚−1

2 )

(𝑚,𝑚−1,..., 𝑚+3
2 )

)
= −

∑
1≤𝑘≤𝑚−1

2

e
(
𝑥(𝜉𝑘 )

)
, (4.21b)

respectively, and for m even by

𝑬 (𝑚, 𝑚2 )
(
𝜉
(𝑚, 𝑚2 )

( 𝑚2 ,...,2,1)
)
=

∑
1≤𝑘≤𝑚

2

e
(
𝑥(𝜉𝑘 )

)
(4.22a)

and

𝑬 (𝑚, 𝑚2 )
(
𝜉
(𝑚, 𝑚2 )

(𝑚,𝑚−1,..., 𝑚2 +1)
)
= −

∑
1≤𝑘≤𝑚

2

e
(
𝑥(𝜉𝑘 )

)
, (4.22b)

respectively.

Remark 4.7. The all spins up/down states | (𝑚, 𝑚 − 1, . . . , 2, 1)〉 and |∅〉 are not the only spin states in
the kernel of the spin Hamiltonian 𝑯 (𝑚) . Indeed, since the eigenvalues of the truncated difference Lamé
matrix 𝑳 (𝑚) (3.6b) are distributed symmetrically around the origin (cf. Theorem 3.2), that is,

e
(
𝑥(𝜉𝑘 )

)
+ e

(
𝑥(𝜉𝑚+1−𝑘 )

)
= 0 for 1 ≤ 𝑘 ≤ 𝑚+1

2 ,

it is clear that 𝑬 (𝑚,𝑛)
(
𝜉 (𝑚,𝑛)
𝜅

)
= 0, ∀𝜅 ∈ Λ(𝑚,𝑛) such that 𝜅 𝑗 + 𝜅𝑛+1− 𝑗 = 𝑚 + 1 for 1 ≤ 𝑗 ≤ 𝑛+1

2 .

4.4. On the trigonometric and rational degenerations

The spectral problem for the trigonometric 𝑝 → 0 degeneration of the finite discrete Lamé equation
(3.5) can be conveniently solved for any 𝑔 ∈ (0,∞) in terms of Rogers’ q-ultraspherical polynomials
[DG21, Section 4.2] (cf. also [R90, Section 3C2]). As such, the inhomogeneous isotropic 𝑋𝑌 chain
associated with the pertinent Jacobi matrix works out an example of the exactly solvable quantum spin
models stemming from the Askey scheme of (basic) hypergeometric polynomials, cf. [CNV19, FG20,
GVZ16, GVZ13, JV10, SV11, VZ12]. Indeed, the Hamiltonian of the corresponding trigonometric spin
chain is of the form in 𝑯 (𝑚) (4.1) with (cf. Equation (2.5), (3.4))

j𝑙 →

√
[𝑙]𝑞 [𝑚 − 𝑙]𝑞

[𝑙 + 𝑔]𝑞 [𝑚 − 𝑙 + 𝑔]𝑞
where [𝑧]𝑞 :=

𝑞
𝑧
2 − 𝑞−

𝑧
2

𝑞
1
2 − 𝑞−

1
2

and 𝑞 = 𝑒
2𝜋i

2𝑔+𝑚−1 (4.23)

(for any 𝑔 > 0). Theorem 4.4 and Corollaries 4.5, 4.6 apply verbatim to this case, provided we replace
the eigenvalues and eigenvectors of 𝑳 (𝑚) (3.6b) stemming from Theorem 3.2 by those drawn from
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[DG21, Section 4.2] for the tridiagonal matrix

𝑳 (𝑚) →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 [𝑚−1]𝑞
[𝑚−1+𝑔]𝑞 0 · · · 0

[1]𝑞
[1+𝑔]𝑞 0

. . .
...

