
JFP 19 (5): 545–579, 2009. c© 2009 Cambridge University Press

doi:10.1017/S0956796809007345 First published online 23 July 2009 Printed in the United Kingdom

545

Algebra of programming in Agda: Dependent
types for relational program derivation

SHIN-CHENG MU

Institute of Information Science, Academia Sinica, Taiwan

(e-mail: scm@iis.sinica.edu.tw)

HS IANG-SHANG KO

Department of Computer Science and Information Engineering,

National Taiwan University, Taiwan

(e-mail: joshs@mail2000.com.tw)

PATRIK JANSSON

Department of Computer Science and Engineering,

Chalmers University of Technology, and University of Gothenburg, Sweden

(e-mail: patrikj@chalmers.se)

Abstract

Relational program derivation is the technique of stepwise refining a relational specification

to a program by algebraic rules. The program thus obtained is correct by construction.

Meanwhile, dependent type theory is rich enough to express various correctness properties to

be verified by the type checker. We have developed a library, AoPA (Algebra of Programming

in Agda), to encode relational derivations in the dependently typed programming language

Agda. A program is coupled with an algebraic derivation whose correctness is guaranteed

by the type system. Two non-trivial examples are presented: an optimisation problem and

a derivation of quicksort in which well-founded recursion is used to model terminating

hylomorphisms in a language with inductive types.

1 Introduction

Program derivation is the technique of successively applying formal rules to a

specification until one obtains a program. The program thus obtained is correct by

construction. In relational program derivation (Bird & de Moor 1997), specifications

are viewed as input–output relations to be stepwise refined by an algebra of programs.

Meanwhile, type theorists take a complementary approach to program correctness.

Modern programming languages deploy advanced type systems that are able to

express various correctness properties. This paper aims to show, in the dependently

typed language Agda (Norell 2007), how program derivation can be encoded in a

type and its proof term. A program and its derivation can thus be written in the

same language, and the correctness is guaranteed by the type checker.

The library we have developed, nicknamed AoPA (Algebra of Programming in

Agda), is available online (Mu et al. 2008b). As a teaser, Figure 1 shows a derivation

of a sorting algorithm in progress. The type of sort-der is a proposition that there

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

546 S.-C. Mu

Fig. 1. A derivation of insertion sort in progress.

exists a function f that, after being lifted to a relation by fun , is contained in

ordered? ◦ permute, a relation mapping a list to one of its ordered permutations.

(Note that some values in the list may share the same key.) To prove an existential

proposition, we provide a pair of a witness and a proof that the witness satisfies

the proposition. The witness, once the derivation is complete, can be extracted

from the last step of the proof; therefore, we may leave it out as an underscore

(). The first step exploits monotonicity of ◦ and that permute can be expressed

as a fold. The second step makes use of relational fold fusion (see Section 4.3),

but the fusion conditions are not given yet. The shaded areas denote interaction

points – fragments of (proof) code to be completed – also called meta-variables

or just placeholders (Magnusson & Nordström 1994). The programmer can query

Agda for the expected type and the context of the shaded expression. When the

proof is completed, an algorithm isort is obtained by extracting the witness of the

proposition. (The complete derivation is available online. In Section 6.5 we present

a more challenging derivation, quicksort.) It is an executable program that is backed

by the type system to meet the specification.

Our work aims to be a cooperation between the squiggolists1 and dependently

typed programmers that may benefit both sides:

• This is a case study of using the Curry–Howard isomorphism which the

squiggolists may appreciate; specifications of programs are expressed in their

types, whose proofs (derivations) are given as programs and checked by the

type system. Being able to express derivation within the same programming

language encourages its use and serves as documentation. In this case study

we use dependent types to express and check correctness of the derivations,

but the derived functions normally have non-dependent types.

• We modelled a wide range of concepts that often occur in relational program

derivation, including relational folds (Backhouse et al. 1991), relational division

and converse of a function (Mu & Bird 2003). Minimum, for example, is de-

fined using division and intersection, while the greedy theorem (Bird & de Moor

1997) is proved using the universal property of minimum. With the theorem

we may deal with a number of optimisation problems specified as folds.

1 ‘Squiggol’ is a nickname for Bird–Meertens-style program derivation, called so because of the squiggly
symbols it uses.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 547

• In dependently typed programming it is vital to ensure that a program

terminates. To deal with unfolds and hylomorphisms (see Section 6), we

allow the programmer to model an unfold as the relational converse of a fold

but demand a proof of accessibility (Nordström 1988) before it is refined to a

functional unfold. The connection between accessibility and inductivity (Bird &

de Moor 1997) is explained.

We originally started to use Agda because of the notation for equality proofs. What

started out a as small example grew to a library of around 40 modules and 6,000

lines of code. Interesting future work could be to compare how this library would

be expressed in other proof assistants.

For readers not familiar with relational program derivation, a brief overview is

given in Section 2, while a quick introduction to a subset of Agda that is relevant to

this paper is given in Section 3. After presenting our encoding of relations and their

operations in Section 4, we solve an optimisation problem in Section 5, using the

greedy theorem. In Section 6 we talk about accessibility, the formal machinery we

use to express hylomorphisms, and present a derivation of quicksort as an example.

This paper is an extension of the authors’ previous work presented at Mathematics

of Program Construction (Mu et al. 2008a).

Before we go into more technical details, it is probably time to let the readers be

aware of some difficulties that those who are familiar with type theory can foresee.

We will talk about extensional equality in Section 3.2 and our ad hoc approach to

get around predicativity in Section 4.1.

2 A quick overview of relational program derivation

One of the most appreciated merits of functional programming is that programs can

be manipulated by equational reasoning. Program derivation in the Bird–Meertens

style (Bird 1989b) typically start with a specification, as a function, that is obviously

correct but not as efficient as one would wish. Various algebraic identities are then

applied, in successive steps, to show that the specification equals another functional

program that is more efficient. A typical example is the maximum segment sum

(Bird 1989a; Gries 1989) problem, whose specification is max ·map sum · segs , where

segs produces all consecutive segments of the input list of numbers and map sum

respectively computes their summation, before a maximum is picked by max . The

specification can be shown, after several steps of transformation, to be equal to

another program, whose main computation is performed in a foldr , that can be

computed in linear time.

There is no mechanical procedure that guarantees to produce efficient programs

for all problems in general. The challenge, arguably more contributive than solving a

specific problem, is to identify classes of problems that can be manipulated following

a certain pattern and to discover and propose useful algebraic properties that play

key roles in problem solving.

During the 1990s there was a trend in the program derivation community to move

from functions to relations. A specification is given in terms of an input–output

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

548 S.-C. Mu

relation, which is refined to smaller, more deterministic relations in each step, until we

get a function. Relational derivation has some advantages: the specification is often

more concise than the corresponding functional specification; optimisation problems

can be naturally specified using relations generating all possible solutions (Bird &

de Moor 1997; Mu 2008); it is also easier to talk about program inversion (Mu &

Bird 2003). The catch, however, is that we now have to reason in terms of inequalities

rather than equalities, which is a more challenging task. Much of the groundwork

was laid by Backhouse et al. (1991) and Backhouse & Hoogendijk (1992). Bird &

de Moor (1997) presented program derivation from a category-theoretical point of

view, with illustrative examples of problem solving.

A relation R from A to B , denoted by R : B ← A, is usually understood as a

subset of the set of pairs B × A. (The ‘backward arrow’ notation is adopted from

Bird & de Moor 1997.) A function f is seen as a special case in which (b, a) ∈ f

and (b ′, a) ∈ f implies b = b ′.

Given a relation R : B ← A, its converse R ˘ : A← B is defined by (a , b) ∈ R ˘ if

(b, a) ∈ R. The composition of two relations R : C ← B and S : B ← A is defined

by: (c, a) ∈ R◦S if ∃b : (c, b) ∈ R∧(b, a) ∈ S . Given a relation R : B←A, its power

transpose ΛR is a function from A to � B (subsets of B): ΛR a = {b | (b, a) ∈ R }.
The relation ∈ : A ← � A maps a set to one of its arbitrary members, while

	 : � A← A is its converse. The product of two relations, R � S , is defined by

((c, d), (a , b)) ∈ R � S if (c, a) ∈ R and (d , b) ∈ S .

In functional programming, the function foldr on lists takes a step function of

type A → B → B and a base case of type B and yields a function List A → B .

Its generalisation to a relation, which we denote by foldR, remains an important

construct. Given an uncurried step relation R : B ← (A × B) and a set s : � B

recording the base cases, foldR R s is a relation having type B ← List A.2 For

example, the relation

subseq = foldR (cons ∪ outr) {[]},

where cons (x , xs) = x :: xs and outr (x , xs) = xs , defines a relation mapping a list

to one of its arbitrary subsequences – cons keeps the current element, while outr

drops it.

Relational fold can be defined in terms of functional fold:

foldR R s = ∈ ◦ foldr Λ(R ◦ (id � ∈)) s .

To understand the definition, foldr Λ(R◦(id�∈)) s is a function of type List A→ �B

that collects all the results in a set. The step function Λ(R ◦ (id � ∈)) has type

(A × � B) → � B , where (id � ∈) : (A × B)← (A × � B) pairs the current element

with one of the results from the previous step, before passing the pair to R. It can

be proved that foldR R s satisfies the universal property

foldR R s = S ⇔ R ◦ (id � S) = S ◦ cons ∧ s = ΛS [],

2 Isomorphically, the base case can be represented by a relation B ←
, where
 is the unit type.
Furthermore, relational fold, like functional fold, can also be defined for datatypes built from arbitrary
regular base functors.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 549

which in effect states that foldR R s is the unique fixed point of the monotonic func-

tion λX → (R ◦ (id � X) ◦ cons ˘) ∪ {(b, []) | b ∈ s}. By the Knaster–Tarski theorem

(Tarski 1955), foldR R s is also the least prefix-point; therefore we have

foldR R s ⊆ S ⇐ R ◦ (id � S) ⊆ S ◦ cons ∧ s ⊆ ΛS [],

R ◦ (id � foldR R s) ⊆ foldR R s ◦ cons ∧ s ⊆ Λ(foldR R s) [].

