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The role of soluble surfactant in the linear
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This study investigates the linear instability of a thin-film coating inside a rigid
tube. The flow is assumed to be inertialess and driven by an axial body force
(e.g. gravity), an interfacial shearing force, or their combinations. The interface and
the bulk of the film are laden with soluble surfactant. The properties of the soluble
surfactant, i.e. solubility, sorption kinetics and bulk diffusivity, modulate the interfacial
dynamics of the film. The influence of these properties on the linear instability of the
film is comprehensively investigated via long-wave approximation analysis and numerical
calculation. Two modes, namely the interface mode and the surfactant mode, are identified
to dominate the instability. For a quiescent film, it is found that solubility, sorption kinetics
and bulk diffusivity act to improve the uniformity of the surface surfactant and mitigate the
stabilizing effect of the Marangoni force. For the film driven by the axial body/interfacial
shearing force, the results reveal that solubility plays contrasting roles in the interface
mode and the surfactant mode. A window with intermediate solubility is detected where
the film can be linearly stabilized. Moreover, sorption kinetics is found to destabilize
the perturbations with long wavelength whereas it stabilizes the perturbations with finite
wavelength. The bulk diffusivity of the surfactant has a non-monotonic influence on the
flow instability, and the film can be relatively stable at both strong and weak diffusivity.

Key words: thin films, Marangoni convection

1. Introduction

A film coating inside a tube has received long-standing attention from various concerns
of scientific investigation. For engineering processes, water-lubricated transport of oil
(Joseph et al. 1997), film condensation for heat exchange (Dalkilic & Wongwises 2009)
and lab-on-a-chip microfluidics (Stone, Stroock & Ajdari 2004) are typical applications of
this phenomenon. In pathological investigations, the film flow is also of great significance.
Surface tension may drive the film inside the pulmonary airways to form plugs and lead
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to the closure of the airway (Grotberg 2001), which is the typical symptom of respiratory
distress syndrome.

Such flow is susceptible to Rayleigh–Plateau instability. Rayleigh (1892) demonstrated
that when the wavelength of an initial perturbation exceeds the circumference of the core,
surface tension will break the core into pockets. Goren (1962) first investigated the linear
instability of such films in the absence of base flow. It was found that the Rayleigh–Plateau
instability can initiate a mode with the largest growth rate and lead to the formation of
plugs. Hammond (1983) studied the instability of such films via lubrication theory. A
nonlinear equation for the evolution of the interface was derived, and it was found that
small axisymmetric perturbations with sufficiently long wavelength could destabilize the
film. Similar results can also be observed when the film is subject to gravity. Hasegawa
& Nakaya (1970) and Krantz & Zollars (1976) solved the Orr–Sommerfeld equation of
the problem separately. Their results demonstrated that compared with the planar case, the
instability of the film coating inside a tube is intensified by capillary force arising from
circumferential curvature. Camassa, Ogrosky & Olander (2014) formulated long-wave
asymptotic models for the problem and proposed that absolute instability can be a criterion
for plug formation. Camassa, Ogrosky & Olander (2017) later considered the effect of the
core flow by a local Poiseuille approach.

A common practice in most applications is to use surfactant to alleviate the surface
tension and modulate the dynamics of the interface. The inhomogeneous distribution of
surfactant will give rise to a gradient of the surface tension, i.e. the Marangoni force,
along the interface. For a quiescent film contaminated with insoluble surfactant, plug
formation in both compliant and rigid airways was studied by Halpern & Grotberg (1993)
and Otis et al. (1993), respectively. They showed that the Marangoni force pulls fluid
into the regions where the film is thin. This retards closure of the airway and enhances the
stability of the film. Kwak & Pozrikidis (2001) reached the same conclusion by conducting
an investigation of the instability of a liquid thread and an annular layer. Two modes of
the problem are identified: one is permanently stable and the other is unstable when the
wavelength of the perturbation exceeds the circumference of the unperturbed interface.

However, the situation becomes intricate in the presence of base flow. The surfactant will
be redistributed due to the advection of the base flow, which may reshape the influence
of the Marangoni force. This, in turn, affects the base flow itself and brings complex
dynamics to the film. Frenkel & Halpern (2002) and Halpern & Frenkel (2003) reported
that insoluble surfactant can trigger the non-inertial instability of a two-layer shear flow,
even if it is stable in the quiescent case. This is attributed to the fact that the base flow
shifts the phase between the perturbation of the surfactant and the interfacial deflection
to make them out of phase. This induces the Marangoni force to drive the flow from
the interfacial trough to the interfacial crest and destabilizes the film. This instability
was later confirmed by Blyth & Pozrikidis (2004) using a lubrication model. They also
investigated the nonlinear saturation of the instability and the nonlinear dynamics of the
wave. A similar case in core–annular flow was investigated by Wei & Rumschitzki (2005)
and Wei (2005). They found that the base flow accumulates insoluble surfactant at the
place where the annulus is thin. They also reported the non-monotonic influence of the
Marangoni number, which is expected to induce maximum instability at an intermediate
magnitude. Via a normal-mode linear instability analysis, Blyth, Luo & Pozrikidis (2006)
identified the dominant modes of the problem, i.e. the interface mode and the surfactant
mode, in the context of Stokes flow. They found that the interface mode is responsible for
the flow instability. Zhou et al. (2014) studied the linear instability of core–annular and
viscoelastic film with insoluble surfactant. The film is subject to an axial body force (e.g.
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gravity), and the effect of the air core is simplified to a constant shear. Their results showed
that various base flows by arbitrary combinations of gravity and shear can induce complex
dynamics, including stabilization, destabilization at long wavelength and destabilization at
finite wavelength. Recently, based on the model of Camassa et al. (2017), Ogrosky (2021)
investigated in depth a similar formulation in the background of pulmonary flow.

Generally, surfactant is more or less soluble. Solubility, sorption kinetics and bulk
diffusivity of surfactant are also important factors influencing surfactant dynamics.
Adsorption/desorption of surfactant at the interface can modulate the Marangoni force and
thereby influence flow instability. It was commonly believed that mass exchange between
the surface surfactant and the bulk surfactant can alleviate the interfacial gradient of the
surfactant. The investigation of a film down an inclined plane (Karapetsas & Bontozoglou
2013, 2014) well supports the idea. The presence of solubility has been found to attenuate
the stabilizing effect of the Marangoni force, thereby aggravating the instability of the film.
This is due to the fact that the surfactant flux from the bulk to the interface is nearly 90◦ out
of phase with interfacial deflection; this helps the advection of surfactant perturbation by
the base flow to counter the advective transport by flow perturbation and thus reduces
the interfacial gradient of the surfactant. D’Alessio et al. (2020) considered both the
solutocapillary effect of soluble surfactant and the thermocapillary effect, and reached
the same conclusion. Kalogirou & Blyth (2019, 2020, 2021) investigated a two-layer shear
flow with soluble surfactant dissolving in the lower layer. They reported that solubility and
sorption kinetics could influence interfacial dynamics and the effect of soluble surfactant
on the instability could be either stabilizing or destabilizing. They also noticed that mass
exchange of surfactant could strengthen the perturbation of surface surfactant in a certain
range of solubility or viscosity ratio.

The presence of soluble surfactant is not rare in investigations involving core–annular
flow. Campana & Saita (2006) studied plug formation in airways and found the closure
time decreased with an increase of surfactant solubility. Their results indicate that the
ability of a surfactant to suppress the Rayleigh instability is diminished by solubility.
Muradoglu et al. (2019) investigated the propagation and rupture of a liquid plug with
soluble surfactant. They found that it is necessary to consider surfactant solubility
in core–annular flow, for soluble surfactant can avoid excessive accumulation of the
surfactant at the interface and lead to a better estimation of mechanical stress and rupture
time. Romanò, Muradoglu & Grotberg (2022) investigated the role of soluble surfactant
in a nonlinear airway closure model. Regarding the parameters they adopted, they found
that the parameters relating to solubility had little effect on airway closure. Craster,
Matar & Papageorgiou (2009) studied a jet laden with soluble surfactant. They found that
solubility will weaken the Marangoni force, accelerate the breakup of the jet and lead to the
formation of large drops. While previous investigations mainly focused on the nonlinear
dynamics of the flow, a fundamental understanding of the effect of soluble surfactant has
not been well established. This motivates our investigation of the linear instability of a film
with soluble surfactant coating inside a tube. Our investigation encompasses the influence
of surfactant solubility, sorption kinetics and bulk diffusivity of the soluble surfactant. We
discuss a quiescent film and a flowing film driven by an axial body force and an interfacial
shearing force. The mechanism of how soluble surfactant influences interfacial dynamics
is discussed.

In this study, the linear instability analysis is carried out under the temporal framework,
which is generally adopted in previous literature (Camassa et al. 2014; Ogrosky 2021;
Jain, Sharma & Das 2022). It provides valuable insights into the long-time behaviour
of film flow and helps us understand the impact of soluble surfactant on linear instability.

973 A46-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.779


S. Li, Y.-Z. Chen, Z. Cheng and J. Peng

g∗

a∗

b∗

z∗

r∗O

τ∗

Air core Liquid film

τ∗

τ∗

τ∗

τ∗

τ∗

τ∗

τ∗

Figure 1. The geometry of a liquid film with soluble surfactant flowing down a tube with an interfacial
shearing stress. The grey dashed lines denote the radius of the unperturbed interface.

By solving a linear eigenvalue problem, we can easily determine the temporal growth rates
of the perturbations, which can serve as a foundation for conducting in-depth analysis
of the instability of the film flow. Since the growth rates of the perturbation for the
film flow are small (Brevdo et al. 1999), the spatial instability can also be revealed
through Gaster transformation (Gaster 1962) or Taylor expansion (Xu et al. 2023). The
remaining content of this paper is arranged as follows. In § 2, the physical description and
mathematical formulation of the problem are introduced. The linearized model is derived
by a normal-mode analysis. In § 3, a long-wave approximation analysis is performed and
the most dangerous modes, the interface mode and the surfactant mode, are investigated.
In § 4, numerical results for the perturbations with finite wavelength are presented. Finally,
conclusions are given in § 5.

