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Hypersonic turbulent boundary layer over
the windward side of a lifting body
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In the present study, we performed direct numerical simulations for a hypersonic turbulent
boundary layer over the windward side of a lifting body, the HyTRV model, at Mach
number 6 and attack angle 2◦ to investigate the global and local turbulent features,
and evaluate its difference from canonical turbulent boundary layers. By scrutinizing
the instantaneous and averaged flow fields, we found that the transverse curvature on
the windward side of the HyTRV model induces the transverse opposing pressure
gradients that push the flow on both sides towards the windward symmetry plane,
yielding significant effects of the azimuthal inhomogeneity and large-scale cross-stream
circulations, moderate and azimuthal independent influences of adverse pressure gradient,
and negligible impact of the mean flow three-dimensionality. Further inspecting the
local turbulent statistics, we identified that the mean and fluctuating velocity become
increasingly similar to the highly decelerated turbulent boundary layers over flat
plates in that the mean velocity deficit is enhanced, and the outer layer Reynolds
stresses are amplified as it approaches the windward symmetry plane, and prove to
be self-similar under the scaling of Wei & Knopp (J. Fluid Mech., vol. 958, 2023,
A9) for adverse-pressure-gradient turbulent boundary layers. Conditionally averaged
Reynolds stresses based on strong sweeping and ejection events demonstrated that
the Kelvin–Helmholtz instability of the strong embedded shear layer induced by the
large-scale cross-stream circulations is responsible for the turbulence amplification in the
outer layer. The strong Reynolds analogy that relates the mean velocity and temperature
was refined to incorporate the non-canonical effects, showing considerable improvements
in the accuracy of such a formula. On the other hand, the temperature fluctuations are still
transported passively, as indicated by their resemblance to the velocity. The conclusions
obtained in the present study provide potentially profitable information for turbulent
modelling modification for the accurate predictions of skin friction and wall heat transfer.
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1. Introduction

Hypersonic turbulent boundary layers (TBLs) are frequently encountered in the realm
of aerospace engineering and have garnered significant attention in recent times. An
increasingly profound understanding of hypersonic TBLs over flat walls and compressive
ramps has been acquired through extensive numerical investigations, enabling us to
comprehend the scaling laws governing turbulent statistics (Zhang et al. 2014; Zhang,
Duan & Choudhari 2018; Volpiani et al. 2020; Griffin, Fu & Moin 2021; Cogo et al.
2022; Huang, Duan & Choudhari 2022; Passiatore et al. 2022) and the impact of
compressibility (Yu, Xu & Pirozzoli 2019; Xu et al. 2021; Zhang et al. 2022). However,
in practical applications, hypersonic vehicles typically possess finite aspect ratios and
travel at non-zero angles of attack, thereby introducing the complexities stemming from
three-dimensionality in the mean flow and streamwise pressure gradients. These intricate
effects, as far as our knowledge extends, have yet to be thoroughly explored.

Two representative configurations for investigating the hypersonic boundary layer flows
are circular and elliptic cones (Moyes et al. 2017; Tufts et al. 2022). The hypersonic
transition research vehicle (HyTRV) model, a more sophisticated configuration designed
by China Aerodynamic Research and Development Center (Liu et al. 2021), will be
considered in the present study, for it involves several transition routes, including
streamwise vortex instability, crossflow instability, Mack mode instability, and instabilities
due to the interaction of unstable modes. Related research on the HyTRV commenced
with a flight test by Tu et al. (2021), where the transition front and surface pressure signals
are obtained. Qi et al. (2021) pioneered the direct numerical simulations (DNS) of the
boundary layer transition over the HyTRV, with a zero angle of attack (AoA), focusing
on the frequency spectra and proper orthogonal decomposition analysis. Chen et al.
(2022) conducted a comprehensive study on the natural transition process in the boundary
layer over the HyTRV under wind tunnel conditions via multi-dimensional linear stability
analyses, and identified four regions with distinct transition mechanisms depending on the
azimuthal locations, each of which was further explored in depth. Men, Li & Liu (2023)
extended the work of Qi et al. (2021) by conducting a series of DNS to study the effects
of AoA on the boundary layer transition over the HyTRV. They found a new transition
routine between the shoulder vortex region and the shoulder crossflow region when the
AoA is sufficiently large. These efforts have remarkably advanced our understanding
of three-dimensional hypersonic boundary layers over the HyTRV model. However, the
fully-developed turbulence downstream of the transition has not been concerned so far.
A better understanding of TBLs over the HyTRV is crucial to developing turbulent models
and flow control strategies, since over half of the model during the flight test is in a state
of turbulence.

The streamwise varying cross-sections and the azimuthal-dependent curvature radius
of the HyTRV model suggest the potentially prominent effects of the streamwise adverse
pressure gradient (APG) and the mean flow three-dimensionality. We briefly review the
turbulence subject to these two respective effects as follows.

A TBL subject to an APG of sufficient magnitude is observed to be endowed with
a large mean velocity deficit and enhanced turbulent motions in the outer layer (Wei &
Knopp 2023) compared with those with zero pressure gradient (ZPG). The Zagarola–Smits
scaling proposed in turbulent pipes (Zagarola & Smits 1998) has been proven successful in
collapsing the mean velocity profiles in APG-TBLs (Maciel et al. 2018; Gibis et al. 2019;
Sanmiguel Vila et al. 2020b) but fails to collapse the Reynolds stress profiles (Gungor,
Maciel & Gungor 2020; Sanmiguel Vila et al. 2020a,b). Schatzman & Thomas (2017)
proposed the ‘embedded shear layer’ scaling applicable in a wide range of flow-field
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geometries and Reynolds numbers, based on the similarity between outer layers with
inflection points and turbulent free shear layers. Balantrapu et al. (2021) found that
the mean velocity and turbulence intensity profiles in a highly decelerated TBL over a
body of revolution attain self-similarity with the embedded shear layer scaling, but the
performance of the Zagarola–Smits scaling was inferior. Wei & Knopp (2023) developed
a new scaling for APG-TBLs based on the velocity and length scales on the location
of the maximal Reynolds shear stress, collapsing the mean velocity and Reynolds shear
stress profiles in experimental and numerical data of APG-TBLs covering a wide range of
Reynolds numbers and pressure gradient strengths.

The physical counterparts of the outer-layer intensification of the Reynolds stress are
the large-scale motions, possibly generated by the Kelvin–Helmholtz-type instability
related to the mean velocity deficit and the streak instability. Maciel, Gungor & Simens
(2017) attempted to identify coherent structures associated with these two mechanisms
in a strongly decelerated TBL, but the evidence is not sufficiently strong to elucidate
the primary flow mechanism. Kitsios et al. (2017) found in an APG-TBL at the
verge of separation that the outer-layer peaks of the Reynolds stress, turbulent kinetic
energy production and dissipation coincide with the outer inflection point of the mean
velocity. Henceforth, they pointed out that the shear flow instability is responsible for
the enhancement of outer-layer motions. Schatzman & Thomas (2017) confirmed the
presence of the spanwise-oriented roller and hence the Kelvin–Helmholtz instability in
the outer layer of an unsteady APG-TBL based on the quadrant conditional averaging.
However, the Kelvin–Helmholtz instability is not applicable for APG-TBLs without the
outer inflection points. Gungor et al. (2020), on the other hand, tend to concur with the
idea that large-scale motions in the outer layer of APG-TBLs depend on the stronger local
mean shear instead of the inflection point instability, based on the similarities between
APG-TBLs and homogeneous shear turbulence (Dong et al. 2017) regarding statistics of
momentum-carrying structures.

In high-speed flows, numerical studies on the effects of streamwise APG on
compressible TBLs are limited to comparatively low free-stream Mach numbers
(Ma∞ = 2) and simple configurations (Gibis et al. 2019; Wenzel et al. 2019, 2021; Wenzel,
Gibis & Kloker 2022). Specifically, Wenzel et al. (2019) isolated the pure pressure gradient
effects from Mach number effects, and found that the kinematic Rotta–Clauser parameter
is more appropriate for the comparison between the subsonic and supersonic APG-TBLs.
Gibis et al. (2019) investigated the outer-layer self-similarity and the condition to be
fulfilled for self-similarity. Wenzel et al. (2021) found that the Reynolds analogy factor
increases with the APG strength. Wenzel et al. (2022) further studied the effects of Mach
number, wall heat transfer and pressure gradient on the momentum and energy transfer by
decomposing the skin friction and wall heat flux into individual terms, and found that the
Eckert number is able to account for the effects of Mach number and wall heat transfer
condition.

Investigations incorporating both the APG and the mean flow three-dimensionality are
very limited, and most of them are low-speed experiments conducted in the early days.
Representative examples, to name a few, are TBLs deflected laterally by turning vanes
(Müller 1982), over a swept wing (Van Den Berg et al. 1975; Bradshaw & Pontikos
1985), around an upstream facing wedge (Anderson & Eaton 1989), over circular cylinders
subjected to streamwise APG (Fernholz & Vagt 1981; Driver 1990), adjacent to the
wing-body junction (Ölçmen & Simpson 1995), over a swept two-dimensional bump
(Webster, Degraaff & Eaton 1996), and over the flat wall of curved ducts (Schwarz &
Bradshaw 1994; Bruns, Fernholz & Monkewitz 1999). Notably, Driver (1990) found that
the Reynolds stress diminishes when the flow becomes three-dimensional, and postulated
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that the three-dimensional TBLs are more prone to separate under a lower APG than
two-dimensional ones. Coleman, Kim & Spalart (2000) found that the impact of APG
on outer-layer structures is more profound than the three-dimensionality by comparing
strained turbulent channels with and without streamwise deceleration, in agreement with
Webster et al. (1996).

