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1. Introduction

Let R be a commutative ring with identity, and let X be a smooth algebraic stack over
R. We will mostly be interested in the case when R = k is a field and X = BG is the

classifying stack of a linear algebraic k -group G . (Note that BG is always smooth over

k , even if G is not.) We denote by �X /R the de Rham complex of abelian sheaves on the
big étale site of X :

0 → OX → �1
X /R → �2

X /R → ··· .

By definition, the de Rham cohomology H ∗
dR(X /R) of X is the hypercohomology of �X /R;

see [21, §1].
Let p be a prime number, let R = Fp be a field of p elements and let G be a finite

discrete group. In [21, Lemma 10.2], B. Totaro produced a canonical isomorphism of

graded rings

H ∗
dR(BG/Fp)

∼−→ H ∗
sing(BG;Fp) = H ∗(G,Fp), (1.1)

where the ring on the right is group cohomology. (The identification of the singular

cohomology of BG with the group cohomology of G is classical.)
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Let G be a split connected reductive group over Z. Assume that p is not a torsion prime
for G ; that is, the p-torsion subgroup of H ∗

sing(BG(C);Z) is trivial, where we regard G(C)

as a complex Lie group. Totaro showed in [21, Theorem 9.2] that H ∗
dR(BG/Fp) is a

polynomial ring on generators of degrees equal to two times the fundamental degrees of
G . As a consequence, he obtained an isomorphism

H ∗
dR(BG/Fp) ∼= H ∗

sing(BG(C);Fp). (1.2)

When p is a torsion prime for G , it is an interesting problem to compute the ring

H ∗
dR(BG/Fp) and to see whether (1.2) is still valid for G . For example, when p = 2,

Totaro showed in [21, Theorem 11.1] that

H ∗
dR(B O2r /F2) = F2[u1,u2, . . . ,u2r ],

H ∗
dR(B O2r+1 /F2) = F2[v1,c1,u2,u3, . . . ,u2r ]/(v2

1 ), (1.3)

H ∗
dR(B SOn /F2) = F2[u2,u3, . . . ,un ],

where |ui | = i for every i , |v1| = 1 and |c1| = 2. In particular, when p = 2, (1.2) holds for
G = O2r , SOn , but not for G = O2r+1. (In characteristic 2, O2r is disconnected, whereas
O2r+1 = SO2r+1 ×μ2 is connected.) Moreover, he proved in [21, Theorem 12.1] that (1.2)

fails for p = 2 and G = Spin11.

In [18], E. Primozic computed H ∗
dR(BG/F2) when G is the split group of type G2 and

when G = Spinn for n ≤ 11. In the examples considered by him, with the exception of

Spin11, (1.2) always holds. Primozic then asked whether Steenrod operations on the de

Rham cohomology of smooth stacks over Fp may be defined and whether they agree with

the topological Steenrod operations on H ∗
sing(BG(C);Fp), when X = BG and (1.2) holds.

In the present work, we adapt a construction of R. Drury [7] to define the Steenrod

p-power operations on H ∗
dR(X /k) for a smooth algebraic stack X over a field k of

characteristic p. Drury’s work fits in the setting of J. P. May [12]. Presumably, one
could also proceed by extending the work of D. Epstein [9] to hypercohomology functors.

We summarise the properties that we have been able to establish in Theorem 1.1. When

k is perfect, we write W2(k) for the ring of Witt vectors of length 2 with coefficients in k .

Theorem 1.1. Let p be a prime number, let k be a field of characteristic p and let X be

a smooth algebraic stack over k . Then, for all i ∈ Z, we have group homomorphisms

Sqi : H ∗
dR(X /k) → H ∗+i

dR (X /k)

when p = 2 and

Pi : H ∗
dR(X /k) → H ∗+2(p−1)i

dR (X /k), β Pi : H ∗
dR(X /k) → H ∗+2(p−1)i+1

dR (X /k)

when p > 2. These homomorphisms are natural in X (i.e., they commute with pullbacks

along 1-morphisms of k -stacks) and satisfy the following properties.

