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In a two-dimensional plane, entire solutions of the Allen–Cahn type equation with a
finite Morse index necessarily have finite ends. In the case that the nonlinearity is a
sine function, all the finite-end solutions have been classified. However, for the
classical Allen–Cahn nonlinearity, the structure of the moduli space of these solutions
remains unknown. We construct in this paper new finite-end solutions to the
Allen–Cahn equation, which will be called fence of saddle solutions, by gluing saddle
solutions together. Our construction can be generalized to the case of gluing multiple
four-end solutions, with some of their ends being almost parallel.
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1. Introduction and statement of main results

The Allen–Cahn equation

−∆u = u− u3, in Rn, (1.1)

is a semilinear elliptic equation arising from the phase transition phenomenon.
Although it takes a quite simple form, many questions remain to be answered for
this equation. The famous De Giorgi conjecture is concerned with the classification
of bounded, monotone solutions of the Allen–Cahn equation. Many important works
have been performed, and considerable progress has been achieved towards solving
this conjecture. It is now known that the conjecture is true in dimension two and for
dimension between three and eight under an additional assumption on its limit in
the monotone direction. It is also known that there are nontrivial counter examples
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when dimension n > 8. We refer to [1, 2–5, 11, 12, 15, 20, 25, 29, 30] and the
references cited there for an incomplete list of results for this subject.

Monotone bounded solutions are automatically stable in the sense that the second
variation of its energy functional is always non-negative. It is therefore natural to
classify the stable or finite Morse index solutions of the Allen–Cahn equation. This
problem turns out to be quite complicated. Even in dimension two, the whole
picture is still not completely understood and only partial results are available. We
now know that in R2, finite Morse index solutions must have finitely many ends,
and the converse is also true([31]). By definition, a solution is called finite-end(or
multiple-end), if outside a large ball, its zero set is asymptotic to finitely many, say
2k, half straight lines at infinity. It is also called 2k -end solution.

The Allen–Cahn nonlinearity on the right hand side of (1.1) is a special case of
the derivative of a double well potential. For these more general nonlinearities, we
will call the equation Allen–Cahn type. In [26], for the elliptic sine-Gordon equation,
which is also an Allen–Cahn type equation with sinu nonlinearity, all the finite-
end solutions have been classified and all these solutions have explicit expressions.
Recently, this classification result was used in [7] to compute the p-width of the
round sphere. We also refer to [6, 13, 14, 16] and the references therein for the
application of Allen–Cahn equation to the study of minimal surfaces. We emphasize
that the method used in [26] is based on the integrable system theory and is not
applicable for the Allen–Cahn nonlinearity u−u3. Hence, it is desirable to find pure
partial differential equation methods to construct or classify finite-end solutions of
the Allen–Cahn type equations.

Recall that for any unit vector a ∈R2 and b ∈ R, the function H (a · x+ b) is a
monotone solution of (1.1), where H is the heteroclinic solution:

−H ′′ = H −H3, H (0) = 0,H (t) → ±1, as t→ ±∞.

This is a family of examples of 2-end solutions. Indeed, they are the only monotone
bounded solutions in dimension two, and all the 2-end solutions belong to this
family. As for four-end solutions, a classical example is the so-called saddle solution.
Its nodal set consists of two orthogonal straight lines and can be obtained using
the variational method, see [8]. The variational construction can be generalized to
obtain solutions having dihedral symmetry, which yields solutions whose zero sets
consist of finitely many straight lines intersecting at the origin and making equal
angles between consecutive lines.

There are other multiple-end solutions. It was proven in [10] that there exists
an abundance of solutions whose nodal curves are governed by the solutions of the
Toda system. Their ends are almost parallel, and their Morse indices coincide with
that of the Toda system. In particular, there is a family of four-end solutions whose
nodal set consists of two curves, which are far away from each other. Moreover,
the solutions behave like the heteroclinic solution in the direction orthogonal to
the nodal curves. In [22, 23], we have shown that indeed the saddle solution can be
deformed through a family of four-end solutions to the ones with almost parallel
ends. Later, it is proved [19] that these four-end solutions can also be obtained by
mountain pass theorem.
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Fence of saddle solutions of the Allen–Cahn equation 3

The proof in [22, 23] used in an essential way the moduli space theory of the finite-
end solutions, developed in [9]. This theory tells us that for each fixed even integer
2k > 0, around a nondegenerated 2k -end solution, the set of 2k -end solutions is
locally a 2k -dimensional manifold. While the full classification of this moduli space
seems to be difficult, we know that there is a balancing formula (see the Appendix
of [9]) for the direction of the ends, which impose some restriction on the ends
of the solutions. This balancing formula generalizes the Hamiltonian identity of
Gui [17].

It is a general philosophy that gluing construction provides solutions near the
‘boundary’ of the moduli spaces of solutions. In this paper, we would like to con-
struct new finite-end solutions, which will be called fence of saddle solutions. The
name is indeed borrowed from a family of minimal surfaces called fence of saddle
towers first constructed by Karcher ([21], section 4.2). The idea of our construction
is to juxtapose two saddle solutions along the x axis and glue them together. The
distance between these two saddle solutions is sufficiently large.

Our main result can be stated in the following

Theorem 1.1 For each ε> 0 small, there exist a six-end solutions uε, which is
odd with respect to the x axis and even with respect to the y axis. Its nodal set
consists of three curves: the x axis and the graphs of the functions x = ±fε (y) ,
where ‖f ′ε‖L∞(R) → 0 and miny∈R |fε (y)| → +∞, as ε→ 0.

We point out that an end-to-end construction of multiple-end solutions has been
carried out in [24]. That construction enables us to glue k(k + 1)/2 number of
four-end solutions together. The nodal set of the solutions can be regarded as
a desingularization of the configuration of k lines in generic position, where any
pair of lines are non-parallel. The resulted solutions have 2k ends. In contrast,
theorem 1.1 can be regarded as a desingularization of the configuration of three
lines, two of which are parallel, and the third one is orthogonal to them, therefore
not in a generic position.

The construction in this paper is not a straightforward generalization of the
results in [24]. As a matter of fact, to deal with this configuration of parallel lines,
we will use the Cauchy data matching method. More precisely, due to the strong
interaction between the two parallel lines, we need to deal with the gluing problem
in an inner region and in an outer region. In these two different regions, we use
different methods to construct the local solutions and finally match their boundary
data together. The Cauchy data matching argument we use here is in spirit similar
to the one used in [27, 28], where constant mean curvature surfaces are constructed.

Our method can be generalized to configurations with more lines, some of which
are parallel. In this general case, one needs to use the linear theory of the general
four-end solutions. Given a four-end solution u, the functions ux, uy, uθ are in the
kernel of the linearized operator of the Allen–Cahn equation around u. Here, ux, uy,
uθ represent the derivative of u with respect to x, y direction and the θ variable,
which is the angle with respect to the origin. Note that ux, uy are bounded. But
uθ is not bounded and grows linearly around each end. It turns out that the fourth
element in the kernel plays an important role in the construction. It has been proven
in [18] that any four-end solution is even symmetric with respect to two orthogonal
lines. Therefore, we can work in the even symmetry space. By the results in [22, 23]
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mentioned above, we know that modulo rigid motions the moduli space of four-end
solutions constitutes a one parameter family which is diffeomorphic to R. Let us
denote them by u (·, s) , s ∈ R. Then, us is also in the kernel of linearized Allen–Cahn
operator. As the parameter s varies, the angle of the solutions (the angle between
the end in the first quadrant and the x axis) goes from 0 to π

2 , but not necessary
monotone increasing. This implies that although a priori it may happen that us
is bounded, actually, there exists an abundance of s for which us is unbounded
and has linear growth at infinity. Indeed, it is natural to conjecture that for any s,
us(, s) is unbounded and has linear growth at each end. To date, since the angle
map is analytic with respect to the parameter s, we at least know that there exists
a set consisting of finitely many angles θ1, ..., θn, such that us is unbounded if the
angle of u is not equal to any of these θi.We can then prove that for a configuration
of finitely many lines whose angles avoid the above mentioned set, and for some of
which may be parallel to each other, we can carry out our construction.

The paper is organized as follows. In § 2, we recall the linear theory for the lin-
earized Allen–Cahn operator around a four-end solution. In § 3, construct solutions
in the inner region. Then in § 4, we treat the outer region. Finally in § 5, we match
the Cauchy data on the common boundary of the inner and outer regions to obtain
an entire solution.

2. The linearized operator around a four-end solution

In this section, we recall some results about the four-end solutions and the moduli
space theory developed in [9] for the Allen–Cahn equation. Although our main
theorem mentioned in the first section only deals with the gluing construction of
saddle solution, which is a special four-end solution, our method can be used to
construct similar solutions for more general four-end solutions.

An oriented affine line λ ⊂ R2 can be uniquely written as

λ := r e⊥ + R e,

for some r ∈ R and some unit vector e ∈ S1, which defines the orientation of λ.
Here, ⊥ denotes the clockwise rotation by π/2 in R2. Hence, the set of oriented
affine lines can be parametrized by r and e. Writing e = (cos θ, sin θ), we get the
usual coordinates (r, θ), which allow us to identify the set of oriented affine lines
with R× S1.

Assume that we are given four oriented affine lines λ1, . . . , λ4 ⊂ R2, which are
defined by

λj := rj e
⊥
j + R ej

and assume that these oriented affine lines have corresponding angles θ1, . . . , θ4
satisfying

θ1 < θ2 < θ3 < θ4 < 2π + θ1.

In this case, we will say that the four oriented affine lines are ordered and we will
denote by Λ4 the set of four oriented affine lines. It is easy to check that for all
R> 0 large enough and for all j = 1, . . . , 4, there exists sj ∈ R such that
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(i) The point rj e
⊥
j + sj ej belongs to the circle ∂BR.

(ii) The half affine lines

λ+j := rj e
⊥
j + sj ej + R+ ej (2.1)

are disjoint and included in R2 −BR.
(iii) The minimum of the distance between two distinct half affine lines λ+i and

λ+j is larger than 4.

The set of half affine lines λ+1 , . . . , λ
+
4 together with the circle ∂BR induces a

decomposition of R2 into five slightly overlapping connected components

R2 = Ω0 ∪ Ω1 ∪ . . . ∪ Ω4,

where Ω0 := BR+1 and

Ωj :=
(
R2 −BR−1

)
∩
{
x ∈ R2 : dist(x, λ+j ) < dist(x, λ+i ) + 2, ∀i 6= j

}
,

for j = 1, . . . , 4. Here, dist(·, λ+j ) denotes the distance to λ+j . Observe that, for all

j = 1, . . . , 4, the set Ωj contains the half affine line λ+j .

Let I0, I1, . . . , I4 be a smooth partition of unity of R2, which is subordinate to
the above decomposition. Hence,

4∑
j=0

Ij ≡ 1,

and the support of Ij is included in Ωj . Without loss of generality, we can assume
that I0 ≡ 1 in

Ω′
0 := BR−1

and Ij ≡ 1 in

Ω′
j :=

(
R2 −BR−1

)
∩
{
x ∈ R2 : dist(x, λ+j ) < dist(x, λ+i )− 2, ∀i 6= j

}
,

for j = 1, . . . , 4. Finally, without loss of generality, we can assume that

‖Ij‖C2(R2) ≤ C.