2. Problem formulation

We investigate a film coating inside a rigid tube in the presence of soluble surfactant,
as depicted in figure 1. It occupies an annular region between an air core with r∗ = a∗
and a rigid tube wall with r∗ = b∗. The liquid–air interface is initially flat and evolves
spatially and temporally with its radius denoted by η∗(z∗, t∗). The film is considered to
be incompressible and Newtonian, with constant density ρ∗ and viscosity μ∗. It is driven
by an axial body force g∗ and an interfacial shearing stress τ ∗ exerted by the airflow. The
surfactant is assumed to reside both at the liquid–air interface and in the liquid bulk with
different diffusivities D∗

s and D∗
b , which are referred to as surface surfactant and bulk

surfactant. Corresponding concentrations of the surface surfactant and the bulk surfactant
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are denoted by Γ ∗(z∗, t∗) and C∗(r∗z∗, t∗), respectively. The surfactant can be adsorbed
by or desorbed from the liquid–air interface with adsorption kinetic rate k∗

a or desorption
kinetic rate k∗

d .
For the sake of brevity, we present the model in dimensionless form directly by using

the following scales:

t = t∗

b∗/U∗
0
, {r, z} = 1

b∗
{
r∗, z∗} , {u, ω} = 1

U∗
0

{
u∗, ω∗} ,

{p, τ } = 1
γ ∗

0 /b∗
{
p∗, τ ∗} , Γ = Γ ∗/Γ ∗

∞, C = C∗/C∗
CMC.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.1)

Here, γ ∗
0 is the surface tension of the clean interface, b∗ and γ ∗

0 /b∗ are the characteristic
length and pressure/stress, respectively, U∗

0 = γ ∗
0 /μ∗ is the characteristic velocity, Γ ∗∞

denotes the maximum packing concentration of the surfactant at the liquid–air interface
and C∗

CMC is the critical micelle concentration of the bulk surfactant, above which the bulk
surfactant will aggregate into micelles.

2.1. Governing equations and base flow
The film flow is governed by the continuity equation and Navier–Stokes equations:

1
r

∂ (ru)

∂r
+ ∂ω

∂z
= 0, (2.2a)

Re
(

∂u
∂t

+ u
∂u
∂r

+ ω
∂u
∂z

)
= −∂p

∂r
+

[
1
r

∂

∂r

(
r∂u
∂r

)
+ ∂2u

∂z2 − u
r2

]
, (2.2b)

Re
(

∂ω

∂t
+ u

∂ω

∂r
+ ω

∂ω

∂z

)
= −∂p

∂z
+

[
1
r

∂

∂r

(
r∂ω

∂r

)
+ ∂2ω

∂z2

]
− Bo. (2.2c)

Here, u represents the radial velocity, ω denotes the axial velocity, Re = ρ∗b∗U∗
0/μ∗ is the

Reynolds number and Bo = ρ∗g∗ b∗ 2 /γ ∗
0 is the Bond number, which measures gravity or

any other axial body force alike. A film with axisymmetric flow is considered since the
axisymmetric perturbations give rise to the most dangerous modes for both clean (Hu &
Patankar 1995) and contaminated (Blyth & Bassom 2013) liquid–air interfaces.

The boundary conditions at the liquid–air interface r = η(z, t), including the kinematic
condition, the balance of the normal and tangential stresses, can be expressed as

u = ∂η

∂t
+ ω

∂η

∂z
, (2.3a)

σrr − 2
∂η

∂z
σrz +

(
∂η

∂z

)2

σzz = 
2
η

[
( p − pin) + 2γ κ

]
, (2.3b)

∂η

∂z
(σrr − σzz) +

(
2 − 
2

η

)
σrz = −
2

ητ − 
η

∂γ

∂z
, (2.3c)

where κ is the mean curvature:

κ = 1
2

(
1

η
η

− 1

3

η

∂2η

∂z2

)
, (2.4)
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with 
η =
√

1 + η2
z . Parameter γ is the surface tension, which depends on the

concentration of the surface surfactant and can be expressed as

γ = 1 + Ma ln (1 − Γ ) . (2.5)

Here, Ma = RT∗Γ ∗∞/γ ∗
0 is the Marangoni number. Parameter pin denotes the pressure of

the air core and τ measures the mean interfacial shearing force exerted by the air flow.
In this study, we mainly try to uncover the effect of soluble surfactant on the liquid film
instability in the presence of base flow. For simplification, the flow of the liquid film and
the air core are fully decoupled. The influence of the air core on the film dynamics is
included by considering the pressure outside the liquid film and the interfacial shearing
stress. The effect of the liquid film flow on the dynamics of the air core is ignored since
the liquid thickness is small. Therefore, both the pressure pin and the shearing stress τ on
the liquid–air interface are assumed to be constant, which can be treated as a low-order
approximation. Similar treatment can also be found in previous literature (Wei 2005;
Samanta 2014; Zhou et al. 2014). The expressions of (σrr, σrz, σzz) are

σrr = 2
∂u
∂r

, σrz = ∂w
∂r

+ ∂u
∂z

, σzz = 2
∂w
∂z

. (2.6a–c)

At the tube wall r = 1, the no-slip condition is imposed:

u (1) = 0, ω (1) = 0. (2.7a–b)

The advection–diffusion equation of the surfactant in the bulk can be expressed as

∂C
∂t

+ u
∂C
∂r

+ ω
∂C
∂z

= 1
Peb

(
1
r

∂

∂r
r∂C
∂r

+ ∂2C
∂z2

)
. (2.8)

Here, Peb = U∗
0b∗/D∗

b is the Péclect number of the bulk surfactant. It signifies the
relative importance of the molecular diffusivity of the bulk surfactant compared with the
advective transport. The transport equation of the surface surfactant is derived based on
the corresponding expression for insoluble surfactant (Peng & Zhu 2010; Zhou et al. 2014;
Ogrosky 2021), which reads

∂

∂t

(
η
ηΓ

) + ∂

∂z

(
ωη
ηΓ

) = 1
Pes

∂

∂z

(
η


η

∂Γ

∂z

)
+ η
ηJb. (2.9)

Here, Pes = U∗
0b∗/D∗

s is the Péclect number of the surface surfactant. It should be noted
that (2.9) is essentially equivalent to that proposed by Stone (1990) and Wong, Rumschitzki
& Maldarelli (1996). The mass exchange of the surfactant between the bulk and the
interface is described by a source Jb, which indicates the surfactant flux from the bulk
to the interface. It can be given according to the Langmuir isotherm (Edwards, Brenner &
Wasan 1991):

Jb = Bi [KbC (1 − Γ ) − Γ ] . (2.10)

Here, Bi = b∗k∗
d/U∗

0 is the Biot number, which is the ratio between the characteristic time
scale of the film flow b∗/U∗

0 and the time scale for desorption (k∗
d)

−1 (Booty & Siegel
2010). It measures the sorption kinetics of the surfactant. When Bi � 1, desorption of
the surface surfactant from the liquid–air interface is suppressed. This tends to reduce the
problem to the situation with insoluble surfactant. Parameter Kb = k∗

aC∗
CMC/k∗

dΓ
∗∞ is the

ratio between the adsorption and desorption strength of the surfactant, which denotes the
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surfactant’s affinity to the interface (Craster et al. 2009). It is clear that the solubility of the
surfactant becomes weak as Kb increases. Following Fick’s law, the boundary condition
of the bulk surfactant at the liquid–air interface is

∂C
∂r

− ∂η

∂z
∂C
∂z

= 
ηPebβJb. (2.11)

Here, β = Γ ∗∞/b∗C∗
CMC indicates the ratio between the surfactant capacity of the film

interface and that of the bulk. As β increases, more surfactant is located on the film
interface. As a result, it is equivalent to weakening the solubility of the surfactant. It
is worth noting that Kb and β exhibit almost the same influence on the solubility. The
product Rb = βKb is more indicative to describe the surfactant solubility (Karapetsas
& Bontozoglou 2013; Kalogirou & Blyth 2019). The surfactant is highly soluble with
Rb � 1, whereas it is sparingly soluble with Rb � 1. At the tube wall r = 1, it is
assumed that no bulk surfactant is absorbed. The corresponding boundary condition can
be expressed as

∂C
∂r

= 0. (2.12)

In this study, we are concerned with the linear instability of a liquid film driven by
an axial body force and an interfacial shearing stress, which is assumed to be of annular
geometry with η̄ = a. Corresponding solution of the base flow is

ū (r) = 0, ω̄ (r) = Bo
4

(1 − r2 + 2a2 ln r) − aτ ln r, p̄ = pin − γ̄

a
, (2.13a–c)

where an overbar is used to denote the base flow. Here γ̄ is given by 1 + Ma ln(1 − Γ̄ ),
where Γ̄ is the uniform concentration of the surface surfactant for the base flow, which is
called uniform base level concentration. At this moment, the surface surfactant Γ̄ and the
bulk surfactant C̄ are in equilibrium with J̄b = 0, and (2.10) yields the following relation:

C̄ = Γ̄

Kb
(
1 − Γ̄

) . (2.14)

It should be pointed out that when C̄ > 1, the bulk surfactant will form micelles. However,
in this study, we only consider the situation where C̄ < 1, which allows us to focus on
the specific properties of the soluble surfactant, i.e. solubility, sorption kinetics and bulk
diffusivity.

2.2. Formulation of the linear instability problem
A standard normal-mode method is adopted to investigate the linear instability of the
system. An infinitesimal perturbation (η̂, û, ŵ, p̂, Γ̂, Ĉ) is applied to the base flow.
Accordingly, we assume that

{η (z, t) , u (r, z, t) , ω (r, z, t) , p (r, z, t) , Γ (z, t) , C (r, z, t)}
= {

a, 0, ω̄ (r) , p̄, Γ̄, C̄
} +

{
η̂, û (r) , ω̂ (r) , p̂ (r) , Γ̂, Ĉ (r)

}
exp (ik (z − ct)) + c.c.,

(2.15)
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where k is the real wavenumber and c is the complex wave celerity. Corresponding
linearized governing equations of the film flow and the bulk surfactant yield

Dû (r) + û (r)
r

+ ikω̂ (r) = 0, (2.16a)(
∇2 − k2 − r−2

)
û (r) = Dp̂ (r) , (2.16b)(

∇2 − k2
)

ω̂ (r) = ikp̂ (r) , (2.16c)(
∇2 − k2

)
Ĉ (r) = ikPeb (ω̄ − c) Ĉ (r) , (2.16d)

where D = d/dr and ∇2 = D2 + D/r. Here, the fluid inertia is ignored by setting Re = 0,
which is feasible for film flow with a relatively small velocity. Linearizing the boundary
conditions at the liquid–air interface r = a, we obtain

û = ik (ω̄ − c) η̂, (2.17a)

p̂ − γ̄
(

a−2 − k2
)

η̂ + 2
(
ikDω̄η̂ − Dû

) = Ma
a
(
1 − Γ̄

) Γ̂, (2.17b)

ikû + Dω̂ + D2ω̄η̂ = ik
Ma

1 − Γ̄
Γ̂, (2.17c)

DĈ (a) = PebβbĴb, (2.17d)

Ĵb = BiKb
(
1 − Γ̄

)
Ĉ − Bi

(
KbC̄ + 1

)
Γ̂ . (2.17e)

The linearized form of the surface surfactant transport equation (2.9) can be written as

− ikcΓ̂ = Ĵb + SF(dif ) − SF(adv) − SF( per). (2.18)

Here, SF(dif ) = −k2/PesΓ̂ is produced by the diffusion of the surface surfactant,
SF(adv) = ikω̄(a)Γ̂ represents the transport of the surface surfactant perturbation due
to the base flow and SF( per) = Γ̄ û(a)/a + ikΓ̄ [ω̂(a) + Dω̄(a)η̂] stands for advective
transport of the surface surfactant by the perturbed flow. Combined with (2.15), it is
clear that as Re(Ĵb exp(ik(z − ct))) > 0, the surfactant is absorbed from the bulk to
the interface and the concentration of the surface surfactant is increased; the opposite
holds when Re(Ĵb exp(ik(z − ct))) < 0. Furthermore, according to (2.18), it is obvious
that Re(SF(dif ) exp(ik(z − ct))) > 0 corresponds to the accumulation of the surface
surfactant whereas Re(SF(dif ) exp(ik(z − ct))) < 0 corresponds to the depletion of the
surface surfactant. Similarly, for SF(adv) exp(ik(z − ct)) and SF( per) exp(ik(z − ct)), when
the real parts of these two terms are positive, they tend to produce net efflux of the
surface surfactant and decrease the concentration of the surface surfactant. When they
are negative, the effects are reversed.