(i) For every n ≥ 0 and every x ∈ H n
dR(X /k), we have

Sqi(x ) =
{
x 2 if i = n,

0 if i > n,
Pi(x ) =

{
xp if 2i = n,

0 if 2i > n,

when p = 2 and p > 2, respectively.
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(ii) The (internal) Cartan formulas of [12, (1) p. 165] hold.

(iii) The Ádem relations of [12, Theorem 4.7] hold.

(iv) Assume that X = [Y /G ], where Y is a smooth quasiprojective k -scheme and G is
a linear algebraic k -group. Then, for all i < 0, we have

Sqi = 0 (p = 2), Pi = 0 (p > 2)

in H ∗
dR(X /k). Moreover, P0 and Sq0 factor as

H ∗
dR(X /k) → H ∗(X ,OX ) → H ∗(X ,OX ) → H ∗

dR(X /k),

where the first map is an edge homomorphism in the Hodge spectral sequence, the second

map is induced by the Frobenius endomorphism of OX and the third map is an edge

homomorphism in the conjugate spectral sequence.
(v) Assume that k is perfect and that X = X̃ ×W2(k) k , where X̃ is a smooth algebraic

W2(k)-stack of finite type and with affine diagonal. Let ι : X ↪→ X̃ denote the canonical

closed embedding. Then there is a Bockstein homomorphism

β : H ∗
dR(X /k) → H ∗+1

dR (X /k),

defined as the connecting map of the hypercohomology long exact sequence associated to

0 → ι∗�X /k → �X̃ /W2(k) → ι∗�X /k → 0.

The homomorphism β is a derivation in the graded sense, and for all i ∈ Z we have

β ◦Sqi = i ·Sqi+1 (p = 2), β Pi = β ◦Pi (p > 2).

Note that a Bockstein homomorphism does not exist in Epstein’s generality (see [9,

§7.1]), and it is not automatically defined in May’s setting. Our definition of β is inspired
by the one given by Totaro during the proof of [21, Theorem 11.1] in Hodge cohomology. In

order to prove that β satisfies the properties of (v), one must make a connection between

the definition of β and the definition of the Sqi and Pi . To achieve this, we first define
a Bockstein β̌ that fits in May’s setting, and thus automatically satisfies the properties

at the end of (v), and then show that β = β̌. Our alternative construction appears to be

new even in the case of smooth projective k -varieties. (If X is a separated scheme over a

ring R, the diagonal X → X ×R X is a closed embedding, hence affine.)
In (iv), there is no loss of generality in assuming that G = GLn for some n ≥ 0.
In [12], the Cartan formulas and Ádem relations are written with homological indexing;

see [12, §5] for the changes required to pass to cohomology. Properties (i), (ii) and (iii)
have been proved by Drury for the hypercohomology of a commutative differential graded

Fp-algebra on a topological space. Drury’s proof immediately generalises to topoi with

sufficiently many points, and in particular to the big étale topos of X . The most difficult
part of the proof of Theorem 1.1 consists of establishing properties (iv) and (v).

Our second result is the following computation of the Steenrod operations for classifying

stacks of linear algebraic groups. We denote by Sq and P the total Steenrod square and
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the total Steenrod power, respectively. By definition, for all x ∈ H ∗
dR(X /k), we have

Sq(x ) =
∑
i∈Z

Sqi(x ) (p = 2), P(x ) =
∑
i∈Z

Pi(x ) (p > 2).

Note that by Theorem 1.1(i) the sums contain only finitely many nonzero terms.

Theorem 1.2. Let p be a prime number, and let G be a linear algebraic group over Fp .

(a) If G is finite and discrete, then the isomorphism (1.1) is compatible with the
Steenrod operations and the Bockstein homomorphisms.

(b) If G is split reductive and p is not a torsion prime for G, then β = 0 and the

Steenrod operations on H ∗
dR(BG/Fp) are trivial; that is, for all x ∈ H ∗

dR(BG/Fp) we

have

Sq(x ) = x2 (p = 2), P(x ) = xp (p > 2).