The first property is called the induction rule, while the second the computation rule

(Backhouse 2002).

If an optimisation problem can be specified by generating all possible solutions

using foldR or converse of foldR before picking the best one, Bird & de Moor (1997)

gave a number of conditions under which the specification can be refined to a greedy

algorithm, a dynamic programming algorithm or something in between. We will see

such an example in Section 5.

3 A crash course in Agda

By ‘Agda’ we mean Agda version 2, a dependently typed programming language

evolved from the theorem prover having the same name. In this section we give a

crash course in Agda, focusing on the aspects we need. For detailed documentation,

the reader is referred to the main developer’s thesis (Norell 2007) and the Agda

wiki (Agda Team 2007).

Agda has a Haskell-like syntax extended with a number of additional features.

Dependent function types are written (x : A) → B , where the type expression B

may refer to the identifier x , while non-dependent function types are written A→ B .

The identity function, for example, can be defined by

id : (A : Set)→ A→ A

id A a = a ,

where Set is the type of small types. To apply id we should supply both the

type and the value parameters, e.g. id � 3, where � is the type of natural numbers.

Dependently typed programming would be very verbose if we always had to explicitly

mention all the parameters. In cases in which some parameters are inferable from

the context, the programmer may leave them out, as in id 3.

For brevity, Agda supports implicit parameters. In the definition

id : {A : Set} → A→ A

id a = a ,

the parameter {A : Set} in curly brackets is implicit and need not be mentioned

when id is called, e.g. id 3. Agda tries to infer implicit parameters whenever possible.

In case the inference fails, they can be explicitly provided in curly brackets: id {�} 3.

Named parameters in a type signature can be collected in a telescope. For example,

{x : A} → {y : A} → (z : B) → {w : C } → D can be abbreviated to {x y : A}(z :

B){w : C } → D .

Figure 2 shows some examples of datatype definitions. (We use italic font for

identifiers and parameters, sans-serif font for both type and data constructors and

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

550 S.-C. Mu

Fig. 2. Some examples of datatype definitions.

Fig. 3. An encoding of first-order intuitionistic logic in Agda.

boldface font for reserved words.) In Agda’s notation for dist-fix definitions, an

underscore denotes a location for a parameter. The type constructor List, defining

inductive lists, takes a type and yields a type. The parameter (A : Set), written on

the left-hand side of the colon, scopes over the entire definition and is an implicit

parameter of the constructors :: and []. Natural numbers are defined by the type

�. The datatype � is parameterised not by types but by two values of type �.

A term having type m � n represents a proof that m is less than or equal to n .

The base case �-refl states that any number is less than or equal to itself, while the

inductive case �-step builds a proof of m � suc n from a proof of m � n . Note

that this is merely one of the possible ways to express this proposition.

3.1 First-order intuitionistic logic

In the Curry–Howard isomorphism, types are propositions and terms their proofs.

Being able to construct a term of a particular type is to provide a proof of that

proposition. Figure 3 shows the encoding of first-order intuitionistic logic in the

standard library of Agda (Danielsson et al. 2009). Falsity is represented by ⊥, a type

with no constructors and therefore no inhabitants. Truth, on the other hand, can

be represented by the record type
, having one unique term – a record with no

fields. Disjunction is represented by disjoint sum: a proof of P � Q can be deduced

either from a proof of P or a proof of Q . An implication P → Q is represented as

a function taking a proof of P to a proof of Q . We do not introduce new notation

for it.

Predicates on type A are represented by A → Set . For example, (λn → zero <

n) : � → Set is a predicate stating that a natural number is positive. Universal

quantification of predicate P on type A is encoded as a dependent function type

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 551

whose elements, given any x : A, must produce a proof of P x . Agda provides a

shorthand ∀ x → P x in place of (x : A)→ P x when A can be inferred.

The dependent pair Σ is like an ordinary pair, except that the type of the

second component may depend on the first component. Functions proj1 and proj2
respectively extract the two components. The product × , encoding conjunction,

is the special case in which the two components are independent. The standard

library declares both × and , to be right associative; therefore (a , (b, c)) can be

abbreviated to (a , b, c).

The existential quantification can also be encoded as a dependent pair: to prove

the proposition ∃ P , where P is a predicate on terms of type A, one has to provide,

in a pair, a witness w : A and a proof of P w .

3.2 Identity type

A term of type x ≡ y is a proof that x and y are equal. The datatype ≡ is defined

by

data ≡ {A : Set}(x : A) : A→ Set where

≡-refl : x ≡ x .

Agda allows Unicode characters in identifiers; therefore, ≡-refl (without space) is

a valid name. For the rest of the paper, we will exploit Unicode characters to

give informative names to constructors, arguments and lemmas. For example, if a

variable is a proof of y ≡ z , we may name it y≡z (without space).

The type ≡ is reflexive by definition. It is also symmetric, meaning that given a

term of type x ≡ y , one can construct a term of type y ≡ x :

≡-sym : {A : Set}{x y : A} → x ≡ y → y ≡ x

≡-sym {A}{x}{.x} ≡-refl = ≡-refl.

The implicit arguments, which could be omitted in this case, are given for illustrative

purpose. The two occurrences of x appear to imply non-linear pattern matching and

run-time equality check. In fact this is not the case. Note that the only constructor

≡-refl is of type x ≡ x . Therefore, if the fourth argument of ≡-sym matches ≡-refl

and the second argument is x , the third argument could only be x in any well-typed

application of ≡-sym . This is represented by adding a dot before the second x .

A dot pattern corresponds to ‘knowledge’ rather than ‘matching’. It first appeared,

with a different notation, in Brady et al. (2003).

In dependently typed programming, pattern matching may refine not only the

value being inspected but also the types in the context. For ≡-sym , now that we

have discovered that y could only be x , the return type of ≡-sym is instantiated

to x ≡ x , for which we can simply return ≡-refl. The algorithm performing

matching, unification and context splitting was given by Norell (2007). In general,

the combination of pattern matching and inductive families (such as ≡) is a very

powerful one (Dybjer 1994).

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

552 S.-C. Mu

Some more properties of ≡ are worth noting. The lemma ≡-trans shows that it

is transitive:

≡-trans : {A : Set}{x y z : A} → x ≡ y → y ≡ z → x ≡ z

≡-trans {A}{x}{.x}{z} ≡-refl x≡z = x≡z .

In the proof of ≡-trans we could also replace both x≡z with ≡-refl. The interactive

feature of Agda is helpful for constructing the proof terms. (Agda has an Emacs

mode and a command line interpreter interface.) One may, for example, leave out

the right-hand side as an interaction point. Agda would prompt the programmer

with the expected type of the term to fill in, which also corresponds to the remaining

proof obligations. The list of variables in the current context and their types after

unification are also available to the programmer.

Furthermore, ≡ is substitutive – if x ≡ y , they are interchangeable in all

contexts:

≡-subst : {A : Set}(P : A→ Set){x y : A} → x ≡ y → P x → P y

≡-subst P ≡-refl Px = Px ,

≡-cong : {A B : Set}(f : A→ B){x y : A} → x ≡ y → f x ≡ f y

≡-cong f ≡-refl = ≡-refl.

However, ≡ is not extensional. In Agda, equality of terms is checked by expanding

them to normal forms. We therefore have problem comparing higher-order values:

sum · map sum and sum · concat , for example, while defining the same function

summing up a list of lists of numbers are not ‘equal’ under ≡ . One may define

extensional equality for (non-dependent) functions on first-order values:

·
= : {A B : Set} → (A→ B)→ (A→ B)→ Set

f
·
= g = ∀ x → f x ≡ g x .

However,
·
= is not substitutive. Congruence of

·
= has to be proved for each

context.

As we will see later, refinement in preorder reasoning inevitably involves replacing

terms in provably monotonic contexts. This is a significant overhead, but given that

this overhead is incurred anyway, not having extensional equality is no extra trouble.

3.3 Preorder reasoning

To prove a proposition e1 ≡ e2 is to construct a term having that type. One can do

that, using the operators defined in the previous section. But it can be very tedious,

when the expressions involved get complicated. Luckily, for any binary relation ∼
that is reflexive and transitive (that is for which one can construct terms ∼-refl and

∼-trans having the types as described in the previous section), we can derive a set

of combinators, shown in Figure 4, which allows one to construct a term of type

e1 ∼ en in algebraic style. These combinators were implemented in Agda by Norell

(2007) and improved by Danielsson in the standard library of Agda (Danielsson

et al. 2009). Augustsson (1999) has proposed a similar syntax for equality reasoning,

with automatic inference of congruences.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 553

Fig. 4. Combinators for preorder reasoning.

To understand the definitions, note that ∼〈 〉 , a dist-fix function taking three

explicit parameters, associates to the right. Therefore, the algebraic proof

e1

∼〈 reason1 〉
...

en−1

∼〈 reasonn−1 〉
en

∼�

should be bracketed as e1 ∼〈reason1〉 . . . (en−1 ∼〈reasonn−1〉 (en∼�)). Each occur-

rence of ∼〈 〉 takes three arguments – ei on the left, reasoni (a proof that ei ∼ ei+1)

in the angle brackets and a proof of ei+1 ∼ en on the right-hand side – and produces

a proof of ei ∼ en using ∼-trans . As the base case, ∼� takes the value en and returns

a term of type en ∼ en .