The boundary condition at the tube wall r = 1 can be linearized as

û (1) = 0, ω̂ (1) = 0, DĈ (1) = 0. (2.19a–c)

It is worth noting that the relationship between c and (η̂, Γ̂, Ĉ) can be determined explicitly
according to (2.16d), (2.17a) and (2.18). In the following, the analysis will hinge on
dynamics described by these equations.
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3. The long-wave approximation analysis

In this section, we study the instability of the system in the long-wave limit, i.e. k → 0.
The perturbation quantities can be expanded as{

η̂, c, û (r) , ω̂ (r) , p̂ (r) , Γ̂, Ĉ (r)
}

=
{
η̂0, c0, kû0 (r) , ω̂0 (r) , p̂0 (r) , Γ̂0, Ĉ0 (r)

}
+ k

{
η̂1, c1, kû1 (r) , ω̂1 (r) , p̂1 (r) , Γ̂1, Ĉ1 (r)

}
+ O

(
k2
)

. (3.1)

Here, considering the continuity equation (2.16a), û is one order of magnitude greater
than ω̂ and thus expanded from the O(k) scale. Substituting (3.1) into (2.16)–(2.19a–c),
and equating items with the same order of k separately, we obtain equations of each order.
We focus on the perturbation modes of the system, and the role of the surfactant in the
instability of these modes. The detailed derivation process is presented in Appendix A.

3.1. The interface mode and the surfactant mode

As shown in Appendix A, (η̂0, Γ̂0, Ĉ0) satisfy (A8), (A10) and (A15). Similar to Wei
(2005), these equations yield two sets of solutions, which correspond to two modes of
the problem. One mode is triggered by the deflection of the interface, denoted as the
interface mode. The other mode arises from the perturbation of the surface surfactant
Γ̂0 irrespective of interfacial deflection, which is denoted as the surfactant mode. Apart
from these two modes, the transport equation of the bulk surfactant yields infinite modes
due to diffusion, which can be derived by expanding c as k−1c0 + c1 + kc2 instead, as
suggested by Kalogirou & Blyth (2019). However, according to a numerical verification
(not presented for brevity), these modes are always stable and are ignored in the following
discussion.

For the interface mode, η̂0 is set to be unity, and other variables vary proportionally to it.
According to (A16a), the wave celerity c0 is independent of surfactant solubility, which is
consistent with the insoluble case. Similar phenomena were also observed by Karapetsas
& Bontozoglou (2014) and Kalogirou & Blyth (2019). However, according to (A16b), Γ̂0
is influenced by the advection of the bulk surfactant and surfactant solubility Rb. When
Rb � 1, Γ̂0 can be reduced to that of Zhou et al. (2014), where the surfactant is assumed
to be insoluble. Furthermore, since c0 is a real number, the instability of the system is
determined by the O(k) solution to c1 with the following expression:

c1 = i
A3

16a3 γ̄ + i
A4Ma

16a2
(
1 − Γ̄

) Γ̂0. (3.2)

Here, A3 and A4 are related to the geometrical parameters, as presented in (A1), which
are positive definite over 0 < a < 1. Clearly, for (3.2), the first term on the right-hand
side is attributed to the circumferential surface tension, and the second term arises from
the Marangoni force. Since Γ̂0 is independent of sorption kinetics Bi and bulk surfactant
diffusivity Peb as shown in (A16b), it can be concluded that soluble surfactant can affect
the interface mode exclusively through solubility Rb.

For the surfactant mode, we adopt a method similar to that for the interface mode and
set Γ̂0 = 1 and η̂0 = 0. The wave celerity c0 of the surfactant mode, which is real, is
mediated by the transport of the bulk surfactant, as shown in (A23a). When the surfactant
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is sparingly soluble (Rb � 1), the perturbation wave travels with interfacial speed ω̄(a)

(Zhou et al. 2014); when the surfactant is highly soluble (Rb � 1), c0 degenerates into the
average speed of the base flow 2q̄/(1 − a2) with q̄ = ∫ 1

a rω̄(r) dr. The instability of the
surfactant mode is determined by O(k2) problem and c1 can be expressed as

c1 = i

(
1 + 1 − a2

2aRb
(
1 − Γ̄

)2

)−1 (
− 1

Pes
+ f (Peb)

1 + f (Bi)
1 + f (S)

1 − SF( per)
2

)
. (3.3)

In the last bracket on the right-hand side of (3.3), the first two terms are attributed to
the diffusion of the surface surfactant and the bulk surfactant. Third and fourth terms f (Bi)

1
and f (S)

1 denote the contribution of the advection of the bulk surfactant by the base flow,
which are expressed in (A33). The fifth term is due to the advective transport of the surface
surfactant by the perturbed flow with its expression in (A35). From (3.3), it can be deduced
that the instability of the surfactant mode is not only modulated by solubility Rb but also
affected by bulk diffusivity Peb and sorption kinetics Bi. This is different from that of the
interface mode.

Before the elucidation of the two modes, it should be pointed out that there is an
exceptional situation, when the film is quiescent, i.e. Bo = 0 and τ = 0. In this situation,
Γ̂0 is determined by O(k2) transport equation of the surface surfactant due to the lack
of advection attributed to the base flow. Solutions to the problem are derived by setting
η̂0 = 1 in Appendix A.5. The results show that Γ̂0 for both modes is in the opposite phase
of η̂0. According to the expression of c1 (A37), the interface mode, which corresponds
to a weaker Γ̂0, is more dangerous for instability. As illustrated in figure 2(a), Im(c1) of
the interface mode increases with a decrease of Rb. This is because the non-uniformity of
Γ̂0 for the interface mode is suppressed with increasing solubility, which acts to attenuate
the stabilizing effect of the Marangoni force. Here, we focus on the influence of bulk
diffusivity on the linear instability of the system. Thus, the magnitude of Pes is assumed
to be larger than that of Peb. This indicates that the effect of interfacial diffusion is
negligible in comparison to bulk diffusion. A similar assumption can also be found in
previous literature (Kalogirou & Blyth 2019, 2021). Term Im(c1) of the interface mode also
increases with increasing bulk diffusivity, i.e. decreasing Peb, as illustrated in figure 2(b),
where the uniformity of the surfactant is improved as well. As a result, decreasing Peb
makes the quiescent film more unstable.

3.2. Instability of the film driven by an axial body force
In this section, we proceed to consider the instability of the film driven by an axial body
force, i.e. τ = 0 and Bo /= 0. According to (3.2), c1 of the interface mode is modulated by
Γ0, which is derived from (A16b) (more details can be found in Appendix A):

Γ̂0 = Γ̂
(ins)

0

(
1 + A3 + 2A6

4aA1Rb
(
1 − Γ̄

)2

)−1

, (3.4)

with

Γ̂
(ins)

0 = −A2Γ̄

aA1
. (3.5)
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Core–annular film with soluble surfactant
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Figure 2. The dependence of Im(c1) and perturbed surfactant concentration Γ̂0 on (a) solubility and
(b) bulk diffusivity for a quiescent film given by long-wave approximation analysis. In (a) Peb = 100 and in
(b) Rb = 1.0, and the remaining parameters for both cases are: a = 0.9, Re = 0, Ma = 0.02, Γ̄ = 0.4, Bi = 0.1
and Pes = 1 × 106.

0

–0.5

Im
(c

1
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–1.0

10–4 10–3 10–2 10–1 100

Interface mode

Rb
(s) = 3.138

Surfactant mode

Rb

101 102 103 104

(×10–2)

Figure 3. The dependence of Im(c1) on solubility Rb for a film driven by an axial body force. The solid
line denotes the interface mode and the dashed line denotes the surfactant mode, both given by long-wave
approximation analysis. Here R(s)

b is the solubility where the curves of the interface mode and the surfactant
mode intersect. The parameters adopted here are Bo = 1, τ = 0, Peb = 100 and the others remain the same as
in figure 2.

Here, Γ̂
(ins)

0 is the solution to the corresponding problem with insoluble surfactant. Since
η̂0 = 1, Γ̂0 is in the opposite phase of η̂0. This indicates that the concentration of the
surface surfactant is higher at the interfacial trough while it is lower at the interfacial
crest. The induced Marangoni force directs from the interfacial trough to the crest and
the resulting flow acts to stabilize the interface mode. It should be pointed out that the
interfacial crest/trough denotes the location with the maximum/minimum radius, which
corresponds to the thinnest/thickest location of the film. However, (3.4) suggests that
the amplitude of Γ̂0 reduces with decreasing Rb. This indicates that solubility plays a
destabilizing role in the interface mode, as illustrated in figure 3. This phenomenon

973 A46-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.779


S. Li, Y.-Z. Chen, Z. Cheng and J. Peng

is attributed to the four transport pathways of the surface surfactant defined in (2.18).
To better elucidate the problem, a reference frame, which moves with the perturbation
wave, is introduced. The transport of the surface surfactant perturbation SF(adv) can be
rewritten as ik(ω̄(a) − c0)Γ̂ . Corresponding expressions in the O(k) order can be derived
based on (A11):

SF(adv)
1 = −i

A1Bo
4

Γ̂0, Ĵb1 = i
Bo (A3 + 2A6)

16aRb
(
1 − Γ̄

)2 Γ̂0,

SF( per)
1 = −i

A2Bo
4a

, SF(dif )
1 = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.6)

Clearly, the phase of SF(adv)
1 lags 90◦ behind Γ̂0, while the phase of adsorption/desorption

flux Ĵb1 precedes Γ̂0 by 90◦. This means that SF(adv)
1 and Ĵb1 are in anti-phase. According

to (2.18), we know that the depletion of the surface surfactant caused by the base
flow coincides with the desorption flux from the interface to the bulk. Meanwhile,
the accumulation of the surface surfactant caused by the base flow coincides with the
adsorption flux from the bulk to the interface. As a result, Ĵb1 is a boost for SF(adv)

1
to counter the surfactant transportation by the perturbed flow SF( per)

1 , and alleviates the
perturbation of the surface surfactant. In this situation, solubility promotes the uniformity
of Γ̂0. It leads to the attenuation of the stabilizing effect of the Marangoni force and
enhances the instability of the interface mode.