(c) Assume that p = 2. The Steenrod operations on H ∗
dR(B On /F2) for n ≥ 1, and on

H ∗
dR(B SOn /F2) for n ≥ 3, are nontrivial. More precisely, we have

Sq(u2a) = u2
2a, Sq(u2a+1) = u2

2a+1 +u4a+1 +
2a−1∑
t=0

u2a−tu2a+1+t .

Here ui := 0 for i = 0 and i > 2r , and in the case of SOn we set u1 := 0. Moreover,

β(u2a) = u2a+1 +u1u2a, β(u2a+1) = u1u2a+1.

In the case of O2r+1, we also have

Sq(c1) = c2
1, β(c1) = 0, Sq(v1) = 0, β(v1) = c1.

In algebraic topology Steenrod operations are never trivial, because Sq0 and P0 are

equal to the identity. Thus, (b) stands in stark contrast to its topological counterpart. In
general, the triviality of the Steenrod operations on the de Rham cohomology is related

to subtle arithmetic information; see Remark 6.6.

Because SO2 ∼= Gm, the condition n ≥ 3 in (c) is necessary. In (c), the only interesting
nontrivial operation on u2a+1 is Sq2a . The expression for Sq2a(u2a+1) has the same form

as Wu’s formula for the topological Sq2a applied to the Stiefel–Whitney class w2a+1.

As the computations of Totaro and Primozic show, (1.2) may hold even if p is a torsion

prime for G . Theorem 1.2 shows that, even though the fact that 2 is a torsion prime for
SOn is not detected by the failure of (1.2), it is detected by the existence of nontrivial

Steenrod operations.

We now give a brief description of the content of each section. In Section 2, we recall
the definition of May’s category C(p), the Steenrod operations associated to objects of

C(p) and Drury’s construction of the Steenrod operations on the hypercohomology of

a sheaf of commutative differential graded Fp-algebras A. In Section 3, we first prove
the naturality of the operations with respect to morphisms of topoi. Then, we assume

that A is concentrated in degree 0, and we compare Drury’s setting to that of Epstein.

As a consequence, we obtain in Proposition 3.5 that negative Steenrod operations on
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the cohomology of A are zero and that P0 and Sq0 are induced by the Frobenius

endomorphism of A. In Section 4, we return to the case of an arbitrary commutative
differential graded algebra A. We give a way to compute Steenrod operations using Čech

cohomology; see Proposition 4.9. In Section 5, we prove that we may approximate the de

Rham cohomology of quotient stacks X as in Theorem 1.1(iv) by smooth schemes; that
is, for all d ≥ 0 we construct a morphism Zd → X such that Zd is a smooth k -scheme

of finite type and the pullback H ∗
dR(X /k) → H ∗

dR(Zd/k) is injective in degrees ≤ d . In
Section 6, we define Steenrod operations on de Rham cohomology of stacks. We then

prove Theorem 1.2(iv) by using the results of Section 5 to reduce to the case of smooth
schemes and then conclude in that case by combining the crystalline Poincaré lemma with

Section 3. In Proposition 6.10, we prove Theorem 1.1(v) using the results of Section 4.

Finally, in Section 7 we combine the work of the previous sections with some explicit
calculations to prove Theorem 1.2.

Notation. Let A be an additive category. A cochain complex A in A is an increasing

sequence of objects and homomorphisms

· · · → Ai−1 di−1−−→ Ai di−→ Ai+1 → ···
in A, such that d i ◦d i−1 = 0 for all integers i . If A is abelian, we denote by H ∗(A) the

cohomology of A: H i(A) := Kerd i/ Imd i−1. If A,B ∈ A, we denote by Hom(A,B) the
group of homomorphisms from A to B in A.

If A is a simplicial or cosimplicial object of A, we denote by K (A) and KN (A) the

unnormalised and normalised cochain complexes associated to A, respectively; see [20,
Tags 0194, 019D, 019H]. When A is a simplicial object, K (A) and KN (A) are nonpositively

graded, and when A is a cosimplicial object, they are nonnegatively graded.

A double complex A inA is a cochain complex in the category of cochain complexes ofA.
(In particular, the squares in a double complex are commutative, not anticommutative.)