The brief literature survey above suggests that there is systematic knowledge of TBLs
subject to APG over flat plates. Nevertheless, when it comes to more intricate models
that encompass the three-dimensional nature of the fuselage, especially under hypersonic
conditions, the characteristics of the TBLs remain unintelligible until high-precision
numerical simulations are carried out. This serves as the motivation for the present study.
We set out to explore the distinctions and resemblances regarding the statistical and
structural features between the hypersonic TBLs over the HyTRV model and those over flat
walls, in the hope of bringing valuable insights into the refinement of turbulent modelling
for the accurate predictions of skin friction and wall heat transfer.

The rest of the paper is organized as follows. Section 2 introduces the HyTRV geometry
and DNS set-ups. Section 3 provides a depiction of the global features of TBLs over
the HyTRV model, including the pressure gradient and three-dimensionality. Section 4
investigates the local mean and fluctuating velocities and their scaling laws, along with the
mechanisms of the outer-layer turbulent intensification. Section 5 discusses the mean and
fluctuating temperature, and the validity of the strong Reynolds analogy. Conclusions are
summarized in § 6.

2. Physical model and numerical set-ups

A sketch of the HyTRV model is shown in figures 1(a,b). Two sets of coordinates are
introduced, including the Cartesian coordinates (in the axial x, transverse y and vertical z
directions) based on the geometry of the model, and the body-fitted orthogonal coordinates
(in the streamwise ξ , wall-normal η and azimuthal ζ directions) based on local mean flow
direction and wall-normal vectors. The head of the model is an elliptic cone with aspect
ratio 2 : 1. The lower part (φ ≡ arctan( y/z) = 90◦–270◦) of the bottom cross-section is
constructed by an elliptic curve with aspect ratio 4 : 1, while the upper part is a linear
combination of an elliptic curve and a class function and shape function transformation
technique curve:

y = −W cos θ,

z = α sin θ Zu + (1 − α)(1 − cos2 θ)4 Zu,

}
(2.1)

where the parameter θ is in [0, π], W is the half-width of the bottom cross-section, α ≡
Zl/Zu to guarantee an azimuthal symmetry near the shoulder line at φ = 90◦, and Zl and
Zu are the heights of the lower and upper parts of the bottom cross-section, respectively.
The head and bottom are connected by straight lines, whose half-apex angles decrease
from 9.4◦ at the shoulder line to 2.0◦ at the windward symmetry plane (WSP), φ = 180◦.
The total length of the HyTRV model is 1600 mm.

The free-stream conditions (denoted by the subscript ∞) are taken from a wind tunnel
experiment, following the study of Chen et al. (2022) in which the transitional flows are
considered. The free-stream Mach number, temperature and unit Reynolds number are
Ma∞ = 6, T∞ = 79 K and Re∞/mm = 104, respectively. The wall temperature is set as
a constant value Tw = 300 K, which is approximately 0.51 times the recovery temperature
Tr = T∞(1 + r(γ − 1) Ma2∞/2), with specific heat ratio γ = 1.4 and recovery factor
r = Pr1/3 (where Pr = 0.71 is the molecular Prandtl number). The HyTRV model is
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Figure 1. Sketch of the HyTRV: (a) side view, (b) front view, (c) grid distribution in a ( y, z) plane.

placed with an AoA of 2◦. Under these conditions, Chen et al. (2022) found that the
natural transition is triggered first on the windward side at x ≈ 1100 mm. Therefore,
we consider only the aft part beyond x = 500 mm to alleviate the computational cost,
leaving the streamwise length of the computational domain to be Lx = 1100 mm. The
wall-normal extent of the computational domain Lη is estimated to be 4.0–5.5 times the
local boundary layer thickness δ in the fully turbulent region (1000 mm � x � 1500 mm,
135◦ � φ � 225◦), with δ determined by the total enthalpy as in Kimmel, Klein &
Schwoerke (1997) and Wan, Su & Chen (2020).

The hypersonic turbulence over the HyTRV model considered herein is governed by
the three-dimensional Navier–Stokes equations in Cartesian coordinates for compressible
perfect Newtonian gases. Hereinafter, the velocity components in the Cartesian and
body-fitted coordinates are represented by (u, v, w) and (uξ , uη, uζ ), respectively, the latter
of which will be used in further analysis and will be referred to as ui, with the index
i = 1, 2, 3 denoting the (ξ, η, ζ ) directions. The density, pressure and temperature are
represented by ρ, p and T , correlated by the state equation for perfect gases p = ρRT
(where R is the gas constant). The viscous stresses and molecular heat conduction are
related to the strain rate and the temperature gradient by the constitutive equations and
Fourier’s law of Newtonian fluids, in which μ obeys Sutherland’s law and the heat
conductivity k = Cpμ/Pr.

At the inlet and upper boundary, the flow quantities are interpolated from
a pre-calculated coarse-grid laminar solution. At the wall, a time-independent
blowing/suction in the form

uη,bs(x, φ, t)/q∞ = A0(2 rand(x, φ) − 1), 600 mm � x � 650 mm, (2.2)
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with amplitude A0 = 0.2 is deployed to trigger a bypass transition and obtain the fully
developed TBL, where q∞ is the free-stream velocity. Comparable blowing/suction
amplitudes were also used by Franko & Lele (2013), Xu, Wang & Chen (2022) and Tong
et al. (2022) to study transitional and turbulent boundary layers. At the other locations on
the wall, the no-slip and no-penetration conditions for velocity and isothermal condition
for temperature are adopted.

The other notations used in the paper are given briefly as follows. The Reynolds
and Favre decompositions of a generic variable ϕ are ϕ = ϕ̄ + ϕ′ and ϕ = ϕ̃ + ϕ′′,
respectively, where ϕ̄ denotes the temporal average, and ϕ̃ = ρϕ/ρ̄. The variables at the
edge of the boundary layer and the wall are denoted by subscripts e and w, respectively.

The viscous scales are defined by the mean wall shear stress τ̄w = μ̄ ∂η

√
ū2
ξ + ū2

ζ

∣∣∣
w

, wall

density ρ̄w and viscosity μw, and hence friction velocity uτ = √
τ̄w/ρ̄w, viscous length

scale δν = μw/(ρ̄wuτ ) and friction Reynolds number Reτ = ρ̄wuτ δ/μw. The variables
normalized by these viscous scales are marked by the superscript +.

We carry out DNS utilizing the open-source code OpenCFD-SCU (Dang et al.
2022a,b) at Chengdu Supercomputing Center with 400 graphics processing units. The
inviscid terms are discretized by the hybrid scheme that incorporates the low-dissipative
seventh-order upwind scheme in the smooth flow regions, the seventh-order weighted
essentially non-oscillatory (WENO) schemes in weakly discontinuous regions, and the
fifth-order WENO scheme in the strongly discontinuous regions, detected by the sensor
proposed by Jameson, Schmidt & Turkel (1981). According to the monitoring at each step,
we found that more than 90 % of the grid points are approximated by the upwind scheme,
and less than 1 % by the fifth-order WENO scheme. The viscous terms are discretized by
the eighth-order central difference scheme. Time advancement is achieved by the explicit
third-order total variation diminishing Runge–Kutta scheme.

The computational domain is discretized by a mesh of (Nξ , Nη, Nζ ) = (4608, 465, 2800),
as illustrated in figure 1(c) for the grid distribution in the ( y, z) plane. The grid in
the η direction is stretched exponentially towards the far field. In the ξ (streamwise)
direction, 3584 grid points are uniformly distributed over 900−1500 mm and are stretched
exponentially beyond x = 1500 mm to form a fringe zone to absorb possible numerical
errors in the form of reflection from the outlet. In the ζ (azimuthal) direction, 2400 grid
points are distributed approximately equidistantly in the region φ = 180◦ ± 85◦, and are
progressively coarsened on the other side, where the turbulence is not considered, and
more importantly leave trivial impacts on the flows on the windward side.

In figure 2, we present the grid intervals normalized by viscous scales. The streamwise
grid interval �ξ+ downstream of x = 900 mm, where the transition to turbulence is
completed, is approximately constant in each of the given meridian planes. Both �ξ+
and �ζ+ at a given streamwise station decrease with increasing φ, with values ranging
from 4.6 to 7.5 in the turbulent region. The wall-normal grid intervals at the edge of the
boundary layer �ηe are the largest in the vicinity of the WSP, with values less than 15.0.
The first off-wall grids are located at �η+

w � 0.5 in the region φ ≈ 180◦ ± 45◦. Such
mesh resolutions can be regarded to be sufficient, compared with the DNS of hypersonic
TBLs in previous studies (Zhang et al. 2018, 2022; Xu et al. 2021; Huang et al. 2022).
The simulation has been run for 5Lx/q∞ to reach the fully developed turbulent state, and
another 12Lx/q∞ (roughly 12 000 snapshots) to accumulate statistically steady statistics at
several streamwise and azimuthal stations, which is approximately 6.5−9.6 eddy-turnover
times (δ/uτ ).

988 A29-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

43
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.434


Hypersonic TBL over the windward side of HyTRV

650
0

5

10

15

20

800 950 1100

x (mm)

1250 1400
0

5

10

15

20

105 120 135

φ (deg.)