For the surfactant mode, the instability is attributed to the accumulation/depletion of the
surfactant at the interface. Parameter c1 of the surfactant mode is expressed in (3.3). Its
instability is determined by those five terms in the second bracket on the right-hand side.
The first term −1/Pes is attributed to the interfacial diffusivity of the surface surfactant,
which is weak and generally ignored. Terms f (Peb)

1 , f (Bi)
1 and f (S)

1 are components of Ĵb2 (see
(A31)) and their magnitude increases with a decrease of Rb. Term f (Peb)

1 is caused by the
diffusion of the bulk surfactant. Recall that the derivation of the surfactant mode is based
on Γ̂0 = 1. Term f (Peb)

1 is in the opposite phase to Γ̂0 and acts to diminish the perturbation
of the surface surfactant. For f (Bi)

1 , it is obviously non-positive irrespective of Bo and plays
a stabilizing role. Furthermore, this conclusion holds even for various combinations of
Bo and τ . In f (S)

1 , the analytical expression of S is too cumbersome to present here. As
illustrated in figure 4, the numerical results show that S takes a non-positive value. Thus,
it tends to stabilize the surfactant mode. So far, the first four terms in the second bracket
on the right-hand side of (3.3) always contribute to stabilizing the surfactant mode. Its
instability results from SF( per)

2 , which denotes the surface surfactant transported by the
perturbed flow. Substituting (2.13a–c) with τ = 0 into (A35), SF( per)

2 can be expressed as

SF( per)
2 = A5MaΓ̄

16a3
(
1 − Γ̄

) − i
A2BoΓ̄

4a
η̂1, (3.7)

which arises from the Marangoni effect and interfacial deflection. According to (A21), η̂1
satisfies

η̂1 = η̂
(ins)
1

⎛
⎝1 + A6

2A1

(
1 − a2 + 2aRb

(
1 − Γ̄

)2
)
⎞
⎠−1

, (3.8)
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Core–annular film with soluble surfactant
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Figure 4. The contour of S on the Bo versus τ plane with a = 0.9, Rb = 1 and Γ̄ = 0.4.
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Figure 5. The dependence of Im(c1) and perturbed adsorption/desorption flux Ĵb2 of the surfactant mode on
(a) sorption kinetics and (b) bulk diffusivity, where the film is driven by an axial body force. In (a), Peb is fixed
at 100 and in (b), Bi is fixed at 0.1. For both cases, we take Bo = 1, τ = 0, Rb = 1 and the other parameters
remain the same as in figure 2.

with

η̂
(ins)
1 = − iA4Ma

4a2A1Bo
(
1 − Γ̄

) . (3.9)

Here, η̂(ins)
1 is identical to the first-order interfacial deflection in the corresponding problem

with insoluble surfactant. According to (3.8) and (3.9), η̂1 lags 90◦ behind Γ̂0 and its
magnitude is reduced with decreasing Rb. Therefore, the second term on the right-hand
side of (3.7) is in the opposite phase to Γ̂0. It acts to destabilize the surfactant mode and
this destabilizing effect on the surfactant mode diminishes with decreasing Rb. Combining
all the terms in (3.3), Im(c1) is decreased while Rb decreases as demonstrated in figure 3.
Notably, different from the insoluble case (Jain et al. 2022), where the surfactant mode is
always unstable, the surfactant mode with soluble surfactant could be stable with a certain
small Rb.

According to (3.3), we know that the instability of the surfactant mode is modulated
by sorption kinetics Bi and bulk diffusivity Peb as well. As shown in figure 5(a),
the adsorption/desorption flux Ĵb2 is intensified as Bi decreases, which improves the
uniformity of the surface surfactant and stabilizes the surfactant mode. This is attributed
to the fact that the effect of f (Bi)

1 in (A31) and (A34) is inversely proportional to Bi.
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Figure 6. The dependence of Im(c1) on solubility Rb for a shear-driven film given by long-wave approximation
analysis. The solid line denotes the interface mode and the dashed line denotes the surfactant mode. Here R(s)

b
is the solubility where the curves of interface mode and surfactant mode intersect. The parameters adopted here
are Bo = 0, τ = 1, Peb = 100 and the other parameters are the same as in figure 2. Under current circumstance,
the critical solubility R(c)

b = 2.389 and is demonstrated as a vertical asymptote.

Moreover, as demonstrated in figure 5(b), bulk diffusivity Peb has a non-monotonic
influence on the instability of the surfactant mode and the surfactant mode is relatively
stable for both strong and weak diffusivity. When the bulk diffusivity is strong, i.e.
Peb is small, f (Peb) becomes significant in (A31) and (A34), which leads to strong
adsorption/desorption flux and stabilizes the surfactant mode. On the other hand, when
Peb is sufficiently large, the stabilizing effect of f (S)

1 will become significant instead.
The reason for this is that the gradient of the bulk surfactant is intensified due to weak
diffusion. This results in large adsorption/desorption flux and mitigates the growth rates
of the surfactant mode.

3.3. Instability of the film driven by an interfacial shearing force
In this section, we examine the instability of film flow driven by an interfacial shearing
force, i.e. Bo = 0 and τ /= 0. Figure 6 presents the effect of solubility on the instability for
both the interface and the surfactant modes. It is interesting that there is a critical solubility
R(c)

b , around which Im(c1) changes dramatically. On both sides of R(c)
b , solubility plays

a destabilizing role in the interface mode but a stabilizing role in the surfactant mode.
Similar to that presented in § 3.2, the effect of the capillary force on the instability of the
interface mode is modulated by the surface surfactant perturbation Γ̂0, which is determined
according to (A11). Each item, which denotes one pathway of the surfactant transport, can
be expressed in the reference frame travelling with c as follows:

SF(adv)
1 = i

A1τ

4
Γ̂0, Ĵb1 = i

τ (A4 − 3A6)

16a2Rb
(
1 − Γ̄

)2 Γ̂0,

SF( per)
1 = −iτ

4a2 − A2

4a2 , SF(dif )
1 = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.10)

973 A46-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.779


Core–annular film with soluble surfactant

In this study, the film thickness is assumed to be small (a = 0.9). Values of (A4 − 3A6)

and (4a2 − A2) are both positive for a thin liquid film, e.g. a > 0.53. Thus, SF(adv)
1 and

Ĵb1 are in the same phase, and play a contrasting role in the surface surfactant transport at
O(k) order. This is different from that presented in (3.6), and Γ̂0, as given by (A16b), can
be simplified as

Γ̂0 = Γ̂
(ins)

0
Rb

Rb − R(c)
b

, (3.11)

with

Γ̂
(ins)

0 = Γ̄ (4a2 − A2)

aA1
. (3.12)

Here, Γ̂
(ins)

0 corresponds to the solution of the problem with insoluble surfactant. The
critical solubility R(c)

b is

R(c)
b = A4 − 3A6

4aA1(1 − Γ̄ )2
. (3.13)

Notably, if SF(adv)
1 equals Ĵb1 in (3.10), we have Rb = R(c)

b and infinite Γ̂0 according
to (3.11). This indicates that the presence of R(c)

b is attributed to the offsetting effect
between SF(adv)

1 and Ĵb1 in the surfactant transport. As a result, the surfactant can
accumulate/deplete at the interface infinitely due to the presence of SF( per)

1 . Moreover,
when the surfactant is sparingly soluble (Rb � 1), Ĵb1 → 0. According to (A11), SF( per)

1
is balanced by SF(adv)

1 . The induced perturbation of surface surfactant is Γ̂
(ins)

0 , which
is in phase with η̂0 and induces destabilizing Marangoni flow from the interfacial
crest to the interfacial trough. When Rb reduces, Ĵb1 becomes large and the surface
surfactant transported by SF(adv)

1 will be hindered. Consequently, Γ̂0 is prone to become
concentrated/dilute, which tends to aggravate the instability of the interface mode.
However, when Rb is below R(c)

b , Ĵb1 has the advantage over SF(adv)
1 . According to

(A11), we know that SF( per)
1 is now mainly balanced by Ĵb1. Therefore, the phase of

Γ̂0 is reversed, which induces the Marangoni flow from the trough to the crest and
contributes stability to the interface mode. As Rb is further decreased, Γ̂0 reduces due
to the enhanced adsorption/desorption flux Ĵb1. The stabilizing effect of the Marangoni
flow is then attenuated. It is noted that when Rb approaches R(c)

b , Im(c1) will tend to be
infinite, as shown in figure 6. In fact, under this situation, the current long-wave expansion
is inappropriate. Term Im(c1) is proportional to k1/2 as presented in Appendix B. Similar
results for two-layer planar flow have been reported for clean interface (Halpern & Frenkel
2003) and for soluble surfactant (Kalogirou & Blyth 2019). It should be pointed out that
the current long-wave expansion only fails in a narrow region of Rb, i.e. Rb → R(c)

b , and
it is applicable for the rest of the values of Rb. Halpern & Frenkel (2003) have made an
in-depth investigation of this singularity and pointed out that as soon as the parameter
moves slightly away from the critical situation, the growth rates rapidly change to the
results given by O(k) expansion.

For the surfactant mode, the instability is determined by (3.3) with Bo = 0. Similar to
film flow driven by an axial body force, the first four terms in the right-hand bracket of
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(3.3) play a stabilizing role. Corresponding conclusions in the previous section still hold.
Here Bi acts to enhance the instability of the surfactant mode while Peb tends to make
the surfactant mode relatively stable for both strong (small Peb) and weak (large Peb)
diffusivity. Furthermore, according to (3.3), the instability of the surfactant mode arises
from SF( per)

2 as well. Substituting (2.13a–c) with Bo = 0 into (A35), we obtain

SF( per)
2 = A5MaΓ̄

16a3(1 − Γ̄ )
− i

τ(4a2 − A2)Γ̄

4a2 η̂1, (3.14)

where η̂1 can be derived via (A25) as

η̂1 = η̂
(ins)
1

Rb − R(c)
b

(
Rb + 1 − a2

2a(1 − Γ̄ )2

)
. (3.15)

Here, η̂
(ins)
1 corresponds to the O(k) order deflection of the liquid–air interface with

insoluble surfactant, and its expression is

η̂
(ins)
1 = i

A4Ma
4aτA1(1 − Γ̄ )

. (3.16)

Comparing (3.7) and (3.14), we observe that the first terms on the right-hand sides of
the equations, which play stabilizing roles, are the same. For the second term, the same
critical solubility R(c)

b can also be obtained according to (3.15). On both sides of R(c)
b ,

although the second term has opposite phases, it is prone to make the surfactant mode
relatively stable with decreasing Rb. As a result, solubility tends to decrease the growth
rate of the surfactant mode on both sides of R(c)

b (see figure 6). This is consistent with the
role of solubility in film flow driven by an axial body force.