If A is a double complex, we denote by Tot(A) the associated total complex

Tot(A)n :=
⊕
i∈Z

Ai,n−i, dn(a) := dv (a)+ (−1)n−idh(a),

where |a| = (i,n − i), dv : Ai,n−i → Ai,n−i+1 is the vertical differential and dh : Ai,n−i →
Ai+1,n−i is the horizontal differential.

Let R be a commutative ring with identity, let G be a finite group and let A be the

category of R-modules with left G-action; that is, the category of R[G ]-modules. If M and
N are R[G ]-modules, we view the group of endomorphisms HomR(M ,N ) and M ⊗R N as

R[G ]-modules in the usual way, and we let HomR[G](M ,N ) and M ⊗R[G]N be the module

of G-equivariant homomorphisms and the tensor product of M and N as R[G ]-modules,
respectively. If A and B are cochain complexes of R[G ]-modules, we define the cochain

complex of R[G ]-modules HomR(A,B) by

Homn
R(A,B) :=

∏
i∈Z

HomR(Ai,Bn+i), dn(f ) :=
∏
i∈Z

(d i+n
B ◦ f i + (−1)n+1f i+1 ◦d i

A).
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We define the complex of R-modules HomR[G](A,B) in a similar way. Furthermore, we
define their tensor product A⊗R B by

(A⊗R B)n :=
⊕
i∈Z

Ai ⊗R Bn−i, dn(f ) :=
⊕
i∈Z

(d i
A ⊗ idn−i

B +(−1)n(idi
A ⊗dn−i

B )).

We define A ⊗R[G] B in a similar way. The signs are chosen so that, for all cochain

complexes A,B,C of R[G ]-modules, the canonical adjunction

� : HomR[G](A, HomR(B,C ))
∼−→ HomR[G](A⊗R B,C )

is given by the sign-free formula

�n(f k+l )(a ⊗ b) = (f k (a))l (b), |f | = n,|a| = k,|b| = l .

We will sometimes combine the adjunction formula with the switch isomorphism

τ : A⊗R B ∼−→ B ⊗R A, τ (a ⊗ b) = (−1)kl (b ⊗a), |a| = k,|b| = l .

Let T be a topos, and let Set be the set topos (also called point topos). We have a
morphism of topoi (e∗,e−1) : T → Set , where e∗ = �(T ,−) := Hom(e,−), where e is a

terminal object of T and e−1 is the constant sheaf functor. When writing a morphism of

topoi, we do not explicitly mention the adjuction between pullback and pushforward.
Let M and N be left R[G ]-modules on T (here we view T as a topos ringed by the

constant ring object associated to R[G ]). We denote by HomR(M ,N ) and M ⊗R N the

sheaf of homomorphisms and the sheaf tensor product, respectively; see [3, IV, Proposition
12.1, Proposition 12.7] for the definition. It immediately follows from the definition that

�(T ,HomR(M ,N )) = HomR(M ,N ). If A and B are complexes of R-modules on T , we

define the R[G ]-modules HomR(A,B) and A⊗R B on T as in the case of R[G ]-modules

(on Set). It easily follows from the definition that �(T ,HomR(A,B)) = HomR(A,B). We
will be mostly interested in the case when A is constant, in which case our definition

agrees with [7, Definition 3.2.1].

By definition, a homotopy associative differential graded R-algebra is a cochain complex
(C,d) of R-modules, where C i = 0 for i < 0, together with a homomorphism of complexes

m : C ⊗C → C such that

d(a · b) = d(a) · b + (−1)|a |a ·d(b),

for all homogeneous a and b, where x ·y := m(x ⊗y), and the diagram

C ⊗C ⊗C C ⊗C

C ⊗C C

m⊗id

id⊗m

m

m

is homotopy commutative. A (two-sided) homotopy identity for C is an element u ∈ C 0

such that the homomorphisms C → C of left and right multiplication by u are homotopic

to the identity.
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2. Steenrod operations on sheaf cohomology

We start by recalling the part of the setup of May [12] that is relevant to us. In [12, §2],
the definitions are given with applications to homology in mind, and in [12, §5] how to

change the indexing when dealing with cohomology is explained. We give the definitions

directly in the cohomological setting.
Let R be a commutative ring with identity, let p be a prime number, let 	p be the

symmetric group on p letters and let π be the cyclic subgroup of 	p generated by some

α ∈ 	p of order p. Let ε : W (p,R) → R be the R[π ]-free resolution of R defined as follows.
For every i ≥ 0, we let W (p,R)i = W (p,R)−i be R[π ]-free on one generator ei . Define

N ,T ∈ R[π ] by the formulas

N := 1+α +·· ·+αp−1, T := α −1.