150 165 180

�
ξ+

, 
1
0
�

η
w+

, 
�

η
e+

�
ζ+

, 
1
0
�

η
w+

, 
�

η
e+

(a) (b)

Figure 2. The grid intervals in wall units in (a) the streamwise direction at φ = 140◦, 160◦ and 180◦, and
(b) the azimuthal direction at x = 1050, 1250 and 1450 mm. The variation of line colours from light to deep
represents the increase of φ in (a) and x in (b).
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Figure 3. Streamwise variations of (a) the friction Reynolds number Reτ , and (b) the momentum Reynolds
number Reθ .

In figure 3, we report the streamwise evolution of the friction Reynolds number Reτ and
the momentum Reynolds number Reθ , the latter of which is defined as Reθ = ρeūeθ/μe,
with θ the momentum thickness:

θ =
∫ δ

0

ρ̄ūξ

ρ̄eūξ,e
(1 − ūξ /ūξ,e) dη. (2.3)

Both of these flow quantities are increased as it approaches downstream, but at different
azimuthal angles, the rates of increment are different. Amongst the three meridian planes
reported, Reτ and Reθ grow fastest in the WSP (φ = 180◦), with Reτ increasing from
approximately 800 to 1600. At φ = 140◦ and φ = 160◦, the streamwise growth of the
Reynolds number is alleviated, indicating the lower levels of the loss of the mean
momentum due to the wall friction.

3. Global flow organization

The disparity of the streamwise evolutions of these Reynolds numbers in different
meridian planes suggests the strong inhomogeneity of the TBL over the HyTRV model.
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Figure 4. Instantaneous (a) uξ and (b) T at x = 1250 mm. White dashed lines indicate the edge of the
boundary layer. Solid black lines indicate (a) 0.9q∞ and (b) 2.5T∞. The wall-normal extent is truncated for a
better view.

Therefore, a depiction of the global instantaneous and mean flow organization is needed
and will be given in this section.

3.1. Large circulations in the cross-stream plane
We first consider the instantaneous flow organization in the cross-stream section. Figure 4
displays the instantaneous streamwise velocity uξ and temperature T in the cross-section
at x = 1250 mm. It is obvious that the low-momentum and high-temperature regions
extend the highest close to the WSP, indicating the highest boundary layer thickness. As it
approaches the attachment lines, the boundary layers are getting thinner, with the turbulent
regions being restricted within a smaller layer close to the wall, and showing a tendency
to laminarization.

In figure 5(a), we present the temporally averaged azimuthal velocity ūζ , at
x = 1250 mm, along with the streamlines. The azimuthal mean velocity ūζ is the most
prominent within the azimuthal angles 100◦ � φ � 120◦. The wall-normal distributions
of the mean crossflow velocity, the wall-parallel velocity normal to the near-inviscid stream
at the edge of the boundary layer, ūn are given in figures 5(b,c) in several meridian
planes at x = 1250 mm. The crossflow velocity is the strongest at η/δ ≈ 0.2, with the
maximum values less than 0.05q∞ or uτ . Compared to other three-dimensional TBLs
(Bentaleb & Leschziner 2013), the mean crossflow velocity in the presently considered
flow configuration is much weaker.

By inspecting the mean streamlines, we further identify a large circulation zone around
φ ≈ 120◦ that brings the high-speed fluids towards the near-wall region adjacent to the
attachment lines, and the low-speed fluids upwards near the WSP, reminiscent of the
flow field induced by spanwise-opposed wall jet forcing used to reduce the turbulent
drag (Yao et al. 2017; Yao, Chen & Hussain 2018). Moreover, there is a sink point in
the free-stream of the boundary layer (η ≈ 2δ), suggesting that the fluids are converging
towards this point as they are brought downstream. These cross-stream motions can be
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Figure 5. Distributions of (a) the azimuthal mean velocity ūζ at x = 1250 mm overlaid by the streamlines
and the wall-normal profiles of the mean crossflow velocity ūn normalized by (b) outer and (c) viscous scales.

regarded as Prandtl secondary flows of the first kind (Bradshaw 1987), in that the non-zero
AoA is responsible for the streamline curvature in the free-stream or at the inviscid limit,
leading to the generation of the large-scale circulations that are diffused by viscous and
turbulent stresses. Moreover, these streamwise vortices can be observed as well when the
boundary layer is laminar, as has been shown in our previous study (Chen et al. 2022),
thereby excluding the possibility of them being generated by turbulent stresses, the type of
secondary flows generated by the turbulence inhomogeneity and anisotropy (Nezu 2005),
namely the Prandtl secondary flows of the second kind. The intensity of the circulation
can be quantified as

Icirc =
√

ū2
η + ū2

ζ /ūξ . (3.1)

For the presently considered case, the maximum of Icirc is approximately 0.06. Despite
their weakness in comparison with the mean flow, these large-scale circulations will lead
to dramatic variation of the turbulent statistical properties (Anderson et al. 2015), which
will be demonstrated in the next section.

3.2. Skin friction and wall heat transfer
The existence of large-scale circulations significantly modifies the distributions of the
skin friction and the wall heat transfer. Figure 6(a) displays the distribution of skin
friction

Cf = 2τ̄w,ξ /ρeq2
e (3.2)

on the HyTRV model, overlaid by the wall limiting streamlines, the ‘streamlines’ defined
by the wall shear stresses. Apparently, the variation of Cf exhibits differences from those
induced by the natural transition processes (Chen et al. 2022; Men et al. 2023). At a
given streamwise location, Cf decreases from the attachment lines towards the WSP,
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Figure 6. (a) Skin friction Cf (flooded contour) overlaid by the wall limiting streamlines. (b) Streamwise
variations of Cf . (c) Transformed incompressible skin friction Cf ,i along the four wall limiting streamlines
in (a).

accompanied by the thickening of the boundary layer (recall figure 4). The wall limiting
streamlines show a tendency to converge, deviating slightly from both the streamwise
direction and the meridian planes, suggesting that the near-wall flows incline to bring the
fluids from the side attachment lines towards the WSP by, as can be inferred from figure 5,
the secondary circulations.

The Cf along the four wall limiting streamlines marked in figure 6(a) (hereinafter
referred to as lines 1, 2, 3 and 4) are displayed in figure 6(b). Along line 3 (at least 43◦
away from the WSP) and line 4 (at least 55◦ away from the WSP), there is an evident
overshoot of Cf at x ≈ 800 mm, which is a typical feature of the transition from laminar
to turbulence. Along lines 1 and 2 in or adjacent to the WSP, by contrast, the values
of Cf increase gradually downstream, which is in stark contrast to those in canonical
TBLs where Cf decreases monotonically once the fully developed turbulent state is
attained. Such a difference in the Cf variations can be attributed to two counteracting flow
mechanisms. Typically, the streamwise evolution of the boundary layer is accompanied
by lower skin friction due to the growth of the boundary layer thickness. However, the
secondary circulations near the WSP bring the low-momentum fluids upwards and reduce
the mean shear rate close to the wall, leading to the abatement in the effects of reducing
Cf . Considering that these secondary circulations are the most prominent in the vicinity of
the WSP, the effects of their weakening in that region will be the most prominent, leading
to the increment of Cf . Away from the WSP, the influences of the secondary circulations
are recovered to finite levels, thus the variation of Cf follows anew the features of typical
transitional and turbulent boundary layers.

Another perspective on skin friction can be obtained by plotting the van Driest
II transformed incompressible skin friction Cf ,i = FcCf against Reθ,i = Reδ2 = Fθ Reθ
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(Hopkins & Inouye 1971), with the transformation functions Fc and Fθ defined by

Fc =
r

γ − 1
2

Ma2
e

(arcsin A + arcsin B)2 and Fθ = μe/μw, (3.3a,b)

and A and B calculated as

A = 2a2 − b√
4a2 + b2

and B = b√
4a2 + b2

,

a =
(

r
γ − 1

2
Ma2

e
Te

Tw

)1/2

and b = T̄aw

Tw
− 1,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.4)

where T̄aw = (1 + r((γ − 1)/2) Ma2
e)Te is the adiabatic wall temperature. The results

are plotted in figure 6(c) for x > 950 mm and compared with the power-law relation
Cf ,i = 0.024 Re−0.25

θ,i for ZPG-TBLs (Smits et al. 1983).
The transformed Cf ,i along lines 2–4 (downstream of the overshoot position) collapse

reasonably well and are slightly higher than the incompressible correlation for ZPG-TBLs,
consistent with the observation of Wenzel et al. (2019) in supersonic TBLs subjected to
weak and moderate APGs. (We will find in § 3.4 that the TBL presented herein undergoes
a mild streamwise APG.) The Cf ,i along line 1 in the vicinity of the WSP, on the contrary,
is significantly lower than the prediction due to the upward motions near the WSP bringing
the low-speed fluids upwards to reduce the skin friction.

In figure 7, we present the distribution of the mean wall heat flux

Q̄w = k ∂ηT̄|w. (3.5)

The overall distribution in figure 7(a) and the streamwise variation along the wall limiting
streamlines in figure 7(b) bear considerable resemblance to those of the skin friction Cf ,
except for the transitional region. To evaluate their similarities, the Reynolds analogy factor
Raf = 2Ch/Cf is plotted in figure 7(c), where Ch = Q̄w/(Cpρeqe(Tr − Tw)) is the Stanton
number. Here, Raf lies between 1.16 and Pr−2/3, and retains almost constant values in
the turbulent region, consistent with the results of ZPG-TBLs over flat plates reported by
Huang et al. (2022).