With these notations at hand, one can define

uλ :=
4∑

j=1

(−1)j Ij H(dists( · , λj)),

where λ := (λ1, . . . , λ4) and

dists(x, λj) := x · e⊥j − rj

denotes the signed distance from a point x ∈ R2 to λj.
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Observe that, by construction, the function uλ is, away from a compact set and
up to a sign, asymptotic to copies of the heteroclinic solution with ends λ+1 , . . . , λ

+
4 .

Let S4 denote the set of functions u, which are defined in R2 and satisfy

u− uλ ∈W 2,2 (R2),

for some ordered set of oriented affine lines λ1, . . . , λ4 ⊂ R2.

Definition 2.1. The set M4 is defined to be the set of solutions u of (1.1), which
belong to S4. A function in M4 will be called a four-end solution.

Letting

λ = (λ1, . . . , λ4) ∈ Λ4,

we write λ+j = xj + R+ ej as in (2.1). Given γ, δ ∈ R, we define a positive weight
function Γγ,δ by

Γγ,δ(x) := I0(x) +
4∑

j=1

Ij(x) eγ (x−xj)·ej
(
cosh((x− xj) · e⊥j )

)δ
, (2.2)

so that, by construction, γ is the rate of decay or blow up along the half lines λ+j
and δ is the rate of decay or blow up in the direction orthogonal to λ+j .

With this definition in mind, we define the weighted Lebesgue space

L2
γ,δ(R2) :=

{
Γγ,δ · u | u ∈ L2(R2)

}
and the weighted Sobolev space

W 2,2
γ,δ (R

2) :=
{
Γγ,δ · u | u ∈W 2,2(R2)

}
.

If φ ∈ L2
γ,δ(R2), then its norm is naturally defined to be

‖φ‖L2
γ,δ

(R2) :=

∥∥∥∥ φ

Γγ,δ

∥∥∥∥
L2(R2)

.

Observe that the partition of unity, the weight function, and the induced weighted
spaces all depend on the choice of λ ∈ Λ4. Therefore, it depends on the four-end
solution.

One important result is that if u is a solution of (1.1), which is close to uλ (in
W 2,2 topology), then u− uλ tends to 0 exponentially fast at infinity.

Proposition 2.2 (Refined Asymptotics, [9], theorem 2.1). Assume that u ∈ S4

is a solution of (1.1) and defined by λ ∈ Λ4, such that

u− uλ ∈W 2,2(R2).

Then, there exist δ ∈ (−
√
2, 0) and γ < 0 such that

u− uλ ∈W 2,2
γ,δ (R

2).
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More precisely, δ < 0 and γ < 0 can be chosen such that

γ ∈ (−µ1, 0), γ2 + δ2 < 2, −
√
2 < δ + γ cot θλ,

where θλ is equal to the half of the minimum of the angles between two consecutive

oriented affine lines λ1, . . . , λ4 and µ1 =
√

3
2 is the square root of the second eigen-

value of the linearized operator around the one-dimensional heteroclinic solution.
Note that in the case of more general double well potential, the second eigenvalue
does not have an explicit form (except the elliptic sine-Gordon case).

We shall define the linearized Allen–Cahn operator

Luφ := −∆φ+
(
3u2 − 1

)
φ.

Introduce the notation

si := (x− xi) · ei, ti := (x− xi) · e⊥i .

This means that si is the coordinate along the i -th end and ti is the coordinate in
the orthogonal direction of the i -th end. Let D be the deficiency space, which is an
eight-dimensional space defined by

D := span {du (Xi) , du (Yi) , i = 1, ..., 4} ,

where the vector fields Xi, Yi are given by

Xi = Ii(x)e⊥i , Yi = Ii(x)
(
sie

⊥
i − tiei

)
. (2.3)

Roughly speaking, at the main order, functions in D have the form c1H
′ (ti) +

c2siH
′ (ti) for some constants c1 and c2 around each end. The linear decomposition

lemma (lemma 6.2 of [9]) implies that Lu is a surjective operator when it is regarded
as an operator from W 2,2

γ,δ

(
R2
)
⊕D to L2

γ,δ

(
R2
)
for γ ∈ (γ0, 0) , δ ∈ (δ0, 0) , if |γ0|

and |δ0| are small. Moreover, it is a Fredholm operator. Duality arguments show
that its index equals 4, which is equal to half of the dimension of the deficiency
space D.

There is special four-end solution called saddle solution, which will be denoted
by U. It is the unique bounded solution on the plane which has the same sign as
the function xy. The existence of saddle solution is established in [8]. Applying
proposition 2.2, we obtain

|U (x, y)−H (y)| ≤ Cγ0,δ0
eγ0|x|+δ0|y|, for x > |y| , (2.4)

where γ0, δ0 are negative constants satisfying the following conditions:

γ0 > −
√

3

2
, γ0 + δ0 > −

√
2.

Observe that for the saddle solution, the angle between two consecutive ends is
equal to π/2. Hence, the above conditions are actually equivalent to the condition
on γ, δ that appeared in Proposition 2.2.
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To make things more explicit, we assume that for U, the direction of its first end
is e1 = (1, 0) . We can also assume that the functions Ii appeared in (2.3) satisfy

I1 (x, y) = I1 (x,−y) , I3 (x, y) = I3 (x,−y) , I2 (x, y) = I4 (x,−y) .

With these properties, the function Γγ,δ defined by (2.2) will be even in the y
variable.

Since we would like to construct solutions which are odd in the y variable, for
j = 0, 1, 2, and µ ∈ (0, 1) , we introduce the weighted Holder space

Cj,µ
γ,δ

(
R2

od

)
:=
{
Γγ,δ · φ : φ ∈ Cj,µ

(
R2
)
, φ (x, y) = −φ (x,−y)

}
.

That is, the subscript od means odd in the y variable. With this notation, when
γ, δ are negative, functions in this space will decay in exponential rate. For function
η ∈ Cj,µ

γ,δ

(
R2

od

)
, its norm is defined to be

‖η‖
C
j,µ
γ,δ

(
R2
od

) :=

∥∥∥∥ η

Γγ,δ

∥∥∥∥
Cj,µ

(
R2

) .

In the rest of the paper, there are various places where we will consider weighted
spaces with the suitable decay rate along the end or orthogonal ends. It will be
helpful to remind that actually, we can indeed fix γ and δ to be negative and very
close to zero. However, it is also worth pointing out that in different places, the
requirement to be imposed on γ or δ to ensure the validity of the corresponding
estimates and mapping properties of the operators could be different, and in some
of these places, we have provided the more precise range for these constants γ, δ
(for instance, in equation (2.5) of the next lemma).

Now, we also define the one-dimensional deficiency space

D := span {dU (Y2 − Y4)} .

Note that the function dU (Y2 − Y4) is odd in y and behaves like cyH ′ (x) along
the y direction, for some constant c 6=0.

Lemma 2.3. Suppose γ, δ < 0, and

|γ| ∈

(
0,

√
3

2

)
, γ2 + δ2 < 2. (2.5)

Then, the map

LU : C2,µ
γ,δ

(
R2

od

)
⊕D → C0,µ

γ,δ

(
R2

od

)
is an isomorphism.

Before proceeding to the proof, let us explain why we need this lemma. As we
can see in proposition 6.1 of [9], the linearized operator has already been proved to
be surjective in suitable weighted Sobolev spaces. However, to handle the nonlinear
terms appearing in solving the nonlinear problems of the later sections, we need to
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use the Holder spaces to close the loop of fixed point argument, instead of using
the global L2 spaces which have less regularity properties.

Proof. Let γ, δ be the constants satisfying (2.5). It follows from the linear
decomposition lemma (proposition 6.1 of [9]) that the Fredholm operator

LU :W 2,2
γ,δ (R

2
od)⊕D ⊕ span {dU (X2 −X4)} → L2

γ,δ(R2
od) (2.6)

is surjective. Indeed, we can consider those functions with odd symmetry in the y
variable. The operator is injective in exponentially decaying spaces. Hence, duality
argument tells us that it is surjective in exponentially growing (with small rate)
weighted spaces. Linear decomposition lemma tells us that LU with the domain
given in (2.6) is surjective. We also known that the index of LU is equal to 1.

Note that ∂xU is in the kernel of LU . Moreover, there exists a constant c such
that

dU (X2 −X4)− c∂xU ∈W 1,2
γ,δ (R

2
od).

Therefore,

LU :W 2,2
γ,δ (R

2
od)⊕D → L2

γ,δ(R2
od) (2.7)

is an isomorphism.
For each m > 0, let χm be a cutoff function such that

χm (x, y) =

{
0, for x2 + y2 > (m+ 1)

2
,

1, for x2 + y2 < m2.

Let ϕ ∈ C0,µ
γ,δ

(
R2

od

)
, normalized such that

‖ϕ‖
C
0,µ
γ,δ

(
R2
od

) = 1.

We introduce the compactly supported function ϕm := ϕχm. Then, ϕm ∈
L2
γ,δ(R2

od). According to (2.7), there exists gm ∈W 2,2
γ,δ (R2

od)⊕D such that

LUgm = ϕm.

Elliptic regularity implies that

gm ∈ C2,µ
γ,δ

(
R2

od

)
⊕D. (2.8)

We would like to show that

‖gm‖
C
2,µ
γ,δ

(
R2
od

)
⊕D

≤ C ‖ϕχm‖
C
0,µ
γ,δ

(
R2
od

) , (2.9)

where C is independent of m. Once this is proved, then as m tends to +∞, gm will
converge in C2,µ

γ,δ

(
R2

od

)
⊕D to a solution g of the equation LUg = ϕ and then the

map

LU : C2,µ
γ,δ

(
R2

od

)
⊕D → C0,µ

γ,δ

(
R2

od

)
will be an isomorphism.
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Suppose to the contrary that (2.9) was not true. Then there was a subsequence,
still denoted by gm, such that

Am := ‖gm‖
C
2,µ
γ,δ

(
R2
od

)
⊕D

→ +∞.

Let us define the normalized functions

g̃m :=
gm
Am

, ϕ̃m :=
ϕχm

Am
.

In view of (2.8), the normalized function g̃m can be decomposed into the following
form:

g̃m = fm + αmdU (Y2 − Y4) ,

where fm ∈ C2,µ
γ,δ

(
R2

od

)
and αm ∈ R.

Since the norm of g̃m is equal to 1, αm together with the norm of fm is uniformly
bounded from above. We now claim that αm converges to zero asm tends to infinity.
Indeed, if this were not true, then using the equation

LU g̃m = ϕ̃m,

we find that g̃m will converge to a solution g̃ of the equation LU g̃ = 0. Moreover,
since αm is assumed to be bounded away from zero, g̃ will grow linearly in the y
direction. Note that g̃ is also odd in the y variable. But linearly growing kernels
of the linearized operator around the saddle solution are well understood, if such
a kernel is odd in y, then it has be to 0 (this follows from the analysis in [22, 23]).
This is a contradiction, and the claim is thus proved.

