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Turbulent flow over random sphere packs – an
investigation by pore-resolved direct numerical
simulation
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Pore-resolved direct numerical simulations have been performed to investigate the
turbulent open-channel flow over a rough and permeable sediment bed, represented by
a mono-disperse random sphere pack. After a careful validation, eleven cases were
simulated to systemically sample a parameter space spanned by a friction Reynolds
number Reτ ∈ [150, 500] and a permeability Reynolds number ReK ∈ [0, 2.8]. By varying
the ratio of flow depth to sphere diameter within a range of h/D ∈ {3, 5, 10, ∞}, the
influence of both Reynolds numbers on the flow field and the turbulence structure
could be investigated independently. The simulation results are analysed within a
time–space double-averaging framework, whereas flow visualizations provide insight into
instantaneous fields. Based on the drag distribution, we propose a consistent interface
description, which can be used to define both near-interface and outer-flow coordinates. In
these near-interface coordinates, the profiles of the mean velocity and the total shear stress
collapse. Furthermore, the proposed interface definition yields outer-layer coordinates, in
which the flow and turbulence statistics over a rough and permeable bed reveal similarity to
a smooth-wall flow at a similar Reτ . Within the parameter space, Reτ has a strong influence
on the wake region of the velocity profile. In contrast, ReK changes the wall-blocking
effect and the shear intensity, which is reflected by the turbulence structure and vortex
orientation in the near-interface region. As streamwise velocity streaks disappear and
the vortex inclination increases with higher ReK , differences between near-interface and
outer-layer turbulence structure are reduced.
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1. Introduction

Flow and transport over rough and permeable interfaces are relevant in a wide range of
natural and industrial systems. A prominent example is the uppermost layer of a river bed,
the hyporheic zone, which plays a vital role in aquatic ecosystems. In the hyporheic zone,
the water in the pore space of the sediment is in permanent interaction with the overlying
turbulent stream flow via bidirectional exchange of mass and momentum (e.g. Boano et al.
2014). Due to the high biogeochemical activity within the hyporheic zone, the supply and
removal of different substances by hyporheic mass transport is critical for the metabolism
of various microorganisms (Brunke & Gonser 1997; Battin et al. 2016). Advances in the
fundamental understanding of the hydrodynamics near the sediment–water interface are
of interdisciplinary interest (Krause et al. 2011; Ward 2016), and are likely transferrable to
similar cases of turbulent flow over dense porous media of granular material.

Moving downward from the free surface, several layers can be identified in the fully
developed flow over rough and permeable beds (Nikora et al. 2001). The undisturbed
free flow region contains the outer layer. If inner length scales are small in comparison
with the flow depth and the Reynolds number is sufficiently high, a logarithmic layer can
emerge. According to Nikora et al. (2001), the roughness layer comprises two sublayers:
the form-induced sublayer refers to a region above the roughness crests, where the flow is
indirectly influenced via dispersive stresses, which are also referred to as form-induced
stresses. In the interfacial sublayer, the flow is directly affected by the action of drag
exerted by the individual sediment grains. In the subsurface layer, the flow velocity reduces
to its value determined by an equilibrium between volume forces and drag, as described
by Darcy’s equation.

For turbulent flow over a flat sediment bed, the following dimensionless numbers are
commonly used to characterize the flow in the different regions (Breugem, Boersma &
Uittenbogaard 2006; Voermans, Ghisalberti & Ivey 2017). The outer flow and turbulence
profiles primarily depend on the friction Reynolds number Reτ = uτ h/ν, based on the
friction velocity uτ , the water depth h and the kinematic viscosity ν. Near the surface of
the sediment bed, the roughness length scale ks and the permeability K are expected to be
relevant parameters, which motivates a description by means of the roughness Reynolds
number Reks = uτ ks/ν = k+

s and the permeability Reynolds number ReK = uτ

√
K/ν. The

parameters ReK and Reks are connected via the geometric structure of the sediment bed.
Particularly for granular porous media with a narrow grain size distribution, the effects
of roughness and permeability are tightly linked (Voermans et al. 2017; Shen, Yuan &
Phanikumar 2020; Karra et al. 2023). The roughness regime can be identified by the
roughness Reynolds number k+

s (Raupach, Antonia & Rajagopalan 1991; Jiménez 2004;
Kadivar, Tormey & McGranaghan 2021). In the dynamically smooth regime (k+

s < 5),
primarily viscous stresses are responsible for the momentum transfer to the solid surface.
For k+

s > 70, the dynamically fully rough regime, the pressure drag on the roughness
elements governs the interaction between the flow and the solid surfaces. The transitionally
rough regime is found between both extremes. The permeability regime is characterized
by the permeability Reynolds number ReK (Breugem et al. 2006; Manes, Poggi & Ridolfi
2011; Voermans et al. 2017; Karra et al. 2023). As the square root of the permeability√

K can be seen as an effective pore diameter, high values (ReK � 1) indicate that
turbulent motion is likely to entrain into the pore space of a highly permeable boundary.
Low values of (ReK � 1) are associated with nearly impermeable boundaries and were
studied in Rosti, Cortelezzi & Quadrio (2015). The range of ReK ≈ 1–2 was identified as
a transition between both extremes. As it purely depends on the key parameter ReK , the
hydrodynamic framework of Voermans et al. (2017) does not consider the absolute value
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of the permeability. Considering the effect of surface roughness, however, Manes et al.
(2011) pointed out that the flow over granular beds may differ substantially from the flow
over plant canopies or open-cell foams, which combine low surface roughness and high
permeability.

To describe the flow over rough and permeable walls in either inner or outer coordinates,
a zero level of the bed-normal coordinate z must be defined. Different approaches have
been outlined. Geometrical properties of the porous medium can act as a first reference
point. Examples include the crests of the topmost sediment grains (e.g. Goharzadeh,
Khalili & Jørgensen 2005), the inflection point of the porosity profile (e.g. Voermans
et al. 2017) or the average measured bed elevation (e.g. Mignot, Barthelemy & Hurther
2009). A dynamical zero level can be defined as the position where the drag acts on the
roughness elements, as proposed by Thom (1971). Jackson (1981) provided theoretical
support for this idea, and noted that this position also represents a displacement height
for the total shear stress. Later, Breugem et al. (2006) modified the approach of Jackson
(1981) to make it applicable for flows driven by mean pressure gradients. Another approach
is to derive a zero level from properties of the mean velocity profiles above the permeable
wall. As demonstrated by Breugem et al. (2006) and Suga et al. (2010), a displacement
height is determined such that a plateau in the diagnostic function results where the
logarithmic region is expected. This technique yields values for the roughness length
and for the von Kármán coefficient κ . Several studies applied this log-fitting approach
to flows over permeable walls (e.g. Fang et al. 2018; Shen et al. 2020), and found von
Kármán coefficients significantly below the default value of κ ≈ 0.4. According to Manes
et al. (2011), however, insufficient inner–outer scale separation may distort the logarithmic
layer. Yao, Chen & Hussain (2022) report that a friction Reynolds number of Reτ > 2000
is required to obtain a logarithmic layer. Chen & García-Mayoral (2023) criticize that
the log-fitting approach depended on the assumed extent of the logarithmic region and
that it would not ensure outer-layer similarity. They propose to determine the zero-plane
displacement height by minimizing the differences between the smooth-wall diagnostic
function and the diagnostic function of the flow profile over a canopy, considering all
regions above the roughness sublayer. Accordingly, the method of Chen & García-Mayoral
(2023) relies on the concept of wall similarity. Townsend (1976) postulated Reynolds
number similarity, from which Raupach et al. (1991) derived the wall similarity hypothesis,
stating that far-wall turbulent motion exclusively depends on outer-scale variables. The
underlying dimensional arguments, however, demand a sufficiently high Reynolds number
and a separation between inner and outer scales. Chung et al. (2021) summarized
that outer-layer similarity must be given to obtain a logarithmic layer in the overlap
region, whereas outer-layer similarity can still be observed in the wake region, even if
a logarithmic layer is absent.

The transition layer between the free flow and the Darcy regime takes place in
the so-called Brinkman layer, whose thickness establishes an interface length scale.
Goharzadeh et al. (2005) identified the grain diameter as a good approximation of
the Brinkman-layer thickness. Voermans et al. (2017), Fang et al. (2018) and Karra
et al. (2023) reported that the Brinkman-layer thickness depends on ReK . To investigate
similarities between different types of porous media, Ghisalberti (2009) used a drag length
scale, which is correlated with the penetration depth of shear. Similarly, Manes et al. (2011)
suggested deriving a length scale from the shear penetration depth, which also increases
with ReK . The boundary condition formulated by Beavers & Joseph (1967) relies on an
interface length scale relating the interface velocity to its gradient, which emphasizes the
importance of the parameter.
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Increasing permeability reduces the shear intensity and relaxes the wall-blocking effect,
which affects the structure of turbulence (e.g. Breugem et al. 2006; Rosti et al. 2015;
Suga, Nakagawa & Kaneda 2017): with increasing ReK , bed-normal and lateral velocity
fluctuations gain intensity, whereas streamwise velocity fluctuations decrease. At the
same time, elongated high- and low-velocity streaks as well as quasi-streamwise vortices
were found to vanish. Large shear instability vortices were observed in the flow over
highly permeable walls such as plant canopies (Breugem et al. 2006; Finnigan 2000).
Manes et al. (2011) concluded that attached eddies are predominantly responsible for
momentum exchange in flow over walls of low or intermediate permeability, where
the shear entrainment depth is small compared with the boundary layer thickness. For
intermediate permeability, Suga, Mori & Kaneda (2011) outlined a conceptional scenario
for vortex development. The legs of a hairpin vortex entrain into the porous medium,
where they lose energy and decay. The head of the hairpin vortex remains and develops
as a transverse vortex. At ReK = 24.2, Lian et al. (2021) observed grain-scale horseshoe
vortices on the upstream face of top-layer spheres, from where they were either ejected into
the flow above or forced into the pore space. For lower ReK , Fang et al. (2018) concluded
that the wall blocking effect preserves small recirculation regions in recesses between
spheres, which reduced the vertical Reynolds normal stresses.