3.3. Three-dimensionality of the mean flow
The cross-stream secondary motions will lead to the mean flow three-dimensionality,
namely the mean velocity vector with varying directions along the wall-normal direction,
which can be quantified by the deflection of the inviscid stream.

Figure 8(a) displays the angle γv,e between the streamwise and azimuthal mean
velocities at the boundary layer edge, with

γv = arctan
(

ūζ

ūξ

)
(3.6)

as a function of the azimuthal angle φ at three streamwise stations. Here, γv,e shows a
consistent variation for several streamwise locations, with its maximum 4.5◦ at φ ≈ 100◦.
As it approaches the WSP, γv,e gradually decreases and remains less than 1◦ within
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Figure 7. (a) Mean wall heat flux Q̄w (flooded contour) overlaid by the wall limiting streamlines.
(b) Streamwise variations of Q̄w. (c) The Reynolds analogy factor Raf along the four wall limiting streamlines
in (a). Dashed and dash-dotted lines represent, respectively, Pr−2/3 and 1.16.

the region φ ≈ 180◦ ± 40◦. The angle between the streamwise and azimuthal wall shear
stresses is reported as well, defined as

γτw = arctan
(

τ̄w,ζ

τ̄w,ξ

)
, (3.7)

reflecting the trajectories of the wall limiting streamlines. The trend of variation of γτw is
similar to γv,e but with higher magnitudes. The discrepancy in the magnitudes of γτw and
γv,e suggests the existence of the crossflow. As demonstrated in figure 8(b), the twist angle
of the mean velocity vector inside the boundary layer, i.e. γv − γv,e, is highest close to the
wall, and decreases almost monotonically as it approaches the edge of the boundary layer,
suggesting that the mean velocity vector is progressively twisted towards the wall.

We further remark on the influences of the transverse curvature variation. The
significance of such influences can be characterized by the ratio of the boundary layer
thickness to the curvature radius δ/rs and the curvature-radius-based Reynolds number
r+

s = rs/δν . Based on these two parameters, the flow regimes can be classified into three
categories: (i) large r+

s and large δ/rs, (ii) small r+
s and large δ/rs, and (iii) large r+

s and
small δ/rs (Piquet & Patel 1999). For the presently considered TBL over the HyTRV, these
parameters are δ/rs � 0.8 and r+

s � 1500 on the windward side (x > 1000 mm), falling
into the third regime, indicating that the TBL over the windward side is similar to that
over a flat plate, so that the three-dimensionality effects are indeed weak.

3.4. Pressure gradient
Despite the insignificance of the curvature on the windward side, the curvature radius
of the HyTRV model at each streamwise station is not azimuthal-invariant and inevitably
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Figure 9. Distributions of the mean wall pressure p̄w (a) on the lower wall of the HyTRV, (b) in the azimuthal
direction at x = 1050, 1250 and 1450 mm, and (c) along the streamwise direction in meridian planes φ = 140◦
and 180◦, with the parameter βK shown in the inset, and dashed lines denoting the boundaries of the
blowing/suction slot.

induces the azimuthal pressure gradient. Moreover, a non-zero AoA will also lead to APG.
The effects of the mean pressure gradients will be considered in this subsection.

The global distribution of the mean wall pressure p̄w is shown in figure 9(a), and the
azimuthal variations at x = 1050, 1250 and 1450 mm in figure 9(b). The p̄w value reaches
its peak at φ ≈ 92◦, where there are no turbulent fluctuations, and then drops rapidly
with increasing φ until φ ≈ 120◦, beyond which it remains an almost constant value.
Since the HyTRV model is diverging in the streamwise direction, the azimuthal extent
in terms of the arc length with nearly constant wall pressure therefore gets larger as it
approaches downstream, suggesting the progressively weaker influences of the azimuthal
pressure gradient. Nevertheless, the transverse pressure gradient constantly drives lateral
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flows towards the WSP where the upwelling motions are formed, yielding the formation
of large-scale cross-stream circulations.

It is also noteworthy that p̄w near the WSP increases mildly in the streamwise direction,
as indicated by the arrow in figure 9(b), implying the existence of streamwise APG. For
the purposes of illustration, in figure 9(c) we display the streamwise variation of p̄w in the
WSP and φ = 140◦. Except for the regions of blowing/suction disturbances introduced on
the wall, where the mean pressure drops significantly, p̄w in general keeps increasing in the
streamwise direction, confirming the existence of APG. According to Gibis et al. (2019),
the strength of the streamwise APG can be evaluated by the kinematic Rotta–Clauser
parameter, defined as

βK = δ∗
i

τ̄w,ξ

dp̄w

dξ
, δ∗

i =
∫ δ

0

(
1 − ūξ

ūξ,e

)
dη, (3.8a,b)

which is intended to characterize the self-similar state of compressible APG-TBLs. The
streamwise distribution of βK is shown in the inset of figure 9(c), exhibiting a significant
variation in the region 950 mm � x � 1100 mm, with its maximum βK,max ≈ 0.6 at x ≈
1000 mm. As it goes further downstream of x ≈ 1100 mm, βK remains less than 0.25 and
exhibits azimuthal independence, as suggested by the almost collapsed mean distribution
in meridian planes φ = 140◦ and φ = 180◦. The low-levelled βK indicates the weakness
of the streamwise APG and its possibly trivial effects compared with the mild APG-TBLs
reported by Kitsios et al. (2017) over flat plates, and moreover, the significance of the
dynamic roles of the secondary circulations, which is perhaps the only reason that leads to
the differences of statistics in the azimuthal direction.

It is of interest here to examine the effects of the weak APG on the wall pressure
fluctuations. Huang et al. (2022) found that the intensities of wall pressure fluctuation
pw,rms normalized by the mixing scaling ρwuτ q∞ yield the best collapse for compressible
TBLs with different Ma∞ and wall temperature ratios compared to the inner scaling τ̄w
and the mean wall pressure p̄w. Plots of pw,rms/ρwuτ q∞ along the above-mentioned four
limiting streamlines are provided in figure 10 and compared with those in high-speed
flat-plate ZPG-TBLs with 5 � Ma∞ � 14 and 0.18 � Tw/Tr � 0.91 (Huang et al. 2022).
Along lines 2–4, pw,rms/ρwuτ q∞ values show slight scatter and agree reasonably well
with values obtained by Huang et al. (2022), and they are much lower than those along
line 1. Such a discrepancy between line 1 and other lines is due not to the difference of the
pressure gradient as indicated by figure 9(c), but to the large-scale secondary circulations
that significantly reduce the friction velocity in the WSP. The effects of APG on the
fluctuating wall pressure are therefore difficult to conclude from the present case with
βK � 0.25.

4. Local turbulence statistics

This section is devoted to comparing flow statistics at certain streamwise and azimuthal
locations in the present TBL over the HyTRV with canonical ones over flat plates with
or without APG to evaluate their similarities and the extent of the latter replicating the
former.

4.1. Mean velocity profiles
The mean velocity profiles and the scaling laws will be considered in this subsection.
Figure 11 provides the wall-normal distributions of the mean velocity at five streamwise
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Figure 10. Intensities of wall pressure fluctuations in the mixing scaling along the four limiting streamlines
(lines 1–4) represented by symbols with increasingly lighter colours.

stations evenly distributed from x = 1050 to 1450 mm in meridian planes φ = 140◦ and
180◦ integrated by the van Driest transformation (van Driest 1951)

ū+
ξ,VD =

∫ ū+
ξ

0

√
ρ̄

ρ̄w
dū+

ξ , (4.1)

the total-stress-based transformation (Griffin et al. 2021)

ū+
ξ,TS =

∫ ū+
ξ

0

S+
eq

1 + S+
eq − S+

TL
dη+

TL, η+
TL = η(ρ̄τ̄w,ξ )

1/2

μ̄
, (4.2a,b)

with the equivalent strain rates defined as

S+
eq = (μ̄w/μ̄)(∂ ū+

ξ /∂η+
TL), S+

TL = (μ̄/μ̄w)(∂ ū+
ξ /∂η+), (4.3a,b)

and the transformation incorporating intrinsic compressibility effects

ū+
ξ,H =

∫ ū+
ξ

0

(
1 + ηTLDcκ

1 + ηTLDiκ

)(
1 − η

δμ,TL

dδμ,TL

dη

)√
ρ̄

ρw
dū+

ξ , (4.4)

proposed very recently by Hasan et al. (2023), with

δμ,TL = μ̄

ρ̄

√
ρ̄

τ̄w
, Dc =

[
1 − exp

( −ηTL

A+ + f (Mτ )

)]2

, (4.5a,b)

Di = [1 − exp(−η+/A+)]2, (4.5c)

f (Mτ ) = 19.3Mτ (where Mτ = uτ /
√

γ RTw is the friction Mach number), A+ = 17, and
the Kármán constant κ = 0.41.

Bai, Griffin & Fu (2022) found that van Driest (van Driest 1951), Zhang (Zhang et al.
2012), Trettel–Larsson (Trettel & Larsson 2016), data-driven (Volpiani et al. 2020) and
total-stress-based (Griffin et al. 2021) transformations satisfactorily collapse the mean
velocity profiles in adiabatic TBLs with weak APGs (with βK up to 0.69 using data from
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Figure 11. Wall-normal distributions of the mean velocity integrated by (a,b) the van Driest transformation,
(c,d) the total-stress-based transformation (Griffin et al. 2021), and (e, f ) the transformation incorporating
intrinsic compressibility effects (Hasan et al. 2023), in meridian planes (a,c,e) φ = 140◦ and (b,d, f ) φ = 180◦.
Insets are the enlarged views in the viscous layer.