Now, we have

LUfm = ϕ̃m − αmLU [dU (Y2 − Y4)] .

Let (xm, ym) be a point where

fm (xm, ym)

Γγ,δ (xm, ym)
≥ 1

2

∥∥∥∥ fmΓγ,δ

∥∥∥∥
L∞

(
R2

) .

Note that the right-hand side is bounded away from zero uniformly in m.We define
functions

Wm (x, y) :=
fm (xm + x, ym + y)

Γγ,δ (xm, ym)
.

There are several possibilities.
Case 1. As m→ +∞, there hold xm → +∞, ym → +∞, and xm ≤ ym.
In this case, the point (xm, ym) will be far away from the ends, and hence,

|U (xm, ym)| → 1. Note that Wm satisfies the equation

−∆Wm +
(
3U2 (x+ xm, y + ym)− 1

)
Wm =

ϕ̃m − αmLU [dU (Y2 − Y4)]

Γγ,δ (xm, ym)
,
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where the function in the right-hand side is evaluated at (x + xm, y + ym). Now
using the fact that the weighted norm of both ϕ̃m and αm tends to zero, we deduce
that Wm will converge to a solution W∞ satisfying

−∆W∞ + 2W∞ = 0. (2.10)

Moreover, by the definition of Wm, we have ‖W∞‖L∞(R2) > 0. On the other hand,
since the weighted norm of fm is uniformly bounded, then using the asymptotic
behaviour of the weight function Γγ,δ, there holds

|W∞ (x, y)| ≤ Ceδx+γy. (2.11)

But under assumption (2.5), solution of (2.10) satisfying (2.11) has to be identically
zero (this can be proved using Fourier transform on the equation satisfied by the
function e−γx−δyW∞ (x, y)). This is a contradiction.

Case 2. As m→ +∞, |xm| is uniformly bounded, and ym → +∞.
In this case, up to a subsequence, for some constant c0, the translated function

U(x + xm, y + ym) will converge to the function heteroclinic solution H(x + c0).
Therefore, Wm will converge to a solution W̄∞ satisfying

−∆W̄∞ +
(
3H (x+ c0)

2 − 1
)
W̄∞ = 0.

Similarly, as before,
∥∥W̄∞

∥∥
L∞(R2) > 0 and

∣∣W̄∞ (x, y)
∣∣ ≤ Ceγy.

Using the assumption that |γ| ∈
(
0,
√

3
2

)
, we can deduce (still using Fourier

transform) W̄∞ = 0. This is a contradiction.
The other cases can be similarly treated. �

3. Family of solutions in the inner region

Let ε> 0 be a small parameter. As we have already mentioned in the first section,
our aim in this paper is to construct a six-end solution uε, which will be called a
fence of saddle solution, by gluing two saddle solutions together.

The solution uε will look like two saddle solutions juxtaposed along the x axis. It
will be even symmetric with respect to the y axis and odd with respect to the x axis.
The distance between the two saddle solutions will be large. It is worth pointing
out that to make this construction possible, we need to slightly translate and rotate
the vertical (y direction) ends of these two saddle solutions, thus eventually making
a small angle between these ‘almost’ vertical ends.

To describe uε in a more precise way, let F be the unique even solution with
F (0) = −1, solving the equation:

F ′′ + 12
√
2e2

√
2F = 0. (3.1)
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12 Y. Liu and Y. Zhang

We define

F̃ (y) := F (εy) +

√
2

2
ln ε. (3.2)

Note that F̃ solves the same equation as F.
Before proceeding, let us briefly explain why we need to introduce this function

F. Indeed, the equation satisfied by F is the simplest case of the so-called Toda
system. The Toda system plays an important role in the analysis of Allen–Cahn
equation. As we have mentioned in § 1, in [10], families of multiple-end solutions of
the Allen–Cahn equation have been constructed from the Toda system. The nodal
sets of these solutions are very close to graphs of solutions of the Toda system.
More details in this respect with be discussed in the next section. It is also worth
mentioning that in dimensions larger than 2, nontrivial solutions of the Allen–Cahn
equation can also be constructed from suitable minimal surfaces. In the case of two-
dimensional planes, minimal surfaces are simply straight lines, and the graph of F
does converge to half straight lines at infinity.

We now introduce the constant

d1 ∈

(
0,

√
2

4

)
,

which is assumed to be independent of ε. Define an even function f̃ such that

f̃ (y) :=

{
F̃ (0) , for |y| ≤ d1 |ln ε| ,
F̃ (y − d1 |ln ε|) , for y > d1 |ln ε| .

When the parameter ε> 0 is small,

f̃ (0) = F (0) +

√
2

2
ln ε << 0. (3.3)

The nodal set of uε will then be close, in suitable sense, to the union of the
graphs of ±f̃ and the x axis. That is,

{
(x, y) : x = f̃ (y)

}
∪
{
(x, y) : x = −f̃ (y)

}
∪ {(x, y) : y = 0} .

Around the point
(
±f̃ (0) , 0

)
, uε will resemble −U or U. Moreover, for |y|

large, around the graphs of ±f̃ , the solution uε will look like the one-dimensional
heteroclinic solution H in the direction orthogonal to the graphs.

We will use the Cauchy data matching method developed in the context of con-
stant mean curvature surfaces case in [27, 28]. This method is well suited for our
problem, because the solutions of the inner and outer regions act differently and it
is more convenient to deal with these two parts separately.
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Fence of saddle solutions of the Allen–Cahn equation 13

Before proceeding to the details, let us briefly sketch the main steps of the proof.
In the first step, we construct a family of solutions in the inner region

Ω := {(x, y) : |y| < d1 |ln ε|} , (3.4)

with suitable boundary data on ∂Ω. This step uses the nondegeneracy of U in an
essential way and is a finite dimensional Lyapunov–Schmidt reduction.

In the second step, we construct a family of solutions in the outer region

Λ := {(x, y) : |y| > d1 |ln ε|} ,

again with suitable boundary data on ∂Λ. This is an infinite dimensional
Lyapunov–Schmidt reduction argument.

In the third step, we show that there exist certain boundary data in the inner
region and outer region, such that the corresponding solutions will match with each
other up to C 1 on the boundary. By the elliptic nature of the equation, this then
yields a smooth entire solution of the Allen–Cahn equation.

3.1. Mapping properties of the linearized operators for the inner region

Recall that H is the one-dimensional heteroclinic solution of the Allen–Cahn equa-
tion. Let us use Π to denote the L2-projection onto the the space spanned by H

′

and use Π⊥ to denote the projection onto the orthogonal space of H ′. That is, for
η ∈ L2 (R) ,

Πη :=

∫
R ηH

′ds∫
RH

′2ds
H ′, Π⊥η := η −Πη. (3.5)

We will use the notation

R2
+ := {(x, y) : y > 0} .

Then, we define

Cj,µ
γ,δ

(
R2

+

)
:=
{
eγy coshδ (x)φ : φ ∈ Cj,µ

(
R2

+

)}
,

Cj,µ
δ (R) :=

{
coshδ (x)φ : φ ∈ Cj,µ (R)

}
.

Lemma 3.1. Let 0 < σ0 < 2 be a fixed constant. Suppose γ, δ are negative constants
such that

γ ∈
(
− 1√

2
, 0

)
, γ2 + δ2 < 2− σ0.

Then, there exist operators G,P,

G : C0,µ
γ,δ

(
R2

+

)
→ C2,µ

γ,δ

(
R2

+

)
,

P : Π⊥
(
C2,µ

δ (R)
)
→ C2,µ

γ,δ

(
R2

+

)
,

such that for each ξ ∈ C0,µ
γ,δ

(
R2

+

)
with

Πξ (·, y) = 0, for y ≥ 0, (3.6)
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14 Y. Liu and Y. Zhang

and each φ ∈ Π⊥
(
C2,µ

δ (R)
)
, the function Gξ + Pφ ∈ C2,µ

γ,δ

(
R2

+

)
is a solution of

the problem 
−∆w +

(
3H2 (x)− 1

)
w = ξ,

Πw (·, y) = 0, for y ≥ 0,

w (·, 0) = φ.

(3.7)

Moreover, ‖G‖+ ‖P‖ ≤ C, where C is independent of γ, δ.

We remark that for later use, we actually only need to assume that the negative
constants γ and δ are sufficiently close to 0 (but independent of ε), and same remark
applies to proposition 3.2. See also the paragraphs right before lemma 2.3.

Proof. We first consider the case of φ=0.
Given ξ ∈ C0,µ

γ,δ

(
R2

+

)
satisfying (3.6), to show the existence of a solution to

problem (3.7), consider the function space E 0 consisting of those functions w ∈
H1

0

(
R2

+

)
, with the additional requirement∫

R
w (·, y)H ′dx = 0, for a.e. y > 0.

Note that the functional∫
R2+

[
|∇w|2 +

(
3H2 (x)− 1

)
w2
]
dxdy

is coercive on this space. Hence, by Lax–Milgram theorem, there exists w ∈ E0

such that {
−∆w +

(
3H2 − 1

)
w = ξ, in R2

+,

w (x, 0) = 0.

Moreover, by elliptic regularity,

‖w‖
L∞

(
R2+

) ≤ C ‖ξ‖
C
0,µ
γ,δ

(
R2+

) (3.8)

where C is independent of ξ. With the estimate (3.8) at hand, we can use the
same barrier construction arguments as that of lemma 3.4 and lemma 3.5 in [10]
to deduce that

‖w‖
C
2,µ
γ,δ

(
R2+

) ≤ C ‖ξ‖
C
0,µ
γ,δ

(
R2+

) .
In the general case that φ 6= 0, we introduce a new function

w̃ (x, y) := w (x, y)− χ (y)φ (x) ,

where χ is a cutoff function such that

χ (y) =

{
1, for y ∈ [0, 1] ,

0, for y ∈ (2,+∞) .
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Then, the problem (3.7) for the unknown function w will be transformed to the
following problem for w̃:

−∆w̃ +
(
3H2 − 1

)
w̃ = ξ −∆(χφ) +

(
3H2 − 1

)
χφ,

Πw̃ (·, y) = 0, for y ≥ 0,

w̃ (·, 0) = 0.

The previous argument tells us that it has a solution w̃ with

‖w̃‖
C
2,µ
γ,δ

(
R2+

) ≤ C
∥∥ξ −∆(χφ) +

(
3H2 − 1

)
χφ
∥∥
C
0,µ
γ,δ

(
R2+

) .
It follows that (3.7) has a solution w with

‖w‖
C
2,µ
γ,δ

(
R2+

) ≤ C ‖ξ‖
C
0,µ
γ,δ

(
R2+

) + C ‖φ‖
C
2,µ
δ

(R)
.

This completes the proof. �

Keep in mind that we want to construct solutions in the inner region, by gluing
saddle solutions. For this purpose, we need to analyse the mapping property of
the linearized operator LU restricted to functions defined on Ω, which is defined
by (3.4).