This overview emphasizes the relevance of the interface definition as well as the
identification of a characteristic interfacial length scale. The existence of multiple and
partially conflicting approaches indicates that these questions have not been answered
conclusively. Other findings underline that permeability and roughness influence the
turbulence structure, which could help to explain changes in the overall flow behaviour.
Accordingly, the present study addresses the following questions: (i) Is there a consistent
interface definition which allows both an inner and outer scaling of primary flow
variables? (ii) How does the combined effect of roughness and permeability influence
the near-interface flow, and does this influence reach into the outer layer? (iii) How
do roughness and permeability influence turbulence structure, i.e. near-wall streaks,
anisotropy and vortex orientation? To answer these question, we investigate turbulent
open-channel flow over a random sphere pack by means of pore-resolved direct
numerical simulation (DNS) systematically varying Reτ and ReK . The applied methods
are introduced in § 2, before details of the simulations are presented in § 3. Section 4
documents the main results, and § 5 contains a discussion of the findings. A conclusion in
§ 6 summarizes the outcomes of the study.

2. Methodology

After the introduction of the governing equations, we describe the employed numerical
methods in § 2.2. The double-averaging analysis framework is outlined in § 2.3.

2.1. Governing equations
We use DNS to solve the Navier–Stokes equations for an incompressible Newtonian fluid
with a density ρ and a kinematic viscosity ν. Using the Einstein summation convention,
the conservation of mass and momentum read

∂ui

∂xi
= 0, (2.1)
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∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
+ gi. (2.2)

With x1 ≡ x, we refer to the streamwise direction, while x2 ≡ y represents the spanwise
direction and x3 ≡ z is the bed-normal coordinate. Accordingly, u1 ≡ u, u2 ≡ v and u3 ≡
w represent the flow velocities into these directions, whereas p is the pressure and gi is a
volume force acting on the fluid.

2.2. Numerical methods
We used our in-house code MGLET (Manhart, Tremblay & Friedrich 2001; Manhart
2004; Peller et al. 2006; Sakai et al. 2019), which employs an energy-conserving central
second-order finite volume method. The variables are defined at staggered positions
within Cartesian grids on different refinement levels. This multi-level approach allows
for a local grid refinement (Manhart 2004). The time integration is accomplished by
an explicit third-order low-storage Runge–Kutta method (Williamson 1980). The flow
solver represents the complex geometry of the resolved pore space by means of an
immersed boundary representation (Peller et al. 2006; Peller 2010). The no-slip boundary
condition on the solid–fluid interface is imposed by a ghost-cell approach, which reaches
second-order spatial accuracy while it ensures mass conservation (Peller 2010). The
simulation code MGLET was fine tuned in terms of load distribution, usage of vector
operations and efficient parallel I/O operations to increase computational efficiency on
modern computer hardware (Sakai et al. 2019).

We verified the accuracy order of our numerical method by simulating a laminar flow
through a mono-disperse random sphere pack within a minimalistic x–y-periodic domain
of 2.5D × 2.5D × 4.0D. The cell side length �x of the cubical cells was systematically
refined. At contact points between spheres, the infinitesimally narrow fluid gap cannot be
resolved by commonly used spatial discretization methods (Finn & Apte 2013; Unglehrt &
Manhart 2022). To ensure convergence against a defined geometry, we insert fillet bridges,
which close regions where the distance between the sphere surfaces is less than 0.0625D
(details are found in Appendix A). We simulated the flow through this sphere pack at a
Reynolds number of uDD/ν = 1.43 for grid resolutions ranging from 16 to 384 cells per
diameter. The Darcy velocity uD results from superficial averaging over the domain, and its
convergence is documented in figure 1. With 48 cells per sphere diameter, the permeability
lies within 1.5 % of its value at extreme resolutions. Also, MGLET gradually transitions to
its expected second-order convergence behaviour, which indicates an adequate resolution
of the geometry.

2.3. Analysis framework
To analyse the complex and strongly three-dimensional flow situation, we resort to a
double-averaging technique in time and space. The method of horizontal averaging was
initially proposed and applied in the context of atmospheric flow (e.g. Wilson & Shaw
1977; Raupach & Shaw 1982). Later, the method was extended to analyse flow near
the sediment–water interface, where changes in porosity need to be considered (e.g.
Giménez-Curto & Lera 1996; Nikora et al. 2001; Mignot et al. 2009). For our investigation,
we use horizontal averaging within x–y-planes parallel to the mean elevation of the
sediment bed. In a first step, the Reynolds decomposition is applied to an arbitrary quantity
φ. The notation φ̄ represents an ensemble average in time, whereas fluctuations are denoted
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Figure 1. Convergence study on a minimalistic domain (2.5D × 2.5D × 4.0D) with laminar flow. (a) Influence
of the grid resolution on the domain-averaged Darcy velocity. (b) Convergence behaviour of the relative error
εrel = 1 − uD/uD,ref . The reference value uD,ref was obtained from extrapolation.

as φ′

φ(x,t) = φ̄(x) + φ′
(x,t), where φ̄(x) = 1

T

∫ T

0
φ(x,t) dt, (2.3)

such that the time-averaged quantity φ̄ is further decomposed with respect to space.
Whereas 〈φ̄〉 symbolizes the intrinsic average within a horizontal plane, deviations from
this in-plane average are indicated by the tilde, which leads to

φ̄(x) = 〈φ̄〉(z) + ˜̄φ(x), where 〈φ̄〉(z) = 1
Af

∫∫
Af

φ̄(x) dx dy. (2.4)

As shown by (2.4), the intrinsic average 〈φ〉 results from averaging over the fluid-filled
area Af within the averaging plane. In contrast, the superficial average 〈φ〉s considers the
complete base area A0 of the averaging plane. Accordingly, both types of spatial averages
are connected via the in-plane porosity θ(z), i.e.

〈φ〉s(z) = θ(z)〈φ〉(z) with θ(z) = Af (z)/A0. (2.5)

Below the crests of the sediment grains, the area Af varies, such that spatial derivatives
and horizontal averaging generally do not commute. In agreement with Giménez-Curto &
Lera (1996), the plane-averaged gradient 〈∇φ〉 can be formulated as

〈∇φ〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
∂φ

∂x

〉
〈
∂φ

∂y

〉
〈
∂φ

∂z

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Af

∮
s
φ

nx√
n2

x + n2
y

ds

1
Af

∮
s
φ

ny√
n2

x + n2
y

ds

1
θ

∂θ〈φ〉
∂z

+ 1
Af

∮
s
φ

nz√
n2

x + n2
y

ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎝

BT1(φ)

BT2(φ)

1
θ

∂θ〈φ〉
∂z

+ BT3(φ)

⎞
⎟⎟⎟⎠ .

(2.6)

In (2.6), the curve s describes the intersection of the fluid–solid interface with the
averaging plane. Further, n = (nx, ny, nz)

T is the unit normal vector at the solid–fluid
interface pointing out of the fluid-filled volume. To abbreviate the notation, we will refer
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Free-slip rigid lid

Volume force
Free f low region

Sediment bed

Free-slip bottom boundary

Entraining

flow paths
Turbulent

motionz

y x

Figure 2. Sketch of the case configuration.

to the curve integrals as the boundary term, or for short BTi(φ). By applying these rules to
(2.2), a formulation of the plane-averaged momentum equation is obtained. In view of our
application, we imply that 〈w̄〉 = 0, i.e. no net flux in the bed-normal direction prevails,
and that no-slip boundary conditions apply on the surfaces of the sediment grains, which
leads to

0 = 1
θ

∂

∂z

⎛
⎜⎜⎜⎝θ

〈
ν
∂ ūi

∂z

〉
︸ ︷︷ ︸

visc.

− θ〈u′
iw

′〉︸ ︷︷ ︸
turb.

− θ〈 ˜̄ui ˜̄w〉︸ ︷︷ ︸
disp.

⎞
⎟⎟⎟⎠ + 1

ρ
BTi(−p̄)︸ ︷︷ ︸

fp,i

+ BTj

(
ν
∂ ūi

∂xj

)
︸ ︷︷ ︸

fν,i

+ 〈gi〉. (2.7)

As indicated in (2.7), viscous stresses, turbulent stresses and dispersive stresses contribute
to the momentum exchange within the fluid volume. Dispersive stresses are also referred
to as form-induced stresses (Giménez-Curto & Lera 1996; Nikora et al. 2001). Momentum
fluxes across the fluid–solid interface are identified as pressure drag fp and viscous drag
fν , which result from pressure or viscous forces, respectively, acting against the sediment
grains. The pressure drag is also known as form drag. Similar to (2.5), the relations f s

ν =
θ fν and f s

p = θ fp yield the drag with respect to the entire base area A0.

3. Case definition

In this study, we consider turbulent open-channel flow over a porous medium, which is
represented by a mono-disperse random sphere pack. As the configuration resembles the
flow of a river over a gravel bed, we will also refer to the porous medium as the sediment
bed, while the spheres are labelled as sediment grains in analogy. A no-slip boundary
condition is specified on the surface of the spheres, which remain in fixed positions during
the flow simulations. As shown in figure 2, the free water surface is approximated by a rigid
lid with a free-slip boundary condition. The bottom domain boundary cuts through the
spheres. A free-slip condition reduces the influence of the domain boundary on the Darcy
flow in that momentum transfer occurs only at the sphere surfaces and not at the bottom
wall. Periodic domain boundary conditions are specified in the streamwise x-direction
and lateral y-direction. The flow is driven by a constant volume force in the streamwise
direction, i.e. gx > 0, which corresponds to the effect of gravity in a sloped channel. In the
statistically stationary state, the boundary layer is fully developed such that the flow depth
h equals the boundary layer thickness δ. The pore space of the sediment is fully resolved,
such that mean flow paths as well as turbulent fluid motion can entrain.
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θ (z) = Af (z)/A0,
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θ (z) = Af (z)/A0,
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with A0 = 128D × 64D
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Figure 3. In-plane porosity profiles for different domain extents. The base area A0 is specified in terms of the
sphere diameter D. The interface z = 0 is defined where ∂2θ/∂z2 = 0. The porosity profiles have been aligned
according to the interface position.

3.1. Representation of the porous medium
In preparation for the flow simulations, mono-disperse random sphere packs of different
extents were generated, as outlined in Appendix A. As topographic features like riffles and
pools shall not be considered, a level mean bed surface is envisaged. We distinguish bed
extents L, M and S, which cover different base areas A0 = Lx × Ly, where the side lengths
are specified in multiples of the sphere diameter D. For each bed extent, figure 3 shows the
in-plane porosity profiles θ(z) of five different realizations. Collapsing porosity profiles
for different realizations indicate that the sphere pack generation mechanism is repeatable
and avoids strongly unique features. In analogy to Voermans et al. (2017), the profiles
were shifted such that the inflection point ∂2θ/∂z2 = 0 lies at z/D = 0. This geometrically
defined interface is used to specify the flow depth h. Variations in the in-plane porosity
below the interface are small, such that a resolved bulk porosity of θpor ≈ 0.385 can be
determined. For all simulated flow cases, the sediment bed has a thickness of 5D.