Wenzel et al. 2019) to the incompressible reference. This conclusion very likely can be
extended to TBLs with moderately cooled walls and weak APG since the transformed
mean velocities integrated by these formulas displayed in figure 11 obey the linear law
within the viscous sublayer and the logarithmic law in the vicinity of η+ ≈ 100 and
η+

TL ≈ 100, with the slope and the intercept of the latter being 1/κ and C = 5.2, the same
as those in incompressible ZPG-TBLs. To be more specific, in the viscous layer, as shown
by the insets, the total-stress-based transformation and the transformation incorporating
intrinsic compressibility effects give almost indistinguishable results and perform better
than the van Driest transformation, which is known to yield a smaller slope for cooled-wall
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TBLs (Zhang et al. 2018). The average slope of the van Driest transformed mean velocity
below η+ = 5 is about 0.897, which is 10 % lower than those obtained by the other
two transformations. In the logarithmic layer, the transformation incorporating intrinsic
compressibility effects yields the best collapse in meridian plane φ = 140◦ compared to
the other two transformations, but its performance deteriorates in the WSP, where the
scatter is more significant than the other two transformations, which have comparable
performance and do not show such an azimuthal dependence. In the wake region, the
mean velocities are progressively enhanced as it approaches the WSP, reminiscent of TBLs
subject to the streamwise APG, as suggested by the results reported by Sanmiguel Vila
et al. (2017) with β = 2 shown in figure 11.

To further investigate the universalities of the mean velocity in the outer layer, in
figure 12 we display the mean velocity deficit under outer scalings in meridian plane
φ = 140◦ (figures 12a,c,e) and the WSP (figures 12b,d, f ) at five streamwise stations
distributed evenly between x = 1050 and 1450 mm. When normalized by the free-stream
values of the van Driest transformed mean velocity and plotted against the outer scale
η/δ, as shown in figures 12(a,b), the mean velocity deficits are scattered in each meridian
plane at varying streamwise locations. The total-stress-based transformation works better
in collapsing the mean velocity deficits (figures 12c,d), but when compared with the results
from an incompressible canonical TBL reported by Sillero, Jiménez & Moser (2013) and
incompressible flat-plate APG-TBLs with β = 0.7−2.2 by Sanmiguel Vila et al. (2020b),
deviations are still prominent, requiring further efforts to collapse them onto a single curve.

There are multiple factors that could lead to such inconsistency, one of which is the
mean APG, which can be incorporated by the Zagarola–Smits velocity scale defined
as uZS = ũξ,eδ

∗
i /δ, with δ∗

i the incompressible displacement thickness. As has been
demonstrated by Gibis et al. (2019), for a given APG strength βK , the Zagarola–Smits
velocity scale is capable of collapsing the mean velocity deficit profiles at various
streamwise locations in supersonic APG-TBLs so that the outer-layer self-similarity can
be satisfied. The Zagarola–Smits scaling is also examined in the present hypersonic TBL,
as displayed in figures 12(e, f ). As a comparison, we also display the results from an
incompressible canonical TBL (Sillero et al. 2013), a supersonic flat-plate APG-TBL at
Ma∞ = 2 and βK = 0.55 (Gibis et al. 2019), and incompressible flat-plate APG-TBLs
(Sanmiguel Vila et al. 2020b). These results are consistent with statistics in the present
study in the meridian plane φ = 140◦ with comparatively weak APG, despite the different
Reynolds number Reτ , strengths of APG β and the free-stream Mach numbers Ma∞. As it
approaches the WSP, however, the mean velocity deficit profiles within 0.1 � η/δ � 0.8
gradually level off so that a stronger embedded shear layer appears in the outer layer,
manifesting remarkable differences from the reference data even though the streamwise
pressure gradient barely changes from φ = 140◦ to 180◦ (figure 9c). From another
perspective, the mean velocities do not obey the outer-layer similarity in the azimuthal
direction at a given streamwise location under the Zagarola–Smits scaling, suggesting
that the TBL over the HyTRV cannot be simplified like those over flat plates with APG.
Recalling the discussions in §3 regarding the global flow organization, the differences in
the mean velocity at various azimuthal angles should be associated with the secondary
circulations. Away from the WSP, where APG plays the dominant role, the mean velocity
deficits follow those of the APG-TBLs over flat plates, whereas near the WSP, the effects
of the secondary circulations that bring the low-speed fluids upwards are the most intense,
leading to the higher intensity of embedded shear layer in the outer region.

To summarize, in the near-wall region, the local mean velocity distributions conform
with those of canonical ZPG-TBLs in that the linear and logarithmic laws can be satisfied
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Figure 12. Mean velocity deficit profiles in meridian planes (a,c,e) φ = 140◦ and (b,d, f ) φ = 180◦ expressed
as (a,b) 1 − ūξ,VD/ūξ,VD,e, (c,d) 1 − ūξ,TS/ūξ,TS,e, and (e, f ) (ũξ,e − ũξ )/uZS, with uZS the Zagarola–Smits
velocity scale.

by performing integral transformations. In the outer layer, the mean velocity deficits are
well collapsed with those of APG-TBLs under the Zagarola–Smits velocity scale in the
region away from the WSP dominated by merely the APG, whereas evident deviations
can be observed near the WSP where the upwelling currents induced by the large-scale
circulations are prominent.

4.2. Reynolds stresses
In this subsection, we consider the local distributions of the Reynolds stress components
and their variations in the streamwise and azimuthal directions. The Reynolds stresses
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normalized by viscous scales, defined as

R+
ij =

ρu′′
i u′′

j

τ̄w,ξ

, (4.6)

are shown in figure 13 along with the statistics of incompressible TBLs over flat walls with
and without APG reported in previous studies (Sillero et al. 2013; Sanmiguel Vila et al.
2017). The abscissae are normalized by the semi-local scalings η+

TL, which is known to
show better universality of R+

ij in the near-wall region at different Mach numbers and wall
temperatures (Zhang et al. 2018, 2022; Huang et al. 2022).

In figure 13(a), we present the streamwise normal component R+
11 at x = 1250 mm

at various azimuthal angles. Along the azimuthal direction at x = 1250 mm, where the
friction Reynolds numbers Reτ are approximately 1150–1200, R+

11 follows the same trend
of variation in the wall-normal direction as those of canonical TBLs over flat walls, in that
the profiles near the wall are well collapsed and the peaks are attained at η+

TL ≈ 15 in the
buffer layer. As it approaches the WSP from the attachment lines, the peaks of R+

11 first
increase and then decrease to a level lower than that of incompressible TBLs with ZPG. In
the outer layer, a secondary peak gradually emerges with an increasingly larger magnitude
as it approaches the WSP. The manifestation of the outer peak is, in a way, similar to
TBLs with APG, but it requires a much stronger APG to exhibit a high value in the latter
(β = 1.3 and 2.4) (Sanmiguel Vila et al. 2017). Considering that the values of βK in the
present study remain low (approximately 0.25) and that their variations in the azimuthal
direction are insignificant, it is irrational to ascribe the enhancement of the outer peak to
APG. We can infer from the increasing production of the turbulent kinetic energy PK –
cast as the multiplication of the Reynolds shear stress R12 and the mean shear ∂ ūξ /∂η,
both of which are increased in the outer layer – that the rate of kinetic energy transferred
from the mean to fluctuating velocity is higher, leading to the higher turbulent intensities.
In other words, the intensified Reynolds stresses should be attributed to the large-scale
cross-stream circulations. This will be demonstrated in detail in the next subsection.

The physical counterparts leading to the increment of the outer peaks are, in
all probability, the large-scale low-momentum structures that are similar to the
very-large-scale motions (VLSMs) in high-Reynolds-number wall-bounded turbulence
(Lee & Sung 2011, 2013; Pirozzoli & Bernardini 2013). These structures, if no other effects
are taken into account, usually penetrate into the near-wall region, leaving large-scale
‘footprints’ that enhance the level of the inner peaks. This partially explains the variation
of the inner peaks of R+

11 – the synchronized increment of the outer and inner turbulent
intensities from φ = 130◦ to φ = 160◦. As it further approaches the WSP, where the flow
is dominated by the upwelling instead of circulations, the inner peaks are decreased, which
is caused by either the disruption of the near-wall motions or the detachment of the VLSMs
from the wall.