Let Γγ,δ be the weight function introduced in the previous section and define the
space

Cj,µ
γ,δ (Ωod) :=

{
φΓγ,δ : φ ∈ Cj,µ (Ω) and φ (x, y) = −φ (x,−y)

}
.

For each ξ ∈ Cj,µ
γ,δ (Ωod) , its norm is defined to be

‖ξ‖
C
j,µ
γ,δ

(
Ωod

) :=
∥∥∥∥ ξ

Γγ,δ

∥∥∥∥
Cj,µ(

Ωod
) .

Throughout the paper, we will set

yε = d1 |ln ε| ,

where d1 is the constant that appeared in the definition of Ω. The next result deals
with the mapping property of LU in the space of functions odd in y.

Proposition 3.2. Let γ, δ be fixed negative constants sufficiently close to zero and
|δ| ≤ |γ|. There exist linear maps

G1 : C0,µ
γ,δ (Ωod) → C2,µ

γ,δ (Ωod) ,

P1 : Π⊥
(
C2,µ

δ (R)
)
→ C2,µ

γ,δ (Ωod) ,
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16 Y. Liu and Y. Zhang

with ‖G1‖ + ‖P1‖ ≤ Cε−4d1|γ|, where C depends on γ, δ (but does not depend

on ε), such that for all η ∈ C0,µ
γ,δ (Ωod) and all φ ∈ Π⊥

(
C2,µ

δ (R)
)
, the function

w := G1 (η) + P1 (φ) is a solution of the problem{
LUw = η, in Ω,

Π⊥w (·, yε) = φ.

Here, Π is the projection operator defined in (3.5), acting on functions with the x
variable.

Proof. Let ζ be the solution of
−∆ζ +

(
3H2 (x)− 1

)
ζ = 0, y < yε,

ζ (·, yε) = φ,

ζ (x, y) → 0, as y → −∞.

(3.9)

The existence of ζ can be deduced from lemma 3.1, if we translate the boundary
of R2

+ to y = yε. Moreover, we can assume that Πζ = 0. Furthermore, if δ is close
to zero, then the solution ζ has the following estimate:∥∥∥cosh|δ| (x) e12 (y−yε)ζ

∥∥∥
C2,µ(Ω)

≤ C ‖φ‖
C
2,µ
δ

(R)
. (3.10)

We remark that the weight function Γγ,δ has a form different from the weight
function appeared before ζ. Indeed, Γγ,δ measures the decay along each end. On
the other hand, the decay estimate (3.10) tells us that the boundary data φ have
a very small influence on the solution near the origin, where the saddle solution is
centred around.

Let α0 be a fixed constant independent of ε and ϑ be a cutoff function such that

ϑ (s) =

{
1, for s > α0,

0, for s < α0 − 1.

We then define

ζ̄ (x, y) := ϑ (y) ζ (x, y)− ϑ (−y) ζ (x,−y)

and introduce a new function

w̄ := w − ζ̄. (3.11)

The equation LUw = η is transformed into

LU w̄ = LUw − LU ζ̄ := η̄.

We then solve {
LU w̄ = η̄, in Ω,

Π⊥w̄ (·,±yε) = 0.
(3.12)
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Let α1 be a large positive constant to be determined later on. Observe that U is
close to H (x) for y ∈ [α1, yε] . We look for a solution w1 of


−∆w1 +

(
3H2 (x)− 1

)
w1 = η̄, for y ∈ [α1, yε] ,

w1 = 0 and ∂y (Πw1) = 0, for y = α1,

Π⊥w1 (·, yε) = 0.

(3.13)

To solve this, we can write w1 as Πw1 +Π⊥w1, and η̄ as Πη̄ +Π⊥η̄, and split the
problem into two parts, one is orthogonal to H

′
and the other one is parallel to

H ′. If

Πw1 =
ρ (y)∫

RH
′2ds

H ′ (x) ,

then multiplying the first equation in (3.13) by H ′(x) and integrating in x, we find
that the parallel part reduces to a second-order ordinary differential equation of
the form

ρ′′ (y) = −
∫
R
η̄ (s, y)H ′ (s) ds,

with the initial condition ρ (α1) = ρ′ (α1) = 0. Then,

ρ (y) = −
∫ y

α1

(∫ k

α1

∫
R
η̄ (s, t)H ′ (s) dsdt

)
dk.

Note that

sup
y∈[α1,d1|ln ε|]

∣∣∣e|γ|yρ (y)∣∣∣ ≤ Ced1|γ ln ε| |ln ε| ‖η̄‖
C
0,µ
γ,δ

(
Ωod

) .

For the orthogonal part, we can use the same argument as that of lemma 3.1 to
obtain a solution Π⊥w1 of

{
−∆

(
Π⊥w1

)
+
(
3H2 (x)− 1

)
Π⊥w1 = Π⊥η̄, for y ∈ [α1, yε] ,

Π⊥w1 (·, y) = 0, for y = α1 and yε.

We then get a solution w1 of (3.13) with the following estimate:

‖w1‖C2,µ
γ,δ

(
Ωod

) ≤ Cε−d1|γ| |ln ε| ‖η̄‖
C
0,µ
γ,δ

(
Ωod

) , (3.14)

where C depends on γ, δ.
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18 Y. Liu and Y. Zhang

We know from the estimate (2.4) that for some universal constant c1, c > 0 (for
instance, c can chosen to be 1) which only depend on the saddle solution, there
holds

|U (x, y)−H (x)| ≤ c1e
−c|y|, for y ∈ [α1, yε] . (3.15)

A perturbation argument tells us that if we choose α1 to be large enough, then the
following problem is solvable:

LUu1 = η̄, for y ∈ [α1, yε] ,

u1 = 0 and ∂y (Πu1) = 0, for y = α1,

Π⊥u1 (·, yε) = 0.

To be more precise, we write the equation

LUu1 = η̄

into the form

u1 = L−1
H

[
η̄ + 3

(
H2 − U2

)
u1
]
.

Observe that the the coefficient ε−d1|γ| |ln ε| appears in (3.14) simply because the
weight function grows exponentially along the end, and hence, the estimate is worst
on the boundary y = yε and will be much better if y is small. Then, using (3.15),
we can see that if |γ| is less that c

2 , there holds∥∥3L−1
H

(
H2 − U2

)
u1
∥∥
C
2,µ
γ,δ

(
Ωod

) ≤ Ce−
cα1
2 ‖u1‖C2,µ

γ,δ

(
Ωod

) .
We can then choose α1 large enough such that Ce−

cα1
2 < 1. Then, a direct appli-

cation of the contraction mapping principle will yield the existence of a required
solution.

With this function u1 at hand, we now define g such that g =0 in R2\Ω and

g (x, y) = η̄ (x, y)− LU [ϑ (y)u1 (x, y)− ϑ (−y)u1 (x,−y)] , in Ω.

Consider the equation

LUv = g, in R2. (3.16)

By lemma 2.3, (3.16) has a solution v with

‖v‖
C
2,µ
γ,δ

(
R2

)
⊕D

≤ C ‖g‖
C
0,µ
γ,δ

(
R2

) . (3.17)

Let κ be a smooth cutoff function such that κ (y) = κ (−y) and

κ (y) =

{
1, for |y| < yε − 1,

0, for |y| ≥ yε.

If we define

Φ := Πv + κΠ⊥v.
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Then, Π⊥Φ = 0 on ∂Ω. Recall that v may contain functions in the deficiency space
D, which grows linearly in the y direction. By (3.17), there holds

‖Φ‖
C
2,µ
γ,δ

(
Ωod

) ≤ Cε−d1|γ| |ln ε| ‖g‖
C
0,µ
γ,δ

(
Ωod

) .

Observe that g is supported in the region where |y| < α1 + 1. Hence, Π⊥v decays
exponentially fast for |y| > α1 + 1 and there holds

∣∣Π⊥v
∣∣ ≤ Ce−|y| ‖g‖

C
0,µ
γ,δ

(
Ωod

) .

We compute

LUΦ = LUv − LU

[
(1− κ)Π⊥v

]
= g − LU

[
(1− κ)Π⊥v

]
.

It follows that for some σ > 0, there holds

‖LUΦ− g‖
C
0,µ
γ,δ

(
Ωod

) ≤ Cεσ ‖g‖
C
0,µ
γ,δ

(
Ωod

) .

Observe that Φ depends linearly on g. Hence, it can be written as Mg, where M is
a linear operator. We seek h such that

LUM (g + h) = g.

This can be written as

h = h− LUMh+ g − LUMg.

The existence of a solution h follows from the contraction mapping principle. Then,
the function

w̄ =M (g + h) + ϑ (y)u1 (x, y)− ϑ (−y)u1 (x,−y)

solves the problem (3.12), and the function w given by (3.11) is the required
solution. This completes the proof. �

3.2. Solutions with prescribed boundary data on ∂Ω

With the linearized Allen–Cahn operator of the saddle solution being understood,
we proceed to solve the nonlinear problem in the inner region Ω.
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20 Y. Liu and Y. Zhang

Let f̃ (0) be defined in (3.3), we introduce the notation y1 = y2 = y and

x1 = x− f̃ (0) , x2 = x+ f̃ (0) .

Then, we define the approximate solution

u0 (x, y) := U1 (x, y)− U2 (x, y)−H (y) ,

where

U1 (x, y) = U (x1, y1) , U2 (x, y) = U (x2, y2) .

We emphasize that u0 actually depends on the parameter ε, since f̃ (0) ∼
√
2
2 ln ε.

Moreover, u0 is even in x and odd in y :

u0 (x, y) = u0 (−x, y) = −u0 (x,−y) .

Although this symmetry is not essential for our construction, it does simplify
notations.

Let u = u0 + Ψ. Then, u will be a solution of the Allen–Cahn equation if the
perturbation Ψ satisfies

Lu0
Ψ := −∆Ψ+

(
3u20 − 1

)
Ψ = ∆u0 + u0 − u30︸ ︷︷ ︸

E(u0)

−3u0Ψ
2 −Ψ3︸ ︷︷ ︸

T (Ψ)

.

Throughout the paper, for any function h, we will use he to denote its even reflection
across the y axis. That is,

he (x, y) := h (−x, y) .

Let η be a smooth cutoff function such that η (x) + ηe (x) = 1 and

η (x) =

{
1, for x < −1,

0, for x > 1.
(3.18)

We will construct solutions of the Allen–Cahn equation in the inner region Ω with
the form

u = u0 + φ+ φe︸ ︷︷ ︸
Ψ

,

where φ satisfies

LU1
φ =

[
E (u0) + T (Ψ) + LU1

φ− Lu0
φ+ LU2

φe − Lu0
φe
]
η := K0 (3.19)

and φe satisfies

LU2
φe =

[
E (u0) + T (Ψ) + LU1

φ− Lu0
φ+ LU2

φe − Lu0
φe
]
ηe. (3.20)

Keep in mind that due to the even symmetry of the functions in the x variable, if
φ solves (3.19), then automatically φe solves (3.20). One can check that taking the
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sum of (3.19) and (3.20) yields

Lu0
(Ψ) = E (u0) + T (Ψ) .