In Breugem et al. (2006), the interface-related change in porosity was defined to span
across a vertical distance of two particle diameters. Aiming to reproduce the sediment bed
used in Voermans et al. (2017), the studies of Shen et al. (2020) and Karra et al. (2023)
reported an interface-related change in porosity over a vertical distance of approximately
one sphere diameter. With a porosity change over approximately 1.5D, our configuration
lies between the sediment beds of Voermans et al. (2017) and Breugem et al. (2006).

3.2. Parameter space
The flow can be described by two dimensionless parameters, Reτ and h/D. As the
permeability is proportional to D2, ReK is uniquely linked to those two dimensionless
parameters via ReK = Reτ D/h

√
K/D, where

√
K/D depends on the porous medium.

Figure 4 provides an overview of the parameter space of the present study in comparison
with other studies. We use three different permeable beds (h/D ∈ {3, 5, 10}, denoted as
L, M and S, respectively) together with a smooth and impermeable wall (h/D → ∞,
denoted as I). The larger h/D ratios (M and S) mitigate the blocking effect introduced
by individual roughness elements and support scale separation. For every bed, two or
three different friction Reynolds numbers are simulated, ranging from Reτ = 150 to
Reτ = 500. This results in a permeability Reynolds number range of ReK = 0.42 to
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Figure 4. Overview of the dimensionless parameter space, including reference points from the literature. The
grey dashed lines represent fixed ratios between the flow depth h (or boundary layer thickness) and the sphere
diameter D. As reference points, we refer to Breugem et al. (2006), Voermans et al. (2017), Shen et al. (2020)
and Karra et al. (2023).

2.82. Accordingly, we cover the transition region between effectively impermeable and
highly permeable boundaries (Voermans et al. 2017). The simulations include both the
transitionally rough and the hydraulically rough regimes. The upper limit of Reτ is dictated
by computational affordability. Some cases with lower ReK were particularly chosen
such that they allow a comparison with the experiments of Voermans et al. (2017). To
specify Reτ and ReK , the required wall shear stress is obtained from a balance of forces
via τw = ρgxh. The physical parameters of the simulations are summarized in table 1,
together with the bulk Reynolds numbers, the particle Reynolds numbers, the roughness
Reynolds number and the Darcy–Weisbach friction factor λ, which have been obtained as
results of the simulations. The particle Reynolds number Rep = 〈ū〉sD/ν characterizes the
porous medium flow in deeper regions. The superficial velocity 〈ū〉s was determined as
the mean over z/D ∈ [−3.5;−1.5]. With Rep � 2–4, the simulated cases are just below
the upper limit for linear (Darcy) flow (Fourar et al. 2004). The bulk velocity ub for
the bulk Reynolds number is obtained as the mean intrinsic streamwise velocity in the
region z ∈ [0, h]. The Darcy–Weisbach friction factor for open-channel flow is computed
as λ = 8(uτ /ub)

2 (e.g. Nikora et al. 2001).

3.3. Numerical parameters
The numerical parameters of the simulations are also presented in table 1. With Lx ≈ 4πh,
the streamwise extent of the domain is chosen to be twice as large as the spanwise
extent Ly. The domains are similar to or even slightly larger than the ones used in
comparable studies (e.g. Shen et al. 2020; Karra et al. 2023). Recent studies (e.g. Bauer,
Sakai & Uhlmann 2023) emphasize the impact of the domain size on the occurrence of
very-large-scale motion, which primarily affect the streamwise turbulence intensity. These
very large structures cannot be captured by our configurations. In table 1, �x+

i,min is the
side length of the cubic cells around the interface and �xi/D = �x+

i (1/Reτ )(h/D). In
most cases, we used a local refinement by two or three refinement levels in the region
of z/D ∈ [−2, 1.3]. Therefore, the grid spacing in the outer part of the domain is up to
four times larger, as indicated by the parameter �x+

i,max in table 1. For the explicit time
integration, the time step was set to ensure CFL = u�t/�x ≤ 0.8.
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Case h/D Lx/h × Ly/h �x+
i,min �x+

i,max D+ Reτ ReK Reb Rep λ k+
s

L-180 3 13.3 × 6.7 0.94 0.94 58 174 1.63 1232 0.95 0.159 131
L-300 3 13.3 × 6.7 1.04 2.08 100 300 2.82 2114 2.77 0.161 204
M-150 5 12.8 × 6.4 0.63 2.52 31 154 0.87 1305 0.15 0.111 59
M-300 5 12.8 × 6.4 0.63 2.52 60 300 1.69 2444 0.59 0.119 126
M-500 5 12.8 × 6.4 1.04 4.16 100 500 2.82 4075 1.60 0.118 202
S-150 10 12.8 × 6.4 0.31 1.24 15 150 0.42 1714 0.02 0.060 16
S-300 10 12.8 × 6.4 0.63 2.52 30 300 0.84 3105 0.07 0.074 50
S-500 10 12.8 × 6.4 1.04 4.16 50 500 1.40 5037 0.20 0.079 95
I-180 → ∞ 13.3 × 6.7 0.63 1.26 0 180 0 2718 0 0.033 0
I-300 → ∞ 12.8 × 6.4 0.75 3.00 0 300 0 5034 0 0.028 0
I-500 → ∞ 12.8 × 6.4 0.90 3.60 0 500 0 9027 0 0.024 0

Table 1. Overview of dimensionless parameters for all simulated cases. Variable h represents the flow depth,
D is the sphere diameter, L is the extent of the domain, �x+

i,min = �xi,minuτ /ν describes the side length of
the smallest cubic cells near the interface and �x+

i,max = �xi,maxuτ /ν the side length of the largest cells in
the free-flow region. Here, λ is the Darcy–Weisbach friction factor. The friction, permeability, bulk, particle
and roughness Reynolds numbers are defined as Reτ = uτ h/ν, ReK = uτ

√
K/ν, Reb = ubh/ν, Rep = 〈ū〉sD/ν,

k+
s = uτ ks/ν, respectively, where uτ is the shear velocity, ub the bulk velocity, K the permeability and ks the

equivalent sand roughness.

In Appendix B, we show details of our case-specific grid study. Together with the
convergence study of figure 1, the observations lead to the following paradigms for the
grid design: (i) an acceptable resolution of the pore space is achieved with at least 48
cubic cells per diameter; (ii) local refinement to a cell size of approximately one viscous
wall unit is required near the interface to resolve all scales of turbulent motion; and (iii) a
coarsening of the grid resolution is possible in the free-flow region and in deeper regions
of the sediment bed. For the grid study, statistics were collected over 22 flow-through
times, after a statistically stationary state had been reached. The nearly perfect collapse of
curves for the two finest resolutions indicated that the statistical errors were small. This
provided a reference for all remaining simulation cases, where statistics were collected
over Tub/Lx ∈ [20, 26], which corresponds to Tuτ /h ∈ [27, 39], where T is the sampling
time period.

3.4. Validation
The simulation results of case M-150 are validated against the experimental findings of
Voermans et al. (2017), where experiment S3 has comparable parameters. Figure 5 shows
reasonable agreement for both the double-averaged velocity profile and the Reynolds stress
profiles. Slight differences confirm that our sediment bed has a more gradual transition in
the porosity profile θ(z) than the sediment bed used in the experiments, where the tips
of the topmost grains were only 0.3D above the inflection point (Voermans et al. 2017).
This difference is likely to explain the steeper near-interface gradients in the experimental
profiles around z/δ = 0.1. Slightly above and below this position, a good agreement
between our simulation results and the experiment is observed.

The dispersive stresses are larger than the measured ones, which may be a result of the
different sampling methods used in the experiment and simulation. In the experiment, the
data available for spatial averaging were restricted to three laterally displaced measurement
planes, which had a streamwise extent of 11.7D. In contrast, the complete x–y-extent of the
domains was used for the spatial averaging of the simulation data. To assess the influence
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Figure 5. Simulation data of case M-150 in comparison with experimental data of experiment S3 by Voermans
et al. (2017). The vertical position z is normalized by the boundary layer thickness δ, which equals the flow
depth h in the simulation. The maximal shear stress is used to compute the shear velocity uτ,max. For the
dispersive stresses, the sampling procedure used by Voermans et al. (2017) was reproduced on the simulation
data. The grey lines represent outcomes at arbitrarily chosen locations.

of the sampling procedure, we reproduced the sampling procedure of the experiment
and extracted sets of three laterally displaced measurement planes at arbitrarily chosen
positions of the x–y-periodic simulation domain. The extent of and distance between
the planes was equal to the experiment. The various grey lines in figure 5 represent the
outcomes at different locations and suggest that the experimental sampling procedure may
not have captured the complete spatial variance of the velocity field. The possibility of
a resulting underprediction of the dispersive stresses has also been noted by Shen et al.
(2020) and Karra et al. (2023), who conducted similar tests. Therefore, we conclude that
our simulated case M-150 does not differ inexplicably from the experimentally obtained
data.

For a known bulk porosity θpor, the Kozeny–Carman equation (Kozeny 1927; Carman
1937) establishes a relation between the permeability K and the square of the sphere
diameter D via the following expression:

K = θ3
por

180(1 − θpor)2 D2. (3.1)

Within the region between z/D = −3.5 and z/D = −1.5, the double-averaged velocity is
nearly constant and a Darcy velocity uD can be determined. From that, a permeability of
K = 0.00081D2 is computed, which only deviates by 3.5 % from the result of (3.1) for
θpor = 0.385. For the complete sediment bed, this comparison confirms that the complex
geometry of the interconnected pore spaces is represented adequately in the simulation.

4. Results

The presentation of the main results is structured as follows. An overview of the flow is
obtained by the mean velocity profiles and entrainment depths presented in §§ 4.1 and 4.2,
respectively. For the investigation of possible similarities in the flow, the position of the
interface is crucial. We propose to use a drag-based definition of the position and width of
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Figure 6. Profiles of the double-averaged streamwise velocity 〈ū〉. (a) Semilogarithmic plot in inner scaling,
i.e. 〈ū〉+ = 〈ū〉/uτ and z+ = zuτ /ν. (b) Velocity-defect form of the profiles, where h represents the flow depth
and 〈ū〉max = 〈ū〉(z=h).

the interface (§ 4.3). This interface definition is used to investigate the near-interface flow
variables (§ 4.4). In §§ 4.5 and 4.6 we demonstrate that the drag-based interface definition
recovers similarities in the outer-layer mean flow and the turbulence structure.