To validate such postulations, in figure 14 we present the streamwise velocity
fluctuations u′+

ξ in three off-wall (ξ, ζ ) planes, in the near-wall region at η+ = 15, slightly
above the logarithmic layer at η = 0.3δ, and in the outer layer at η = 0.6δ. The u′+

ξ at
η+ = 15 is still organized as streamwise elongated streaky structures that are commonly
observed in canonical TBLs. Such a flow organization manifests no evident variations in
the azimuthal direction, suggesting that the near-wall motions are not, at least visually,
disrupted by the upwelling currents in the vicinity of the WSP. The flow structures at
η = 0.3δ are organized as large-scale high- and low-momentum regions with the spanwise
width of the boundary layer thickness, reminiscent of VLSMs in high-Reynolds-number
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Figure 13. Wall-normal distributions of the Reynolds stresses against the semi-local coordinate η+
TL, for (a,b)

R+
11, (c,d) R+

22, (e, f ) R+
33, (g,h) −R+

12, with (a,c,e,g) x = 1250 mm and various azimuthal angles (φ = 130◦ to
the WSP), and (b,d, f,h) in the WSP from x = 1050 to 1450 mm.
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Figure 14. Instantaneous velocity fluctuations u′+
ξ in the (ξ, ζ ) planes at (a) η+ = 15, (b) η = 0.3δ,

(c) η = 0.6δ.

wall-bounded turbulence (Smits, McKeon & Marusic 2011). These VLSMs appear to
be capable of penetrating through and reaching down to the near-wall region, leaving
large-scale imprints at η+ = 15. Notably, there appears to be no sign of azimuthal
dependence of the intensities of the VLSMs. Only at η = 0.6δ can it be observed that
the velocity fluctuations are enhanced near the WSP. However, these intensified flow
structures are shorter in the streamwise direction compared with those away from the
WSP (φ < 160◦ or φ > 200◦), and, more importantly, differ greatly in morphology from
the flow structures at η = 0.3δ, leaving no imprints on either η = 0.3δ or η+ = 15. We
can conclude from these phenomena that the intensified peaks in the outer layer located
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at η ≈ 0.6δ are detached from the wall, having different morphology and dynamics than
the VLSMs that are commonly found in high-Reynolds-number TBLs. Considering the
features of the mean velocity in figure 12, we conjecture that these intensified flow
structures could be caused by the Kelvin–Helmholtz instability due to the existence of the
inflection point (Schatzman & Thomas 2017). This will be discussed in detail in the next
subsection.

Along the streamwise direction in the WSP (figure 13b), the outer peaks manifest
monotonic abatement, suggesting the weakening of the VLSMs lying in the upwelling
low-momentum region. The inner peaks do not exhibit a simple trend of variation. This is
probably due to two counteracting effects: one is the increment of the friction Reynolds
number Reτ in the streamwise direction (figure 3), and the other is the weakening of
the VLSMs, similar to the observations in the recovery downstream of the shock/TBL
interactions (Yu et al. 2023).

Regarding the rest of the Reynolds stress components R+
22, R+

33 and −R+
12, the outer peaks

are more prominent than the inner ones (if any). They share a common feature that the
peaks are enhanced as it approaches the WSP at a certain streamwise station, but weakened
downstream in the WSP. Compared with the incompressible APG-TBL with a comparable
Reτ (Sillero et al. 2013), these components are stronger even though the APG is much
weaker, indicating anew that the enhancement of the outer peaks should be attributed to the
large-scale cross-stream circulations. In the near-wall region, the variations of R+

22 and R+
33

along the azimuthal direction are consistent with the trend in the outer region, suggesting
the comparatively large impacts of VLSMs on the near-wall turbulence. It is noteworthy,
however, that the R+

22 component, commonly regarded as the wall-detached flow quantity
that should be independent of the superposition effects of the VLSMs in the outer region,
is augmented as well, not least in the WSP, further proving that the near-wall turbulence
is probably disrupted by the upwelling currents. As for the Reynolds shear stress −R+

12, its
variation trend is consistent with that of R+

11 and should share similar properties.
The distributions of the Reynolds stresses in the WSP, as displayed in figure 15 for R11

and R22, can be collapsed when normalized by the Zagarola–Smits scaling and plotted by
outer coordinates; the peaks thereof lie at η ≈ 0.6δ, which are much higher than the typical
VLSMs in ZPG-TBLs located at η = (0.2−0.3)δ (Hutchins & Marusic 2007; Marusic,
Mathis & Hutchins 2010). However, the Reynolds stresses normalized this way agree with
those in APG-TBLs over flat plates (Gungor et al. 2020; Sanmiguel Vila et al. 2020b) only
beyond η/δ ≈ 0.7. The locations and magnitudes of the outer peaks in APG-TBLs under
the Zagarola–Smits scaling depend on the shape factor, APG strength, and probably other
factors.

The recent study of Wei & Knopp (2023) proposed a novel outer scaling of the
streamwise mean momentum equation for TBLs with APG, hereafter referred to as the
WK scaling. In the WK scaling, the outer peak location of R12 (denoted by the subscript
OP) is employed to determine proper scalings as

η∗ = (η − ηOP)/(δ − ηOP), (4.7)

ū∗
ξ = (ūξ,e − ūξ )/(ūξ,e − ūξ,OP) (4.8)

and

R∗
12 = R12/R12,OP. (4.9)

As shown in figure 16(a), the mean velocity deficits ū∗
ξ in the WSP at different streamwise

stations and at x = 1050 mm and φ = 160◦ are well collapsed and consistent with the
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β = 1.1, Reτ = 1250

H = 1.6, β = 4.5

H = 2.5, β = 40.1

0.04

0.03

0.02

0.01

0.20

0.15

R 1
1
/
u2 ZS

R 2
2
/
u2 ZS

0.10

0.05

0 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 0.6

η/δη/δ

0.8

x stations

1050 mm
1150 mm
1250 mm
1350 mm
1450 mm

1.0 1.2

(b)(a)

Figure 15. Wall-normal distributions of (a) R11/u2
ZS and (b) R22/u2

ZS in the WSP from x = 1050 to 1450 mm.

approximate formula expressed as the error function

FWK = 1 − erf(1.3η∗ + 0.21(1.3η∗)4). (4.10)

Similar conclusions can be drawn for the Reynolds shear stress R∗
12 (figure 16b) that

appears in the streamwise mean momentum equation, with the approximate formula cast
as

GWK = 1 − exp(−(1.3η∗)2 − 0.385(1.3η∗)4). (4.11)

Although not mentioned in the study of Wei & Knopp (2023), we found that the
elucidations can be applied to other Reynolds stress components R∗

11, R∗
22 and R∗

33 as
well, with the exact form of the approximate formula (4.11) (see figure 16c for R∗

11).
The implication is that the mean velocity and all the Reynolds stress components are
self-similar if properly scaled.

4.3. Outer layer turbulence amplification
As illustrated in the previous subsection, the highly intensified turbulent kinetic energy in
the outer region can be explained in terms of its production. However, there is a setback
in such an inference in that the generation of the Reynolds shear stress remains unknown,
requiring further exploration from the perspective of flow dynamics.

Figure 17 displays the rescaled mean velocity gradient in the WSP. Due to the presence
of large-scale secondary circulations flanking the WSP (figure 5), there manifests an
inflection point in the outer layer at η/δ ≈ 0.66, in spite of the smallness of the APG that
implies that no flow separation should be expected (Kitsios et al. 2017; Gungor, Maciel &
Gungor 2022). The appearance of these inflection points and their locations away from the
wall suggest that the inflectional Kelvin–Helmholtz instability is probably responsible for
the amplified outer-layer turbulence.

It has been proven by Schatzman & Thomas (2017) that the Kelvin–Helmholtz instability
leads to large-scale spanwise-oriented rollers centred at the inflection point, transferring
the comparatively low-speed fluid upwards and high-speed fluid downwards, and thereby
resulting in the significant contribution to the Reynolds shear stress. To verify whether this
is also the case for the presently considered flow, we obtain the wall-normal distributions
of the Reynolds shear stress carried by these upward and downward turbulent transports,
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Figure 17. Mean velocity gradient ρ̄ dũξ /dη in the WSP at different streamwise stations.

namely the ejection (Q2) and sweeping (Q4) events, respectively, conditioned to

|u′
ξ (η) u′

η(η)| > αq uξ,rms(η) uη,rms(η), (4.12)

with αq the threshold set as 3.0. The results in the meridian planes φ = 160◦ and
φ = 180◦ (WSP) at x = 1050 mm are shown in figure 18, along with the mean velocity
and the normalized streamwise velocity fluctuation intensity. In φ = 160◦ without mean
velocity inflection points, Q2 events play a dominant role compared with the Q4 events
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Figure 18. Wall-normal distributions of the tangential Reynolds stresses −u′
ξ u′

η

+
carried by ejection (Q2,

u′
ξ < 0, u′

η > 0) and sweeping (Q4, u′
ξ > 0, u′

η < 0) events, the mean velocity ūξ /q∞ and the normalized

streamwise velocity fluctuation intensity u′2
ξ /(u′2

ξ )
max

in meridian planes (a) φ = 160◦ and (b) φ = 180◦ at
x = 1050 mm.

in contributing to the Reynolds shear stress across the boundary layer. In φ = 180◦,
however, the Reynolds shear stress carried by the Q4 events exceeds that of Q2 events
below the inflection point, while the opposite is true above that point, with the peaks
thereof located below and above the inflection points, respectively. This indicates that
the large-scale spanwise-oriented rollers induced by the Kelvin–Helmholtz instability do
exist in the WSP and should be the primary cause of turbulence amplification in the outer
layer, consistent with the elucidations given by Schatzman & Thomas (2017) in a highly
decelerated unsteady TBL.

Recalling figure 13 that presents the distribution of the Reynolds stress components,
the amplified outer peaks can be observed only close to the WSP and are weakened
downstream. Since the inflection points of the mean velocity can be observed merely
along the meridians around the WSP within a small azimuthal angle, we can infer that
the outer peaks at φ = 160◦ and 140◦ should be ascribed to the diffusion and convection
of the turbulent kinetic energy from the WSP instead of the inherent Kelvin–Helmholtz
instability.