4. The linear instability analysis at finite wavelength

In this section, we investigate the linear instability of the film at finite wavelength,
where the high-order perturbation once suppressed in the long-wave regimes will revive
due to the increase of wavenumber. This will make an additional contribution to the
stability/instability of the film. The influences of surfactant solubility Rb, sorption kinetics
Bi and bulk diffusivity Peb on the linear instability of the film are mainly concerned. Since
a large number of parameters are involved in the problem, it is cumbersome to discuss each
one in detail. Therefore, we render results that display representative effects of the soluble
surfactant on the linear instability of film flow, with a = 0.9, b = 1.0, Γ̄ = 0.4, Re = 0
and Pes = 1 × 106.

4.1. Numerical implementation
The linearized equations (2.16)–(2.19a–c) are discretized by a spectral collocation method
based on Chebyshev polynomials (Trefethen 2000). The film region is mapped onto the
spectral space x ∈ [−1, 1] via the following relation:

x = 1 − 2
(

r − a
1 − a

)
, (4.1)

where the tube wall and the liquid–air interface are located at x = −1 and x = 1,
respectively. The spectral space is constructed via N + 1 Chebyshev points. Governing
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(Bo, τ ) Bi Rb Long-wave approximation Numerical results

(1.0, 0.0) 0.1 0.1 I : 1.17022 × 10−12 I : 1.17022 × 10−12

S : −7.52810 × 10−11 S : −7.52062 × 10−11

(0.0, 1.0) 0.1 1.0 I : −7.86152 × 10−11 I : −7.86152 × 10−11

S : 4.13296 × 10−11 S : 4.13479 × 10−11

(1.0, 0.1) 0.1 0.1 I : 4.54293 × 10−13 I : 4.54293 × 10−13

S : −7.49400 × 10−11 S : −7.48562 × 10−11

(1.0, 0.1) 0.1 10.0 I : −2.43473 × 10−11 I : −2.43473 × 10−11

S : 1.18338 × 10−11 S : 1.18354 × 10−11

(1.0, −0.1) 1.0 1.0 I : 2.79617 × 10−12 I : 2.79617 × 10−12

S : −3.23057 × 10−11 S : −3.22926 × 10−11

Table 1. Comparison of two dominant growth rates obtained by the long-wave approximation analysis and the
numerical method with k = 1 × 10−4. Notation I represents the growth rate for the interface mode and S that
for the surfactant mode. The remaining parameters are the same as in figure 2.

equations (2.16) are discretized on this clustering grid, and boundary conditions
(2.17)–(2.19a–c) are implemented at the boundary points. The perturbation of {û, ω̂, p̂, Ĉ}
is expanded on the corresponding Chebyshev polynomials:

û (r) =
N∑

i=0

ûiTi (r) , ω̂ (r) =
N∑

i=0

ω̂iTi (r) ,

p̂ (r) =
N∑

i=0

p̂iTi (r) , Ĉ (r) =
N∑

i=0

ĈiTi (r) ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2a–d)

where Ti(r) is the ith Chebyshev polynomials of the first kind. The above
discretization renders a generalized complex eigenvalue problem AX = ΩBX . Here, X =
{ûi, ω̂i, p̂i, Ĉi, η̂, Γ̂ } is the perturbed variables and consists of 4N + 6 elements. Matrices A
and B are complex matrices, which are determined by dimensionless parameters Bo, τ , Rb,
Bi, Peb and Pes. Eigenvalue Ω = Ωr + iΩi is the complex eigenvalue, and its imaginary
part Ωi corresponds to the growth rate at a given wavenumber. The built-in QZ algorithm
eig of MATLAB is adopted to obtain the complex eigenvalues and eigenvectors. We utilize
Advanpix (Advanpix 2022), a multi-precision computing toolbox, to ensure computing
precision, which enables MATLAB to run with arbitrary precision and meanwhile with
high efficiency. The code is verified by comparing the numerical results with those of
the long-wave approximation analysis, as listed in table 1. They are consistent when the
perturbation wavenumber is relatively small, e.g. k = 1 × 10−4. Moreover, in figure 7(a),
the results obtained by Zhou et al. (2014) for a liquid film coating inside a tube with
insoluble surfactant are reproduced by setting Bi = 0 or Rb � 1. When a → 1, the film
coating inside a tube with soluble surfactant can be reduced to a planar falling film. As
shown in figure 7(b), the results are consistent with those presented by Karapetsas &
Bontozoglou (2013).

4.2. The quiescent film
Figure 8(a) shows the growth rates of the perturbation wave with Bi = 0.1, Peb = 100
and various solubilities Rb. The film is assumed to be quiescent. When the surfactant is
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0
(a) (b) 8

6

4

2

0

–2
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χ = 10

χ = 15
–2

–4Ωi

–6

Numerical results

Ma = 0.1

Ma = 0

Zhou et al. (2014)

Numerical results

Karapetsas et al. (2013)

–8

0 1 2

k
3 0 1 2

k
3

(1 × 10–3) (×10–6)

(×10–3)

Figure 7. Validation of the numerical method with the results of (a) Zhou et al. (2014) and (b) Karapetsas &
Bontozoglou (2013). (a) Results of a liquid film coating inside a tube with insoluble surfactant with a = 0.9,
Bo = 5 and τ = −0.4. Our results are obtained by taking the insoluble limit, Rb � 1 or Bi = 0. (b) Results
for a falling planar film with soluble surfactant. Our results approximate to the situation via letting the film
be extremely thin, e.g. 1 − a = 1 × 10−6. The parameters used in (b) follow the definitions of Karapetsas &
Bontozoglou (2013).

sparingly soluble with Rb = 100, the growth rates are nearly indistinguishable from those
of insoluble surfactant. When Rb is reduced, e.g. from 100 to 0.1, the flow instability is
enhanced. This is in line with the prediction of the long-wave approximation analysis. At
Rb = 0.1, the surfactant is highly soluble and the perturbation of the surface surfactant will
be mitigated by the adsorption/desorption flux. Therefore, the film will experience uniform
but decreased surface tension. Corresponding growth rates are a little lower than those of
the problem with clean interface. The cut-off wavenumber equals the reciprocal of the
unperturbed interfacial radius a, the same as for the film with clean interface (Hammond
1983) or insoluble surfactant (Wei & Rumschitzki 2005). Similar results can be observed in
figure 8(b), where the cut-off wavenumbers remain 1/a for various Peb. Moreover, the film
instability can be strengthened as Peb decreases. Figure 8(c) compares the growth rates of
the perturbation wave with Rb = 1.0, Peb = 100 and various Bi. Similar to previous cases,
the cut-off wavenumbers are fixed at 1/a. It is found that the growth rates increase with
increasing Bi. This may be attributed to the fact that the adsorption/desorption flux, which
mitigates magnitude of surface surfactant, is strengthened with increasing Bi. As a result,
the stabilizing effect of the Marangoni force is attenuated. Readers may notice that sorption
kinetic Bi does not involve in the long-wave instability as shown in (A37). This is because
the surfactant at the interface and in the bulk is able to reach equilibrium at the O(1)

orders in the long-wave approximation. Therefore, the influence of Bi, which modulates
the adsorption/desorption flux, vanishes. It should be noted that Romanò et al. (2022)
conducted an investigation into the nonlinear instability of the quiescent film. It indicated
that Rb, Bi and Peb have little impact on the flow instability. This does not conflict with the
results obtained in this study since parameter values are distinctively different.

4.3. The film under an axial body force
In this section, we proceed to consider the scenario of a film driven by an axial body
force, e.g. gravity. Figure 9(a) depicts the growth rates versus wavenumber k with various
Rb. When Rb = 1000, the curve of growth rate is close to that of the insoluble problem.
As Rb decreases, the growth rates are reduced and the film tends to be linearly stable
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1.5(a)

(b)

(c)

Insoluble

Insoluble

Rb = 100

Peb = 1 × 104

Insoluble

Bi = 1 × 10–5

Bi = 1 × 10–4

Bi = 1 × 10–3

Bi = 0.01

Bi = 0.1

Peb = 1 × 103

Peb = 300

Peb = 100

Rb = 10

Rb = 5

Rb = 1

Rb = 0.1

Clean

1.0

0.5Ωi

0

–0.5

1.2

0.8

0.4Ωi

0

–0.4

1.2

0.8

0.4Ωi

0

–0.4

0 0.5 1.0 1.5

0 0.5 1.0 1.5

0 0.5 1.0

k
1.5

(×10–4)

(×10–4)

(×10–4)

Figure 8. The dominant growth rate versus wavenumber k of a quiescent film under the influence of
(a) solubility Rb, (b) bulk diffusivity Peb and (c) sorption kinetics Bi. In (a) Bi = 0.1 and Peb = 100 are
adopted, in (b) Rb = 1 and Bi = 0.1 are adopted and in (c) Rb = 1 and Peb = 100 are adopted. The other
parameters remain the same as in figure 2.
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Bi = 0.1

Rb = 50

Rb = 10

Rb = 1

Rb = 0.1

Rb = 0.01
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k
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0 0.05 0.10

0.5 1.0

k
1.5 2.0

Figure 9. The dominant growth rate versus wavenumber k of a film driven by an axial body force under the
influence of Rb and Bi. The results are obtained with Bo = 1 and τ = 0. (a) Comparison of the growth rates
of various Rb with Ma = 0.02, Bi = 0.1 and Peb = 100. (b) Comparison of the growth rates of various Bi with
Ma = 0.2, Rb = 1 and Peb = 100. Other parameters take the same values as in figure 2.

eventually, as shown in the curves with Rb = 50 and 10. By continuously tracing the
growth rates back to k � 1 (defined as the trace-back method in the following), the
above curves are found to stem from the surfactant mode according to the long-wave
approximation analysis. Thus, the modes corresponding to the above growth rate curves
can be referred to as the surfactant modes. As illustrated in figure 9(a), it can be concluded
that solubility plays a stabilizing role in the surfactant mode. This is in line with the
prediction made by the long-wave approximation analysis. However, when Rb is decreased
to R(s)

b = 3.138, the most dangerous mode shifts from the surfactant mode to the interface
mode, as depicted in figure 3. As Rb is further decreased, e.g. Rb = 1.0, 0.1, 0.01, the
growth rates tend to increase, and the film flow is destabilized eventually. Particularly, at
Rb = 0.01, the surfactant is highly soluble. The performance of the liquid film is similar to
that of a clean interface with suppressed surface tension due to the presence of surface
surfactant. Similar to figure 8(a), the growth rates are a little lower than those of the
clean interface. Moreover, as illustrated in figure 9(a), it can be concluded that the film
is linearly stabilized in the presence of soluble surfactant with intermediate solubility. A
stability window can be observed ranging from Rb = 0.165 to Rb = 113.579 for the present
setting of parameters. This is different from the situation with insoluble surfactant (Jain
et al. 2022), where the surfactant mode is always unstable. Figure 9(b) shows the effect
of sorption kinetics Bi on the dominant growth rates. Via the trace-back method, it is
found that the instability of the film is dominated by the surfactant mode. In this regard,
the main trigger for the instability is the accumulation/depletion of the surfactant at the
interface. The results show that Bi strengthens the instability for the perturbations with
long wavelength but attenuates the instability for the perturbations with finite wavelength.
As k � 1 and Bi is increased from Bi = 1 × 10−4 to Bi = 0.1, the growth rates of the
film increase as predicted by the long-wave approximation. However, for the perturbations
with finite wavelength, the situation is reversed. The growth rates of the perturbation wave
are decreased with increasing Bi. This is attributed to the fact that surfactant with larger
sorption kinetics Bi can dissolve in the bulk more easily and improve the uniformity of the
surface surfactant at the interface. Therefore, increasing Bi makes the perturbation wave
more stable. Notably, these characteristics of Bi can stimulate an unstable region bounded
away from the origin with k = 0, as shown by the curve for Bi = 1 × 10−4, which has
been referred to as the mid-wave instability by Halpern & Frenkel (2003).
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Figure 10. Neutral curves of a film driven by an axial body force with various (a) sorption kinetics Bi and
(b) Marangoni numbers Ma. The results are obtained with Bo = 1 and τ = 0. The parameters take Ma = 0.02
and Peb = 100 in (a) and Bi = 0.1 and Peb = 100 in (b). The other parameters remain the same as in figure 2.