4.1. Mean velocity profiles
A first impression of the simulation results is provided by the double-averaged velocity
profiles. The mean velocity profile above the roughness sublayer can be expressed by
modifying the smooth-wall law of the wall by a roughness function �u+ (e.g. Jiménez
2004; Schultz & Flack 2005; Kadivar et al. 2021)

〈ū〉+ = 1
κ

ln (z+) + 5.1︸ ︷︷ ︸
(a)

+ Π

κ
W(z/h)︸ ︷︷ ︸
(b)

−�u+
︸ ︷︷ ︸

(c)

. (4.1)

With a von Kármán coefficient of κ ≈ 0.40, term (a) of (4.1) provides the basis for
the description of the mean velocity profile for turbulent flow over smooth walls. Term
(b) represents a wake contribution, which results from the outer-layer dynamics but can
influence the complete region of z/h > 0.15 − 0.2 (Jiménez 2004). The wake function
W(z/h) is scaled with the wake strength Π , which has non-zero values for Reτ � 500
(Nezu & Nakagawa 1993). Finally, term (c) shifts the velocity profile by a distance �u+,
which depends on the dimensionless roughness k+

s via

�u+ = 1
κ

ln (k+
s ) − 3.4. (4.2)

Figure 6(a) shows the profiles of all simulated cases in inner scaling. The shift of
the velocity profiles in the outer layer can clearly be seen, while profiles of cases with
comparable ReK form groups with similar shift �u+. This observation confirms the
relation between ReK and the roughness Reynolds number k+

s .
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Figure 7. Comparison of (a) interfacial velocity 〈ū〉(z=0) and (b) Brinkman-layer thickness δb with data from
Voermans et al. (2017) (i.e. Voer2017) and Karra et al. (2023) (i.e. Karra2023). Values are plotted over the
permeability Reynolds number ReK . Friction velocity uτ and

√
K are used for normalization, where K is the

permeability.

If the outer layer is unaffected by the roughness and permeability of the wall,
the velocity-defect function 〈ū〉max − 〈ū〉 is independent of ReK . In the velocity-defect
representation of figure 6(b), the profiles demonstrate a fair, albeit not perfect, collapse
above z/h = 0.5. This can be explained by the fact that profiles of different Reτ exhibit
different wake strengths in the Reynolds number range covered. However, the profiles are
not completely independent of ReK , either. In this context, one has to bear in mind that
the velocity-defect function in the outer layer still depends on the position of the interface
and a consistent definition of the friction velocity uτ . We will apply a kinetic interface
definition in § 4.3 and discuss its implications for outer-layer similarity in § 4.5.

4.2. Entrainment depths
The transition from turbulent free flow to Darcy flow takes place in the Brinkman layer.
Voermans et al. (2017) describe the thickness δb of the Brinkman layer as the depth in the
sediment bed, where 99 % of the difference between the interfacial velocity Ui = 〈ū〉(z=0)

and the Darcy velocity Up have decayed, i.e. (〈ū〉(z=−δb) − Up)/(Ui − Up) = 0.01. This
can be interpreted as an entrainment depth of the mean flow field. Figure 7(a) compares
the normalized interfacial velocity at z = 0 with the values reported by Voermans et al.
(2017). For increasing values of ReK , the trend towards progressively higher velocities
is confirmed. In contrast to the experimentally obtained data, points representing cases
with similar ReK collapse with reasonable accuracy, indicating a minor influence of both
the blocking ratio h/D and the friction Reynolds Reτ . A comparison of δb normalized by√

K with those obtained by Voermans et al. (2017) and Karra et al. (2023) is provided in
figure 7(b). Our data support the trend towards progressively higher entrainment depths
for increasing ReK .

In the following, we consider the entrainment depths of different types of stresses.
Deviating from the procedure used in Voermans et al. (2017), we define z = ze as the
position where an intrinsically double-averaged stress component has decreased to 1 % of
ρu2

τ . This definition reduces the impact of the interface position and, thus, increases the
comparability between cases. The plots in the first row of figure 8 show the entrainment
depth of the Reynolds, the dispersive and the viscous shear stresses. Over the ReK-range
of this study, ze of the viscous shear stress changes only marginally (figure 8c). The
Reynolds and dispersive shear stresses, however, affect progressively deeper regions of
the sediment bed with increasing ReK , although the entrainment depth of the Reynolds
shear stress tends to saturate at higher ReK (figure 8a). For all three shear stresses,
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Figure 8. Entrainment depths ze of various stresses over the permeability Reynolds number ReK . Shear stresses
(a–c), Reynolds normal stresses (d–f ) and dispersive normal stresses (g–i). Here, ze represents the vertical
position, where the intrinsically averaged normal stresses have decayed to a value of 0.01ρu2

τ . The position ze
is normalized with the sphere diameter D.

ze seems to be independent of Reτ and h/D. As shown in the second row of figure 8,
the Reynolds normal stresses penetrate equally deeply into the sediment bed, whereas they
entrain deeper than the Reynolds shear stress. This could be a hint that the double-averaged
Reynolds stress tensor becomes isotropic with increasing depth. The same pattern can be
observed for the dispersive normal stresses, that are shown in the third row of figure 8.
The entrainment depths of all dispersive normal stresses grow nearly linearly with ReK
and reach approximately twice the depth of the dispersive shear stress.

In this first overview of the velocity profiles and entrainment depths, we used the
geometrically determined interface position to define z = 0. To facilitate the detailed
analysis of processes in both the near-interface and the free-flow regions, however, we
proceed with the search for a flow-dynamically motivated interface description in the
following § 4.3.

4.3. Drag-based interface definition
A definition of the dynamical interface based on the transfer of momentum between the
flow and the sediment has been proposed by Thom (1971) and Jackson (1981): in the
absence of volume forces or mean pressure gradients, they argued that the centroid of
the drag force from the fluid onto the porous medium marks the interface level. From
a practical perspective, this approach is appealing, as it copes without any a priori
assumptions such as the existence of a logarithmic layer (e.g. Breugem et al. 2006;
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Figure 9. Total drag distribution on the sediment bed and approximation by curves using the case-specific
fitting parameters μz and σz. Each of the three plots summarizes simulation cases with equal h/D-ratio. The
sphere diameter D and the shear velocity uτ are used for normalization. (a) Cases with h/D = 3, (b) cases with
h/D = 5 and (c) cases with h/D = 10.

Suga et al. 2010) or outer-layer similarity (e.g. Chen & García-Mayoral 2023). If there is a
volume force, as in our case, it is not straightforward to compute the centroid of the drag
force absorbing the momentum from the free flow, as will be explained in the following.

For the boundary conditions of our cases, the double-averaged momentum equation
(2.7) for the streamwise velocity component reduces to (4.3), which relates the total drag
per unit area, i.e. pressure and viscous drag, to the gradient of the shear stresses and a
source term due to the volume force via

f s
p,1 + f s

ν,1 = ∂

∂z

(
−θ

〈
ν
∂ ū
∂z

〉
+ θ〈 ˜̄u ˜̄w〉 + θ〈u′w′〉

)
− θgx. (4.3)

Figure 9 shows the resulting total drag distributions. Above the crests of the topmost
sediment grains, the drag is zero. Near the interface, the drag distribution exhibits a peak,
which we associate with the absorption of momentum that is transported downwards from
the free-flow region by the total shear stress. Whereas a smooth impermeable wall absorbs
the complete wall shear stress at a unique height, the momentum uptake appears to be
smeared over a vertical distance of approximately 1D for our cases. At a certain depth,
the momentum from the free-flow region has been completely absorbed, which marks the
transition to Darcy flow. In this regime, the drag force balances the volume force acting
on the fluid in the pore space. Under the normalization with u2

τ and D, the Darcy drag
collapses for cases with equal h/D, as the friction velocity depends on the flow depth.

The central problem of defining a dynamical interface is to separate the Darcy drag
from the part of the drag absorbing the shear stress from the free-flow region. Only the
latter contributes to the wall shear stress, whereas it is smeared over a certain region. In
our understanding, the centroid of this drag distribution represents the interface position.
An additional constraint is that the Darcy drag goes to zero at the top of the sediment.
Therefore, we propose to parameterize the drag component absorbing the shear stress by a
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Figure 10. Fitting parameters (a) μz and (b) σz used for the approximation of the drag distribution by (4.4).
The parameters are plotted as a function of permeability Reynolds number ReK . Here, D is the sphere diameter.
The grey symbols represent values of μz obtained by the procedure described in appendix B of Breugem et al.
(2006).

Gaussian normal distribution and the Darcy drag by a complementary error function. Both
functions share the same mean μz and variance σz as fitting parameters, which we will use
to describe the location and spread of the drag distribution via the function

f (z, μz, σz) = (uμ
τ )2·

(
1

σz
√

2π
e−1/2((z−μz)/σz)

2
)

︸ ︷︷ ︸
(1)

+ θporgx·
(

1
2

erfc
(

z − μz√
2σz

))
︸ ︷︷ ︸

(2)

. (4.4)

The Gaussian term (1) absorbs the momentum introduced by the source term gx between
the free surface and the dynamical interface position μz. Accordingly, the integral of
the first term over z must amount to (uμ

τ )2 = gx(h − μz). This constraint is enforced by
employing the Gaussian normal distribution. Thus, the friction velocity (uμ

τ ) becomes
a uniquely determined function of μz. The second term (2) approximates the transition
between the Darcy and the free-flow region. In the Darcy region, the drag is in equilibrium
with the volume forces acting on the fluid volume and has a value of θpor gx, where
θpor = 0.385 is the bulk porosity of the porous medium. Above the sediment bed, the drag
is zero. The complementary error function is chosen as one possible function to describe
the smooth transition.