We have seen in the previous section that ≡ is reflexive and transitive. For

another useful example, we may define implication as a relation:

⇒ : Set → Set → Set

P ⇒ Q = P → Q ,

⇐ : Set → Set → Set

P ⇐ Q = Q ⇒ P .

Reflexivity and transitivity of ⇐ , for example, can be simply given by⇐-refl = id

and ⇐-trans = · , where · is function composition. Therefore, they induce a pair

of operators ⇐〈 〉 and ⇐� for logical reasoning.

There is a slight complication, however. Agda maintains a hierarchy of universes,

where Set , the type of small types, is in sort Set1. While instantiating ∼ in Fig-

ure 4 to ⇐ : Set → Set → Set , one would notice that the type A : Set itself cannot

be instantiated to Set , which is in Set1. Currently, we resolve the problem simply by

using different module generators for different universes. More on this will be given

in Section 4.1.

3.4 Functional derivation

The ingredients we have prepared so far already allow us to perform some functional

program derivation. Since
·
= can be shown to be reflexive and transitive, it also

induces its preorder reasoning operators. Figure 5 shows a proof of the universal

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

554 S.-C. Mu

Fig. 5. Proving the universal property for foldr .

Fig. 6. Derivation of scanr . The constructors ::+ and []+ build non-empty lists, while tails =

foldr til [[]]+, where til a [xs]+ = (a::xs)::+[xs]+; til a (xs ::+xss) = (a::xs) ::+xs ::+xss .

property of foldr . The steps using ≡-refl are simple equivalences which Agda can

prove by expanding the definitions. The inductive hypothesis is established by a

recursive call to foldr-universal . Agda ensures that proofs by induction are well

founded. With the universal property we can prove the foldr-fusion theorem:

foldr-fusion : ∀ {A B C } (h : B → C) {f : A→ B → B} {g : A→ C → C } →
{e : B} → (∀ x y → h (f x y) ≡ g x (h y))→ h · foldr f e

·
= foldr g (h e)

foldr-fusion h {f } {g} e fuse =

foldr-universal (h · foldr f e) g (h e) ≡-refl (λx xs → fuse x (foldr f e xs)).

Figure 6 derives scanr from its specification map+ (foldr f e) · tails , where map+ is

the map function defined for List+, the type of non-empty lists. The foldr-fusion

theorem is used to transform the specification to a fold. The derived program can

be extracted by scanr = proj1 scanr-der , while scanr-pf = proj2 scanr-der is a proof

that can be used elsewhere. Note that the first component of the pair (the witness)

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 555

is left implicit. Agda is able to infer the witness because it is syntactically presented

in the derivation as foldr (sc f) [e]+.

We have reproduced a complete derivation for the maximum segment sum

problem. The derivation proceeds in the standard manner (Bird 1989a), transforming

the specification to max ·map (foldr ⊗ 0)·tails for some ⊗ and exploiting scanr-pf

to convert it to a scanr . The main derivation is about 230 lines long, plus 400 lines

of library code proving properties about lists and 100 lines for properties about

integers. The code is available online (Mu et al. 2008b).

The interactive interface of Agda proved to be very useful. One could progress

the derivation line by line, leaving out the unfinished part as an interaction point.

One may also type in the desired next step but leave the ‘reason’ part blank and let

Agda derive the type of the lemma needed.

4 Modelling relations

Many definitions in Bird & de Moor (1997) are given in terms of universal

properties, which are also useful rules for calculation. In this work, however, we give

(a constructive variant of) set-theoretical definitions and prove the universal

properties afterwards.

4.1 Sets and relations

A possibly infinite but decidable subset of A could be represented by its membership

function of type A → Bool . With this representation, however, some operations to

be introduced later, such as relational composition, cannot be implemented when

the domain is infinite. With dependent types, we can represent the membership

judgement at type level:

� : Set → Set1

� A = A→ Set .

A set s : � A is a function mapping a : A to a type, which encodes a logic formula

determining its membership. The formula need not be decidable in general, but for

the programs we derive it will be. As mentioned before, Agda maintains a hierarchy

of universes. Set denotes the universe of small types; Set1 denotes the universe of

Set and all types declared as being in Set1; and so on. Since s : � A is a function

yielding a Set , � A is in the universe Set1.

Set union, intersection and inclusion, for example, are naturally encoded by

disjunction, conjunction and implication, as shown in Figure 7. The relation ⊆ can

be shown to be reflexive and transitive. Note how, in the proof of ⊆-trans , a proof

of r ⊆ s is applied to a and a∈r to produce a proof of a ∈ s . The function singleton

creates singleton sets:

singleton : {A : Set} → A→ � A

singleton a = λa ′ → a ≡ a ′.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

556 S.-C. Mu

Fig. 7. Set union, intersection and inclusion.

However, recall the discussion in Section 3.2, and note that the definition above is

intended to handle only sets of first-order values. Currently it is sufficient for all

program derivation problems we have dealt with.

A relation B←A, seen as a set of pairs, could be represented as � (B ×A) = (B ×
A)→ Set . However, we find the following ‘curried’ representation more convenient:

← : Set → Set → Set1

B ← A = B → A→ Set .

Therefore, given R : B ← A, the proposition that R maps a to b is represented by

R b a . The order of arguments is picked so that when R is taken to be < , the

‘output’ b is the smaller one, which will come in handy in Section 6.

A function on first-order values can be converted to a relation:

fun : {A B : Set} → (A→ B)→ (B ← A)

fun f b a = f a ≡ b.

The identity relation, for example, is denoted idR : {A : Set} → (A ← A) and

defined by idR = fun id . On the other hand, the Λ operator converts a relation to a

set-valued function:

Λ : {A B : Set} → (B ← A)→ (A→ � B)

Λ R a = λb → R b a .

Relational composition is defined by

◦ : {A B C : Set} → (C ← B)→ (B ← A)→ (C ← A)

(R ◦ S) c a = ∃ (λb → (R c b × S b a)).

Definitions of some more operators, including ˘ for relational converse and � , the

product functor, are given in Figure 8.

Complication arises when we try to represent ∈ and 	. Recall that ∈ maps � A

to A. However, the arguments to ← must be in Set , while � A is in Set1. We may

declare types of arrows whose inputs or outputs are Set1-sorted:

←1 : Set → Set1→ Set1

B ←1 A = A→ B → Set ,
1← : Set1→ Set → Set1

B 1← A = A→ B → Set .

But that means we need several versions of all the relational operators that differ

only in their types. Such inconvenience may be resolved if Agda introduces universe

polymorphism (Harper & Pollack 1991), a feature that was being discussed in the

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 557

Fig. 8. Some relational operators. Distinguish between the type of pairs (×) and its functor

action on relations (�).

Agda community at the time of writing. In the actual code we painstakingly defined

all the variations we need. For presentation in this paper, however, we pretend that

our relational operators are polymorphic with respect to universes.

We would still run into trouble if we try to compose a relation C ←1 B with

B 1← A, which should ideally yield a relation of type C ← A = C → A→ Set . The

proposition ∃ {B} (λb → (R c b × S b a)), however, quantifies over B , which is in

Set1, and therefore the proposition cannot be in Set . Luckily, for our purpose, the

only type in Set1 we need is the powerset, and we can consider this special case

only.3 The operator 1◦ , defined in Figure 8, composes a relation C ←1 � B with a

function A→ � B to yield a relation C ←A. Another option would be to construct

a user-defined universe (Dybjer & Setzer 1999), an alternative we are yet to explore.

4.2 Inclusion and monotonicity

A relation S can be refined to R if every possible outcome of R is a legitimate

outcome of S . We represent the refinement relation by

� : {A B : Set} → (B ← A)→ (B ← A)→ Set

R � S = ∀ b a → R b a → S b a ,

Conversely, R � S = S � R. It is shown in Figure 9 that � is reflexive and

transitive, and therefore, so is � . We can thus use them for preorder reasoning.

It is also shown in Figure 9 that composition is associative and monotonic. The

proof for associativity follows from associativity of the existential quantifier. While

the proof terms may look tedious, they can be easily constructed with the help of

Agda’s interactive mode. These kinds of lemmas, and their uses, are examples of

what a Coq (Coq Development Team 2006) style tactic or a first-order logic plug-in

could automate.

3 Alternatively, one may turn off the universe check in the current implementation of Agda by a compiler
flag --type-in-type, at the expense of allowing Girard’s paradox to be encoded. We did not take
this route because once we do so, there may be no easy way back.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

558 S.-C. Mu

Fig. 9. Some properties of relations.

Another lemma often used without being said is that we can introduce idR to the

right of any relation:

id -intro-r : {A B : Set}{R : B ← A} → R � R ◦ idR

id -intro-r b a (.a , bRa , ≡-refl) = bRa .

The arguments a and b are respectively the input and output of R ◦ idR , while the

third argument is a proof that there exists some value connecting R and idR . Due

to the presence of ≡-refl, the value could only be a . The dot pattern was introduced

in Section 3.2.

4.3 Relational fold

We can now define relational fold. Using

foldr1 : {A : Set} → {PB : Set1} → ((A× B)→ PB)→ PB → List A→ PB

foldr1 f e [] = e

foldr1 f e (x :: xs) = f (x , foldr1 f e xs)

which is the Set1-kinded variation of foldr , the relational fold can be defined in

terms of foldr1:

foldR : {A B : Set} → (B ← (A× B))→ � B → (B ← List A)

foldR R s = ∈ 1◦ foldr1 (Λ(R ◦ (idR � ∈))) s .