We define a differential d and the augmentation by the formulas

d(e2i+1) := Te2i, d(e2i+2) := Ne2i+1, ε(αj e0) := 1

for all i,j ≥ 0.
We also let V be a R[	p ]-free resolution of R such that V i = 0 for all i > 0. In particular,

V is a R[π ]-free resolution of R; hence, by [20, Tag 0649] there exists a homomorphism

j : W (p,R) → V of R[π ]-complexes that commutes with the augmentations maps.

2.1. The category C(p)

Following [12, Definitions 2.1], we define a category C(p,R) as follows. The objects of
C(p,R) are pairs (K,θ), where K is a homotopy associative differential graded R-algebra,

π acts trivially on K and on K⊗p by cyclic permutations of the factors and θ : W (p,R)⊗
K⊗p → K is a homomorphism of R[π ]-complexes such that

(i) the restriction of θ to (Re0)⊗K⊗p ∼= K⊗p is R-homotopic to the iterated product

K⊗p → K (associated in some order) and

(ii) there exists a homomorphism φ : V ⊗K⊗p → K of R[	p ]-complexes such that θ is

R[π ]-homotopic to the composition

W (p,R)⊗K⊗p j⊗1−−→ V ⊗K⊗p φ−→ K .

Note that (ii) does not depend on the choice of V or j . A morphism f : (K1,θ1) → (K2,θ2)

in C(p,R) is defined as a homomorphism of R-complexes g : K1 → K2 such that the

diagram

W (p,R)⊗K⊗p
1 K1

W (p,R)⊗K⊗p
2 K2

id⊗g⊗p

θ1

g

θ2

is R[π ]-homotopy commutative. We write

C(p) := C(p,Z/pZ), W := W (p,Z/pZ).
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Let i : R⊗p ∼−→ R be the isomorphism a1 ⊗·· ·⊗ ap 
→ a1 · · ·ap . Note that (R,ε ⊗ i) is an
object of C(p,R). We say that (K,θ) ∈ C(p,R) is unital if K has a two-sided homotopy

identity u such that the homomorphism R → K given by 1 
→ u is a morphism in C(p,R).

If R → S is a ring homomorphism and (K,θ) is an object of C(p,R), the pair (K ⊗R

S,θ ⊗R idS ) defines an object of C(p,S ). We say that (K,θ) ∈ C(p) is reduced if there
exists an object (K̃,θ̃ ) ∈ C(p,Z/p2

Z) whose reduction modulo p is isomorphic to (K,θ)

and such that K̃ is flat over Z/p2
Z. If (K,θ) is reduced, tensorisation by K̃ of the short

exact sequence 0 → Z/pZ → Z/p2
Z → Z/pZ → 0 gives rise to a short exact sequence of

cochain complexes

0 → K → K̃ → K → 0,

where K̃ → K is the natural projection. The associated connecting map

β : H ∗(K ) → H ∗+1(K )

is called a Bockstein homomorphism or, more precisely, the Bockstein homomorphism
associated to (K̃,θ̃ ). (Simple examples show that β really depends on the choice of (K̃,θ̃ ).)

2.2. The Steenrod operations

Given a prime p and an object (K,θ) of C(p), May constructs mod p Steenrod operations
on H ∗(K ) as follows; see [12, Definitions 2.2]. The homomorphism θ induces a map

θ∗ : H ∗(W ⊗Fp [π ] K⊗p) → H ∗(K ).

Let q,i ≥ 0 be integers, and let x ∈ H q(K ). Define

Di(x ) := θ∗(ei ⊗ x⊗p) ∈ H pq−i(K ).