For each simulated case, the mean μz and the variance σz are obtained by a nonlinear
least-square fit. These parameters will play a critical role in the following. As shown by
the dashed lines in figure 9, (4.4) allows a good approximation of the drag distribution for
each simulated case, although the zero drag above the sediment crests only asymptotically
approaches zero by the model function f (z, μz, σz). A key observation is that magnitudes,
locations and widths of the drag distribution peaks are well represented. The value of μz
only marginally deviates from the location of the maximal drag, which could as well be
interpreted as the position of the dynamical interface. Beyond that, the standard deviation
σz can be interpreted as a quantification of the width over which the momentum absorption
spreads, and, thus, as a length scale quantifying the vertical extent of the interface region.
Figure 10(a) shows the values of the parameter μz as a function of the permeability
Reynolds number ReK . With increasing ReK , the value of μz decreases and moves towards
the geometric interface. Also, it seems to be independent of Reτ and h/D. For comparison,
we added the drag centroid position obtained by the procedure proposed by Breugem et al.
(2006). This procedure yields slightly lower elevations, which are below the position of the
drag maximum. As shown in figure 10(b), the interface length scale σz tends to increase
with ReK . For h/D = 3, the spread of the interface is slightly smaller than for cases with
larger h/D.
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Figure 11. Parameters describing the inflection point in the intrinsically double-averaged velocity profile. The
parameters are plotted as a function of permeability Reynolds number ReK . Position zu of the inflection point
(a) and a length scale constructed from the gradient at the inflection point (b). The variable D is the sphere
diameter.

On a brief detour, we would like to point out a correlation between μz, σz and the
inflection point of the intrinsically averaged velocity profile, which was identified as a
characteristic point by Voermans et al. (2017). Figure 11(a) shows the position zu of the
inflection point. A qualitative comparison with figure 10(a) makes it apparent that μz
and zu share a highly similar trend in their decrease with increasing ReK . An interface
length scale can be constructed from the velocity gradient at the inflection point as
lu = uτ /(∂〈ū〉/∂z). A comparison of figures 11(b) and 10(b) shows similar trends for σz
and lu, which implies that wider drag distributions are correlated with lower gradients at
the inflection point.

4.4. Interface region
In the following, we use the dynamic interface position μz and its length scale σz to
construct an interface coordinate, which will be used to investigate if and how dynamic
quantities are similar in the interface region. The dimensionless interface coordinate γ is
defined as

γ = z − μz

σz
, (4.5)

which corresponds to a scaling of the shifted z-coordinate. Consistently, the interface
coordinate γ is used in combination with the friction velocity uμ

τ , which is defined as

uμ
τ =

√
gx(h − μz). (4.6)

As uμ
τ < uτ for all cases, also the Reynolds numbers are affected: Reτ decreases by up to

7.5 % of its originally assumed value, whereas ReK is reduced by 2.5 % at most.

4.4.1. Total shear stress and mean velocity
The effect of the interface definition on the superficially averaged total shear stress
distributions is demonstrated in figure 12. If the total shear stress is normalized by uτ

and plotted against z/D, the curves do not collapse. This observation is contrasted with
the plot on the right, where the interface coordinate γ is used, and the total shear stress
is normalized by uμ

τ . In this framework, a nearly perfect collapse of the total shear stress
profiles is obtained in the region around and below γ = 0. The spread of the profiles
above γ ≈ 1 stems from the various h/D. Similar effects are shown by figure 13 for the
superficially averaged velocity profiles. While normalization by z/D and uτ leads to a
considerable spread of the velocity profiles, the framework of γ and uμ

τ yields a critically
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Figure 12. Near-interface scaling behaviour of the superficially averaged total shear stress 〈τ̄ 〉s. In comparison
with the geometrically defined interface (a), the dynamical interface definition with the interface coordinate γ

and the consistent friction velocity uμ
τ increases similarity of the profiles (b).
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Figure 13. Near-interface scaling behaviour of the superficially averaged streamwise velocity 〈ū〉s. In
comparison with the geometrically defined interface (a), the dynamical interface definition with the interface
coordinate γ and the consistent friction velocity uμ

τ increases similarity of the profiles (b). Detailed views
highlight regions with counter-streamwise velocities.

better collapse of all profiles in the interface region around γ = 0. This observation holds
for all cases considered in the scope of this study, independent of their permeability and
roughness regime. The velocity profiles of cases with ReK < 1, i.e. cases S-150, M-150
and S-300, exhibit regions with small counter-streamwise velocities at γ ≈ −2.5. As
shown by the detailed views in figure 13, these recirculation regions occur in the transition
zone from the interface region to the Darcy flow in the deep sediment. Note that the
interface region depends on the momentum uptake from the free-flow region, hence the
scaling of the superficial velocity with uμ

τ . In the Darcy flow, however, the superficial
velocity is 〈ū〉s/uμ

τ = (K/ν)(uμ
τ /(h − μz)), which explains the spread of the curves deeper

inside the sediment.

4.4.2. Components of the shear stress
When plotted against the coordinate γ = (z − μz)/σz and normalized by uμ

τ , the total
shear stress profiles collapsed with reasonable accuracy near the interface. In the
following, we will consider the individual components of the shear stress under the same
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Figure 14. Profiles of shear stresses near the interface. (a) Reynolds shear stress, (b) dispersive shear stress
and (c) viscous shear stress. The quantities are plotted against the interface coordinate γ and normalized by the
consistent friction velocity uμ

τ .

normalization. Figure 14 shows profiles for the superficially double-averaged Reynolds,
dispersive and viscous shear stresses. The Reynolds shear stress dominates in the free-flow
region. It reaches its maximum gradient slightly above the interface. A slight similarity in
the behaviour of the hydraulically rough cases is observed, whereas case S-150 renders an
exception. For all cases, the dispersive shear stress shows a characteristic peak at a similar
position, slightly above z = μz. With increasing ReK , the maximal value of the dispersive
shear stress increases progressively. Below the interface (γ � 0), the plotted curves form
group with ReK . Above the crests of the topmost spheres, the dispersive stresses are small
but do not decay immediately to zero, which indicates the presence of a thin form-induced
sublayer. Near the interface, the profiles of the viscous shear stress group with ReK and
show global maxima slightly above γ = 0, which scale with 1/ReK . This is a consequence
of the collapse of the double-averaged velocity profiles under this scaling. Accordingly,
plotting the sum of Reynolds and dispersive shear stresses also results in groups with
similar ReK (not shown here). This observation corroborates that ReK is the decisive
Reynolds number of the interface region.

4.4.3. Reynolds and dispersive normal stresses
In figure 15, the Reynolds normal stresses are plotted in interface coordinates. For all cases
except S-150, the streamwise Reynolds normal stresses show similar decay behaviour
around the interface. In comparison, the values of 〈v′v′〉s and 〈w′w′〉s are smaller,
and the graphs do not collapse. These qualitative differences between streamwise and
cross-components could hint at different production mechanisms or an inter-component
pressure redistribution. Dispersive normal stresses can be understood as a quantification of
the spatial variance of the velocity components within a horizontal plane. Figure 16 shows
the corresponding profiles plotted in interface coordinates. Compared with the Reynolds
normal stresses, the dispersive normal stresses tend to have smaller maximal values in
all simulated cases. Except for the transitionally rough case S-150, the profiles of 〈 ˜̄u ˜̄u〉
scale reasonably well with the shear velocity u2

τ . As for the Reynolds normal stresses,
qualitatively different behaviour between streamwise and cross-components is observed.
The curves representing 〈 ˜̄w ˜̄w〉 group with ReK and exhibit a comparatively slow decay with
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Figure 15. Profiles of near-interface Reynolds normal stresses. The quantities are plotted against the interface
coordinate γ and normalized by the consistent friction velocity uμ

τ . (a) Streamwise, (b) spanwise and
(c) bed normal Reynolds normal stresses.

−4

−2

0

2

4

−4

−2

0

2

4

0 1 2 0 0.2 0.4 0 0.1 0.2

−4

−2

0

2

4
L-180

L-300

M-150

M-300

M-500

S-150

S-300

S-500

γ
 =

 (
z –

 μ
z)

/σ
z

〈u– u–〉s/(uμ
τ )2 〈v– v–〉s/(uμ

τ )2 〈w– w–〉s/(uμ
τ )2

(b)(a) (c)

Figure 16. Profiles of near-interface dispersive normal stresses. The quantities are plotted against the interface
coordinate γ and normalized by the consistent friction velocity uμ

τ . (a) Streamwise, (b) spanwise and
(c) bed normal dispersive normal stresses.

increasing depth. With increasing height, vanishing dispersive stresses mark the upper
boundary of the thin form-induced sublayer.

4.5. Free-flow region
It has been demonstrated that, for turbulent flow over rough and porous walls at similar
h/D, the definition of the interface position has a critical influence of whether outer-layer
similarities (Chen & García-Mayoral 2023) or even a log law (e.g. Suga et al. 2010) can
be retrieved. Therefore, we apply our drag-based interface position μz to the outer flow.
In (4.7), we define the dimensionless free-flow coordinate ζ , which has a value of ζ =
0 at the drag-based interface and a value of ζ = 1 at the free-slip top boundary of the
domain. The consistent friction velocity uμ

τ has been defined in (4.5) and is repeated here
for completeness. Additionally, the drag-based interface is considered in the bulk velocity
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uμ
b , which is defined in (4.7)

ζ = z − μz

h − μz
, uμ

τ =
√

gx(h − μz), uμ
b = 1

h − μz

∫ h

μz

〈ū〉 dz. (4.7a–c)

The free-flow coordinate ζ replaces z/h, for which we introduce a variable η = z/h
to facilitate the notation. The definition of uμ

τ ensures that the total shear stress
〈τ tot〉/(ρ(uμ

τ )2) = 1 − ζ .

4.5.1. Mean velocity profiles
In the following, we investigate whether the drag-based interface can help to reveal
similarities in the free-flow region. The diagnostic function provides a highly sensitive
tool to compare the shapes of the mean velocity profiles. It is defined as s∂〈ū〉+/∂s, where
s is a (possibly dimensionless) bed-normal coordinate that specifies a wall distance above
the interface. The dimensionless velocity 〈ū〉+ results from normalization with a consistent
friction velocity. If a distinct logarithmic layer exists in the velocity profile, the diagnostic
function reaches a plateau at a value of 1/κ . Uniform shifts of the velocity profile by a
constant �u+ do not affect the diagnostic function, whereas the interface position has a
strong influence.