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 559

Define the relational version of the list constructors cons = fun (uncurry ::) and

nil = singleton []. The induction and computation rules are as follows:

foldR-induction-� : {A B : Set} (S : B ← List A) (R : B ← (A× B)) (e : � B)→
(R ◦ (idR � S) � S ◦ cons)× (e ⊆ Λ(S ◦ ∈) nil)→ foldR R e � S

foldR-computation-� : {A B : Set} (R : B ← (A× B)) (e : � B)→
(R ◦ (idR � foldR R e) � foldR R e ◦ cons)× (e ⊆ foldR R e []).

The proof, omitted here but available online (Mu et al. 2008b), proceeds by

converting both sides to functional folds and using induction. From the induction

rule, the fusion theorem follows:

foldR-fusion-� : {A B C : Set} (R : C ← B) {S : B ← (A× B)} →
{T : C ← (A× C)}{u : � B}{v : � C } →

R ◦ S � T ◦ (idR � R) → Λ(R ◦ ∈) u ⊇ v → R ◦ foldR S u � foldR T v .

To use fold fusion, however, there has to be a fold to start with. The following

lemma shows that idR , when instantiated to lists, is a fold (the type argument List A

to idR is there to aid the type checker):

idR�foldR : {A : Set} → idR {List A} � foldR cons nil

idR�foldR = foldR-induction-� idR cons nil (idstep, idbase).

We can therefore introduce an idR wherever we want, turn it into a fold and perform

fusion. The proof makes use of the induction rule, where the two premises are trivial

to prove:

idstep : idR ◦ cons � cons ◦ (idR � idR)

idbase : Λ(idR ◦ ∈) nil ⊇ nil .

4.4 Relational division

Given relations R : B ← A and S : C ← A, the right division R/S : B ← C is

characterised by the following universal property:

X ◦ S � R ⇔ X � R/S .

That is R/S is the largest relation such that R/S ◦ S � R. Read set theoretically,

it says that (b, c) ∈ R/S if and only if for all a , (c, a) ∈ S , (b, a) is in R. That

translates to the Agda definition

/ : {A B C : Set} → (B ← A)→ (C ← A)→ (B ← C)

(R/S) b c = ∀ a → S c a → R b a ,

given that we may prove the universal property. The left division, on the other hand,

can be given by

\ : {A B C : Set} → (B ← A)→ (B ← C)→ (A← C)

R\S = (S ˘/R ˘) ˘.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

560 S.-C. Mu

Fig. 10. Proving the universal property of min .

4.5 Minimum and maximum

Let � : A← A be a relation representing an ordering. For brevity we sometimes

omit the underlines and just write �. The relation min � maps a set of A-values to

one of its minimum element with respect to �. Bird & de Moor (1997) used min to

model optimisation problems. Relational intersection can be defined as

� : {A B : Set} → (B ← A)→ (B ← A)→ (B ← A)

(R � S) b a = R b a × S b a ,

which satisfies the universal property R � (S � T) ⇔ (R � S) × (R � T). The

relation min � is then defined by

min : {A : Set} → (A← A)→ (A← � A)

min � = ∈ � (�/).

To understand the definition, assume that min � maps a set s to a . The left-hand

side of � ensures that a is an element of s , while the division on the right-hand

side states that for any a ′ ∈ s , we must have a � a ′. Dually, to pick a maximum

element in a set, we define max � = min (� ˘).

The relation min R also satisfies a universal property:

X � min � 1◦ ΛS ⇔ (X � S)× (X ◦ S ˘ � �).

Figure 10 shows a proof of the ‘if ’ direction. We actually need Set1-kinded operators

in some of the steps, but, as stated before, we omit the detail for presentation.

Apart from that, the proof is almost identical to a hand-written proof. The lemma

�-Λ-distr-� in step 2 allows one to move a set-valued function out of intersection:

(R 1◦ ΛT) � (S 1◦ ΛT) � (R � S) 1◦ ΛT . Step 2 shall prove that X � Y ⇐ X � Z ,

given Z � Y , which is exactly what �-trans establishes. Step 3 uses the universal

property of � to split the premise into a conjunction. Step 4 shifts ΛS into the

quotient of the division, transforming (�/) 1◦ ΛS into �/S ˘. Agda is able to see

that they are equal by expanding the definition of / ; therefore we may simply put

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 561

Fig. 11. Specifying the activity-selection problem.

⇐-refl as the reason. We can then use the universal property of / in step 5, applied

to the right component of the conjunction by the combinator map-�.

5 Example: The activity-selection problem

We are finally in a position to present an example. In this section we pick an

optimisation problem, with a fairly simple algorithm, that is small enough to fit

within this paper yet demonstrates the use of the greedy theorem (Section 5.2) –

with a little twist, however.

Given a list of activities, each labelled with its start time and finish time, the

activity-selection problem (Cormen et al. 2001) is to choose as many non-overlapping

activities as possible. When the list of activities is sorted by their finish time, there

is a linear-time greedy algorithm. Can we derive this algorithm?

5.1 Specification

Figure 11 summarises the specification, using some utility definitions in Figure 12.

Time can be represented by some totally ordered numerical datatype with decidable

comparison, and here we simply choose �. An activity shall not finish before it

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

562 S.-C. Mu

Fig. 12. Some utility definitions.

starts; therefore, Act is a dependent pair consisting of a pair of start and finish

times and a proof that the former is smaller than the latter. We also define auxiliary

functions start = proj1 · proj1 and finish = proj2 · proj1. Two activities are disjoint

from each other if one finishes before the other starts, as defined by the relation

disjoint . The predicate (a set) compatible on (a , xs) checks whether a is compatible

with all activities in xs . It is defined using all , which checks whether all elements in

a list satisfy a given predicate.

A relation is coreflexive if it is a sub-relation of idR . It is often used to filter

those inputs that have properties we want. The operator ¿ converts a predicate to a

coreflexive relation. The relation check C applies C to every head–tail decomposition

within the input list. Note that if C is coreflexive, then so is check C .

The coreflexive relation mutex , defined using check , allows a list of activities to

go through only if all members in the list are disjoint with each other. Also defined

using check is fin-ordered , allowing through only those lists of activities that are

ordered by finish time. Denoting activities by pairs, the list (5, 7) :: (4, 5) :: (1, 3) :: [],

for example, is a valid input. (It could have looked more natural had we used a

snoc list, but we decided to stick with the existing datatype.) Its definition uses the

predicate fin-ubound .

The relation subseq , defined as a fold, maps a list to one of its subsequences. Here

the union of two relations is defined by (R � S) a b = R a b � S a b.

Having these auxiliary relations defined, the specification act-sel -spec can be

given in one line. The domain is restricted to finish-time sorted lists of activities by

fin-ordered . We collect the set of all mutually compatible sub-lists of activities by

Λ(mutex ◦ subseq) and, using the relation �l that compares lists by their lengths,

pick a longest solution.

5.2 The greedy theorem

Assume that we have molded an optimisation problem into the form max � ◦
Λ(foldR S s). That is we want to pick a maximum under the ordering � from a

set of solutions generated by a fold. The key step of the derivation is to transform

the specification, whose direct interpretation implies generating very many solutions

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 563

Fig. 13. The monotonicity condition.

before finally picking the best one, into an algorithm that greedily picks the local

optimum at each step of the fold.

Consider two solutions sol1 and sol2 such that sol2 � sol1. A relation S : B ←
(A× B) is said to be monotonic on � : B ← B if, for all sol ′2 that is a possible result

of S (elem , sol2), there exists some sol ′1 that is a result of S (elem , sol1) for which

sol ′2 � sol ′1 still holds, as illustrated in Figure 13.

If the monotonicity condition holds, nothing useful is going to emerge from the

smaller solution sol2, since for any sol ′2 there always exists a larger solution sol ′1; for

any sol ′′2 there always exists a larger solution sol ′′1 ; and so on. Intuitively, at every

step of the fold we only need to keep the best local solution.

Indeed, this is proved by Bird & de Moor (1997) as the greedy theorem. A relation

S is monotonic on � if S ◦ (idR � �) � � ◦ S . Pointwise, the definition expands to

(after some simplification)

∀ sol ′2 elem sol1 → ∃ (λsol2 → S sol ′2 (elem , sol2)× sol2 � sol1)→
∃ (λsol ′1 → S sol ′1 (elem , sol1)× sol ′2 � sol ′1).

Since for all p and q we have ((∃(λx → p x))→ q)⇔ ∀ x → p x → q , the above is

equivalent to

∀ sol ′2 elem sol1 sol2 → (S sol ′2 (elem , sol2)× sol2 � sol1)→
∃ (λsol ′1 → S sol ′1 (elem , sol1)× sol ′2 � sol ′1),

which meets our intuition in Figure 13. The greedy theorem is then given by 4

greedy-thm : {A B : Set}{S : B ← (A× B)}{s : � B}{R : B ← B} →
R ◦ R � R → S ◦ (idR � R) � R ◦ S →

foldR (max R 1◦ ΛS) (Λ(max R) s) � max R 1◦ Λ(foldR S s).

Note that the argument R ◦ R � R requires that R be transitive. Both relations in

the last line have type B ← List A. The right-hand side of � is the specification,

while the left-hand side picks the local optimal solution at each step.

5.3 Derivation using a partial greedy theorem

We attempt to solve the activity-selection problem by using the greedy theorem.