0 [2]𝑞
[2+𝑔]𝑞

. . . [2]𝑞
[2+𝑔]𝑞 0

...
. . . 0 [1]𝑞

[1+𝑔]𝑞
0 · · · 0 [𝑚−1]𝑞

[𝑚−1+𝑔]𝑞 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.24)

Concretely, this boils down to performing the following substitutions in Equations (4.15a)–(4.15c) and
Equation (4.16) so as to adapt the input data for Theorem 4.4 and Corollaries 4.5, 4.6 accordingly:

𝜉𝑘 → 𝑔 + 𝑘 − 1, e
(
𝑥(𝜉)

)
→ 𝑞

𝜉
2 + 𝑞−

𝜉
2 , (4.25a)

Δ 𝑙 →
[𝑔 + 𝑙 − 1]𝑞

[𝑔]𝑞

[
𝑚 − 1
𝑙 − 1

]
𝑞

with
[
𝑚 − 1
𝑙 − 1

]
𝑞

:=
∏𝑚−1

𝑗=1 [ 𝑗]𝑞∏𝑙−1
𝑗=1 [ 𝑗]𝑞

∏𝑚−𝑙
𝑗=1 [ 𝑗]𝑞

, (4.25b)

Δ̂ 𝑘 →
Δ 𝑘

N with N :=
𝑚∑
𝑙=1

Δ 𝑙 = 2
∏

1<𝑘<𝑚

��𝑞 𝜉𝑘
2 − 𝑞−

𝜉𝑘
2
��, (4.25c)

and

Φ𝑙 (𝜉) → 𝑞 (𝑙−1)𝑔/2 (𝑞;𝑞)𝑙−1
(𝑞1−𝑚;𝑞)𝑙−1

𝐶𝑙−1

(
1
2 (𝑞

𝜉
2 + 𝑞−

𝜉
2 ); 𝑞𝑔 |𝑞

)
, (4.25d)

where 𝐶𝑙−1 (𝑥; 𝑞𝑔 |𝑞) refers to Rogers’ q-ultraspherical polynomial of degree 𝑙 − 1 in 𝑥 = 1
2 (𝑞

𝜉
2 +

𝑞−
𝜉
2 ) [KLS10, Chapter 14.10.1] (and the normalization factors are expressed in terms of standard q-

Pochhammer symbols).Since the pertinent q-ultraspherical polynomials form a one-parameter subfamily
of the q-Racah polynomials [DV98, Section 5.4], in principle the corresponding spin chain is a special
instance of the inhomogeneous isotropic 𝑋𝑌 chains proposed in [JV10, Section 4.4] (at least formally,
because here we have that |𝑞 | = 1 while in [JV10, Section 4.4] the authors rather pick 0 < 𝑞 < 1).
A reminiscent though not identical reduction of the isotropic 𝑋𝑌 chain associated with the q-Racah
polynomials (also in the regime 0 < 𝑞 < 1) can be found in [VZ12, Section V].

Finally, the rational limit 𝛼 → 0 corresponds in our picture to the limit 𝑔 → ∞ because of the relation
(3.4) between the periods and the coupling parameter. After normalizing properly, the finite discrete
Lamé equation (3.5) degenerates in this limit to the eigenvalue problem for the celebrated Kac–Sylvester
tridiagonal matrix [DG21, Section 4.1]:

𝑳 (𝑚) →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝑚 − 1 0 · · · 0

1 0
. . .

...

0 2
. . . 2 0

...
. . . 0 1

0 · · · 0 𝑚 − 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.26)

The associated inhomogeneous isotropic 𝑋𝑌 chain has a Hamiltonian of the form 𝑯 (𝑚) (4.1) with

j𝑙 →
√
𝑙 (𝑚 − 𝑙). (4.27)
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Hence, this recovers the Krawtchouk chain, a particular inhomogeneous open spin chain that is ubiquitous
in the literature as a toy model for the transfer of qubit states through quantum wires, cf., for example,
[A-E04, B07, BV17, CV10, GS18, K10, NPL03, VZ12] and references therein. The corresponding
substitutions adapting the formulas of Theorem 4.4 and Corollaries 4.5, 4.6 to the present case read (cf.
[DG21, Section 4.1]):

𝜉𝑘 → 𝑚 + 1 − 2𝑘, e
(
𝑥(𝜉)

)
→ 𝜉, Φ𝑙 (𝜉𝑘 ) → 𝐾𝑙−1(𝑘 − 1; 1

2 , 𝑚 − 1), (4.28a)

and

Δ 𝑙 →

(
𝑚 − 1
𝑙 − 1

)
, Δ̂ 𝑘 →

1
2𝑚−1

(
𝑚 − 1
𝑘 − 1

)
, (4.28b)

where 𝐾𝑙−1(𝑥; 1
2 , 𝑚 − 1) denotes the Krawtchouk polynomial of degree 𝑙 − 1 in x at the parameter value

𝑝 = 1
2 [KLS10, Chapter 9.11].