For groups of simulation cases with similar Reτ , figure 17 shows the impact of the
interface definition. The plots in the left column of the figure use the geometrically defined
interface, i.e. η = z/h and uτ , whereas the plots in the right column use the dynamical
interface definition, viz. ζ and uμ

τ . A direct comparison demonstrates that the drag-based
interface definition critically extends the region in which the diagnostic functions exhibit
a high degree of similarity with the smooth-wall diagnostic function of comparable Reτ .
Already around ζ ≈ 0.35, several curves start to collapse with reasonable accuracy. In
nearly all cases, the region of collapsing diagnostic functions extends to the top boundary
of the domain. Most noticeably, case L-300 forms an exception, as differences prevail
in the wake region. In a weaker form, the same trend is observed for case L-180, which
has an equally high blockage ratio of h/D = 3. The shape of the diagnostic functions
suggests that the dependence on Reτ is mainly introduced by different strengths of wake
effects. The good collapse of the diagnostic functions for equal Reτ , however, indicates that
an outer-layer similarity of the double-averaged streamwise velocity profiles prevails for
cases with h/D ≥ 5. The observed similarity in the outer layer is revealed by the definition
of the drag-based dynamic interface in combination with a consistent friction velocity.
Thus, we do not see the need for adjusting the von Kármán constant or for enforcing
outer-layer similarity by searching for a zero-plane displacement height which minimizes
the differences between the diagnostic functions.

4.5.2. Roughness quantification
The similarity of the diagnostic functions implies that the outer-layer difference between
the velocity profile over a rough and permeable wall and a smooth wall at comparable Reτ

can be described by a constant shift �u+, as shown in figure 18. In the description by (4.1),
the shift is commonly interpreted as a roughness effect. Values of �u+ are plotted over
ReK in figure 19(a). In figure 19(b) the corresponding values of the roughness Reynolds
number k+

s are given, which are derived from �u+ via the relation given in (4.2) with
a default value of κ = 0.4. Assuming that k+

s = 70 marks the transition between both
regimes, we can assign cases S-150, M-300, S-300 to the transitionally rough regime,
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Figure 17. Diagnostic function of mean velocity profile for different interface definitions. Plots within one row
show cases with similar Reτ . Plots in (a) use the geometrically defined interface (z = 0). Plots in (b) use the
dynamically defined interface (z = μz). In both cases, a consistent friction velocity is used.
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Figure 18. Velocity shifts �u+ with respect to the smooth-wall case of comparable Reτ . The values are
plotted over the free-flow coordinate ζ = (z − μz)/(h − μz).

whereas the remaining cases can be categorized as hydraulically fully rough. Figure 19(c)
converts k+

s into an equivalent sand roughness height ks, which is expressed in multiples
of D. For the hydraulically rough cases, ks ≈ 2D seems to apply. A critically smaller value
of ks ≈ 1D results for case S-150, which underlines that the roughness height perceived
by the flow is not directly linked to D.
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Figure 19. Roughness quantification in dependence of ReK . (a) Shift �u+ of the velocity profile in comparison
with the flow over the smooth wall at comparable Reτ . The velocity difference was computed at ζ = 0.5.
(b) Corresponding roughness Reynolds number k+

s via (4.2) with κ = 0.4. (c) Equivalent sand roughness
height ks.
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Figure 20. Turbulent kinetic energy over the complete flow depth. The coordinate ζ = (z − μz)/(h − μz) and
the friction velocity uμ

τ consider the drag-based interface. The panels show groups of cases with comparable
Reτ . (a) Reτ ≤ 180, (b) Reτ = 300 and (c) Reτ = 500.

4.6. Structure of turbulence
In § 4.4, we have seen that the sediment bed has a large influence on the behaviour of the
Reynolds stresses in the near-interface roughness layer. On the other hand, the outer-flow
velocity profiles are similar to the smooth-wall profiles, which suggests that also the
turbulence structure should be similar. Therefore, we will investigate the influence of the
sediment bed on the turbulence structure. Figure 20 shows the profiles of turbulent kinetic
energy. When plotted against ζ and normalized by uμ

τ , the profiles collapse with reasonable
accuracy above the roughness layer. With increasing ReK , the prominent peak of the
turbulent kinetic energy above the interface levels out, possibly hinting at the absence
of a local production mechanics. This motivates a closer look at the state of the near-wall
or near-interface turbulence.
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Figure 21. Anisotropy of double-averaged Reynolds stress tensor visualized by means of a barycentric map.
The labels 1C, 2C and 3C at the corners of the triangles indicate one-component turbulence, axisymmetric
two-component turbulence and isotropic turbulence, respectively. The encircled letters mark characteristic
locations found in all cases: two-component turbulence near the top slip boundary (a), maximum of turbulence
isotropy within the free flow (b), tendency towards one-component turbulence slightly above the interface (c)
and isotropic behaviour in the top layers of the sediment (d).

4.6.1. Anisotropy
Lumley & Newman (1977) showed that the state of turbulence can be described by two
invariants of the Reynolds stress anisotropy tensor and the Reynolds number. We analyse
the anisotropy of the double-averaged Reynolds stress tensor, which leads to the following
expression for the anisotropy tensor aij at a given height z (see also Shen et al. 2020):

aij(z) =
〈u′

iu
′
j〉

〈u′
ku′

k〉
− δij

3
. (4.8)

To assess the anisotropy in different regions of our domain, we resort to the barycentric
anisotropy map proposed by Banerjee et al. (2007). Figure 21 shows this map for groups
of simulation cases with comparable Reτ , including the impermeable cases. To aid
orientation in the z-direction, the letters (a) to (d) in the left plot of figure 21 mark
characteristic points, which similarly appear in all three triangles. Table 2 summarizes
the bed-normal positions of these points. The sections of the curves near (a) describe the
two-component turbulence in direct proximity of the free-slip top boundary condition.
Point (b) marks a local maximum of isotropic behaviour, which is found at approximately
z/h ≈ 3/4. The anisotropy state near point (b) is representative of larger parts of the
free-flow region. Slightly above the interface, a local maximum of one-component
behaviour is reached, which is marked by the letter (c). Depending on ReK , the curves
separate in this region. The trend towards one-component turbulence is most emphasized
for the smooth wall cases. For cases with high ReK , however, the state of turbulence
does not change considerably between the free-flow region and the interface region,
indicating that the strong anisotropy observed in smooth-wall flow is disrupted by the
increased roughness and permeability. Finally, point (d) in figure 21 marks a region below
the interface down to a depth of z/D = −3, where the analysis of the double-averaged
Reynolds stress tensor indicates nearly isotropic Reynolds stresses.

It has to be emphasized that the local anisotropy can differ drastically from the
anisotropy indicated by the plane-averaged Reynolds stress tensor. Figure 22 shows the
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Figure 22. Anisotropy of the local Reynolds stress tensor within a vertical slice through case M-300. Only half
of the domain extent in streamwise x-direction is shown. Coordinates represent multiples of sphere diameter D.
The colour mapping follows the description of Emory & Iaccarino (2014) and indicates one-component (1C,
red), two-component (2C, green) and three-component (3C, blue) turbulence.

anisotropy of the local Reynolds stress tensor within a vertical slice through case M-300.
Larger shares of one-component behaviour can be seen within the pore space of the
sediment bed. This reduced local dimensionality indicates that the fluctuating fluid motion
in deeper regions could be introduced by pressure fluctuations and channelled by the
pore space geometry. However, there seems to be no clear preferential direction of the
fluctuations within a horizontal plane, which leads to a three-component nature of the
plane-averaged Reynolds stress tensor.

4.6.2. Streaks and velocity fluctuations
Slightly above the interface, the double-averaged anisotropy tensor has a tendency towards
one-component turbulence. For cases with low ReK , the one-component behaviour is
linked to high values of 〈u′u′〉, which contribute considerably to the peak of turbulent
kinetic energy (TKE) shown in figure 20. Figure 23 compares instantaneous realizations
of streamwise velocity fluctuations within a plane at the height of maximal streamwise
velocity fluctuations, i.e. at z(〈u′u′〉max) as given in table 2. The smooth-wall case I-300
clearly reveals a streaky pattern which is broken with increasing ReK . Under normalization
with uμ

τ , the amplitude of the streamwise velocity fluctuations declines with higher
ReK . Further, roughness and permeability increase the spanwise spacings between the
streamwise velocity patches, which become progressively bulkier at the same time.
These observations are quantified by the spanwise spatial autocorrelation in figure 24(a),
which shows that the spanwise correlation lengths of the streamwise velocity fluctuations
increase monotonically with ReK . Figure 24(b) reveals that the structures in the vertical
fluctuations are considerably smaller than the ones in the streamwise fluctuations.
A negative spanwise autocorrelation of w′ hints at the presence of vortices, which rotate
round a streamwise axis. This motivates a closer look at vortical structures.

4.6.3. Vortex structures
In figure 24(b), intense and counter-oriented bed-normal velocity fluctuations have
indicated the presence of vortices. To characterize the behaviour of vortical structures,
we resort to the vortex vector approach, which was proposed by Tian et al. (2018) and
referred to as Rortex in Gao & Liu (2018). The Rortex vector r = (rx, ry, rz)

T provides
information about the local swirl axis, whereas its magnitude represents the strength of
the local fluid rotation. Further, the Rortex approach promises to reduce the contamination
by non-rotational shear motion (Tian et al. 2018). An impression of the vortex structure
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Figure 23. Pattern of streaks in exemplary instantaneous streamwise velocity fields of (a) cases I-300 (ReK =
0), (b) S-300 (ReK = 0.84) and (c) L-300 (ReK = 2.82). The planes were extracted at the height of maximal
〈u′u′〉 (see table 2). Their bed-parallel extents in the x- and y-directions are L+

x = 3000 and L+
y = 500. The

velocity fluctuation u′ = u − ū is normalized by the friction velocity uμ
τ . The streaky pattern vanishes with

increasing ReK .