It is checked in [12, p. 161] (using homological indexing) that this construction does not
depend on the choice of representative of x . If i < 0, we set Di equal to zero. When p > 2,
for every integer n we let

ν(n) := (−1)n(n−1)(p−1)/4((p −1)/2)! .

The mod p Steenrod operations on H ∗(K ) are defined by the following formulas:

– If p = 2, Sqs(x ) := Dq−s(x ) ∈ H q+s(K );

– If p > 2, Ps(x ) := (−1)sν(−q)D(q−2s)(p−1)(x ) ∈ H q+2s(p−1)(K ); and β Ps(x ) :=
(−1)sν(−q)D(q−2s)(p−1)−1(x ) ∈ H q+2s(p−1)+1(K ).

One then extends the definitions on arbitrary elements of H ∗(K ) by linearity. Note that

this defines Steenrod operations Sqs and Ps for every integer s. However, for every

x ∈ H ∗(K ) at most finitely many operations are nonzero on x . For every x ∈ H ∗(K ),
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we define

Sq(x ) :=
∑
s

Sqs(x ), P(x ) :=
∑
s

Ps(x ).

There is not a construction of a Bockstein homomorphism β on H ∗(K ) taking as input

an arbitrary (K,θ). In particular, the expression βP s appearing in the definition is a

single symbol and not a composition.

Lemma 2.1. Let (K,θ) be a reduced object of C(p), and let β : H ∗(K ) → H ∗+1(K ) be a
Bockstein homomorphism. Then β satisfies the following properties:

(i) It is a derivation in the graded sense: for every two homogeneous elements a,b of

H ∗(K ), we have

β(a · b) = β(a) · b + (−1)|a |a ·β(b).

(ii) When p = 2, we have β ◦Sqs = s ·Sqs+1 for all s ∈Z. When p > 2, we have β Ps = β ◦Ps

for all s ∈ Z.

Proof. (i) This follows from the definition of β as a connecting homomorphism, together
with the fact that the differential of K̃ is a derivation in the graded sense.

(ii) This is proved in [12, Proposition 2.3(v), Corollary 2.5].

Let (K ′,θ ′) be another object of C(p), and let f : K → K ′ be a homomorphism of

complexes. If f is a morphism in C(p), then the induced homomorphism f∗ : H ∗(K ) →
H ∗(K ′) respects Steenrod operations.

Remark 2.2. If K is associative and θ = ε ⊗mp , where mp : K⊗p → K is the p-fold
iterated product, then (K,θ) is an object of C(p). Moreover, it immediately follows from
the definition that the pth-power Steenrod operations on H ∗(K ) are trivial; that is, for

all x ∈ H ∗(K ) we have Sq(x ) = x2 (if p = 2) or P(x ) = xp (if p > 2).

2.3. Operations on sheaf cohomology

We now review the construction of the Steenrod operations on sheaf cohomology given by

Drury in [7]. Let p be a prime number, let T be a topos with sufficiently many points1 and
let (A,d) be a commutative differential graded Fp-algebra on T . We denote by H

∗(T ,A)

the hypercohomology of A; that is, H∗(T ,A) := H ∗(�(T ,I )), where A → I is an injective

resolution of Fp-vector spaces on T . We denote by m : A⊗A → A the multiplication map.
Let ν : A → I be an injective resolution of A in the category of Fp-vector spaces on T .

By [20, Tag 013K], we may choose the resolution to be standard : ν is a monomorphism

in every degree, and I i = 0 for i < 0.
Because we are working over a field, for every r ≥ 2 the r -fold tensor product ν⊗r :

A⊗r → I ⊗r is a monomorphism in every degree and a quasi-isomorphism; see [7, Lemma

3.2.16]. Here we use the fact that T has sufficiently many points, because then exactness

1Drury works in the context of sheaves on a topological space. As we will see, his definitions
and arguments easily adapt to topoi with sufficiently many points.
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may be checked on stalks. By [20, Tag 013P], there exists m̃ : I ⊗ I → I making the

following diagram commute:

A⊗A A

I ⊗ I I

ν⊗ν

m

ν

m̃

.