Acknowledgements. Helpful feedback from the anonymous referees is gratefully acknowledged.

Competing interests. The author has no competing interest to declare.

Funding statement. Work supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant
# 1210015.

References

[A-E04] C. Albanese, M. Christandl, N. Datta and A. Ekert, ‘Mirror inversion of quantum states in linear registers’, Phys. Rev.
Lett. 93(23) (2004), 230502.

[B07] S. Bose, ‘Quantum communication through spin chain dynamics: An introductory overview’, Contemp. Phys. 48(1)
(2007), 13–30.

[BV17] E.-O. Bossé and L. Vinet, ‘Coherent transport in photonic lattices: A survey of recent analytic results’, SIGMA Symmetry
Integrability Geom. Methods Appl. 13 (2017), 074.

[CV10] R. Chakrabarti and J. Van der Jeugt, ‘Quantum communication through a spin chain with interaction determined by a
Jacobi matrix’, J. Phys. A: Math. Theor. 43(8) (2010), 085302.

[CNV19] N. Crampé, R. I. Nepomechie and L. Vinet, ‘Free-fermion entanglement and orthogonal polynomials’, J. Stat. Mech.:
Theory Exp. 2019(9) (2019), 093101.

[DG21] J.F. van Diejen and T. Görbe, ‘Elliptic Kac–Sylvester matrix from difference Lamé equation’, Ann. Henri Poincaré
23(1) (2022), 49–65.

[DV98] J. F. van Diejen and L. Vinet, ‘The quantum dynamics of the compactified trigonometric Ruijsenaars–Schneider model’,
Comm. Math. Phys. 197(1) (1998), 33–74.

[D-F23] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl and M. A. McClain (eds.) NIST Digital Library of Mathematical Functions, Release 1.1.11 of
2023-09-15, https://dlmf.nist.gov/.

[FV96] G. Felder and A. Varchenko, ‘Algebraic Bethe ansatz for the elliptic quantum group 𝐸𝜏,𝜂 (sl2)’, Nuclear Phys. B 480(2)
(1996), 485–503.

[FG20] F. Finkel and A. González-López, ‘Inhomogeneous XX spin chains and quasi-exactly solvable models’, J. Stat. Mech.:
Theory Exp. 2020(9) (2020), 093105.

[GR04] G. Gasper and M. Rahman, Basic Hypergeometric Series, second edn., Encyclopedia of Mathematics and its Applica-
tions, vol. 96 (Cambridge University Press, Cambridge, 2004).

[GVZ16] V. X. Genest, L. Vinet and A. Zhedanov, ‘Quantum spin chains with fractional revival’, Ann. Physics 371 (2016),
348–367.

[GS18] K. Groenland and K. Schoutens, ‘Many-body strategies for multiqubit gates: Quantum control through Krawtchouk-
chain dynamics’, Phys. Rev. A 97(4) (2018), 042321.

[GVZ13] F. A. Grünbaum, L. Vinet and A. Zhedanov, ‘Birth and death processes and quantum spin chains’, J. Math. Phys. 54(6)
(2013), 062101.

[HSS12] E. Hamza, R. Sims and G. Stolz, ‘Dynamical localization in disordered quantum spin systems’, Comm. Math. Phys.
315(1) (2012), 215–239.

[I23] V. Inozemtsev, Integrable Many-Particle Systems (World Scientific, Hackensack, NJ, 2023).
[JV10] E. I. Jafarov and J. Van der Jeugt, ‘Quantum state transfer in spin chains with 𝑞-deformed interaction terms’, J. Phys.