L-180 L-300 M-150 M-300 M-500 S-150 S-300 S-500

zB/h 0.72 0.77 0.71 0.78 0.79 0.71 0.77 0.80
zC/D 0.41 0.38 0.65 0.57 0.58 0.85 0.59 0.54
zD/D −0.41 −0.43 −0.39 −0.42 −0.43 −0.44 −0.39 −0.41
z(〈u′u′〉max)/D 0.68 0.67 0.86 0.74 0.74 1.21 0.89 0.83

Table 2. Bed-normal positions of the characteristics points. The position zB is determined by the topmost local
maximum of isotropy in the turbulence structure, whereas zC is determined by the topmost local maximum
of one-component turbulence. Further, zD is determined by the topmost local maximum of one-component
turbulence.
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Figure 24. Spatial autocorrelation of velocity fluctuations, exemplarily for cases with Reτ = 300. The
autocorrelations were computed within the z-plane where maximal values of 〈u′u′〉 were observed (see
table 2).
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is provided in figure 25, which uses iso-surfaces of the vortex vector magnitude to
qualitatively compare instantaneous flow fields of cases I-180 (ReK = 0), S-150 (ReK =
0.42) and L-180 (ReK = 1.63). The colouring represents the normalized rotational strength
ry of the identified vortical structures. We present these three cases, as they demonstrate
the effect of ReK < 1 and ReK > 1 most clearly, while characteristic features of case
S-150 become visible. The region near the smooth wall of case I-180 hosts elongated
quasi-streamwise vortices, which hardly exhibit any rotation around the y-axis (figure 25a,
see insert). The angle of inclination of these near-wall vortices is low. Only above
the buffer layer, transversally oriented vortices with positive ry occur and resemble the
remaining heads of former hairpin vortices. The long quasi-streamwise vortices can also
be identified in the instantaneous flow field of case S-150 with ReK = 0.42. Additionally,
small vortical structures with ry > 0, appear in the wake of individual spheres or fill
the gaps between neighbouring spheres of the topmost layer (figure 25b). These vortices
are fairly stationary, which is documented in Appendix C. Figure 25(c) confirms that
the increased roughness and permeability of case L-180 prevent the formation of longer
quasi-streamwise vortices in the near-wall layer. Upstream of several protruding spheres,
horseshoe-like vortices are observed in the instantaneous flow field. Appendix C as well
as the movies provided as supplementary material shed a light on the temporal evolution
of these vortices, which can entrain into the pore space. The visual impression suggests
that the average inclination of the vortices has become steeper.

4.6.4. Vortex orientation
The preferential vortex orientation in the interface region is quantified by the
double-averaged square values of the Rortex components normalized by the
double-averaged square of the Rortex magnitude, i.e. 〈riri〉. This can be interpreted as a
decomposition of the Rortex enstrophy. The statistics in figure 26 are based on more than
18 temporally uncorrelated instantaneous flow fields per case and show a high similarity
between curves with comparable ReK . Above γ = 0, a maximum of 〈rxrx〉/〈riri〉 indicates
an enhanced rotation around a streamwise axis. For cases with low ReK , higher values
of 〈rxrx〉 are paired with lower values of 〈rzrz〉, which agrees with the observation of
nearly horizontally oriented quasi-streamwise vortices. With progressively higher ReK ,
the contribution of 〈rxrx〉 decreases while the one of 〈rzrz〉 increases, which coincides
with the growing Rortex inclination suggested by figure 25. Near the inflection point of
the velocity profile at γ ≈ 1, 〈ryry〉 is relatively small, which speaks against the presence
of Kelvin–Helmholtz vortices. A local maximum of 〈ryry〉/〈riri〉 is found at γ ≈ −2 and
indicates a predominant rotation around a transversal axis. The visualization of the vortex
dynamics in Appendix C indicates that mainly horseshoe vortices on the wind-ward side of
grains entrain into the pore space. With their strong ry > 0, these vortices would contribute
to the peak, which is largest in the case S-150 and decreases with higher ReK . This
decrease with increasing ReK appears plausible, as smaller vortices in a comparatively
larger pore space are less constrained in their orientation. Only for case S-150, rotation
around a transversal axis is also emphasized at γ ≈ 1. This coincides with the existence of
comparatively stable recirculation regions in the pore space, which are identified as Rortex
elements, as shown in figure 25(b).

Moving our focus off the interface region, we compare the behaviour of vortical
structures in the free-flow region. For the cases with Reτ = 300, figure 27 shows the
double-averaged magnitudes of the Rortex components, which are normalized by uμ

τ and
h − μz. Above a certain elevation, the curves collapse, which suggests an independence
of ReK in this layer. The agreement of both swirl strength and vortex orientation is
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Figure 25. Vortices for varying ReK in the low Reynolds number cases (Reτ ≤ 180). Vortical structures
were identified as iso-surfaces of vortex vector magnitude |r| = 40uτ /h. The surface colouring represents the
component ry within the range of [−40uτ /h, 40uτ /h] (blue to red). The length and width of the section are
L+

x = 1800 and L+
y = 450, respectively. The side view displays the whole height.
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Figure 26. Predominant vortex orientation in the interface region. Double-averaged squares of the Rortex
components are normalized by the double-averaged square of the Rortex vector magnitude, whereas the height
is expressed by the interface coordinate γ . The curves group according to their ReK . (a) Streamwise rotation
axis, (b) spanwise rotation axis and (c) vertical rotation axis.
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Figure 27. Swirl strength around different axes in outer scaling for cases with Reτ = 300. The double-averaged
absolute value of the Rortex components is normalized by the flow depth and the friction velocity. Both flow
depth and friction velocity consider the drag-based interface at z = μz. The curves collapse in the outer layer.
(a) Streamwise rotation axis, (b) spanwise rotation axis and (c) vertical rotation axis.

another indication of a flow similarity in the outer layer. The streamwise Rortex component
collapses consistently for ζ ≥ 0.35. The roughness influence on the other two components
increases with D/h and reaches up to ζ = 0.6 in the case L-300. For the transitionally
rough case S-300 with ReK < 1, a peak in the y-component is likely to be connected to
recirculation regions.

5. Discussion

We have demonstrated that the centroid and standard deviation of the absorption of the
free-flow momentum in the upmost sediment layer can be used to define an interface
coordinate γ in which the total shear stress and velocity profiles collapse for the
different cases. How does this definition compare with others? Breugem et al. (2006)
also considered a drag-based interface definition. Due to a different procedure to evaluate
the centroid, a slightly lower interface elevation results, which does not coincide with
the position of maximal drag. Voermans et al. (2017) demonstrated that velocity profiles
below the inflection point can be collapsed between the inflection point and the Darcy
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Figure 28. Interface parameter β of Beavers–Joseph boundary condition (Beavers & Joseph 1967).
(a) Evaluated at geometrical interface and normalized by

√
K and (b) evaluated at μz and normalized by σz.

Note that βz=0
√

K = (∂〈u〉s/∂z) · (
√

K/〈u〉s) and that βγ=0σz = (∂〈u〉s/∂z) · (σ/〈u〉s).

region. In this scaling, the reference velocity and the length scale are based on the
inflection point of the velocity profile. Therefore, it differs from our interface coordinates
in which the inflection point of the velocity profile is not universal, i.e. its position
varies from approximately γ = 1.3 in the case S-150 to γ = 0.7 in the cases L-300 and
M-500. The inflection point velocity also varies in terms of uμ

τ . Our results furthermore
suggest that the centroid of the free-flow momentum absorption μz can be used to
define an outer coordinate ζ . Therefore, this position represents a consistent interface
definition for both interface and outer-layer scaling. Flow variables in this outer scaling
show a consistently better outer similarity than under other normalization. For cases
with h/D ≥ 5, we observed a high outer similarity with the smooth-wall flow at a
similar Reτ in the velocity profiles (via the diagnostic functions), the Reynolds normal
stresses and the structure of the small-scale vortices (via the Rortex criterion of Gao &
Liu 2018; Tian et al. 2018). These observations agree with the findings of Rosti et al.
(2015), who focused on ReK < 0.8 in their parameter study. For h/D = 3, the similarity
is weaker but still fair. These observations lead us to conclude that the centroid of the
free-flow momentum absorption is an equivalent to an interface definition based on
seeking outer-layer similarity, such as the one proposed by Chen & García-Mayoral (2023).
Chung et al. (2021) summarize that outer-layer similarity can prevail even in the absence of
a logarithmic layer, which is consistent with our observations. This similarity also implies
that the flow over dense porous media with a rough surface does not require a description
that deviates fundamentally from the one applied for impermeable rough walls.

The fact that the velocity profiles are nearly universal in the interface coordinates defined
by μz and σz has some implications: first, the so-called Brinkman-layer thickness can be
defined universally in terms of those coordinates. Second, the velocity gradient at the
interface can be expressed in these interface coordinates and used within the concept
of Beavers & Joseph (1967) as a boundary condition for flows over a sediment bed.
This boundary condition specifies the gradient as ∂〈ū〉s/∂z = β〈ū〉s. Figure 28 compares
β-values evaluated at the geometrical interface and normalized by

√
K with the one

obtained at μz and normalized by σz. In the latter, the variation with ReK is very small. If
the outer flow was computed in outer variables defined by ζ and uμ

τ , the Beavers–Joseph
boundary condition could be used with a unique value of βσ ≈ 1.15.

In several aspects, case S-150 stands out from the remaining simulated cases: the case
is hydraulically transitionally rough and larger parts of the shear stress are transferred
by viscous action, whereas Reynolds and dispersive stresses hardly entrain into the
sediment. In comparison with the other cases, Reynolds and dispersive normal stresses
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in the streamwise direction peak further above the interface and decay quicker with
increasing depth. The insignificance of both temporal fluctuations and spatial variance of
the bed-normal velocity component indicates that hardly any up- and downwelling motion
of the flow field is present. Compared with the hydraulically rougher cases, the larger
parts of the interface region seem to be sheltered from the outer flow, which is supported
by a critically lower value of the equivalent sand roughness height for case S-150. These
observations hint at a decisive influence of the roughness regime, which can fundamentally
change the near-interface dynamics.

Slightly above the interface, the plane-averaged Reynolds stress tensor indicates a strong
trend towards one-component turbulence for cases with low ReK , whereas the high values
of 〈u′u′〉 are associated with elongated streamwise velocity streaks. With increasing ReK ,
the characteristic pattern of streaks is blurred, while also long quasi-streamwise vortices
with a strong rotation around the streamwise axis can hardly survive in the interface region.
Accordingly, the conceptual scenario of vortex formation described in Suga et al. (2011)
does not appear to be fully transferrable to comparatively dense porous media with a rough
interface.

In contrast to flow over critically more permeable media (e.g. Finnigan 2000;
Breugem et al. 2006; Manes et al. 2011) we do not observe significant appearance of
Kelvin–Helmholtz vortices. This can be explained by our ReK < 3 (Suga et al. 2011; Shen
et al. 2020). Slightly below the interface, vortices tend to rotate around a transversally
oriented axis. For hydraulically rough cases with high ReK , most sediment grains are
exposed to approaching flow, and horseshoe-like vortices can form on the windward side
of the spheres. Depending on the local bed-normal velocity field, these small vortices
are ejected into the free flow or dragged into the pore space, which agrees with the
observations of Lian et al. (2021).