By [20, Tag 013S], m̃ is unique up to homotopy.

We define K := �(T ,I ), with differential induced by that of I . We define a homomor-

phism M : K ⊗K → K in degree n ≥ 0 as the composition

⊕q�(T ,I q)⊗�(T ,I n−q) → �(T , ⊕q (I q ⊗ I n−q))
�(m̃)−−−→ �(T ,I n).

For every a,b ≥ 0, we have a cup product given by the composition

∪ : H a(K )⊗H b(K ) → H a+b(K ⊗K )
Ha+b (M )−−−−−−→ H a+b(K ).

By [7, Lemma 5.1.3], the product M : K ⊗K → K makes K into a homotopy associative
differential graded Fp-algebra, and the induced cup product ∪ : H ∗(K )⊗H ∗(K ) → H ∗(K )

is graded commutative and associative.

The natural map

A = Hom
Fp (e−1

Fp,A) → Hom
Fp (e−1W ,I )

is an Fp [π ]-resolution by Fp [π ]-injective objects; see [9, Corollary 4.3.4] for the case when

A is concentrated in degree 0 and [7, Lemma 3.2.21] for the general case. It follows that

there exists a commutative diagram of π -equivariant maps

A⊗p A

I ⊗p Hom
Fp (e−1W ,I ).

ν⊗p

mp

m̃p

(2.1)

The map m̃p is unique up to a π -equivariant homotopy. Passing to global sections, we
obtain an Fp [π ]-homomorphism

�(T ,I )⊗p → �(T ,I ⊗p)
�(m̃p )−−−→ �(T ,Hom

Fp (e−1W ,I )) = Hom
Fp (W ,�(T ,I )),

where the last equality is the projection formula [3, IV, Proposition 10.3]. By the tensor-
hom adjunction, this is equivalent to a π -equivariant homomorphism

θ : W ⊗�(T ,I )⊗p → �(T ,I ).

By [7, Lemmas 5.3.1 and 5.3.2], the pair (K,θ) satisfies the properties (i) and (ii) of
Section 2.1 and so is an object in May’s category C(p). We thus obtain Steenrod operations

on H
∗(T ,A). It is straightforward to verify that the operations do not depend on the choice

of ν : A → I , m̃ and m̃p .
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Proposition 2.3. Let T be a topos with sufficiently many points, and let A be
commutative differential graded Fp-algebra on T .

(i) For every n ≥ 0 and every x ∈ H
∗(T ,A), we have

Sqi(x ) =
{
x 2 if i = n,

0 if i > n,
Pi(x ) =

{
xp if 2i = n,

0 if 2i > n,

when p = 2 and p > 2, respectively.
(ii) The (internal) Cartan formulas of [12, (1) p. 165] hold.

(iii) The Ádem relations of [12, Theorem 4.7] hold.

Proof. Property (i) holds for the Steenrod operations on H ∗(K ), for every object (K,θ) ∈
C(p), as is easily seen by unwinding the definitions of Sqi and Pi .

Let now (K,θ) ∈ C(p) be an object associated to A by the construction above. By [7,
Lemma 5.3.3, Lemma 5.3.4], (K,θ) is a Cartan object and an Ádem object. We refer

the reader to [12, Definition 2.1, Definition 4.1] for the definition of Cartan and Ádem

objects. It now follows from [12, (1) p. 165, Theorem 4.7] that (ii) and (iii) are also
satisfied.

Remark 2.4. Let u ∈ I 0 be the image of the multiplicative identity of A. Then u is a

homotopy identity for �(T ,I ), and the homomorphism Fp → I given by 1 
→ u induces a
morphism (Fp,ε⊗i) → (�(T ,I ),θ) in C(p). Thus, (�(T ,I ),θ) is unital. By [12, Proposition

3.1(iii)], if we let 1 ∈ H ∗(K ) denote the multiplicative unit, we have Sq(1) = 1 and P(1) = 1.

3. General properties

In this section, we establish properties of the Steenrod operations on H
∗(T ,A) that hold

in wide generality. In later sections, we will restrict our attention to the case when T is
the big étale site of a smooth algebraic stack X over a field of positive characteristic and

A is the de Rham complex of X .