To solve equation (3.19), we need to estimate the error of the approximate
solution u0. Using the identity

(a+ b+ c)
3 − a3 − b3 − c3

= 3 (a+ c) (b+ c) (a− c+ b+ c)

= 3
(
a2 − c2

)
(b+ c) + 3 (a+ c) (b+ c)

2
,

we compute

E (u0) = ∆ [U1 − U2 −H (y)] + U1 − U2 −H (y)− U3
1 + U3

2 +H3 (y)

+ 3
[
U2
1 −H2 (y)

]
[U2 +H (y)]− 3 [U1 −H (y)] [U2 +H (y)]

2
.

Since U1, U2,H solve the Allen–Cahn equation, there holds

E (u0) = 3
[
U2
1 −H2 (y)

]
[U2 +H (y)]− 3 [U1 −H (y)] [U2 +H (y)]

2
. (3.21)

To proceed, recall that in the previous section, we have defined the weight func-
tion Γγ,δ (x, y) associated with the saddle solution U (x, y) . We use Cj,µ

(
Ω(x1,y1)

)
to denote the space of functions with variables (x1, y1) which are of Cj,µ in Ω. One
can also regard Ω(x1,y1)

as the set

{(x1, y1) : x1 ∈ R, |y1| < yε} .

We then define the space

Cj,µ
γ,δ

(
Ω(x1,y1)

)
:= {Γγ,δ (x1, y1) · g : g ∈ Cj,µ

(
Ω(x1,y1)

)
},

where the norms are computed for functions with respect to the (x1, y1) variable.
We now estimate the error of the approximate solution.

Lemma 3.3. There exist δ∗ < 0, γ∗ < 0 such that for all δ ∈ (δ∗, 0) , γ ∈ (γ∗, 0) ,
the following estimate holds:

‖ηE (u0)‖C0,µ
γ,δ

(
Ω(x1,y1)

) ≤ Cε
6
5 ,

where C is independent of ε.

Proof. Since the function is even in the x variable, we only need to estimate the
error in the left half plane. That is, in the region where x < 0. In this region, we
have |x1| < |x2|.
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By (3.21), the main order of ηE (u0) is

I := 3
(
U2 (x1, y1)−H2 (y)

)
(U (x2, y2) +H (y)) .

Case 1. Estimates in the region

{(x1, y1) : x1 > |y1| , x < 0} .

Let us take γ0 close to −
√

3
2 and δ0 close to −

√
2+

√
3
2 . Then using (2.4), we can

estimate

|I| ≤ C |U (x1, y1)−H (y)| |U (x2, y2) +H (y)|
≤ C exp [γ0 (|x1|+ |x2|) + 2δ0 |y1|]

≤ Cε
√
3−κ exp (2δ0 |y1|) ,

where κ is a fixed small positive constant. Therefore, in this region,

|I exp (|γx1|+ |δy1|)| ≤ Cε
√
3−κ exp ((|δ|+ 2δ0) |y1|+ |γ| |x1|) .

Observe that in this region, we have

0 < x1 <

√
2

2
|ln ε|+ C,

Therefore, if |δ| , |γ| are chosen to be small such that |δ|+ 2δ0 < 0,
√
2|γ|
2 < κ, and√

3− 2κ > 6
5 , then

|I exp (|γx1|+ |δy1|)| ≤ Cε
√
3−κ exp

(√
2 |γ|
2

|ln ε|

)
≤ Cε

√
3−2k ≤ Cε

6
5 .

Case 2. Estimates in the region

{(x1, y1) : 0 < x1 < y1 and |x2| > |y2|} .

There holds

|U (x1, y1)−H (x1)| ≤ Ce−γ0|y1|e−δ0|x1|,

|U (x2, y2) +H (y2)| ≤ Ce−γ0|x2|e−δ0|y2|.

As a consequence,

|I| ≤ (|U (x1, y1)−H (x1)|+ |H (x1)−H (y)|) e−γ0|x2|−δ0|y2|

≤ C exp (−γ0 |y1| − δ0 |x1| − γ0 |x2| − δ0 |y2|)

+ C exp
(
−
√
2 |x1| − γ0 |x2| − δ0 |y2|

)
≤ Cε

√
3−κ exp (−δ0 |x1| − δ0 |y2|) .
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It follows that when |γ| is small,

|I exp (|γy1|+ |δx1|)| ≤ Cε
6
5 .

The estimates in other regions are similar.
Note that we also need to estimate the Holder norm of the error. This can be

done in a similar way, since the Holder norm of U also has exponential decay along
each end. �

Note that the exponent 6
5 is not of particular importance, what is crucial here is

that this exponent is greater than 1.
For function φ = φ (x), we set

φ∗ (x1) := φ (x) .

Here, x is regarded as a function depending on x 1, defined at the beginning of this
subsection. ‖·‖

C2,µ
(
Rx1

) will denote the C2,µ norm with respect to the x 1 variable.

For a function ϕ (x, y) , we also set

ϕ∗ (x1, y1) := ϕ (x, y) .

The following proposition states that we can construct solution u to the Allen–Cahn
equation in Ω, with u = u0 + h at y = yε, for suitable prescribed boundary data h.

Proposition 3.4. Suppose h ∈ C2,µ (R) satisfies∥∥∥∥ (ηh)
∗

Γγ,δ (x1, yε)

∥∥∥∥
C2,µ

(
Rx1

) ≤ Cε
11
10

and ∫
R
(ηh)

∗
H ′ (x1) dx1 = 0.

Assume that d1 |γ| < 1
40 . Then, there exists a solution φ to the problem{

LU1
φ = K0, in Ω,

Π⊥
x1
φ∗ (·, yε) = (ηh)

∗
.

(3.22)

Here, Π⊥
x1

is the orthogonal projection operator with respect to the x1 variable. The
function φ satisfies

‖φ‖
C
2,µ
γ,δ

(
Ω(x1,y1)

) ≤ Cε
21
20 . (3.23)

Moreover, at the boundary, we have∥∥∥∥ (∂y(ηφ))∗ (x1, yε)Γγ,δ (x1, yε)

∥∥∥∥
C2,µ

(
Rx1

) ≤ Cε
11
10 (3.24)

https://doi.org/10.1017/prm.2024.79 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.79


24 Y. Liu and Y. Zhang

Proof. Using the operators G1 and P1 of proposition 3.2 (with (x, y) replaced by
(x1, y1)), we can recast (3.22) as the following fixed point problem:

φ = G1

([
E (u0)− T (Ψ) + LU1

φ− Lu0
φ+ LU2

φe − Lu0
φe
]
η
)
+ P1 (ηh) . (3.25)

Using the estimate of E (u0) obtained in lemma 3.3, we find that

‖G1 (ηE (u0))‖C2,µ
γ,δ

(
Ω(x1,y1)

) ≤ ‖G1‖ ‖ηE (u0)‖C0,µ
γ,δ

(
Ω(x1,y1)

)
≤ Cε

11
10−4d1|γ| ≤ Cε

21
20 ,

‖P1 (ηh)‖C2,µ
γ,δ

(
Ω(x1,y1)

) ≤ ‖P1‖ ‖ηh‖C2,µ
δ

(
Rx1

) ≤ Cε
21
20 .

Let M 0 be a fixed large constant. We define

S :=

{
g ∈ C2,µ

γ,δ

(
Ω(x1,y1)

)
: ‖g‖

C
2,µ
γ,δ

(
Ω(x1,y1)

) < M0ε
21
20

}
.

We would like to prove that the right-hand side of (3.25) is a contraction mapping
in S, provided that ε is small enough. Indeed, for φ1, φ2 ∈ S, since

T (Ψ) = −3u0Ψ
2 −Ψ3,

there holds

‖G1 [ηT (φ1 + φe1)]−G1 [ηT (φ2 + φe2)]‖C2,µ
γ,δ

(
Ω(x1,y1)

)
≤ Cε

11
10−4d1|γ| ‖φ1 − φ2‖C2,µ

γ,δ

(
Ω(x1,y1)

)
≤ Cε ‖φ1 − φ2‖C2,µ

γ,δ

(
Ω(x1,y1)

) .
Recall that

Lu0
φ− LU1

φ = 3
(
u20 − U2

1

)
φ.

In the region where η 6= 0, we have

|u0 (x, y)− U1 (x, y)| = |U2 (x, y) +H (y)| ≤ Cε.

Actually, in this region, a similar estimate holds for the Holder norm:

‖u0 (x, y)− U1 (x, y)‖C2,µ = ‖U2 (x, y) +H (y)‖C2,µ ≤ Cε.

It then follows that∥∥G1

[(
LU1

φ1 − Lu0
φ1
)
η
]
−G1

[(
LU1

φ2 − Lu0
φ2
)
η
]∥∥

C
2,µ
γ,δ

(
Ω(x1,y1)

)
≤ Cε1−4d1|γ| ‖φ1 − φ2‖C2,µ

γ,δ

(
Ω(x1,y1)

) .
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Let us consider the term∥∥(LU2
φe − Lu0

φe
)
η
∥∥
C
2,µ
γ,δ

(
Ω(x1,y1)

) =
∥∥3 (u20 − U2

2

)
φeη
∥∥
C
2,µ
γ,δ

(
Ω(x1,y1)

) .
To estimate it, we write

∣∣3 (u20 − U2
2

)
φeηΓγ,δ

∣∣ = ∣∣∣∣∣3 (u20 − U2
2

)
φeΓe

γ,δη
Γγ,δ

Γe
γ,δ

∣∣∣∣∣ .
Using the decay estimate of u0 − U2 and the definition of Γγ,δ, we see that∣∣∣∣∣(u0 + U2)

Γγ,δ

Γe
γ,δ

∣∣∣∣∣ ≤ Cε
√
2|γ||ln ε|.

From this we arrive at∥∥(LU2
φe − Lu0

φe
)
η
∥∥
C
2,µ
γ,δ

(
Ω(x1,y1)

) ≤ Cε
√
2|ln ε||γ| ‖φ‖

C
2,µ
γ,δ

(
Ω(x1,y1)

) .
Therefore, we obtain∥∥G1

[(
LU2

φe1 − Lu0
φe1
)
η
]
−G1

[(
LU2

φe2 − Lu0
φe2
)
η
]∥∥

C
2,µ
γ,δ

(
Ω(x1,y1)

)
≤ Cε

(√
2−4d1

)
|ln ε||γ| ‖φ1 − φ2‖C2,µ

γ,δ

(
Ω(x1,y1)

) .
Keep in mind that we have assumed d1 <

√
2
4 .

It follows from these estimates that the right-hand side of (3.25) is a contraction
map by the estimates. We can also check that the right-hand side of (3.25) maps
each φ ∈ S into S. We then conclude that (3.25) has a solution in S. Finally,
the better estimate (3.24) at the boundary is a consequence of the fact that the
operators P1, G1 are constructed by taking a cutoff for the function in (3.9). This
completes the proof. �

4. Family of solutions in the outer region

In this section, we will construct a family of solutions in the ‘outer region’

Λ :=
{
(x, y) ∈ R2 : |y| > yε

}
,

with suitable boundary data to be described later on. Since we are interested in
solutions which are odd in the y variable, it will be suffice for us to consider the
equation in the domain

Λ+ :=
{
(x, y) ∈ R2 : y > yε

}
.