For cases with lower ReK , the vortices slightly below the interface even show an
increased preference to rotate around a transversal axis. One possible reason could be that
the size of vortical structures in comparison with the pore space restricts their freedom
in orientation. The size ratio of vortical structures and pore space could also lead to
comparatively stable recirculation vortices, while a sufficiently strong wall-blocking effect
prevents the structures from being advected out of their position.

6. Conclusion

We simulated turbulent flow over mono-disperse random sphere packs by means of
pore-resolved direct numerical simulations. The simulations provide well-validated flow
data for eleven systemically arranged points within a parameter space spanned by a
friction Reynolds number Reτ ∈ [150, 500] and a permeability Reynolds number ReK ∈
[0, 2.8]. The parameter space covers both transitionally and fully rough regimes with
k+

s ∈ [20, 200]. To our knowledge, these simulations are the first to cover cases with
large flow depth-to-diameter ratios of up to h/D = 10. Thus, the separation of the
roughness from the outer scales is supported. We analysed our results statistically within
the double-averaging framework and used visualization of instantaneous fields to provide
complementary insight.

Our data allow a reliable reconstruction of the double-averaged total drag distribution
on the static porous medium. We propose a parametrization to separate the Darcy-like
drag from the drag component that represents the momentum uptake from the overlying
free-flow region. The centroid of the latter can be used to define an interface position, and
its vertical standard deviation can be interpreted as an interfacial length scale. Together,
these two parameters allow us to define interface coordinates in which the near-interface
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total drag distributions and velocity profiles of all cases collapse. Although (4.4) with
the parameters μz and σz performed well in the present study, we shall not miss to point
out that another parametrization of the drag distribution may be required for other porous
media.

The drag-based interface position can also be used to define outer coordinates under
which velocity profiles and turbulence statistics are similar to the smooth-wall quantities
at a similar Reτ . Particularly, the latter observation provides a strong support that the
distribution of the momentum uptake from the free flow represents an interface definition
which is consistent for both near-interface and outer flow. It is important to note here
that this definition comes along without any a priori assumptions on the velocity profiles
and, thus, is an objective method for finding an interface position for the investigation of
outer-flow similarities. This is particularly important for the parameter space of the present
study, for which it is difficult to predict which assumptions concerning the velocity profile
are valid.

Beyond its influence on roughness, ReK is confirmed to be the descriptive parameter of
the interface region, where it controls the momentum exchange. With increasing ReK ,
Reynolds and dispersive stresses can penetrate deeper into the sediment. The relaxed
wall-blocking effect and the reduced shear intensity break the pattern and intensity of
elongated streamwise velocity streaks. Wall-parallel quasi-streamwise vortices are also
attenuated with increasing ReK . This break down of flow features found near impermeable
smooth walls reduces the differences in turbulence structure between the outer layer and
the sediment interface.

Major differences to turbulent flow over smooth and impermeable walls appear to be
confined to a near-interface roughness layer. From an outer-flow perspective, the effect of
roughness and permeability mainly reduces to a shift of the outer-layer velocity profile
by �u+. Only cases with h/D = 3 differ from the ones with similar ReK but higher h/D,
as the outer-layer similarity to a smooth-wall flow is impaired by the high blocking ratio.
For the parameter range under consideration, the observed influence of Reτ on the outer
flow agrees with reports in the literature: with increasing Reτ , the wake strength increases,
which makes it impossible to establish mean flow similarity among different Reτ . We
observe a slight influence of Reτ on the TKE and its structure, which is obviously linked
to a scaling of small-scale vortical intensity with Re3/4

τ .
Vortical structures, which entrain into the pore space, mainly rotate around a transversal

axis. Particularly for higher ReK , small horseshoe-like vortices form on the wind-ward
side of exposed spheres, from where they are either convected into the pore space or
ejected into the free-flow region. In contrast, stable recirculation vortices can persist
between top-layer spheres at lower ReK . Case (S-150) with ReK = 0.42 can be assigned
to the transitionally rough regime. Compared with the other cases, the near-interface flow
dynamics is qualitatively different due to a dominant role of the viscous stresses, whereas
the influence of Reynolds and dispersive stresses already decreases substantially above the
interface. The equivalent sand roughness of the case is critically lower, and the turbulence
structure above the interface resembles the one above a smooth wall. A more detailed
investigation of the transition between hydraulically smooth and rough regimes could be
the subject of future investigations.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.498.
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Appendix A. Synthesis of the porous medium

To obtain a mono-disperse random sphere pack, we simulated the physical process of
pouring spheres with diameter D into a x–y-periodic domain. The open-source code
LAMMPS (Plimpton 1995) was used, which predicts the behaviour of granular particles
by means of the discrete element method (DEM). A simple Hookean contact model
is employed, and the normal elastic constant is chosen such that no spheres exhibit a
normal compression greater than 1 × 10−4D. To avoid the formation of organized layers
of spheres, some spheres were randomly seeded near the bottom of the domain, where
they remained at fixed positions. In figure 29(a), these fixed spheres are marked in orange
colour. With this initial condition in place, spheres are continuously poured into the
domain, where a gravitational force acts on them. After the pouring process, we apply
a force to the spheres that rotates within the x–y-plane. This measure emulates the effect
of rattling with decreasing intensity and removes local pile ups of spheres, thus flattening
the bed surface. Thus a sediment layer of 10D depth has been generated of which the lowest
part has some inhomogeneities from the fixed spheres and the influence of the bottom wall.
We excluded this inhomogeneous part by cutting the spheres by the simulation domain
boundary at −5D.

To prepare the sediment geometry for the flow simulation, each sphere is approximated
by a spherical icosahedral grid. Fillets are inserted near the contact points to close gaps,
where the surfaces of neighbouring spheres are less than 0.0625D apart from each other.
This measure removes the singularity which arises at the contact point between two
spheres. It has been argued by Unglehrt & Manhart (2022) that the contact point not
only reduces the second-order convergence of the numerical method but also leads to
a singularity in the velocity in the potential flow solution, thus leading to prohibitive
resolution requirements at the contact points at high Reynolds numbers. Figure 29(b)
shows the contact point with the fillet in detail. The complete geometry of the porous
medium is stored in the STL format.

Appendix B. Case-specific grid study

For our case-specific grid study, we consider case L-180, as it is the computationally
cheapest simulation. The shallow flow depth allows uniform refinement with cubic cells
in the complete domain. We compare four spatial discretizations with 16, 32, 48 and 64
cells per sphere diameter D, which corresponds to 3.6, 1.8, 1.2 and 0.9 viscous wall units,
respectively. Figure 30 shows that insufficiently refined configurations underpredict the
Darcy velocity in the sediment bed, while the free-flow velocity and the TKE above the
bed are overpredicted. Both effects result from an underprediction of the porosity. For this
grid study, the statistics of the velocity field were collected over 22 flow-through times,
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Figure 29. Synthesis of sediment bed for case L-180. (a) Complete domain used for the DEM simulation, with
its extent given in multiples of the sphere diameter. The orange spheres near the bottom were randomly seeded
and remained fixed. (b) Detailed view of a contact point between two spheres after the fillet (red) has been
inserted.
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Figure 30. Profiles of double-averaged (a) streamwise velocity and (b) double-averaged TKE for four different
grid resolutions. The side length of the cubic cells is given as a fraction of the sphere diameter D. Uniform
refinement was used.

after a statistically stationary state had been reached. The collapse of curves for two finest
resolutions also indicates that the statistics have converged.

In figure 31, streamwise spectra of the TKE are plotted at two different wall-normal
positions. At a height of z/D = 0.8, the maximum of TKE is located near the crests of
the topmost spheres. In this region, we observe energy piling up at high wavenumbers for
the two coarser grids, which indicates that (i) our numerical method is energy conserving
and (ii) a grid resolution of �xi ≥ D/32 is not sufficient to resolve all the dissipation
taking place. At �xi = D/48, a monotonic decay over the complete wavenumber range can
be observed. However, there is a marginal difference compared with �xi = D/64 at the
highest dissipative wavenumbers. Nonetheless, the spectra have decayed by approximately
9 orders of magnitude. Therefore, we assume that this has a negligible effect on our
simulation results, which was demonstrated by figure 30. Note that a plane at z/D = 0.8
intersects some of the topmost spheres. Therefore, the spectrum can never decay to zero as
the C1-continuity is lost. At z/h = 0.5, lower grid resolutions appear appropriate, which
motivates a local refinement strategy in the interface region.
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Figure 31. Grid dependency of streamwise spectra of the TKE. For each of the four grid resolutions, the side
length of the cubic cells is given as a fraction of the sphere diameter D. The one-dimensional spectra dependent
on wavenumbers kx were computed at z/D = 0.8 (a), and z/h = 1.5 (b).

(b)(a) (c)

Figure 32. Near-interface vortex dynamics visualized by image sequences (top to bottom). The vortices are
identified by iso-surfaces of λ2. Small arrows indicate the direction of the instantaneous flow field (blue for
downwelling, red for upwelling motion). For each sequence, the dashed red lines help to follow individual
vortices. (a) Entrainment of horseshoe vortex (case M-500). Sequence of images with �t = 0.06D/uτ .
(b) Ejection of horseshoe vortex (case M-500). Sequence of images with �t = 0.06D/uτ . (c) Stationary
recirculation vortices (case S-150). Sequence of images with �t = 0.045D/uτ .

Appendix C. Near-interface vortex dynamics

Image sequences provide insight into the near-interface vortex dynamics. During
simulation runtime, a code-integrated tool based on the Visualization ToolKit (VTK)
captured iso-surfaces of the λ2-criterion, which allow vortex identification. Additionally,
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vectors of unit length provide information about the instantaneous flow direction. By the
example of case M-500, figure 32(a) shows the entrainment of a horseshoe vortex into
the pore space. The grain-scale vortices form on the up-wind side of exposed spheres
and are advected into the pore space by a local downwelling flow field. The last image of
the sequence shows the decay of the identified vortices within the pore space. Again for
case M-500, figure 32(b) shows the ejection of a vortex into the free-flow region by local
upwelling motion in the flow field. The vortex legs separate and find their way around the
sediment grain. The images in figure 32(c) were extracted from case S-150 (ReK < 1) and
show nearly stationary recirculation vortices that occupy the spaces between the topmost
sediment grains. The wall-blocking effect seems to suppress bed-normal fluid motion such
that the recirculation vortices can remain in their positions over longer time spans.
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