4.4. Contribution of the embedded shear layer to the mean skin friction
As a wall quantity, the mean skin friction presented in figure 6 is closely related to the
turbulent statistics inside boundary layers. Therefore, understanding the generation of skin
friction is crucial for the drag reduction of high-speed vehicles. In canonical wall-bounded
turbulence, previous studies (Renard & Deck 2016; Li et al. 2019; Tong et al. 2022) found
that the turbulence kinetic energy production PK contributes the most to the skin friction
using the Renard–Deck formula (Renard & Deck 2016). The outer-layer peaks of the
tangential Reynolds stress (figure 13) and the mean velocity gradient (figure 17) indicate
the presence of an outer-layer peak of PK near the WSP, and consequently a significant
contribution of the embedded shear layer to the skin friction, which will be quantified in
this subsection. Before going further with this issue, we first perform a decomposition of
the mean skin friction, following Renard & Deck (2016) and Li et al. (2019):

Cf = Cf ,V + Cf ,T + Cf ,G. (4.13)
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These three right-hand-side terms are expressed as

Cf ,V = 2
ρeũ3

ξ,e

∫ δ

0
τ̄ν,ξη

∂ ũξ

∂η
dη, (4.14a)

Cf ,T = 2
ρeũ3

ξ,e

∫ δ

0
τ̄t,ξη

∂ ũξ

∂η
dη, (4.14b)

Cf ,G = 2
ρeũ3

ξ,e

∫ δ

0
(ũξ − ũξ,e)ρ̄

(
ũξ

∂ ũξ

∂ξ
+ ũη

∂ ũξ

∂η

)
dη

− 2
ρeũ3

ξ,e

∫ δ

0
(ũξ − ũξ,e)

∂

∂ξ
(τ̄t,ξξ + τ̄ν,ξξ ) dη

+ 2
ρeũ3

ξ,e

∫ δ

0
(ũξ − ũξ,e)

∂ p̄
∂ξ

dη, (4.14c)

denoting the contributions of the viscous dissipation, turbulent kinetic energy production
and streamwise heterogeneity, respectively, where the viscous shear stress is τ̄ν,ij =
μ̄(∂ ūi/∂xj + ∂ ūj/∂xi) and the Reynolds shear stress is τ̄t,ij = ρ̄(−ũ′′

i u′′
j ). Despite the

formulas above being derived for two-dimensional TBLs, they can be readily applied here
as well, because the relative error of the summation of the right-hand-side terms in (4.13)
obtained by turbulent statistics compared with Cf is less than 0.1 %, suggesting that the
three-dimensional effects are indeed trivial, at least in contributing to the skin friction.

Figure 19 displays the streamwise distribution of Cf in the meridian planes φ = 140◦
and 180◦. In the former away from the WSP, the contributions of each term on the
right-hand-side of (4.13) to the skin friction Cf are generally similar to those in canonical
TBLs (Li et al. 2019; Tong et al. 2022), in that the viscous dissipation Cf ,V , turbulent
production Cf ,T and streamwise heterogeneity Cf ,G terms constitute approximately 35 %,
50 % and 15 % of Cf , respectively. In the WSP, the contribution of the viscous dissipation
Cf ,V remains low, while the other two components are highly different from those of
canonical TBLs. The turbulent production term Cf ,T reaches a level even higher than Cf
itself, which should be caused by the high-rising peaks of the Reynolds shear stress −R12
in the outer layer that are induced by the Kelvin–Helmholtz instability. The Cf ,G term is
no longer positive as in φ = 140◦, but it shows a tendency of recovering towards positive
values along the streamwise direction.

We have seen in the subsections above that moving towards the WSP is similar to
increasing APG strength in flat-plate TBLs; consequently, the variation of the importance
of the three decomposed terms from plane φ = 140◦ (figure 19a) to the WSP (figure 19b)
resembles that in TBLs with increasing APG strength (Fan et al. 2020), i.e. Cf ,T/Cf
increases dramatically to be the dominant contributor, Cf ,V/Cf becomes negligible, and
Cf ,G/Cf becomes negative.

The study of Renard & Deck (2016) has pointed out that one of the necessary conditions
of the positiveness of Cf ,G is that the total shear stress should decrease monotonically
along the wall-normal direction. This is indeed the case in TBLs with ZPGs and in
φ = 140◦ in the present study, but obviously not in the WSP, as indicated by the high
extending peaks of −R12, one significant component constituting the total shear stress, in
the outer layer. In the aspect of physical significance, the Cf ,G term represents the mean
kinetic energy transfer from the TBLs to the free-stream in the absolute frame, the one
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Figure 19. The streamwise variations of the decomposed skin friction components in meridian planes
(a) φ = 140◦ and (b) φ = 180◦ (WSP).

travelling with the free-stream velocity. In the wall reference frame, it is related to the
growth of the boundary layer that absorbs the energy from the free-stream, or equivalently,
the viscous dissipation. In the study of Yu et al. (2023) that discussed the negative Cf ,G
during the turbulence recovery downstream of the shock/TBL interactions, incompatible
growth rates were found between the nominal and kinetic energy thicknesses, with the
former much higher than the latter, suggesting that the kinetic energy dissipation per unit
length is lowered. This is also the case for the presently considered TBL in the WSP and its
neighbourhood (omitted for brevity), in that the ratio between the kinetic energy thickness
and the nominal thickness is lower as it approaches downstream. Therefore, we conclude
that the negative Cf ,G should be attributed to the reduced energy absorption compared
with the ZPG-TBLs.

After having a general impression of the relation between turbulent statistics and the
mean skin friction, we further quantify the contribution of the embedded shear layer
induced by the Kelvin–Helmholtz instability to the mean skin friction in the WSP. For that
purpose, we decompose the mean velocity and the Reynolds shear stress into two portions:
the canonical portion ZPG-TBL (denoted by the subscript c), and the other corresponding
to the embedded shear layer (denoted by s).

Following Yu et al. (2023), the mean velocity is split as

ũξ = ũξ,s + ũξ,c, (4.15)

in which the van Driest transformation of the canonical mean velocity ũξ,c is constructed
as

ũξ,c,VD(η+) =
∫ η+

0

[
− 1

2 λ(s)2 + 1
2 λ(s)2

(
1 + 4 λ(s)2

(
1 − s

Reτ

))1/2
]

ds, (4.16)

the universal mean velocity profile proposed by Subrahmanyam, Cantwell & Alonso
(2022), with λ(s) the mixing length model introduced by Cantwell (2019). Similarly, the
mean total stress can be decomposed as

τ̄ = τ̄ν + τ̄t

= τ̄ν,c + τ̄t,c + τ̄ν,s + τ̄t,s

= τ̄c + τ̄ν,s + τ̄t,s, (4.17)
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Figure 20. The skin friction contributed by the canonical portion and the outer embedded shear layer to
(a) Cf ,T and (b) Cf ,V in the WSP.

where τ̄ν and τ̄t denote the viscous and Reynolds shear stresses, respectively. The Reynolds
shear stress induced by the embedded shear layer is therefore cast as

τ̄t,s = τ̄ − τ̄c − τ̄ν,s, (4.18)

where the viscous shear stress induced by the embedded shear layer τ̄ν,s is determined by
the mean velocity of the embedded shear layer ūs. The total shear stress contributed by the
canonical ZPG-TBL τ̄c is obtained via the formula proposed by Kumar & Mahesh (2021).

Substituting ũξ = ũξ,s + ũξ,c and τ̄t = τ̄t,s + τ̄t,c into Cf ,V and Cf ,T , we have

Cf ,V,c = 2
ρeũ3

ξ,e

∫ δ

0
τ̄ν,ξη,c

∂ ũξ,c

∂η
dη, Cf ,V,s = Cf ,V − Cf ,V,c, (4.19a)

Cf ,T,c = 2
ρeũ3

ξ,e

∫ δ

0
τ̄ν,ξη,t

∂ ũξ,c

∂η
dη, Cf ,T,s = Cf ,T − Cf ,T,c. (4.19b)

The streamwise variations of Cf ,T,c and Cf ,T,s are presented in figure 20(a). It is found
that Cf ,T stems primarily from the embedded shear layer, whose contribution declines as
it approaches downstream, with the contribution of Cf ,T,s to Cf ,T (Cf ,T,s/Cf ,T ) decreases
from over 0.8 to about 0.55 in the presented streamwise extent (Cf ,T,s/Cf , the contribution
of Cf ,T,s to Cf , decreases from approximately 1.25 to 0.45). The contribution of the
embedded shear layer to the mean skin friction via viscous dissipation Cf ,V,s, on the
other hand, is almost negligible compared with the canonical portion Cf ,V,c, as shown
in figure 20(b), because the viscous dissipation is dominantly contributed by the canonical
portion in the near-wall region.

The contribution of enhanced outer-layer large-scale structures to the mean skin friction
is also considerable in other scenarios. For example, Yu et al. (2023) found that Cf ,T,s
is the dominant contributor of Cf ,T near the shock/TBL interaction zone, and its ratio to
Cf ,T decreases steadily as the embedded shear layer weakens. Moreover, Yoon, Hwang
& Sung (2018), from another perspective, found that the enhanced large-scale structures
in an APG-TBL (β = 1.5) have a considerable contribution to the skin friction through
the superposition and amplitude modulation effects on the vortical motions, consistent
with our results even though the enhanced large-scale structures herein are not induced by
APG. The above results indicate that the strategy for manipulating amplified outer-layer
large-scale structures needs to be developed for drag reduction.
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Figure 21. (a) Wall-normal profiles of T̄/T∞, (b,c) T̄/T̄e as a function of ūξ /ūξ,e, and (d) T̄/T̄0.7δ as
a function of ūξ /ūξ,0.7δ , in meridian planes φ = 140◦, 160◦ and 180◦ at x = 1250 mm. Dashed lines in
(b) and (c,d) are, respectively, the mean temperature–velocity relationships predicted by Walz’s equation and
the generalized Reynolds analogy (GRA).