Figure 10(a) shows the neutral curves of film linear instability on the k versus Rb plane
with various Bi. For Bi = 0.1, there are two branches, which divide the neutral plane
into three regions. The upper one corresponds to an unstable region for large Rb, which
is caused by the surfactant mode. The lower one is also an unstable region, triggered
by the interface mode instead. Between these two unstable regions, a stable region can
be identified, which corresponds to the aforementioned stability window of Rb. As Bi
is decreased, e.g. Bi = 0.003, 1 × 10−4, the upper unstable region expands, whereas the
lower unstable region shrinks. Particularly, when Bi = 1 × 10−4, the lower region almost
disappears. This indicates that the instability of the interface mode can be suppressed
with decreasing Bi. As Bi is further decreased to 4 × 10−5 and 2 × 10−5, the upper
unstable region continues to expand downward. In the limit of Bi → 0, the neutral curves
of the region degenerate into a vertical line with k = 1.558, which equals to the cut-off
wavenumber of the problem with insoluble surfactant, as shown in figure 9(a). Figure 10(b)
demonstrates the neutral curves on the k versus Rb plane for various Ma. When Ma � 1,
the situation approximates to the case with clean interface and the curve degenerates into
a vertical line with k = 1/a. For Ma = 0.01, similar to figure 10(a), there are two unstable
regions, which arise from the surfactant mode and the interface mode, respectively. As
Ma is increased from 0.02 to 1.0, the upper unstable region, which corresponds to the
surfactant mode, expands when the maximal wavenumber of the unstable perturbation
decreases. This indicates that the Marangoni effect can destabilize the surfactant mode
with long wavelength while stabilize the surfactant mode with finite wavelength. However,
for the lower unstable region, which corresponds to the interface mode, it shrinks with
increasing Ma. In other words, the linear instability of the interface mode is suppressed
due to the Marangoni effect. Similar results have been reported by Jain et al. (2022) in
a problem with insoluble surfactant. It should be noted that the stable region, which is
located between the upper and lower unstable regions, exists only under the situation
with intermediate Ma. As Ma � 1, the interface becomes rigid and the neutral curves
degenerate into k = 1/a again.

Figure 11 illustrates the effect of bulk diffusivity Peb on the growth rates of the
perturbations. It suggests that the bulk diffusivity of the surfactant plays a non-monotonic
role in the linear instability of the film. When Peb is small, e.g. Peb = 100, the film is
linearly stable. This is attributed to the stronger diffusivity of the bulk surfactant as Peb
decreases. It tends to enhance the uniformity of the bulk surfactant distribution. Due to the
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Figure 11. The dominant growth rate versus wavenumber k of a film driven by an axial body force under the
influence of bulk diffusivity Peb. The parameters used here are Bo = 1, τ = 0, Rb = 10 and Bi = 0.1. Other
parameters take the same values as in figure 2.

Peb 100 1000 2000 1 × 104 2 × 104 1 × 105

arg(Ĵb/Γ̂ ) 132.0034◦ 95.2908◦ 92.8151◦ 91.4760◦ 92.1203◦ 99.0626◦

Table 2. The phase shift between the perturbed adsorption/desorption flux Ĵb and the perturbed surface
concentration Γ̂ for various Peb at k = 0.15. Other parameters remain the same as in figure 11.

presence of the adsorption/desorption process, the concentration distribution of surface
surfactant can also be improved, which acts to make the film stable. As Peb is increased
from 100 to 1 × 104, the diffusivity of the bulk surfactant is weakened, and the film tends
to become unstable. However, as Peb is further increased, e.g. Peb = 2 × 104, 1 × 105,
the growth rates of the perturbations decrease and the film finally becomes linearly stable
again. Physically, this is caused by the sweeping effect of the base flow on the phase shift
between Ĵb and Γ̂ . As listed in table 2, the value of phase shift is greater than 90◦, and it
increases as Peb is further increased. This indicates that there is an adsorption/desorption
flux at the trough/crest of the Γ̂ perturbation wave, which acts to improve the concentration
distribution of the surface surfactant and make the film become stable.

4.4. The film under an interfacial shearing force
In this section, the linear instability of film flow driven by an interfacial shearing force is
considered. Figure 12(a) demonstrates the growth rate versus wavenumber k for various
solubility Rb. Similar to the results presented in figure 9(a), the growth rate curve is close
to that of the insoluble case when Rb is large, e.g. Rb = 10.0. As Rb is decreased from
10 to 3, the instability of the film flow is dominated by the interface mode according
to the trace-back method, and the growth rates of long-wave perturbations (k � 1) are
augmented. This is in line with the long-wave results in figure 6. However, the situation
is reversed as wavenumber k becomes larger. The growth rates for the perturbations
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Figure 12. The dominant growth rate versus wavenumber k of a shear-driven film under the influence of Rb
and Bi. The results are obtained at Bo = 0 and τ = 1. (a) Comparison of the growth rates of different Rb with
Bi = 0.1 and Peb = 100. (b) Comparison of the growth rates of different Bi with Rb = 1.5 and Peb = 100.
Other parameters take the same values as in figure 2.

with finite wavelength decrease along Rb and so do the cut-off wavenumbers. When Rb

becomes small enough, e.g. R(c)
b = 2.389 for current parameter setting, the film instability

is dominated by the surfactant mode instead of the interface mode. As Rb is decreased to
1.0 and 0.6, the results indicate that both growth rates and the cut-off wavenumbers are
reduced, and the film even becomes stable. However, similar to film flow driven by an
axial body force, as Rb is further decreased below 0.519, the surfactant mode is weakened
by solubility and the interface mode becomes dominant again. As a result, the growth
rates of the film increase and the film eventually becomes unstable again with an increase
of solubility, as the curves with Rb = 0.1 and 0.01. Figure 12(b) presents the influence
of sorption kinetics Bi on the linear instability of film flow. According to the trace-back
method, we know that the film instability is dominated by the surfactant mode. It can be
seen that the growth rates are increased with increasing Bi as k � 1. This indicates that
Bi acts to destabilize the film with long-wave perturbations, as mentioned in the previous
section. However, for the perturbation with finite wavenumber k, Bi tends to stabilize the
film instead. This is similar to the role of Bi in a film driven by an axial body force.

In figure 13(a), the neutral instability curves on the k versus Rb plane with various
Bi are presented. For Bi = 0.1, similar to film flow driven by an axial body force, there
are two neutral branches and the plane is divided into three regions. However, unlike
those presented in the previous section, the upper unstable region is attributed to both
the surfactant mode and the interface mode. The lower unstable region still arises from
the interface mode, and the stable region is located in the middle. As Bi is decreased
from 0.04 to 0.03, it is observed that the upper unstable regions have changed. This
suggests that for the film with slightly soluble surfactant (Rb > 1.0), the perturbations
with long wavelength (k � 1) are suppressed with decreasing Bi. The opposite holds
for the perturbations with finite wavelength (e.g. k ≈ 2.0). However, as Bi decreases, the
lower unstable region tends to expand continuously. When Bi becomes small enough, e.g.
Bi = 0.02 and 0.01, the upper and lower unstable regions contact. The stable region in the
middle is pinched off and degenerates into an island clinging to the Rb axis. This stable
island shrinks as Bi decreases further. In the limit of the insoluble case with negligible
sorption kinetics, i.e. Bi → 0, the island vanishes and the unstable region takes up an
area between k = 0 and k = 3.698, which is the cut-off wavenumber of the corresponding
problem with insoluble surfactant. Figure 13(b) shows the effect of Marangoni number Ma
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Figure 13. Neutral curves of a shear-driven film with various (a) sorption kinetics Bi and (b) Marangoni
numbers Ma. The results are obtained with Bo = 0 and τ = 1. The parameters take Ma = 0.02 and Peb = 100
in (a) and Bi = 0.1 and Peb = 100 in (b). The other parameters remain the same as in figure 2.

F region
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Ls region
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Figure 14. Unstable regions on the (τ, Bo) plane for various solubilities Rb. The parameters adopted here are
a = 0.9, Ma = 0.02, Γ̄ = 0.4, Bi = 0.1, Peb = 100 and Pes = 1 × 106. The sign of Bo or τ is positive, when
the direction of the axial body force or the interfacial shearing force is downward. In the first panel for insoluble
surfactant, when τ = 0, the film is linearly unstable caused by the surfactant mode. This is consistent with the
results presented in figure 3 based on long-wave approximation. Therefore, there is a neutral curve immediately
adjacent to the axis with Bo less than zero, which distinguishes the unstable region caused by the surfactant
mode, i.e. Ls region, from the stable region.

on the neutral instability. For Ma = 0.01, similar to figure 13(a), two unstable regions can
be identified. As Ma is increased from 0.05 to 0.2, the upper unstable regions are expanded.
This suggests that the Marangoni effect tends to destabilize the film with slightly soluble
surfactant (Rb > 1.0). However, for the lower unstable region, it can be seen that the
Marangoni effect acts to stir the instability of perturbations with finite wavelength. As
Ma is increased further to 0.5 and 1.0, similar to figure 13(a), the upper and lower
unstable regions contact. The stable region in the middle is pinched off, which leads to
the appearance of a stable island as well. The island shifts downwards with increasing Ma.
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Figure 15. Unstable regions on the (τ, Bo) plane for various sorption kinetics Bi. The parameters adopted
here are a = 0.9, Ma = 0.02, Γ̄ = 0.4, Rb = 1.2, Peb = 100 and Pes = 1 × 106.

4.5. Interaction between soluble surfactant and base flow
In this section, film flow subjected to a combination of the axial body force and the
interfacial shearing force is considered. Wei (2007) has demonstrated that a planar falling
film with insoluble surfactant can be stabilized when the axial body force and the
interfacial shearing force are in the opposite directions. For soluble surfactant, the situation
can be more intricate, since the distribution of the surface surfactant will be influenced by
the surfactant transport in the bulk.