Correspondingly, step 1 of the main derivation given in Figure 14 attempts to put

the problem into the form (max � 1◦ Λ(foldR S e)) ◦ · · · for some �, S and e. The

4 For the purpose of this paper we formulate the theorem in terms of max rather than min as in Bird &
de Moor (1997).

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

564 S.-C. Mu

Fig. 14. The main derivation for the activity-selection problem.

lemma mutex◦subseq-is-fold helps turning mutex ◦ subseq into a fold by fold fusion.

The fold uses a step relation S = outr � (cons ◦ compatible ¿), adding a new activity

to a list only if they are compatible.

The relation S is not monotonic on �l – it is not always good to pick as many

activities as possible, since some of them may be incompatible with activities to

appear later. A typical strategy is to pick a relation stronger than �l . Let activity a

be post-compatible to xs if a not only is compatible with all activities in xs but also

finishes later than them:

post-compatible : Act ← List Act

post-compatible a xs = fin-ubound (a , xs)× compatible (a , xs).

We define the ordering �:

xs � ys = xs <l ys �
(xs ≡l ys × ∀ a → post-compatible a xs → post-compatible a ys),

where xs <l ys if the length of xs is strictly smaller than that of ys , and xs ≡l ys

if they are equally long. Intuitively speaking, a list of activities ys is considered as

good as xs under � if one of the two conditions holds. Possibly, ys contains strictly

more activities than xs , since even if the next activity is in conflict with ys , it still

has at least as many activities as a ::xs . Alternatively, ys and xs have the same size,

but any activity that can be added to xs can also be added to ys .

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 565

Fig. 15. A counterexample to the unconstrained monotonicity condition.

The definition of � can also be written in point-free style as

� : List Act ← List Act

� = <l � (≡l � (post-compatible\post-compatible)).

Clearly, � is a subset of �l , proved by the lemma �-refines-�l : � � �l . In the

second step of the derivation, lemma max -mono allows us to refine max R to max S

if S � R.

To apply the greedy theorem, we have to prove the monotonicity condition

S ◦ (idR � �) � � ◦ S , which can be expanded to

∀ ys zs a xs →
xs � ys × (zs ≡ xs � (zs ≡ a :: xs × compatible (a , xs)) →

zs � ys � (zs � a :: ys × compatible (a , ys)).

⎫⎬
⎭ (1)

However, this is not true in general. For a counterexample, consider ys = (3, 8) ::

(0, 2) :: [], xs = (1, 4) :: [] and a = (4, 5), as shown in Figure 15. We have xs � ys

because ys contains more activities. Pick zs = a :: xs . In the last line of (1), a is not

compatible with ys . However, a :: xs � ys is not true either, since b = (7, 8), for

example, can be safely added to a ::xs but not to ys . It thus appears that we cannot

safely drop xs .

In the context of our specification, this is a situation that should not have

happened: we have required that the input list be sorted by finish time; thus a

cannot finish earlier than the latest activity in ys . Such information is lost in the

monotonicity condition. Note that it does not help to use a partial cons that builds

sorted lists only. It would put restrictions between a and xs (indeed, a :: xs in

Figure 15 is sorted), but we need constraints on a and ys .

Many papers on program derivation take an informal approach when it comes

to partiality of input. One would be allowed, rightfully, to informally convince the

readers in words that (1) ‘is true because the input is sorted,’ because the reader need

not know every detail. When it is Agda that we are trying to convince, however, one

cannot get away with sloppiness. Agda keeps us honest.

To remedy the situation, it appears to be the right time to switch to indexed lists

and make our derived program dependently typed as well. One could, for example,

index the lists of activities with their finishing times. In our initial experiments,

however, we found it harder than expected to mix indexed datatypes with this

point-free style of program construction and would defer it to a possible future

work.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

566 S.-C. Mu

Instead, we proved a variation of the greedy theorem taking partiality into account:

partial -greedy-thm : {A B : Set}{S : B ← (A× B)}{s : � B}{R : B ← B} →
{C : (A× List A)← (A× List A)}{D : (A× B)← (A× B)} →

R ◦ R � R → C � idR → D � idR →
S ◦ (idR � R) ◦ D � R ◦ S → (idR � foldR S s) ◦ C � D ◦ (idR � foldR S s)→

foldR (max R 1◦ ΛS) (Λ(max R) s) ◦ check C

� (max R 1◦ Λ(foldR S s)) ◦ check C .

Comparing with the original theorem, the new ingredients include two coreflexive

relations C and D (and preconditions C � idR and D � idR , stating that they are

indeed coreflexive). The argument (idR � foldR S s) ◦C � D ◦ (idR � foldR S s) will

be explained later.

The new monotonicity condition demanded by partial -greedy-thm is S ◦ (idR �

R) ◦ D � R ◦ S . It is easier to see the roles of C and D if we instantiate the new

monotonicity condition to the activity-selection problem,

monotonicity :

((outr � (cons ◦ compatible ¿)) ◦ fin-ubound ¿) ◦ (idR � �) ◦ fin-ubound ¿ �
� ◦ (outr � (cons ◦ compatible ¿)) ◦ fin-ubound ¿,

which expands to

∀ ys zs a xs → (zs ≡ xs � (zs ≡ a :: xs × compatible (a , xs)) ×
fin-ubound (a , xs) × xs � ys × fin-ubound (a , ys) →

(zs � ys � (zs � a :: ys × compatible (a , ys)))× fin-ubound (a , ys).

We pick the step relation S to be (outr � (cons ◦ compatible ¿)) ◦ fin-ubound ¿. The

coreflexive relation D is instantiated to fin-ubound ¿, checking that a does finish

before all activities in ys . The coreflexive relation C , on the other hand, is a variation

of D that can be checked before fold S s . The condition (idR � foldR S s) ◦ C �
D ◦(idR �foldR S s) basically says that checking C before the fold guarantees that D

holds after the fold. For the activity-selection problem, we pick C to be fin-ubound ¿

as well.

Finally, the input is filtered by check C (definition given in Figure 12), which

checks that C holds for every tail of the input list. For the activity-selection problem,

check C equals fin-ordered .

Back to the derivation. In step 3, fin-ubound -promotion combines several lemmas

that use properties of coreflexive relations to promote fin-ubound into the fold. We

are then ready to use the partial greedy theorem in step 4, with the monotonicity

condition given above.

Steps 5–7 refine the argument of foldR to a function, using the fact that max � 1◦
Λ(outr � (cons ◦ compatible ¿)) can be refined to the function compat-cons , defined by

compat-cons : Act → List Act → List Act

compat-cons a [] = a :: []

compat-cons a (x :: xs) with finish x �? start a

. . . | yes = a :: x :: xs

. . . | no = x :: xs ,

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 567

where �? compares its two arguments and returns either yes or no, which is

pattern matched by the with construct. While with (McBride & McKinna 2004) is

an important construct that refines types in the context as well as the value being

inspected, for this example, it functions like a case expression in a typical functional

language.

Finally in step 8, the relational fold can be refined into a functional foldr , using

the following lemma foldR-to-foldr:

foldR-to-foldr : {A B : Set} → (f : A→ B → B)→ (e : B)→
foldR (fun (uncurry f)) (singleton e) � fun (foldr f e).

We have thus derived an algorithm for the activity-selection problem: foldr compat-

cons []. The actual derivation consists of about 550 lines of Agda code.

6 Unfolds and hylomorphism

While many algorithms can be expressed as folds, there are cases in which we

need general recursion. It is folklore knowledge that general recursion can be

expressed as a hylomorphism (Meijer et al. 1991): a fold after an unfold. The

unfolding phase expands a data structure corresponding to the call tree of the

general recursive function one wants to define, while the folding phase eliminates

the tree and processes the results from the recursive calls. The intermediate data

structure can be removed through a process called deforestation (Wadler 1990). It is

such a fundamental transformation that people in the program derivation community

sometimes do not distinguish the deforested program and the hylomorphic program

with the intermediate tree. Hylomorphism is definable, provided that inductive types

and coinductive types coincide. This also introduces potential non-termination,

and a semantics based on sets and total functions no longer suffices. The usual

solution is to move to a semantics, using complete partial orders and continuous

functions.

However, many hylomorphic algorithms we intend to construct do terminate. For

this type of program derivation, it is preferable to stay within a simple semantics,

using sets and total functions. Indeed, Bird & de Moor (1997) used exclusively folds

on inductive types. The ‘unfolding’ phase of a hylomorphism is modelled using

relational converse of a fold. Successive seeds in the unfolding phase are related by

a well-founded relation; that is there exists no infinitely descending chain; therefore

the unfolding must eventually terminate. Termination also guarantees uniqueness of

solution; therefore terminating general recursion gives valid definitions (Doornbos &

Backhouse 1996). A theory relating well-foundedness, induction and termination has

been thoroughly studied by Doornbos & Backhouse (1995, 1996). For the rest of

the paper, when we say ‘unfold’ we refer to converse of a relational fold on

an inductive type or its functional refinement, rather than unfold for coinductive

types.

The next question is how to model the theory in a dependently typed programming

language. Like many such languages, Agda distinguishes between inductive and

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

568 S.-C. Mu

coinductive types. For inductively defined functions, Agda deploys a termination

check based on structural recursion. Agda knows, for example, that foldr terminates

because the argument xs passed to the recursive call is a substructure of x :: xs .

Consider, however, the typical algorithm computing the greatest common divisor

by mutually subtracting the two given numbers. We need some extra mechanisms

to convince Agda, which recognises only structural recursion, that the subtracted

number does get ‘smaller’.

In the next few sections we will demonstrate how to encode user-defined notions

of order and well-foundedness into the structure-based termination check of Agda.