5. Temperature and heat flux

Finally, we briefly consider the temperature statistics and their correlation with the
velocity. Figure 21(a) presents the wall-normal distribution of the mean temperature at
x = 1250 mm in the meridian planes φ = 140◦, 160◦ and 180◦. As it approaches the WSP
from the attachment lines, the mean temperature T̄ is increased beneath η = 0.8δ, but
decreased near the edge of the boundary layer, yielding fuller profiles, the fewer prominent
peaks close to the wall and the higher temperature gradient in the outer layer.

In canonical compressible wall-bounded turbulence, namely the compressible turbulent
channels, pipes and boundary layers over flat plates, the mean temperature can be
associated with the mean velocity by Walz’s equation (Walz 1969)

T̄
T̄e

= Tw

T̄e
+ Tr − Tw

T̄e

(
ūξ

ūξ,e

)
+ T̄e − Tr

T̄e

(
ūξ

ūξ,e

)2

. (5.1)

This formula was proven valid when the walls are quasi-adiabatic, but requires refinements
when the wall heat transfer is significant, which is achieved by replacing the recovery
temperature Tr with the generalized recovery temperature Trg = T̄e + rgū2

ξ,e/(2Cp), with
the generalized recovery parameter

rg = Tw − Te

ū2
ξ,e/(2Cp)

+ 2Cp

ūξ,e

∂T̄
∂ ūξ

∣∣∣∣
w

, (5.2)
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namely the generalized Reynolds analogy (GRA) proposed by Zhang et al. (2014), whose
validity has been verified in compressible ZPG-TBLs with different wall temperature
conditions and the free-stream Mach number up to 14 (Zhang et al. 2018; Huang et al.
2022). In figures 21(b,c) we plot the mean temperature T̄/T̄e against the mean velocity
ūξ /ūξ,e along with the predictions of Walz’s equation and the GRA, respectively. For
the presently considered flow, Walz’s equation approximately predicts the variation of
the mean temperature with the mean velocity, but the wall heat transfer, indicated by
the temperature gradient at ūξ = 0, cannot be captured accurately, which is a commonly
encountered issue in hypersonic TBLs with strong wall temperature gradients (Duan,
Beekman & Martín 2010; Modesti & Pirozzoli 2016). The GRA, on the other hand,
is capable of accurately reconstructing the relation between T̄/T̄e and ūξ /ūξ,e within
ūξ � 0.3ūξ,e in the near-wall region (η/δ � 0.01), while it shows comparatively large error
in the outer region by underpredicting the mean temperature.

The failure of the GRA in the present TBL is caused by the embedded shear layer
that makes the mean temperature no longer a quadratic function of the mean streamwise
velocity, as indicated by figures 21(b,c). The justification for this can be found in
figure 21(d), which conveys identical information to figure 21(c), with the exception
that the parameters at the boundary edge in GRA have been substituted with those
at approximately η = 0.7δ, thereby eliminating the influence of the embedded shear
layer. Compared to figure 21(c), the predicted mean temperature–velocity relationships
in figure 21(d) are significantly improved, especially in meridian planes away from the
WSP. In other words, the validity of the GRA in the present TBL is limited to the region
approximately below the embedded shear layer.

To improve the prediction accuracy of the GRA beyond η ≈ 0.7δ, we propose to
affiliate an empirical modification term HRA to the GRA that reflects the influences of
the embedded shear layer, cast as

T̄
T̄e

= Tw

T̄e
+ Trg − Tw

T̄e

(
ūξ

ūξ,e

)
+ T̄e − Trg

T̄e

(
ūξ

ūξ,e

)2

+ HRA

(
ūξ

ūξ,e

)
. (5.3)

The empirical modification HRA is constructed in the form

HRA = 0.41 erf

((
ūξ

ūξ,e

)4
)(

1 − 1.18 erf

((
ūξ

ūξ,e

)4
))

, (5.4)

whose maximum is approximately 0.09, independent of the azimuthal position. Such an
empirical modification, taking the non-canonical effects into consideration, gives much
better results in comparison, as reported in figure 22.

We further consider the temperature fluctuations and the turbulent heat flux.
Figure 23(a) shows the temperature fluctuation intensities at x = 1250 mm. There manifest
two peaks across the boundary layer, one located at η ≈ 0.006δ close to the wall, and the
other at η ≈ 0.8δ near the outer edge of the boundary layer, similar to the distribution of
the velocity fluctuation intensity in figure 13, but the inner peaks are much lower than the
outer ones. The wall-normal turbulent heat flux ρu′′

ηT ′′+ in figure 13(c) manifests a similar
variation trend except for the negative values near the wall. These two flow quantities
can be related to the velocity fluctuations and Reynolds stresses by the strong Reynolds
analogy (SRA). In the present study, we consider the refined formula proposed by Huang,
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ū/ūe
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(c) turbulent heat flux ρu′′
ηT ′′+, (d) turbulent Prandtl number Prt, at x = 1250 mm.

Coleman & Bradshaw (1995) (HSRA), written as

T ′′
rms/T̃

(γ − 1)M2
l (u′′

ξ,rms/ũξ )

(
1 − ∂T̃t

∂T̃

)
Prt ≈ 1, (5.5)

with Ml the local Mach number, and Prt the turbulent Prandtl number

Prt = ρu′′
ξ u′′

η (∂ηT̃)

ρT ′′u′′
η (∂ηũξ )

. (5.6)
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As displayed in figures 13(b,d), the ratios in (5.5) and (5.6) are close to unity, suggesting
that the temperature fluctuations can still be regarded to be transported as passive scalars,
despite the fact that the relation between the mean temperature and velocity is altered by
multiple complicating factors.

6. Conclusions

In the present study, we performed direct numerical simulations (DNS) of a hypersonic
turbulent boundary layer (TBL) over the convex windward side of a lifting body, HyTRV,
travelling at Mach 6 with a 2◦ angle of attack. By scrutinizing the database, we evaluated
the global flow organization and local turbulent statistics, with special attention paid to
their disparity and resemblance with TBLs over flat plates with zero pressure gradient
(ZPG) or adverse pressure gradient (APG). The primary conclusions are summarized as
follows.

(i) Global flow organization. The transverse curvature parameters (δ/rs < 0.8,
r+

s > 1500) indicate that the TBL on the convex windward side resembles that over a flat
plate. Nevertheless, the lateral turbulent flows driven by the opposing transverse pressure
gradients move oppositely towards the windward symmetry plane (WSP), resulting
in negligible mean flow three-dimensionality but significant azimuthal inhomogeneity
featured by large-scale circulations in the cross-stream plane. The head-on collision of
opposing moving flow in the WSP leads to an inflection point in the outer layer.

(ii) Local turbulent scaling. Despite the weakness of the streamwise pressure gradient
(the kinematic Rotta–Clauser pressure gradient parameter βK ≈ 0.25), the increasingly
larger mean velocity deficits and the stronger outer-layer turbulence are manifested as it
approaches the WSP. Though reminiscent of TBLs subjected to strong APG, the strong
mean velocity deficits, also referred to as the embedded shear layers, are induced by
the large-scale cross-stream circulations, which also yield turbulent intensification due
to the Kelvin–Helmholtz instability. Further decomposing the mean skin friction into
the contributions of canonical ZPG-TBL and the embedded shear layer reveals that the
latter constitutes over 45 % of the mean skin friction through turbulent kinetic energy
production. The mean velocity profiles in a given meridian plane retain streamwise
self-similarity under the Zagarola–Smits scaling, but the scaled profiles deviate gradually
from those in APG-TBLs over flat plates as the WSP is approached. By comparison, under
the WK scaling (Wei & Knopp 2023), the mean velocity and Reynolds stresses collapse
well with those in APG-TBLs over a wide range of Reynolds numbers, APG strengths and
shape factors.

(iii) Mean and fluctuating temperature. The generalized Reynolds analogy (GRA)
relation performed well in previously studied flat-plate hypersonic ZPG-TBLs, but was
valid only below η/δ ≈ 0.7 for the present TBL with a mild APG and a strong shear layer
in the outer layer. An accurate prediction of the GRA across the whole boundary layer
can be achieved by adding an empirical modification to the original GRA to incorporate
the effects of the embedded shear layer. The fluctuating temperature is still passively
transported, as suggested by the fact that the turbulent Prandtl number is close to unity.

The DNS conducted herein extend the investigation of hypersonic TBLs over flat plates
to a more realistic configuration. The azimuthal variation trends of the mean velocity
and Reynolds stress profiles (§§ 4.1 and 4.2) are very likely still valid near the leeward
symmetry plane of an inclined straight cone and near the minor axis of an elliptic cone
such as the HIFiRE-5 model (Paredes et al. 2016) as long as there is no separation. In
these two contexts, the surfaces are convex, and azimuthal opposed fluids are colliding
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at the symmetry plane that generates large-scale secondary circulations, similar to the
windward side of the HyTRV.

Although most of the scaling laws remain valid, the seemingly trivial effects of
mean pressure gradient leave strong impacts on the mean and fluctuating velocity and
temperature. Considering their comparatively important dynamic roles, it is crucial to
further evaluate the capability of turbulent models to accurately predict skin friction and
wall heat transfer, which will be considered in our future work.
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