The idea for solving the equation in the outer region is very similar to that of
[10], where ‘entire solutions’ with almost parallel ends are constructed using infinite
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dimensional Lyapunov-Schmidt reduction. The main difference here is that the so-
called ‘projected equation’ turns out to be a boundary value problem, while in [10],
it is an ODE on the whole real line.

4.1. The Fermi coordinate and the approximate solution

The first step towards a construction in the outer region is to define suitable approx-
imate solutions. We have in mind that the solutions should have a nodal set being
close to the graph of the Toda equation, which have already been introduced in
(3.2). Geometrically, the solution will have two ends in the upper half plane. As
y tends to infinity, around each end, the solution will then converge to the one-
dimensional heteroclinic solution. Since the Allen–Cahn equation is invariant with
respect to translation and rotation, then the linearized Allen–Cahn operator has
kernels which correspond to these geometric actions. This fact has another impor-
tant consequence. That is, if we want to perturb an approximate solution into a
genuine one, we are forced to translate or rotate the ends a litter bit.

To rigorously deal with the geometric perturbation of the ends, we need to
introduce the following two-dimensional space:

E := Span {s 7→ χ (s) , s 7→ sχ (s)} ,

where χ is a smooth function such that

χ (s) =

{
1, for s > 2,

0, for s < 1.

Then, the function χ corresponds to translation of the ends, and sχ corresponds to
rotation. If aχ+ bsχ ∈ E , then its E norm is defined to be

‖aχ+ bsχ‖E :=
√
a2 + b2.

For v ∈ E with ‖v‖E ≤ Cε
1
20 , we set v̄ε (y) = v (εy) . Let F̃ be the function

defined in (3.2) and

f (y) := F̃ (y) + v̄ε (y) .

Note that f depends on ε.
To define the approximate solution, we need to use the notion of Fermi coordinate

with respect to the graph Γ of the function x = f (y). This new coordinate will still
be denoted by (x1, y1) . It is defined in the following way. Suppose Z = (x, y) ∈ Λ+

is a point in a tubular neighbourhood(of size ε−1) of Γ. Assume Z̃ = (f (y1) , y1) is
the unique point on Γ, which realizes the distance from Z to Γ. Then, for some x1,

(x, y) = (f (y1) , y1) + x1

(
1√

1 + f ′2 (y1)
,

−f ′ (y1)√
1 + f ′2 (y1)

)
.

The Fermi coordinate of Z is defined to be (x1, y1) .
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The Laplacian operator written in this coordinate has the form

∆(x,y) =
1

A
∂2y1 + ∂2x1 +

1

2

∂x1A

A
∂x1 − 1

2

∂y1A

A2
∂y1

= ∆(x1,y1)
+

(
1

A
− 1

)
∂2y1 +

1

2

∂x1A

A
∂x1 − 1

2

∂y1A

A2
∂y1 ,

where

A = 1 + (f ′ (y1))
2 − 2x1

f ′′ (y1)√
1 + (f ′ (y1))

2
+ x21

(f ′′ (y1))
2(

1 + (f ′ (y1))
2
)2 .

For more details, we refer to [10], section 5.1. In our case, the terms other than
∆(x1,y1)

can be regarded as perturbation terms.

We use C2,µ
γ ([εyε,+∞)) to denote the space consisting of those functions ρ ∈

C2,µ ([εyε,+∞)) such that the following norm is finite:

‖ρ‖
C
2,µ
γ ([εyε,+∞))

:=
∥∥∥ρe|γ|y∥∥∥

C2,µ([εyε,+∞))
.

Suppose that we are given a function ρ ∈ C2,µ ([εyε,+∞)), with

‖ρ‖
C
2,µ
γ ([εyε,+∞))

≤ Cε
1
20 .

Let

ρ̄ε (y) := ρ (εy) .

Abusing notation with the previous section, for each function ϕ, we still use ϕ∗ to
denote the corresponding function with (x1, y1) variable. That is,

ϕ∗ (x1, y1) = ϕ (x, y) .

Let H 1 be the function such that

H∗
1 (x1, y1) := H (x1 − ρ̄ε (y1)) .

Let θ be a smooth cutoff function with θ (x, y) = θ (−x, y) and

θ (x, y) =

{
1, for x ∈

(
f (y)− 1

ε ,−f (y) +
1
ε

)
,

0, for x > −f (y) + 1
ε + 1, or x < f (y)− 1

ε − 1.

Define the approximate solution

ū0 = (H1 +He
1) θ − 1. (4.1)

We use L to denote the operator

Lξ := −∆ξ + 2ξ.
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We will look for a solution ū of the Allen–Cahn equation in Λ+ with the form

ū = ū0 + (ψ + ψe) θ + ω︸ ︷︷ ︸
Ψ̄

. (4.2)

To do this, let us define

K0 := E (ū0) + T
(
Ψ̄
)
+ Lω − Lū0

ω + LH1
ψ − Lū0

ψ + LHe
1
ψe − Lū0

ψe.

We required that ω satisfies ω (x, y) = ω (−x, y) and

Lω = (1− θ)K0 + Lū0
(ψ + ψe)− Lū0

[(ψ + ψe) θ] := K1. (4.3)

Let η be the function defined in (3.18), and then we also require that the unknown
functions ψ and ψe satisfy

LH1
ψ = K0θη := K2 (4.4)

and

LHe
1
ψe = K0θη

e. (4.5)

By taking the sum of these three equations, we get

Lū0

(
Ψ̄
)
= E (ū0) + T

(
Ψ̄
)
. (4.6)

That is, ū0 + Ψ̄ satisfies the Allen–Cahn equation. To see this, we first observe
that the second and third equations are equivariant to each other. Indeed, the third
equation results from taking reflection across the y variable for the second equation.
Now summing up equations (4.4) with (4.5) and using the fact that η+ ηe = 1, we
obtain

LH1
ψ + LHe

1
ψe = K0θ. (4.7)

Adding equations (4.3) and (4.7) together, we get

Lω + LH1
ψ + LHe

1
ψe

= K0 + Lū0
(ψ + ψe)− Lū0

[(ψ + ψe) θ]

= E (ū0) + T
(
Ψ̄
)
+ Lω − Lū0

ω + LH1
ψ − Lū0

ψ + LHe
1
ψe − Lū0

ψe

+ Lū0
(ψ + ψe)− Lū0

[(ψ + ψe) θ] .

That is,

Lū0
[ω + (ψ + ψe) θ] = E (ū0) + T

(
Ψ̄
)
.

This is precisely equation (4.6).
Roughly speaking, equation (4.4) takes care of the error near the nodal set, while

equation (4.5) deals with the error away from the nodal set, where the approximate
solution is very close to 1 or −1.
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Recall that F is the solution of the Toda equation defined in (3.1). We put

α1 = 2
√
2 lim
s→+∞

F ′ (s) < 0.

Lemma 4.1. Let γ ∈ (α1, 0) be a fixed constant and ε> 0 be sufficiently small. For
given ϕ ∈ C0,µ

γ ([εyε,+∞)) and (s, t) ∈ R2, the linear problem{
g′′ + 48e2

√
2F̄ g = ϕ, for y > εyε,

g (εyε) = s and g′ (εyε) = t

has a solution g = G2 (s, t) + P2 (ϕ) , where

G2 : R2 → C2,µ
γ ([εyε,+∞)) ,

P2 : C0,µ
γ ([εyε,+∞)) → C2,µ

γ ([εyε,+∞))

are operators such that

‖G2‖+ ‖P2‖ ≤ C,

where C is independent of ε.

Proof. For each a ∈ R, the Toda equation

u′′ + 12
√
2e2

√
2u = 0

has a solution u with u (0) = a and u′(0) = 0. By the uniqueness of solution to
the ODE, we see that u is an even solution. Let us write it as u (y; a) . Recall that
F (y) = u (y;−1) .

The functions ξ1 := e2
√
2

12
√
2
∂yu|a=−1 and ξ2 := ∂au|a=−1 satisfy the linearized

Toda equation

ξ′′ + 48e2
√
2F ξ = 0.

Note that ξ1 is odd, ξ2 is even, and

ξ1 (0) = 0, ξ′1 (0) = −1,

ξ2 (0) = 1, ξ′2 (0) = 0.

Moreover, as y tends to +∞, ξ1 tends to a nonzero constant and ξ2 grows linearly.
For given constants s, t, let us choose sε, tε such that{

−tεξ1 (εyε) + sεξ2 (εyε) = s,

−tεξ′1 (εyε) + sεξ
′
2 (εyε) = t.

Since εyε = O (ε |ln ε|) , there holds

sε ∼ s and − tε ∼ t.
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Let us define

g (y) = tεξ1 (y) + sεξ2 (y) + ξ2 (y)

∫ y

εyε

ξ1(s)ϕ(s)ds− ξ1 (y)

∫ y

εyε

ξ2(s)ϕ(s)ds.

Then,

g (εyε) = s, g′ (εyε) = t,

and

g′′ + 48e2
√
2F g = ϕ.

Integrating by parts, we get

g (y) =

(
tε +

∫ +∞

εyε

ξ2ϕds

)
ξ1 (y) +

(
sε +

∫ +∞

εyε

ξ1ϕds

)
ξ2 (y)

− ξ2 (y)

∫ +∞

y

ξ1ϕds+ ξ1 (y)

∫ +∞

y

ξ2ϕds.

We compute

− ξ2 (y)

∫ +∞

y

ξ1ϕds+ ξ1 (y)

∫ +∞

y

ξ2ϕds

= ξ2 (y)

∫ +∞

y

(∫ y

+∞
ϕ (t) dt

)
ξ′1 (s) ds− ξ1 (y)

∫ +∞

y

(∫ y

+∞
ϕ (t) dt

)
ξ′2 (s) ds.

The integrals can be estimated directly, and this yields

‖g‖
C
2,µ
γ ([εyε,+∞))

≤ C |s|+ C |t|+ C ‖ϕ‖
C
0,µ
γ ([εyε,+∞))

.

This completes the proof. �

We define the weighted space

Cj,µ
εγ,δ

(
Λ+
)
:=
{
(coshx)

δ
(cosh y)

εγ
φ : φ ∈ Cj,µ

(
Λ+
)}
.

With this definition at hand, we are now ready to prove the main result of this
section, which establishes the existence of solutions to the Allen–Cahn equation in
the outer region with suitable boundary data.

Proposition 4.2. Let a, b ∈ R satisfy

|a|+ |b| ≤ Cε
21
20 .

Assume that h ∈ C2,µ (R) satisfies∥∥Γγ,δ (x1, yε) (ηh)
∗∥∥

C2,µ
(
Rx1

) ≤ Cε
11
10
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and the orthogonality condition:∫
R
(θηh)

∗
H ′

1dx1 = 0.