To derive an algorithm using unfold, the programmer proceeds with the derivation

in the relational setting and provides a proof of termination in the last step when

the converse of a fold is eventually refined to a functional unfold.

6.1 Well-founded recursion and inductivity

The notion of well-founded relation has deep root in mathematics. This section

attempts to build a connection to theories in relational program construction. For

a type theoretical view, the readers are referred to Nordström (1988) and the like.

More references are given in Section 7.

Recall, as explained in Section 4.4, that R\S is the largest relation such that

R ◦ R\S is still contained in S . The monotype factor is a related notion defined on

sets.5 Given a relation R : B ← A and a subset s of B , R -\s is the largest set such

that when the domain of R is restricted to R -\s , its range is still in s:

-\ : {A B : Set} → (B ← A)→ � B → � A

(R -\s) a = ∀ b → R b a → s b.

A relation R : A← A is said to be inductive 6 if for all s : � A,

R -\s ⊆ s ⇒ A ⊆ s , (2)

where A is the set of all elements having type A.

One of the ways to understand (2) is to expand the definitions of -\ , ⊆ and

⇒ :

(∀ a → (∀ b → R b a → s b)→ s a)→ (∀ a → s a).

It is the principle of strong induction: if given proofs of s b for all b’s that are

‘smaller than’ a with respect to R, one may prove s a , then s holds for all a ’s. An

inductive relation, as the name suggests, is one that we may use to perform strong

induction with. (It is different from an ‘inductively defined relation’.) Doornbos &

Backhouse (1995, 1996) showed that inductivity is the notion that captures program

termination.

5 To be more precise, ¡(R-\s) = R\(¡s), where ¡ : � A → (A←
) is the isomorphism between sets of A
and relations from
 to A.

6 Bird & de Moor (1997) gave a definition of inductivity using \ , which is shown by Doornbos (1996)
to be equivalent to the definition here.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 569

How do we model inductivity in Agda? Another way to look at (2) is that it

demands the set of all A’s to be the least fixed point of the function (λX → R -\X).

To create a least fixed point, naturally, we use a data declaration:

data Acc {A : Set}(R : A← A) : A→ Set where

acc : (R -\Acc R) ⊆ Acc R.

Therefore, acc is a proof that (R -\Acc R) ⊆ Acc R. A relation R is inductive if

for every x : A, we can prove Acc R x .

However, if we expand the definition of Acc,

data Acc {A : Set}(� : A← A) : A→ Set where

acc : ∀ x → (∀ y → y � x → Acc � y)→ Acc � x ,

then this is exactly the definition of accessibility described by, for example, Nordström

(1988). Consider a strict partial order � on a set A. For all minimal x in A, since

there exists no y such that y � x , the proposition (∀ y → y � x → Acc � y) is

satisfied, and we can thus construct proofs for Acc � x . We can then construct

Acc � x1 for x1 whose predecessors are all such minimal x ’s and so on. Having

a proof of Acc � xn means that if we follow a descending chain xn � xn−1 �

xn−2. . . , it has to stop at some base case – a property usually referred to as

well-foundedness.

Note that every incomparable element is trivially accessible. If the relation � is

empty, all elements are accessible because they are all minimal.

The datatype Acc echoes the observation of Bird & de Moor (1997) that inductivity

and well-foundedness are equivalent concepts in the category of sets and relations.

As stated before, a relation R is inductive, or well founded, if every x : A is in

Acc R:

well -found : {A : Set} → (A← A)→ Set

well -found R = ∀ x → Acc R x .

Remark: Doornbos & Backhouse (1995, 1996) generalised inductivity to arbitrary

F-functors and called it F-reductivity. In Agda, however, we find it easier to construct

membership relations (see the next section) than to parameterise Acc with a functor.

Also, they defined ‘F-well-foundedness to be ‘having a unique solution’, which they

proved to be strictly weaker than F-reductivity.

6.2 Example: ‘Less-than is well founded

Recall the definitions of �, � and < in Figure 2, where the base case �-refl

states that � is reflexive, while the recursive case �-step concludes m � suc n

from a proof of m � n . The less-than relation is defined in terms of � :

< : �←�
m < n = suc m � n

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

570 S.-C. Mu

One can show that < is well founded:

�<-wf : well -found <

�<-wf n = acc n (access n)

where access : (n : �)→ ∀ m → m < n → Acc < m

access zero m ()

access .(suc m) m �-refl = acc m (access m)

access (suc n) m (�-step m<n) = access n m m<n .

The main work is done in the auxiliary function access , whose job, given a fixed n ,

is to construct an accessibility proof for all m that is smaller than n . In the case in

which n is zero, there can be no proof of m < n . The pair of parentheses () in the

first base case, the absurd pattern, is Agda’s syntax stating that the type m < zero

is empty; therefore, this case could not happen in any well-typed program (Goguen

et al. 2006).

The next two cases deal with non-zero n . For the case of �-step m<n , the proof

is deconstructed and passed to the recursive call. We keep doing so until we reach

the base case �-refl. For an operational explanation, the proof shows that we can

always reach m from n in a finite number of steps by going through the proof of

m < n . Hence the name ‘accessibility’.

When we finally reach the base case �-refl, n is unified with suc m . The ‘dot

pattern’ indicates that the only possible value of the first argument is suc m .

For this case we shall return a proof of Acc < m , which we do by returning

a constructor acc. The second argument to acc shall be a function having type

∀ k → k < m → Acc < k , which we can construct by calling access m .

6.3 Hylomorphism in Agda

Now we are able to discuss how terminating unfolds and hylomorphisms can be

defined for a given inductive type. Typically, the generating function in an unfold

takes a seed of type B and returns an FB -structure, where F is the base functor of

the generated datatype. As an example, consider the datatype for internally labelled

binary tree, defined in Figure 16. Unfold for Tree takes a generating function that

given an element of B , returns a structure of type
� (A×B ×B). For first-ordered

B , we can define a membership relation that extracts the B -typed new seeds in the

returned structure. For Tree, we define:

ε-TreeF : {A B : Set} → (B ← (
 � (A× B × B)))

ε-TreeF (inj1) = ⊥
ε-TreeF (inj2 (a , b1, b2)) b = (b1 ≡ b) � (b2 ≡ b).

Both Bird & de Moor (1997) and Doornbos & Backhouse (1995, 1996) showed

that unfolding a tree using a relation R : (
 � (A × B × B))← B terminates if

ε-TreeF ◦ R is inductive, which means that one cannot repeatedly apply R to the

new seeds forever. This can be verified by constructing the following variation of tree

unfold which, apart from a generating function f and a seed b, takes an additional

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 571

Fig. 16. Internally labelled binary tree and its fold. For clarity we pretend that foldt is

universe polymorphic.

argument stating that b is accessible under the relation ε-TreeF ◦ fun f :

unfoldt-acc : {A B : Set} → (f : B →
� (A× B × B))→
(b : B)→ Acc (ε-TreeF ◦ fun f) b → Tree A

unfoldt-acc f b (acc .b h) with f b

. . . | inj1 = Null

. . . | inj2 (a , b1, b2) =

Fork a (unfoldt-acc f b1 (h b1 (inj2 (a , b1, b2), inj1 ≡-refl, ≡-refl)))

(unfoldt-acc f b2 (h b2 (inj2 (a , b1, b2), inj2 ≡-refl, ≡-refl))).

This is a special case of Bove & Capretta’s (2005) approach of encoding general

recursion in type theory. Apart from the third argument, unfoldt-acc is just like an

ordinary unfold in a functional language that allows general recursion. In the two

recursive calls, accessibility of b1 and b2 is obtained by applying h . The argument

(inj2 (a , b1, b2), inj1 ≡-refl, ≡-refl) is simply a proof of (ε-TreeF ◦ fun f) b1 b: that

b1 is one of the new seeds generated by f b = inj2 (a , b1, b2). This definition passes

the termination check because application of h is considered structurally smaller

than acc b h . The accessibility proof is a structure of a finite depth; therefore the

unfolding must terminate.

Now we can define unfoldt:

unfoldt : {A B : Set} → (f : B →
� (A× B × B))→
well -found (ε-TreeF ◦ fun f)→ B → Tree A

unfoldt f wf b = unfoldt-acc f b (wf b).

To generate a tree using unfoldt , one supplies a generating function f , a seed s and

a proof wf of well-foundedness: that all values in the domain of f are accessible.

6.4 New accessibility from old

It is rather tedious, however, having to give a proof of accessibility from scratch

every time. Doornbos & Backhouse (1996) suggested a methodology to construct

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

572 S.-C. Mu

new accessibility arguments from old ones. The following two lemmas will be

particularly useful for us. The first lemma states that if x is accessible under S , it is

also accessible under its sub-relation:

acc-� : {A : Set}{R S : A← A} → R � S → Acc S ⊆ Acc R

acc-� {A}{R} R�S x (acc .x h) = acc x access

where access : (y : A)→ R y x → Acc R y

access y yRx = acc-� R�S y (h y (R�S y x yRx)).

For example, given the following function pred , we may use unfoldt to generate a

full binary tree counting down from the given seed, provided that we can prove the

well-foundedness of ε-TreeF ◦ fun pred :

pred : �→
� (�×�×�)

pred zero = inj1 tt

pred (suc n) = inj2 (n , n , n).

Rather than having it proven from scratch, recall that we have shown in the

previous section that < is well founded. If we can prove that

pred�< : (ε-TreeF ◦ fun pred) � < ,

which simplifies to pred n ≡ inj2(m , m1, m2) × (k ≡ m1 � k ≡ m2) → k < n , that is

both seeds n1 and n2 returned by pred are smaller than the input n , we can conclude

that ε-TreeF ◦fun pred is well founded. The proof is trivial. We may then call unfoldt

as follows:

down : �→ Tree �
down = unfoldt pred (λx → acc-� pred�< x (�<-wf x)).