Figure 14 depicts the neutral curves on the τ versus Bo plane with various Rb. The
plane is divided into four regions, which are long-wave unstable region attributed to the
interface mode (denoted as Li), long-wave unstable region attributed to the surfactant mode
(denoted as Ls), finite-wave unstable region (denoted as F) and linearly stable region
(denoted as S). For the film contaminated with insoluble surfactant, it is susceptible to
long-wave instability. A linearly stable S region can be detected, where film is subjected
to a strong axial body force and a weak shearing force in opposite directions. When the
soluble surfactant is considered, the unstable regions dominated by long-wave instability
(Li and Ls regions) tend to shrink with decreasing Rb. Further, new F region and S
region emerge simultaneously. The new S region is located in the upper quadrant and
enlarges with decreasing Rb. This suggests that the surfactant solubility can stabilize a
film subjected to an axial body force and a shearing force in the same direction. This
is totally different from that of the problem with insoluble surfactant. In the situation
where Rb = 0.1, the Ls region nearly disappears, and the aforementioned S region, which
used to be stable with insoluble surfactant, becomes unstable. As Rb is decreased further,
solubility of the surfactant becomes very strong. It is conceivable that the concentration
perturbation of surface surfactant would be mitigated by adsorption/desorption flux. The
film would be destabilized due to the presence of the surface tension irrespective of the
base flow. Therefore, it can be concluded that surfactant with intermediate solubility can
achieve the best stabilizing effect for film flow.

Figure 15 demonstrates the effect of sorption kinetics Bi on the neutral curves. As Bi
is increased, the Li region tends to have little change. This is attributed to the fact that
in the case of long-wave perturbation the instability of the interface mode is not affected
by Bi as shown in (3.2). However, the Ls region expands with increasing Bi, which is
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Figure 16. Unstable regions on the (τ, Bo) plane for various diffusivities Peb. The parameters adopted here
are a = 0.9, Ma = 0.05, Γ̄ = 0.4, Rb = 1.0, Bi = 0.1 and Pes = 1 × 106.

due to the role of f (Bi)
1 in (A34). Similarly, the S region enlarges with an increase of Bi.

Figure 16 demonstrates the influence of bulk diffusivity Peb on the neutral curves. Similar
to figure 15, Peb has no impact on the Li region because of the absence of Peb in c1 of
the long-wave interface mode. However, it plays a non-monotonic role in the Ls region.
As shown in figure 16, when Peb is increased, the Ls region firstly enlarges, reaching its
maximum area at intermediate Peb, and then shrinks. This indicates that surfactant with
either small or large Peb contributes to stabilizing the perturbations with long wavelength.
Moreover, in figure 16, the S region shrinks with increasing Peb. This may indicate that
strong bulk diffusivity favours the linear stabilization of film flow.

5. Conclusion

In this study, we consider a film coating inside a rigid tube and laden with soluble
surfactant. The flow is driven by an axial body force or an interfacial shearing force. The
linear instability of the film with soluble surfactant subjected to various base flows is
examined comprehensively. The problem is solved by long-wave approximation analysis
and the spectral collocation method with Chebyshev polynomials. Two modes, which
dominate the film instability, are identified and referred to as the interface mode and the
surfactant mode, respectively. The effects of solubility Rb, sorption kinetics Bi and bulk
diffusivity Peb on the linear instability of the film are discussed while ignoring the effect of
inertia. For a quiescent film, they play a destabilizing role, which mitigate the perturbation
of the surface surfactant and weaken the stabilizing effect of the Marangoni force.

When the film flow is driven by an axial body force (e.g. gravity), its instability exhibits
more intricate features. It is found that the solubility Rb plays a destabilizing role in the
interface mode. This is attributed to the adsorption/desorption flux of the surfactant, which
reinforces the effect of surface surfactant transport induced by the base flow. It promotes
the uniformity of the surface surfactant and thereby inhibits the stabilizing role of the
Marangoni force. However, solubility Rb plays a stabilizing role on the surfactant mode
instead. Consequently, the dual role of Rb may lead to a window with intermediate Rb,
where the film can be linearly stabilized. The sorption kinetics Bi can destabilize the
perturbations with long wavelength but stabilize the perturbations with finite wavelength,
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Core–annular film with soluble surfactant

potentially leading to mid-wave instability. For bulk diffusivity Peb, its influence on the
flow instability is non-monotonic, which results in maximum growth rates at intermediate
Peb. Notably, both weak and strong diffusivity of the bulk surfactant can suppress the
flow instability. If the base flow is driven by an interfacial shearing force, in addition
to the above conclusions, a critical solubility R(c)

b can be found. When Rb > R(c)
b , the

adsorption/desorption flux is found to hinder the effect of the surface surfactant transport
attributed to the base flow, and exacerbate the non-uniformity of the surface surfactant.
Consequently, solubility intensifies the destabilizing role of the Marangoni force. When
Rb < R(c)

b , the adsorption/desorption flux dominates the surface surfactant transport.
Although the Marangoni force plays a stabilizing role under this circumstance, its influence
is weakened as Rb decreases. For the surfactant mode, solubility is found to stabilize
it on both sides of R(c)

b . Furthermore, a more general problem involving both the axial
body force and the interfacial shearing force is investigated. The neutral curves on the τ

versus Bo plane indicate that surfactant with strong sorption kinetics and diffusivity and
intermediate solubility tends to have the best stabilizing effect on film flow. Particularly,
soluble surfactant can stabilize film flow driven by the axial body force and the shearing
force in the same direction, which cannot be achieved by insoluble surfactant.

The current work sheds light on the mechanism of the linear instability of a film coating
inside a tube. A valuable addition to this work would be the analysis of absolute/convective
instability, as it offers valuable insights into the growth of disturbances observed and
contributes significantly to practical application in experimental investigations. Moreover,
this work may serve as a cornerstone for the systematic investigation of nonlinear dynamics
which is considered in our following investigation, particularly in the context of the closure
process for pulmonary airways. Additionally, the effects of inertia and non-axisymmetric
perturbations on the instability are not clear yet. Further investigations into these problems
are also of significance.
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Appendix A. The long-wave approximation analysis process

A.1. Geometrical parameters
The geometrical parameters A1–A6, which are involved and correlated with the
unperturbed radius of the liquid–air interface r = a, can be expressed as

A1 = 1 − a2 + 2a2 ln a, A2 = 1 − a2 − 2a2 ln a,

A3 = 1 − 4a2 + 3a4 − 4a4 ln a, A4 = 1 − a4 + 4a4 ln a,

A5 = 1 + 4a2 − 5a4 − 4a4 ln a, A6 = 1 − a4 + 4a2 ln a.

⎫⎪⎪⎬
⎪⎪⎭ (A1)
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In this study, A1−A6 are positive definite over 0 < a < 1. Moreover, the combinations
of these parameters involved in this investigation, i.e. A4 − 3A6 and 4a2 − A2, are also
positive when a > 0.53. It can be easily satisfied since we focus on the instability of a thin
liquid film.

A.2. Long-wave approximation expansion
Substituting the expression (3.1) into (2.16)–(2.19a–c), the items with the same order of
k are equated separately. For the leading order O(1), the r-momentum equation and the
normal force balance at the interface read

Dp̂0 (r) = 0, p̂0 (a) = γ̄

a2 η̂0 + Ma
a
(
1 − Γ̄

) Γ̂0, (A2a,b)

which yield a constant pressure across the film:

p̂0 (r) = γ̄

a2 η̂0 + Ma
a
(
1 − Γ̄

) Γ̂0. (A3)

Similarly, the z-momentum equation and corresponding boundary conditions are

∇2ω̂0 = 0, (A4a)

Dω̂0 (a) + D2ω̄ (a) η̂0 = 0, ω̂0 (1) = 0. (A4b)

The expression of ω̂0(r) can be derived by integrating the above equations (A4). Then, we
have

ω̂0 (r) = −aD2ω̄ (a) ln r. (A5)

Substituting (A5) into the following continuity equation and no-slip condition at the tube
wall (r = 1):

Dû0 (r) + û0 (r)
r

+ iω̂0 (r) = 0, û0 (1) = 0, (A6a,b)

we can derive û0(r) as

û0 (r) = iD2ω̄ (a) η̂0
1 − r2 + 2r2 ln r

4r
. (A7)

Substituting (A7) into the kinematic condition at the liquid–air interface û0 = i(ω̄(a) −
c0)η̂0, we have (

c0 − ω̄ (a) + A1

4
D2ω̄(a)

)
η̂0 = 0. (A8)

Similarly, for the leading order O(1), the governing equation and boundary conditions
of the bulk surfactant Ĉ0 can be derived as

∇2Ĉ0 = 0, DĈ0 (a) = Ĵb0, DĈ0 (1) = 0. (A9a–c)

By integrating the above equation (A9a–c), we have

Ĉ0 = Γ̂0

Kb(1 − Γ̄ )2
. (A10)

So far, it seems that the leading order cannot give adequate constraints for Γ̂0 and Ĉ0.
Therefore, we turn to the first order, O(k), equations. In the reference frame travelling with
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Core–annular film with soluble surfactant

c, the corresponding transport equation of the surface surfactant reads

SF(adv)
1 + SF( per)

1 = SF(dif )
1 + Ĵb1, (A11)

where

SF(adv)
1 = i(ω̄(a) − c0)Γ̂0, SF(dif )

1 = 0,

SF( per)
1 = Γ̄ û0(a)/a + iΓ̄ (ω̂0(a) + Dω̄(a)η̂0),

Ĵb1 = BiKb(1 − Γ̄ )Ĉ1(a) − Bi(KbC̄ + 1)Γ̂1.

⎫⎪⎪⎬
⎪⎪⎭ (A12)

The governing equation and boundary conditions of the bulk surfactant Ĉ1 at the first order
O(k) can be derived as

∇2Ĉ1(r) = iPeb(ω̄(r) − c0)Ĉ0, (A13a)

DĈ1(a) = Pebβ Ĵb1, DĈ1(1) = 0. (A13b)

Here, by integrating (A13a) and combining with the boundary conditions (A13b), we get

Ĵb1 = −i
2q̄ − (1 − a2)c0

2aβ
Ĉ0, (A14)

where q̄ = ∫ 1
a rω̄(r) dr. Substituting (A5), (A7) and (A14) into (A11), then we have

(
τ − A2

4a
D2ω̄(a)

)
Γ̄ η̂0 = (ω̄ − c0) Γ̄0 + 2q̄ − (1 − a2)c0

2aβ
Ĉ0. (A15)

Thus, (A8), (A10) and (A15) are the basic equations for the long-wave approximation
expansion. In the following, two modes, defined as the interface mode and the surfactant
mode, are derived.