A: Math. Theor. 43(40) (2010), 405301.

https://doi.org/10.1017/fms.2024.88 Published online by Cambridge University Press

https://dlmf.nist.gov/
https://doi.org/10.1017/fms.2024.88


20 J. F. van Diejen

[K10] A. Kay, ‘A review of perfect, efficient, state transfer and its application as a constructive tool’, International Journal of
Quantum Information 8(4) (2010), 641–676.

[KL22] R. Klabbers and J. Lamers, ‘How coordinate Bethe ansatz works for Inozemtsev model’, Comm. Math. Phys. 390(2)
(2022), 827–905.

[KLS10] R. Koekoek, P. A. Lesky and R. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer
Monographs in Mathematics (Springer-Verlag, Berlin, 2010).

[KZ95] I.M. Krichever and A. Zabrodin, ‘Spin generalization of the Ruijsenaars–Schneider model, the non-abelian 2𝐷 Toda
chain, and representations of the Sklyanin algebra’, Russian Math. Surveys 50(6) (1995), 1101–1150.

[L89] D. Lawden, Elliptic Functions and Applications, Applied Mathematical Sciences, vol. 80 (Springer-Verlag, New York,
1989).

[LSM61] E. Lieb, T. Schultz and D. Mattis, ‘Two soluble models of an antiferromagnetic chain’, Ann. Physics 16(3) (1961),
407–466.

[NPL03] G.M. Nikolopoulos, D. Petrosyan and P. Lambropoulos, ‘Coherent electron wavepacket propagation and entanglement
in array of coupled quantum dots’, Europhys. Lett. 65(3) (2004), 297–303.

[R04] H. Rosengren, ‘Sklyanin invariant integration’, Int. Math. Res. Not. IMRN 2004(60) (2004), 3207–3232.
[R90] S. N. M. Ruijsenaars, ‘Finite-dimensional soliton systems’, In Integrable and Superintegrable Systems (World Scientific,

Singapore, 1990), 165–206.
[R99a] S. N. M. Ruijsenaars, ‘Systems of Calogero–Moser type’, In Particles and Fields, CRM Series in Mathematical Physics

(Springer, New York, 1999), 251–352.
[R99b] S. N. M. Ruijsenaars, ‘Generalized Lamé functions. I. The elliptic case’, J. Math. Phys. 40(3) (1999), 1595–1626.
[R99c] S. N. M. Ruijsenaars, ‘Relativistic Lamé functions: the special case 𝑔 = 2’, J. Phys. A: Math. Gen. 32(9) (1999),

1737–1772.
[S83] E. K. Sklyanin, ‘Some algebraic structures connected with the Yang–Baxter equation. Representations of quantum

algebras’, Functional Anal. Appl. 17(4) (1983), 273–284.
[SV11] N. I. Stoilova and J. Van der Jeugt, ‘An exactly solvable spin chain related to Hahn polynomials’, SIGMA Symmetry

Integrability Geom. Methods Appl. 7 (2011), 033.
[VZ12] L. Vinet and A. Zhedanov, ‘How to construct spin chains with perfect state transfer’, Phys. Rev. A 85(1) (2012), 012323.
[W78] H. S. Wilf, Mathematics for the Physical Sciences (Dover Publications, Inc., New York, 1978).
[W17] P. Woit, Quantum Theory, Groups and Representations. An Introduction, (Springer-Verlag, Cham, 2017).

https://doi.org/10.1017/fms.2024.88 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.88

	1 Introduction
	2 Difference Lamé equation
	2.1 Elliptic numbers
	2.2 Single-gap wave functions
	2.3 On the spectral parametrization of the node

	3 Finite-dimensional reduction
	3.1 Smooth periodic wave functions
	3.2 Truncated discretization
	3.3 Orthogonality

	4 Isotropic XY chain
	4.1 Hamiltonian
	4.2 n-particle Hamiltonian
	4.3 Spectrum and orthonormal eigenbasis
	4.4 On the trigonometric and rational degenerations

	References