Assume that R is the relation mapping the current seed x to the next seed x ′. The

next lemma corresponds to the typical proof of termination, using a bound function

f and proving that f x ′ is strictly smaller than f x with respect to some ordering

that is known to be well founded. That is the lemma establishes the well-foundedness

of R, given the well-foundedness of fun f ◦ R ◦ (fun f) ˘:

acc-fRf ˘ : {A B : Set}{R : A← A}{f : A→ B} →
(x : A)→ Acc (fun f ◦ R ◦ (fun f) ˘) (f x)→ Acc R x

acc-fRf ˘ {A}{B}{R}{f } x (acc . h) = acc x access

where access : (y : A)→ R y x → Acc R y

access y yRx = acc-fRf ˘ y (h (f y) (y , ≡-refl, (x , yRx , ≡-refl))).

We will see an example in the next section.

6.5 Example: Deriving quicksort

For an example deriving a hylomorphism, let us see a derivation of quicksort,

adopted from Bird (1996). The hylomorphism unfolds a binary search tree by

pivoting from the input list, before flattening it to produce the sorted list. Deforesting

the hylomorphism yields the familiar algorithm for quicksort. It is worth noting that

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 573

sorting via a binary search tree is the original example of structural recursion in

Burstall (1969).

6.5.1 Specifying sort

We first specify what a sorted list is, assuming a datatype Val and a binary ordering

� : Val→ Val→ Set that form a decidable total order. To begin with, let lbound

be the set of all pairs (a , xs) such that a is a lower bound of xs:

lbound : � (Val× List Val)

lbound (a , xs) = all (λb → a � b) xs

The coreflexive relation ordered?, which lets a list go through if and only if it is

sorted, can then be defined by

ordered? : List Val← List Val

ordered? = check (lbound ¿),

where check is defined in Figure 12.

We postulate a type Bag, representing bags of values that are formed by two

postulated functions �� : Bag and ::b : Val → Bag → Bag. We demand that

the result of ::b be distinguishable from the empty bag and that ::b be com-

mutative:7

::b-nonempty : ∀ {a w} → (�� ≡ a ::b w)→ ⊥
::b-commute : (a b : Val)→ (w : Bag)→ a ::b (b ::b w) ≡ b ::b (a ::b w).

The function bagify , defined below, converts a list to a bag by a fold:

bagify : List Val→ Bag

bagify = foldr ::b ��.

To map a list to one of its arbitrary permutations, we simply convert it to a bag

and convert the bag back to a list. To sort a list is to find one of its permutations

that is sorted:

permute : List Val← List Val

permute = (fun bagify) ˘ ◦ fun bagify ,

sort : List Val← List Val

sort = ordered? ◦ permute.

Thus the specification is complete, from which we shall derive an algorithm that

actually sorts a list.

6.5.2 The derivation

The main derivation is shown in Figure 17, while some of the lemmas needed

are summarised in Figure 18. The first step we do is to introduce an idR between

7 The presentation here is simplified. In fact we postulated another equality for bags as well as its
congruence and substitution rules. The details, however, are not relevant here.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

574 S.-C. Mu

Fig. 17. The main derivation for quicksort.

Fig. 18. Some lemmas used in the derivation of quicksort.

ordered? and permute, which is then split into fun flatten ◦ (fun flatten) ˘ in step 2,

using fun-simple. The lemma fun-simple is one of the properties that characterises a

function: a function maps an input to at most one output; therefore fun f ◦ (fun f) ˘

must map a value to itself. The function flatten is defined as a fold:

flatten : {A : Set} → Tree A→ List A

flatten = foldt join [],

where join (a , xs , ys) = xs ++ (a :: ys). Combinators �-mono, .. and • , are

packaged applications of monotonicity and associativity. We need not go into their

details here.

In step 3, ordflatten is used to transform the test of sortedness on lists to a test

on trees. The coreflexive relation ordtree? is defined as a fold:

ordtree? : Tree Val← Tree Val

ordtree? = foldT (fork ◦ okt ¿) null ,

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 575

where fork = fun (λ(a , t , u) → Fork a t u); null = singleton Null; and okt is a

predicate on (Val× Tree Val× Tree Val) defined by

okt (a , t , u) = (∀ a ′ → ε-Tree a ′ t → a ′ � a) ×
(∀ a ′ → ε-Tree a ′ u → a � a ′),

where ε-Tree : A← Tree A, relating a tree to one of its elements, can be defined

using foldT .

The sub-proof refine-converses in step 4 uses properties of converses and core-

flexive relations to group (permute ◦ fun flatten) ◦ ordtree? together. This relation

restricts its domain to trees that are ordered, flattens the tree and maps the resulting

list to one of its permutations. Since ordtree? is a fold, we apply foldT -fusion-� in

step 5 to fuse them into a single foldT :

foldT (permute ◦ fun join ◦ okl ¿) nil . (3)

The fusion conditions fuse1 and fuse2 are given in Figure 18. The predicate okl

is similar to okt but is defined on lists. Given a tuple (a , xs , ys), the relation

permute ◦ fun join ◦ okl ¿ checks whether a is no less than all elements in xs and no

larger than all elements in ys and returns a permutation of xs ++ (a :: ys).

Define the function partition as follows:

partition : List Val→ (
 � (Val× List Val× List Val))

partition [] = inj1 tt

partition (x :: xs) = inj2 (x , split x xs),

where the function call split x xs splits the list xs into those that are smaller than

or equal to x and those that are larger than x ,

split : Val→ List Val→ (List Val× List Val)

split x [] = ([], [])

split x (y :: xs) with split x xs

. . . | (ys , zs) with y �? x

. . . | yes = (y :: ys , zs)

. . . | no = (ys , y :: zs).

It is possible to show that both arguments to foldT can be expressed in terms of

partition:

part1 : (fun partition) ˘ ◦ fun inj2 � permute ◦ fun join ◦ okl ¿

part2 : (λb → isInj1 (partition b)) ⊆ nil ,

where isInj1 x = x ≡ inj1 tt . Therefore, (3) can be refined to

foldT ((fun partition) ˘ ◦ fun inj2) (λb → isInj1 (partition b)),

as is done in step 6, using foldT -monotonic.

Now the specification has been transformed into a fold followed by the converse

of another fold, using a functional argument partition . The following lemma, applied

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

576 S.-C. Mu

in step 7, allows one to refine it to a functional unfold:

foldT -to-unfoldt : {A B : Set} → (f : B →
� (A× B × B))→
(wf : well -found (ε-TreeF ◦ fun f))→

(foldT ((fun f) ˘ ◦ (fun inj2)) (λb → isInj (f b))) ˘ � fun (unfoldt f wf).

The proof of foldT -to-unfoldt , which merely states that the right-hand side fun

(unfoldt f wf) always returns a result allowed by the left-hand side, is not hard and

is omitted here.

With the theories developed in Section 6.4, we do not have to prove the well-

foundedness for partition from scratch. We notice that the sub-lists returned by

partition must have lengths strictly smaller than the input list:

partition�< : fun length ◦ (ε-TreeF ◦ fun partition) ◦ (fun length) ˘ � < .

Given that < is well founded, the well-foundedness of fun length ◦ (ε-TreeF ◦
fun partition)◦ (fun length) ˘ can be established by acc-�, from which we may prove,

by acc-fRf ˘, the well-foundedness of ε-TreeF ◦ fun partition:

partition-wf : well -found (ε-TreeF ◦ fun partition)

partition-wf xs = acc-fRf ˘ xs

(acc-� partition�< (length xs) (�<-wf (length xs))).

The folding and unfolding phases are merged by the lemma fun◦-� in step 8. We

have thus derived quicksort expressed as a hylomorphism. The complete derivation

takes about 500 lines of code.

7 Conclusion and related work

We have shown how to encode relational program derivation in a dependently

typed language. Derivation is carried out in the host language, the correctness being

guaranteed by the type system. Various concepts often used in relational program

derivation, including relational folds, division and minimum, can be modelled with

dependent types. We have presented several non-trivial derivations, including an

optimisation problem, and a relational derivation of quicksort, where well-founded

recursion is used to prove the termination of the unfolding phase in a hylomorphism.

There is plenty of scope for future work. As many readers and the referees pointed

out, while we encode the derivations in a dependently typed programming language,

the programs we derive remain non-dependently typed. It would be interesting to

see whether indexed datatypes go well with point-free programs so that partiality

of functions, currently represented using coreflexive relations in Section 5, can be

encoded in the datatype. All the program derivations we have dealt with handle

first-order data. It also remains to see whether it is sufficient for most cases.

McKinna & Burstall’s (1993) paper on ‘deliverables’ is an early example of

machine-checked program + proof construction (using Pollack’s LEGO). In their

terminology sort-der would be a deliverable – an element of a dependent Σ-type,

pairing up a function and a proof of correctness. In the Coq tradition program

extraction has been used already from Paulin-Mohring’s (1989) early paper for

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 577

the impressive four-colour theorem development, including the development of a

verified compiler (Leroy 2006). Our contribution is more modest – we aim at formally

checked but still readable algebra-of-programming style derivations.

The concept of inductive families (Dybjer 1994), especially the identity type (≡),

is central to the Agda system and to our derivations. A recent development of

relations in dependent type theory was carried out by Gonzalı́a (2006, Chapter 5).

The advances in Agda’s notation and support for hidden arguments between that

derivation and our work is striking.