A.3. The interface mode
According to (A8), (A10) and (A15), the leading order O(1) solutions of the interface
mode, the wave celerity c0, the perturbation of the surface surfactant Γ̂0 and the bulk
surfactant Ĉ0 can be derived by setting η̂0 = 1 and η̂1 = η̂2 = 0:

c0 = ω̄(a) − A1

4
D2ω̄(a), (A16a)

Γ̂0 = (4aτ − A2D2ω̄(a))Γ̄ (1 − Γ̄ )2

aA1D2ω̄(a)(1 − Γ̄ )2 + 4(q̄ − (1 − a2)c0/2)/Rb
, (A16b)

Ĉ0(r) = Γ̂0

Kb(1 − Γ̄ )2
. (A16c)

By definition, c0 is a real number indicating marginal stability. Hence, the instability of
the interface mode is to be determined by c1. By integrating the governing equation and

973 A46-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.779


S. Li, Y.-Z. Chen, Z. Cheng and J. Peng

boundary equations of ω̂1,

∇2ω̂1 (r) = ip̂0, (A17a)

Dω̂1 (a) = i
Ma

1 − Γ̄
Γ̂0 − D2ω̄ (a) η̂1, ω̂1 (1) = 0, (A17b)

we have

ω̂1 (r) = −ip̂0
1 − r2 + 2a2 ln r

4
+ ia

MaΓ̂0

1 − Γ̄
ln r. (A18)

Combining the continuity equation and no-slip condition at the wall,

Dû1 (r) + û1 (r)
r

+ iω̂1 (r) = 0, û1 (1) = 0, (A19a,b)

the expression of u1 is

û1(r) = p̂0
(r2 − 1)(r2 − 1 + 2a2) − 4a2r2 ln r

16r
+ aMaΓ̂0

1 − Γ̄

1 − r2 + 2r2 ln r
4r

. (A20)

Substituting (A20) into the first-order O(k) kinematic condition:

û1 = i (ω̄ (a) − c0) η̂1 − ic1η̂0, (A21)

c1 of the interface mode can be expressed as

c1 = i
A3

16a3 γ̄ + i
A4Ma

16a2(1 − Γ̄ )
Γ̂0. (A22)

A.4. The surfactant mode
Similar to the derivation of the interface mode, the leading-order O(1) solutions of the
surfactant mode, i.e. the wave celerity c0, the perturbation of the surface surfactant Γ̂0
and the bulk surfactant Ĉ0 can be derived according to (A8), (A10) and (A15) by setting
Γ̂0 = 1 and Γ̂1 = Γ̂2 = 0:

c0 = aRb(1 − Γ̄ )2ω̄(a) + q̄
aRb(1 − Γ̄ )2 + (1 − a2)/2

, (A23a)

η̂0 = 0, (A23b)

Ĉ0 = 1
Kb(1 − Γ̄ )2

. (A23c)

To determine the system instability, we proceed to render the first-order O(k) solutions.
According to (A17) and (A19a,b), we obtain

ω̂1 (r) = −i
Ma

1 − Γ̄

1 − r2 − 2a2 ln r
4a

− aD2ω̄ (a) η̂1 ln r, (A24a)

û1(r) = Ma
1 − Γ̄

(r2 − 1)(r2 − 1 − 2a2) + 4a2r2 ln r
16ar

+ iaD2ω̄ (a) η̂1
1 − r2 + 2r2 ln r

4r
.

(A24b)
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Core–annular film with soluble surfactant

Here, η̂1 is determined by the combination of the first-order O(k) kinematic conditions
(A21), (A24a) and (A24b):

η̂1 = i
Ma

1 − Γ̄

A4

4a2
(
4c0 + A1D2ω̄ (a) − 4ω̄ (a)

) . (A25)

For the perturbation of the bulk surfactant Ĉ1(r), it is derived via (A13a) and (A13b) as

Ĉ1 (r) = i (ω̄ − c0)

BiKb
(
1 − Γ̄

) + iĈ0

64
PebK (r) , (A26)

where

K (r) = 16
(

a2 − r2 + 2 ln r/a
)

c0 + 16a
[
r2 − a2 −

(
1 + r2

)
ln r +

(
1 + a2

)
ln a

]
τ

+
[(

a2 − r2
) (

r2 + 9a2 − 4
)

+ 8a2
(

r2 ln r − a2 ln a
)

+ 4
(

2a2 − 1
)

ln r/a
]

Bo.

(A27)

To obtain c1, we turn to the advection–diffusion equation of the perturbed surface
surfactant in the second order O(k2):

SF(adv)
2 + SF( per)

2 = SF(dif )
2 + Ĵb2, (A28)

with

SF(adv)
2 = −ic1Γ̂0, SF(dif )

2 = −Γ̂0/Pes,

SF( per)
2 = Γ̄ û1 (a) /a + iΓ̄

(
ω̂1(a) + Dω̄(a)η̂1

)
,

Ĵb2 = BiKb
(
1 − Γ̄

)
Ĉ2 (a) − Bi

(
KbC̄ + 1

)
Γ̂2.

⎫⎪⎪⎬
⎪⎪⎭ (A29)

Here, SF(adv)
2 , SF( per)

2 , SF(dif )
2 and Ĵb2 are the four pathways for the transport of the surface

surfactant in the second order O(k2) based on the reference frame where the perturbation
wave is stationary. The governing equation and boundary conditions for the bulk surfactant
Ĉ2 are

∇2Ĉ2 = iPeb (ω̄ − c0) Ĉ1 + Ĉ0 − iPebĈ0c1, (A30a)

DĈ2 (a) = PebβbĴb2, DĈ2 (1) = 0. (A30b)

Integrating (A30a) with the constant determined by the boundary conditions (A30b), we
have

Ĵb2 = i
1 − a2

2aRb
(
1 − Γ̄

)2 c1 + f (Peb)
1 + f1. (A31)
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Here,

f (Peb)
1 = − 1 − a2

2aPebRb
(
1 − Γ̄

)2 , (A32)

f1 = − i
a

∫ 1

a
r (ω̄(r) − c0) Ĉ1 dr

= −
(
(1 − a2)ω̄ (a) − 2q̄

)2 (1 − Γ̄
)

Bi
(

1 − a2 + 2aRb
(
1 − Γ̄

)2
)2

︸ ︷︷ ︸
f (Bi)
1

+ PebS

64aRb
(
1 − Γ̄

)2︸ ︷︷ ︸
f (S)
1

(A33)

and S = ∫ 1
a r(ω̄(r) − c0)K(r) dr. Substituting (A24a), (A24b) and (A31) into (A28), c1 of

the surfactant mode can be expressed as

c1 = i

(
1 + 1 − a2

2aRb
(
1 − Γ̄

)2

)−1 (
− 1

Pes
+ f (Peb)

1 + f (Bi)
1 + f (S)

1 − SF( per)
2

)
. (A34)

Here, SF( per)
2 , which indicates the second-order O(k2) advective transport of the surface

surfactant by the perturbed flow, can be expressed as

SF( per)
2 = iΓ̄

(
A2D2ω̄ (a)

4a
− τ

)
η̂1 + A5MaΓ̄

16a3
(
1 − Γ̄

) . (A35)

A.5. The quiescent film
When the film is assumed to be quiescent, i.e. Bo = 0 and τ = 0, we have ω̄ = D2ω̄ = 0.
According to (A8), by setting η̂0 = 1 and η̂1 = η̂2 = 0, we have

c0 = 0. (A36)

Clearly c0 is real, and the instability of the system is to be determined by c1 as follows:

c1 = i
A3

16a3 γ̄ + i
A4Ma

16a2(1 − Γ̄ )
Γ̂0. (A37)

Since we consider the quiescent film, (A15) is fulfilled naturally. Therefore, Γ̂0 has to be
determined by the second-order O(k2) equations of the surfactant. Combining (A28) and
(A30), we have

i

(
1 + 1 − a2

2aRb
(
1 − Γ̄

)2

)
Γ̂0c1

= A4γ̄ Γ̄

16a4 +
(

1
Pes

+ 1 − a2

2aPebRb
(
1 − Γ̄

)2 + A5MaΓ̄

16
(
1 − Γ̄

)
a3

)
Γ̂0. (A38)

Solving (A37) and (A38) yields

Γ̂0 =
−d2 ±

√
d2

2 − 4d1d3

2d1
, (A39)
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Core–annular film with soluble surfactant

where parameters d1, d2 and d3 are positive with the following expressions:

d1 = A4Ma
1 − Γ̄

(
1 − a2) /Rb + 2a

(
1 − Γ̄

)2

32a3
(
1 − Γ̄

)2 ,

d2 = 1
Pes

+ 1 − a2

2aPebRb
(
1 − Γ̄

)2 + A5MaΓ̄

16a3
(
1 − Γ̄

) + A3γ̄

32a4

(
1 − a2) /Rb + 2a

(
1 − Γ̄

)2(
1 − Γ̄

)2 ,

d3 = A4γ̄ Γ̄

16a4 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A40)

If the right-hand side of (A39) takes the ‘+’ sign, (A37) may degenerate to iA3γ̄ /16a3 as
Rb � 1 and Ma � 1. This corresponds to c1 of the interface mode for clean interface.
Therefore, it can be classified as the interface mode. If (A39) takes the ‘−’ sign, it
corresponds to the surfactant mode. The corresponding c1 yields −i/Pes as Rb � 1
and Ma � 1. According to numerical verification, the discriminant of (A39) is always
non-negative under the current setting of the problem. It denotes that Γ̂0 is in opposite
phase with η̂0. Therefore, the interface mode is the most dangerous mode, which
determines the instability of the quiescent film.

Appendix B. Solutions near the critical solubility

As mentioned in § 3.3, the failure of the long-wave approximation is attributed to the fact
that the adsorption/desorption flux offsets the effect of the surface surfactant transported
by the base flow at R(c)

b . Thus, the surface surfactant transported by the perturbed flow
makes the surfactant infinitely accumulate/deplete. According to (A16b) or (A25), the
critical solubility R(c)

b can be derived by letting the denominators be zero, which reads

R(c)
b =

(
1 − a2) (4ω̄ (a) − A1D2ω̄ (a)

) − 2q̄

2aA1D2ω̄ (a)
(
1 − Γ̄

)2 . (B1)

To resolve this issue, Frenkel & Halpern (2002) and Kalogirou & Blyth (2019) suggested
expanding the variables by k1/2 near the critical solubility. That is,{

η̂, c, û (r) , ω̂ (r) , p̂ (r) , Γ̂, Ĉ (r)
}

=
{
η̂0, c0, û0 (r) , ω̂0 (r) , p̂0 (r) , Γ̂0/

√
k, Ĉ0 (r) /

√
k
}

+ k1/2
{
η̂1, c1, û1 (r) , ω̂1 (r) , p̂1 (r) , Γ̂1/

√
k, Ĉ1 (r) /

√
k
}

+ O
(

k3/2
)

. (B2)

Substituting the above equation (B2) into the linearized governing equations and boundary
conditions (2.16)–(2.19a–c), we can derive (c0, c1) as

c0 = ω̄ (a) − A1D2ω̄ (a)

4
, (B3a)

c1 = ±(1 − i)
8

√√√√A4MaΓ̄
(
1 − Γ̄

) (
4aτ − A2D2ω̄ (a)

)
a2

(
(1 − a2)/Rb + 2a

(
1 − Γ̄

)2
) . (B3b)

Thus, the instability of the film flow can be determined according to Im(c1) as well.
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