Then, there exists solution (ω, ψ, ρ̄ε, v̄ε) to the problem

Lω = K1, in Λ+,(
LH1

ψ
)∗

= K2, for y1 > yε,

ω = h− hθ2 and ψ = θηh, on ∂Λ+,∫
R ψ

∗H ′
1dx1 = 0, for y1 ≥ yε.

ρ̄ε (yε) = a and ρ̄′ε (yε) = b,

with

‖ψ‖
C
2,µ
εγ,δ

(
Λ+
(x1,y1)

) ≤ Cε
11
10 , ‖ρ‖

C
2,µ
γ ([εyε,+∞))

+ ‖v‖E ≤ Cε
1
20 .

Proof. The proof will be split into three steps.
Step 1. For given ρ, v, ψ with

‖ρ‖
C
2,µ
γ ([εyε,+∞))

+ ‖v‖E ≤ Cε
1
20

and

‖ψ‖
C
2,µ
εγ,δ

(
Λ+
(x1,y1)

) ≤ Cε
11
10 ,

we solve the following boundary problem for the function ω :{
Lω = K1 (ω, ψ, ρ̄ε, v̄ε) , in Λ+,

ω =
(
1− θ2

)
h, on ∂Λ+.

(4.8)

To do this, we first consider the linear problem{
Lϕ = g, in Λ+,

ϕ = ξ, on ∂Λ+.
(4.9)

For ξ ∈ C2,µ (R) and g ∈ C0,µ (Λ+) , there exists a unique ϕ ∈ C2,µ (Λ+) that
solves (4.9), with

‖ϕ‖C2,µ(
Λ+

) ≤ C ‖g‖C0,µ(
Λ+

) + C ‖ξ‖C2,µ(R) .

The solution ϕ can be written as

ϕ = G (g) + P (ξ) .

The problem (4.8) can then be transformed into a fixed point problem

ω = G (K1 (ω, ψ, ρ̄ε, v̄ε)) + P
(
h− hθ2

)
. (4.10)

We prove that the right-hand side of (4.10) is a contraction map. Observe that in
the region where θ 6= 1, by the exponential convergence of |ū0| to 1 away from the
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interface, we have ∥∥1− ū20
∥∥
C0,µ(

Λ+
) = O

(
ε2
)
.

It follows that in this region,∥∥Lω − Lū0
ω
∥∥
C0,µ(

Λ+
) = ∥∥3 (1− ū20

)
ω
∥∥
C0,µ(

Λ+
) ≤ Cε2 ‖ω‖C0,µ(

Λ+
) .

Using this, one verifies that

‖K1 (ω1)−K1 (ω2)‖C0,µ(
Λ+

) ≤ Cε2 ‖ω1 − ω2‖C2,µ(
Λ+

) .
Hence, we get the existence of a solution ω = ω (ρ̄ε, v̄ε, ψ) for (4.10).

Step 2. With the solution ω at hand, for given ρ̄ε, v̄ε, consider the following
problem for the unknown pair (ψ, k) :

(
LH1

ψ
)∗

= K2 (ω, ψ, ρ̄ε, v̄ε)− k (y1)H
′
1, y1 > yε,

ψ = θηh on ∂Λ+,∫
R ψ

∗H ′
1dx1 = 0, for all y1 ≥ yε.

Recall that

∆ψ = ∆(x1,y1)
ψ +

(
1

A
− 1

)
∂2y1ψ +

1

2

∂x1A

A
∂x1ψ − 1

2

∂y1A

A2
∂y1ψ

:= ∆(x1,y1)
ψ +Q (ψ) .

Therefore, in the (x1, y1) coordinate, the equation to be solved for ψ becomes

−∆(x1,y1)
ψ +

(
3H2

1 − 1
)
ψ = K2 +Q (ψ)− k (y1)H

′
1. (4.11)

To solve this equation, it is natural to require the right hand to be orthogonal to
H ′

1 for each y1. Therefore, we set

k (y1) =

∫
R [K2 +Q (ψ)]H ′

1dx1∫
RH

′2
1 dx1

.

Using the operators G and P of lemma 3.1, we write equation (4.11) as

ψ = G [K2 +Q (ψ)− k (y1)H
′
1] + P (θηh) .

The right-hand side is a contraction map for ψ in the set

S1 :=
{
φ ∈ C2,µ

εγ,δ

(
Λ+
(x1,y1)

)
: ‖φ‖ ≤M0ε

11
10 , ψ = θηh on ∂Λ+

}
,

whereM 0 is a fixed large constant. The contraction property can be directly verified
for Q (ψ) and the terms T

(
Ψ̄
)
, LH1

ψ−Lū0
ψ, since all of them contain order O (εα)

terms before ψ. For the term Lω−Lū0
ω, we can use the exponential decay property

of ω away from the support of K1, which is a consequence of the standard barrier
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construction for the constant coefficient operator −∆+2. See, for instance, lemma
3.4 and Equation (5.60) of reference [10] for this type of arguments.

Step 3. Now for given ρ̄ε, v̄ε, we have obtained ω = ω (ρ̄ε, v̄ε), ψ = ψ (ρ̄ε, v̄ε) from
Step 1 and Step 2. They will be the desired solution, if it happens that k =0.

Note that k is a function of the variable y. At this stage, we know that the
function k actually depends on ρ̄ε, v̄ε. Therefore, we can write the problem k =0
more precisely, as

k(·; ρ̄ε, v̄ε) = 0.

To achieve this, we multiply both sides of the equation(
LH1

ψ
)∗

= K2 (ω, ψ, ρ̄ε, v̄ε)− k (y1)H
′
1,

with H ′
1 and integrating in R, we then get the following problem to be solved for

(ρ̄ε, v̄ε) : { ∫
R
(
LH1

ψ
)∗
H ′

1dx1 =
∫
RK2H

′
1dx1, for y1 > yε,

ρ̄ε (yε) = a and ρ̄′ε (yε) = b.
(4.12)

The same computation as that of proposition 5.3 of [10] implies that the above
problem can be written into the form{

(ρ+ v)
′′
+ 48e2

√
2F (ρ+ v) = ε−2Q (ρ, v) , y1 > εyε,

ρ (εyε) = a and ρ′ (εyε) = ε−1b.

Therefore, using the operators of lemma 4.1, we can write it as

ρ+ v = G2

(
a, ε−1b

)
+ P2

(
ε−2Q (ρ, v)

)
.

Moreover, there holds the following estimates:

‖Q (ρ, v)‖
C
0,µ
γ ([εyε,+∞))

≤ Cε2+α

and

‖Q (ρ1, v1)−Q (ρ2, v2)‖C0,µ
γ ([εyε,+∞))

≤ Cε2+α

(
‖ρ1 − ρ2‖C0,µ

γ ([εyε,+∞))
+ ‖v1 − v2‖E

)
,

for some α> 0. We can indeed choose the constant α to be independent of ε and
ρ, v, provided the smallness assumption of ρ, v. The reason that such an α exists
comes from the fact that Q collects all the perturbation terms which are smaller
than quadratic power of ε, partly due to the exponential decay of the relevant
functions away from the interface and along each end. More detailed computation
can be found in [10]. We then finally get a solution (ρ, v) by the contraction mapping
principle. This finishes the proof. �
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5. Matching the Cauchy data and proof of the main theorem

In the previous two sections, we have constructed solutions in the inner and outer
regions. In this section, we show that there exist certain boundary data, such that
the Cauchy data (boundary value and its y-derivative) on the common boundary
match for the inner and outer region problems, thus yielding an entire solution.

Recall that by proposition 3.4, for the inner region Ω, for given small function h
with ∫

R
(ηh)

∗
H ′dx1 = 0,

we constructed a solution, which will be denoted by S (h) in this section, of the
form

S (h) = u0 +Ψ,

where u0 = U1 − U2 − H is the approximate solution. At the boundary y = yε,
there exists a ∈ R such that the function Ψ satisfies

Ψ = h+ a (H ′ (x1)−H ′ (x2)) .

We emphasize that a is determined by h.
On the other hand, by proposition 4.2, in the outer region Λ+, for given function

h̄ with ∫
R

(
θηh̄

)∗
H ′

1dx1 = 0,

and for ā, b̄ ∈ R, suitably small, we constructed a solution, which will be denoted
by S̄, of the form

S̄
(
h̄, ā, b̄

)
= ū0 + (ψ + ψe) θ + ω.

Here, ū0 is the approximate solution defined by (4.1), with ρ̄ε (yε) = ā and ρ̄′ε (yε) =
b̄. At the boundary y = yε, there holds

ω = h̄− h̄θ, ψ = h̄ηθ.

To emphasize the dependence of ū0 on ρ, we also write ū0 as ū0(x, y; ā). At this
point, it is worth emphasizing that at the boundary where y = yε, in view of the
definition (4.1), the function ū0 only depends on the boundary condition verified
by ρ̄ε.

To match the boundary values for the inner and outer regions, we then need to
transform these two types of boundary functions.

Lemma 5.1. There exists ε0 > 0, such that for all ε ∈ (0, ε0) , the following two
statements are true:

(i) Suppose ξ ∈ C2,µ (R) . There exist a ∈ R and h ∈ C2,µ (R) , with∫
R
(ηh)

∗
H ′ (x1) dx = 0,

such that

ξ = a (H ′ (x1)−H ′ (x2)) + h. (5.1)
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(ii) Suppose ξ ∈ C2,µ (R) and

‖ξ‖L∞(R) ≤ Cε. (5.2)

Then, there exist ā ∈ R and h̄ ∈ C2,µ (R) , with∫
R

(
ηθh̄

)∗
H ′ (x1 − ā) dx1 = 0, (5.3)

such that

ξ = ū0 (x, yε; ā)− ū0 (x, yε; 0) + h̄. (5.4)

Proof. To prove (5.1), we just set

a =

∫
R ηξH

′ (x1) dx∫
R η (H

′ (x1)−H ′ (x2))H ′ (x1) dx
,

h = ξ − a (H ′ (x1)−H ′ (x2)) .

The proof of (5.4) is more complicated. For s ∈ R, let H1,s be function such that

H∗
1,s (x1) = H (x1 − s) .

According to (4.1),

ū0 (x, yε; s)− ū0 (x, yε; 0) = [H1,s −H1,0 + (H1,s −H1,0)
e
] θ.

Let us define

q (s) :=

∫
R

(
[H1,s −H1,0 + (H1,s −H1,0)

e
] ηθ2

)∗
H ′ (x1 − s) dx1.

When ε is small, q′ (0) ≥ δ > 0, for some δ independent of ε. We then define ā to
be the number satisfying∫

R

(
[H1,ā −H1,0 + (H1,ā −H1,0)

e
] ηθ2

)∗
H ′ (x1 − ā) dx1

=

∫
R
(ηθξ)

∗
H ′ (x1 − ā) dx1.

The existence of ā follows from a direct application of the implicit function theorem,
provided that ξ satisfies (5.2). With this choice of ā, we then define

h̄ = ξ − (ū0 (x, yε; ā)− ū0 (x, yε; 0)) .

This is the required function. �
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Now, for each h, consider the function

ζ := [S (h)− u0] |y=yε .