There has been a trend in recent years to bridge the gap between dependent types

and practical programming. Projects along this line include Cayenne (Augustsson

1998), Coq (Coq Development Team 2006), Dependent ML (Xi 2007), Agda (Norell

2007), Ωmega (Sheard 2007), Epigram (McBride & McKinna 2004) and the GADT

extension (Cheney & Hinze 2003) to Haskell. It is believed that dependent types

have an important role in the next generation of programming languages (Sweeney

2006).

The concept of well-foundedness has long been developed in recursive function

theory. In computing science, Floyd (1967) proposed the use of well-ordering in

programming language semantics (See Cousot 1990 for a tutorial). More recently,

Megacz (2007) gave a nice survey of several alternative approaches to code termi-

nating programs in a dependently typed language with inductive and coinductive

types.

Acknowledgments

We are grateful to Nils Anders Danielsson and Peter Dybjer for giving valuable

technical and presentational suggestions and pointing us to a number of useful

references. We would also like to thank the anonymous referees for suggesting

plenty of improvements on the paper. This project was inspired by some initial

experiments conducted by Max Schäfer.

References

Agda Team, The. (2007) The Agda wiki [online]. Available at: http://wiki.portal.

chalmers.se/agda/ (Accessed 3 July 2009).

Augustsson, L. (1998) Cayenne – a language with dependent types. In ACM SIGPLAN

International Conference on Functional Programming, Felleisen, M., Hudak, P. & Queinnec,

C. (eds), ACM Press, pp. 239–250.

Augustsson, L. (1999) Equality proofs in Cayenne [online]. Available at: http://www.cs.

chalmers.se/~augustss/cayenne/eqproof.ps (Accessed 3 July 2009).

Backhouse, R. C. (2002) Galois connections and fixed point calculus. In Algebraic and

Coalgebraic Methods in the Mathematics of Program Construction, Backhouse, R. C., Crole,

R. & Gibbons, J. (eds), LNCS, no. 2297. Springer, pp. 89–148.

Backhouse, R. C. & Hoogendijk, P. F. (1992) Elements of a relational theory of datatypes.

In Formal Program Development, Möller, B., Partsch, H. A. & Schuman, S. A. (eds), LNCS,

no. 755. Springer, pp. 7–42.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

578 S.-C. Mu

Backhouse, R. C., de Bruin, P. J., Malcolm, G., Voermans, E. & van der Woude, J.

(1991) Relational catamorphisms. In IFIP TC2/WG2.1 Working Conference on Constructing

Programs, Möller, B. (eds), Elsevier, pp. 287–318.

Bird, R. S. (1989a) Algebraic identities for program calculation, Comp. J., 32 (2): 122–126.

Bird, R. S. (1989b) Lectures on constructive functional programming. In Constructive Methods

in Computing Science, Broy, M. (ed), NATO ASI Series F, vol. 55. Springer, pp. 151–216.

Bird, R. S. (1996) Functional algorithm design, Sci. Comp. Program., 26: 15–31.

Bird, R. S. & de Moor, O. (1997) Algebra of Programming, International Series in Computer

Science. Prentice Hall.

Bove, A. & Capretta, V. (2005) Modelling general recursion in type theory, Math. Struct.

Comp. Sci., 15 (4): 671–708.

Brady, E., McBride, C. & McKinna, J. (2003) Inductive families need not store their indices.

In Types for Proofs and Programs, Berardi, S., Coppo, M. & Damiani, F. (eds), LNCS,

vol. 3085. Springer, pp. 115–129.

Burstall, R. M. (1969) Proving properties of programs by structural induction, Comp. J., 12

(1): 41–48.

Cheney, J. & Hinze, R. (2003) First-Class Phantom Types, Technical Report TR2003-1901.

Cornell University.

Coq Development Team, The. (2006) The Coq Proof Assistant Reference Manual. LogiCal

Project.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2001) Introduction to Algorithms.

MIT Press.

Cousot, P. (1990) Method and logics for proving programs. In Formal Models and Semantics,

van Leeuwen, J. (ed), Handbook of Theoretical Computer Science, vol. B. Elsevier,

pp. 843–993.

Danielsson, N. A., Norell, U., Mu, S-C., Bronson, S., Doel, D., Jansson, P. & Chen, L-T.

(2009) The Agda standard library [online]. Available at: http://wiki.portal.chalmers.

se/agda/pmwiki.php?n=Libraries.StandardLibrary (Accessed 3 July 2009).

Doornbos, H. (1996) Reductivity Arguments and Program Construction, PhD thesis. Eindhoven

University of Technology.

Doornbos, H. & Backhouse, R. C. (1995) Induction and recursion on datatypes.

In Mathematics of Program Construction 1995, LNCS, vol. 947. Springer, pp. 242–256.

Doornbos, H. & Backhouse, R. C. (1996) Reductivity, Sci. Comp. Program., 26: 217–236.

Dybjer, P. (1994) Inductive families, Formal Aspects Comput., 6 (4): 440–465.

Dybjer, P. & Setzer, A. (1999) A finite axiomatization of inductive-recursive definitions.

In TLCA’99, Girard, J.-Y. (ed), LNCS, vol. 1581. Springer, pp. 129–146.

Floyd, R. W. (1967) Assigning meanings to programs. In Mathematical Aspects of Computer

Science, Schwartz, J. T. (ed), Proceedings of Symposia in Applied Mathematics, vol. 19.

American Mathematical Society, pp. 19–32.

Goguen, H., McBride, C. & McKinna, J. (2006) Eliminating dependent pattern matching. In

Algebra, Meaning, and Computation, Futatsugi, K., Jouannaud, J.-P. & Meseguer, J. (eds),

LNCS, vol. 4060. Springer, pp 521–540.

Gonzalı́a, C. (2006) Relations in Dependent Type Theory, PhD thesis. Chalmers University of

Technology.

Gries, D. (1989) The maximum-segment-sum problem. In Formal Development Programs and

Proofs, Dijkstra, E. W. (ed), University of Texas at Austin Year of Programming Series.

Addison-Wesley, pp. 33–36.

Harper, R. & Pollack, R. (1991) Type checking with universes, Theoret. Comp. Sci., 89 (1):

107–136.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

Algebra of programming in Agda 579

Leroy, X. (2006) Formal certification of a compiler back-end, or: programming a compiler

with a proof assistant. In The 33th Symposium on Principles of Programming Languages.

ACM Press, pp. 42–54.

Magnusson, L. & Nordström, B. (1994) The ALF proof editor and its proof engine.

In Proceedings of the International Workshop on Types for Proofs and Programs. Springer,

LNCS 806, pp. 213–237.

McBride, C. & McKinna, J. (2004) The view from the left, J. Funct. Program., 14 (1): 69–111.

McKinna, J. & Burstall, R. M. (1993) Deliverables: A categorical approach to program

development in type theory. In International Symposium on Mathematical Foundations of

Computer Science, Borzyszkowski, A. M. & Sokolowski, S. (eds), Springer, LNCS no. 711,

pp. 32–67.

Megacz, A. (2007) A coinductive monad for prop-bounded recursion. In Proceedings of the

ACM Workshop Programming Languages meets Program Verification, Stump, A. & Xi, H.

(eds). ACM Press, pp. 11–20.

Meijer, E., Fokkinga, M. & Paterson, R. (1991) Functional programming with bananas, lenses,

envelopes, and barbed wire. In ACM Conference on Functional Programming Languages and

Computer Architecture, Hughes, J. (ed), Springer-Verlag, pp. 124–144.

Mu, S-C. (2008) Maximum segment sum is back: deriving algorithms for two segment

problems with bounded lengths. In ACM SIGPLAN 2008 Symposium on Partial Evaluation

and Program Manipulation. ACM Press, pp. 31–39.

Mu, S.-C. & Bird, R. S. (2003) Theory and applications of inverting functions as folds, Sci.

Comp. Program., 51: 87–116.

Mu, S-C., Ko, H-S. & Jansson, P. (2008a) Algebra of programming using dependent types.

In Mathematics of Program Construction 2008, Audebaud, P. & Paulin-Mohring, C. (eds),

Springer, LNCS 5133, pp. 268–283.

Mu, S-C., Ko, H-S. & Jansson, P. (2008b) AoPA: Algebra of programming in Agda [online].

Available at: http://www.iis.sinica.edu.tw/~scm/2008/aopa/ (Accessed 3 July 2009).

Nordström, B. (1988) Terminating general recursion, BIT Numer. Math., 28 (3): 605–619.

Norell, U. (2007) Towards a Practical Programming Language Based on Dependent Type

Theory, PhD thesis. Chalmers University of Technology.

Paulin-Mohring, C. (1989) Extracting Fω ’s programs from proofs in the Calculus of

Constructions. In Symposium on Principles of Programming Languages. ACM.

Sheard, T. & Linger, N. (2008) Central European Functional Programming School. In

Programming in Ωmega, Horváth, Z., Plasmeijer, R., Soós, A. & Zsók, V. (eds), Springer-

Verlag, LNCS no. 5161, pp. 158–227.

Sweeney, T. (2006) The next mainstream programming language: A game developer’s

perspective. In Symposium on Principles of Programming Languages , Charleston, SC,

Jan. 11–13.

Tarski, A. (1955) A lattice-theoretic fixpoint theorem and its applications, Pacific. Math., 5:

285–309.

Wadler, P. (1990) Deforestation: Transforming programs to eliminate trees, Theoret. Comp.

Sci., 73: 231–248.

Xi, H. (2007) Dependent ML: An approach to practical programming with dependent types,

J. Funct. Program., 17 (2): 215–286.

https://doi.org/10.1017/S0956796809007345 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007345