Utilizing lemma 5.1, we can find h̄ and ā satisfying (5.3) such that

ζ (x) = ū0 (x, yε; ā)− ū0 (x, yε; 0) + h̄ (x) .

We then define the transition map

J (h) :=
(
h̄, ā
)
.

With these definitions, the corresponding solutions S and S̄ of the inner and
outer regions have the same boundary values. That is,

S (h) = S̄
(
J (h) , b̄

)
, on ∂Λ+.

In fact, we now have

S(h) |y=yε= u0(x, yε) + a (H ′(x1)−H ′(x2)) + h

S̄
(
h̄, ā, b̄

)
|y=yε= ū0 (x, yε; ā) + h̄,

where

u0(x, yε) = ū0 (x, yε; 0) .

Then, by the definition of ζ(x) explained above, there holds

a (H ′(x1)−H ′(x2)) + h = ū0 (x, yε; ā)− ū0 (x, yε; 0) + h̄.

As a result,

S(h) = S̄
(
J(h), b̄

)
on ∂Λ+.

For ξ with the form (5.1), we also define the operators

Θ (ξ) = a, Θ⊥ (ξ) = h. (5.5)

To find an entire solution of the Allen–Cahn equation on the whole plane, we
need to match the derivatives of the inner and outer solutions at their common
boundary. For this purpose, we need to introduce a weight function in the following
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way. For δ < 0, we define

Γ̄δ (x) := coshδ x1 + coshδ x2,

while for δ > 0, we let

Γ̄δ (x) :=
(
cosh−δ x1 + cosh−δ x2

)−1

,

where at this moment,

x1 = x− f̃ (0) , x2 = x+ f̃ (0) .

Using this weight function, we then define the space

Fδ : =
{
Γ̄δφ : φ ∈ C2,µ (R)

}
,

with the norm

‖ϕ‖Fδ
=

∥∥∥∥ ϕΓ̄δ

∥∥∥∥
C2,µ(R)

.

The next proposition states that we can first of all match the derivatives of the
solutions for their components orthogonal to H ′.

Proposition 5.2. Let δ < 0 be a fixed constant sufficiently close to 0. For each

b ∈ R with |b| < Cε
21
20 , there exists hˆ = hˆ (b) ∈ Fδ, with

‖h‖Fδ
≤ Cε

11
10 ,

such that

Θ⊥ [∂yS (hˆ)− ∂yS̄
(
J
(
hˆ
)
, b
)]

= 0, at y = yε,

where the projection operator Θ⊥ is defined through (5.5).

Proof. For fixed b with |b| < Cε
21
20 , we consider the map

N : h→ Θ⊥ [(∂yS (h)− ∂yS̄ (J (h) , b)
)
|y=yε

]
.

In view of proposition 3.4, if

‖h‖Fδ
≤ Cε

11
10 ,

then S (h) is well defined and the relevant norm of S (h) is bounded by Cε
21
20 , and

at the boundary y = yε,

‖∂yS(h)‖Fδ
≤ Cε

11
10 .

Moreover, under this assumption, we have

‖J(h)‖ ≤ Cε
11
10 .

Therefore, it follows from proposition 4.2 that, S̄(J(h), b) is also well defined, whose
norm has the estimate stated in proposition 4.2. This in turn implies that the map
N is well defined.
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We would like to find h such that

N (h) = 0. (5.6)

For this purpose, we define the function

ũ := H (x1)−H (x2)− 1.

This function is independent of the y variable. Consider the linearized operator

Lϕ = −ϕ′′ +
(
3ũ2 − 1

)
ϕ,ϕ ∈ H2 (R) .

The spectrum of L consists of the essential spectrum [2,+∞). This follows from
the fact that |ũ| converges to 1 away from its zeros. For the spectrum below 2, it

has an eigenvalue λ0,ε close to 0 and another eigenvalue λ1,ε close to
√

3
2 . One way

to see the existence of these two eigenvalues is to use the perturbation argument,
starting from the fact that the spectrum of the linearized operator around the
one-dimensional heteroclinc solution H, defined by

LH : ϕ→ −ϕ′′ +
(
3H2 − 1

)
ϕ,ϕ ∈ H2 (R) ,

has exactly two eigenvalues below 2: one is 0 and the other is
√

3
2 . This fact is

pointed out in example 1.2 of [9]. To show that λ0,ε and λ1,ε are the only eigenvalues
for ε small, we can analyse the asymptotic behaviour of corresponding eigenfunc-
tions. We can prove that they are ‘localized’ around the zeros of ũ and hence
converge to an eigenfunction of the operator LH.

Now, let ϕ0 be an eigenfunction associated with the eigenvalue λ0,ε. We define
the projection operators

Π̃g =

∫
R gϕ0ds∫
R ϕ

2
0ds

ϕ0, Π̃⊥g = g − Π̃g.

Consider solution W of the problem
LũW = 0, in y < yε,

W = Π̃⊥h, for y = yε,

W (x, y) → 0, as y → −∞.

We claim

∂yW (h)−Π⊥ [∂yS (h)] = M1 (h) = O
(
ε
11
10

)
, at ∂Λ+. (5.7)

Indeed, using the similar decomposition as that of (3.19) and (3.20), W can be
written as w1 + we

1, where

LH(x1)
w1 =

[
LH(x1)

w1 − Lũw1 + LH(x2)
we

1 − Lũw
e
1

]
η,

LH(x2)
we

1 =
[
LH(x1)

w1 − Lũw1 + LH(x2)
we

1 − Lũw
e
1

]
ηe.
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Moreover, at ∂Λ+, w1 = ηΠ̃⊥h. On the other hand, the solution S (h) = u0+φ+φ
e

satisfies

LU1
φ =

[
E (u0) + T (Ψ) + LU1

φ− Lu0
φ+ LU2

φe − Lu0
φe
]
η.

Checking the proof of proposition 3.2, the error between W (h) and S (h) mainly
comes from the effect of the following two parts: E (u0)+T (Ψ) and LU1

−LH(x1)
.

Both of them are in C0,µ
γ,δ

(
Ω(x1,y1)

)
, and their norms are bounded by Cε

11
10 . Note

that the error also depends on LH(x1)
w1 −Lũw1 and LU1

φ−Lu0
φ. However, they

are smaller. The claim then follows from these estimates.
Similarly, for all fixed b with |b| < Cε

21
20 , solution W̄ of the problem

LũW̄ = 0, in y > yε,

W̄ = Π̃⊥h, for y = yε,

W̄ → 0, as y → +∞

has the estimate

∂yW̄ (h)−Π⊥ [∂yS̄ (J (h) , b)
]
= M2 (h, b) = O

(
ε
11
10

)
, at ∂Λ+. (5.8)

From the estimates (5.7) and (5.8), we find that equation (5.6) can be written
as

∂yW (h)− ∂yW̄ (h) = M1 (h)−M2 (h, b) . (5.9)

Let us consider the linear operator

N : h→ ∂yW (h)− ∂yW̄ (h) .

If we introduce the weighted Sobolev space

F∗
δ : =

{
Γ̄δφ : φ ∈ H2,2 (R)

}
,

G∗
δ : =

{
Γ̄δφ : φ ∈ H1,2 (R)

}
,

then N will be an operator from F∗
δ to G∗

δ . Here, δ can be positive or negative, but
we will assume that its absolute value is sufficiently small. We want to show that it
is an invertible operator. If h ∈ kerN , then W (h) and W

(
h̄
)
will patch together

to yield an entire bounded solution w of the equation Lũw = 0. Since |δ| is chosen
to be small, this find that w =0, and hence, h =0. Therefore, kerN = 0. On the
other hand, integrating by parts tells us that∫

R
[∂yW (h1)h2 − ∂yW (h2)h1] dx = 0.

This implies that ‘formally’ N is a symmetric operator. A more rigorous conclusion
using duality argument can be stated in the following way: Since the map

N : F∗
−δ → G∗

−δ
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is injective, its dual map

N : F∗
δ → G∗

δ

is surjective. With this result at hand, one can use similar arguments as that of
lemma 2.3 to conclude that the map

N : Fδ → Gδ

is surjective and invertible.
Equation (5.9) then becomes

h = N−1 (M1 (h)−M2 (h, b)) .

Note that both M1 and M2 are contraction mapping of h in the set{
ζ ∈ Fδ : ‖ζ‖Fδ

≤M0ε
11
10

}
,

where M 0 is a fixed large constant. This follows from the fact that the main order
of M1 is mainly determined by LU1

w1−LH(x1)
w1.We then get the desired solution

hˆ. This completes the proof. �

We now proceed to match the derivatives parallel to H
′
.

Proposition 5.3. There exists b0 ∈ R with |b0| < Cε
21
20 such that

Θ
[
∂yS

(
hˆ (b0)

)
− ∂yS̄

(
hˆ (b0) , b0

)]
= 0, on ∂Λ+. (5.10)

Proof. Consider the function

q (b) := Θ
[
∂yS

(
hˆ (b)

)
− ∂yS̄

(
hˆ (b) , b

)]
.

We wish to prove that there exists M0 > 0 such that

q
(
−M0ε

21
20

)
< 0 and q

(
M0ε

21
20

)
> 0. (5.11)

Once this is proved, the existence of b0 satisfying (5.10) will follow immediately
from the continuity of q.

To show (5.11), it will be suffice to prove the following estimate on ∂Λ+:∣∣Θ [∂yS (hˆ (b))]∣∣ < Cε
11
10 , if |b| < ε

21
20 , (5.12)

and ∣∣Θ [∂yS̄ (hˆ (b) , b)]− b
∣∣ < Cε

11
10 , if |b| < ε

21
20 , (5.13)

To see (5.12), we simply use the estimate (3.23). We now explain why (5.13) holds
true. Recall that by (4.2), we have

ū0 + (ψ + ψe) θ + ω.
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At ∂Λ+, in view of the definition of ū0 in terms of b and ρ̄ε, for |b| < ε
21
20 , there

holds

|Θ [∂yū0]− b| ≤ Cε
11
10 .

On the other hand, by the estimates obtained in proposition 4.2, there holds

|Θ [∂yψ]− b| ≤ Cε
11
10 ,

|Θ [∂yω]− b| ≤ Cε
11
10 .

Combining all these estimates together, we obtain, at ∂Λ+,∣∣Θ [∂yS̄ (hˆ (b) , b)]− b
∣∣ ≤ Cε

11
10 .

This is the required estimate (5.13). The proof of this proposition is thus
completed. �

We are ready to prove our main result.

Proof of theorem 1.1. With proposition 5.2 and proposition 5.3 at hand, we deduce
that the solution S

(
hˆ (b0)

)
for the inner region and the solution S̄

(
hˆ (b0) , b0

)
will

have the same boundary value and y-derivative at ∂Ω. Therefore, using the fact
that they solve the same second-order elliptic equation, we conclude that S

(
hˆ (b0)

)
and S̄

(
hˆ (b0) , b0

)
patch together, yielding an entire solution of the Allen–Cahn

equation. This finishes the proof of our main theorem. �
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