3.1. Functoriality

Let f = (f∗,f −1) : T ′ → T be a morphism of topoi. Let (A′,d ′) and (A,d) be commu-

tative differential graded Fp-algebras on T ′ and on T , respectively. Then f −1A is a

commutative differential graded Fp-algebra over T ; see [3, IV, 3.1.2]. Let f −1A → A′
be a homomorphism of commutative differential graded Fp-algebras on T . There is a

induced homomorphism

H
∗(T ,A) → H

∗(T ′,A′), (3.1)

which is constructed as follows. Let A → I and A′ → I ′ be standard injective resolutions

of Fp-vector spaces on T . Because f −1 is exact, f −1A → f −1I is a quasi-isomorphism. By
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[20, Tag 013P], there exists a morphism f −1I → I ′ making the square

f −1A A′

f −1I I ′

commute. By adjunction, we get a map I → f∗(I ′), and taking global sections yields (3.1).

It is easy to check that (3.1) does not depend on the choice of resolutions I ,I ′ and of the
map f −1I → I ′.

Lemma 3.1. The homomorphism (3.1) is compatible with Steenrod operations.

Proof. There is a canonical 	r -equivariant isomorphism f −1(A⊗r )
∼−→ (f −1A)⊗r for every

r ≥ 2; see [3, Proposition 13.4(c)]. It follows that for every r ≥ 2 we have a commutative
	r -equivariant diagram

f −1A⊗r f −1A

(A′)⊗r A′,

where the horizontal maps are the r -fold multiplication maps. Denote by (e ′∗,(e ′)−1) :
T ′ → Set the global sections morphism for T ′. We obtain a diagram of π -equivariant
homomorphisms

f −1I ⊗p f −1Hom
Fp (e−1W ,I )

f −1A⊗p f −1A

(A′)⊗p A′

(I ′)⊗p Hom
Fp ((e ′)−1W ,I ′)

where each of the five inner squares is commutative. To construct the left and right

squares, apply [20, Tag 013P]. The bottom square is (2.1) for A′, and the top square

is the pullback of (2.1) for A. Thus, because f −1 is exact, the four diagonal arrows are

π -equivariant quasi-isomorphisms. We deduce that the outer square is commutative in
the derived category of π -equivariant Fp-vector spaces on T . Because every term of

Hom
Fp ((e ′)−1W ,I ′) is injective, by [20, Tag 05TG] the outer square is π -homotopy

commutative. Using the adjunction between f −1 and f∗, we obtain a π -homotopy
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commutative diagram

I ⊗p Hom
Fp (e−1W ,I )

f∗((I ′)⊗p) f∗Hom
Fp ((e ′)−1W ,I ′).

We thus get a diagram

�(T ,I )⊗p �(T ,I ⊗p) Hom
Fp (W ,�(T ,I ))

�(T ′,I ′)⊗p �(T ′,(I ′)⊗p) Hom
Fp (W ,�(T ′,I ′)),

where the square on the left is π -equivariantly commutative and the square on the right

is obtained by taking global sections in the square above and using the projection formula

[3, IV, Proposition 10.3], and so it is π -homotopy commutative. Using the tensor-hom
adjunction on the outer rectangle in the previous diagram, we deduce that the square

W ⊗�(T ,I )⊗p �(T ,I )

W ⊗�(T ′,I ′)⊗p �(T ′,I ′)

θ

θ ′

is π -homotopy commutative. This means that (3.1) gives a morphism in C(p), and so it

is compatible with Steenrod operations.

Remark 3.2. Consider the special case when A′ = f −1A. We have a commutative square

H
∗(T ,A) H

∗(T ′,f −1A)

H
∗(T ,f∗f −1A) H

∗(T ,Rf∗f −1A),

�

where the top horizontal map is (3.1), the vertical map on the left is induced by the unit

A → f∗f −1A and the bottom horizontal map is induced by the natural map f∗f −1A →
Rf∗f −1A. The vertical isomorphism on the right is obtained using the fact that f∗ respects

injectives. The proof is a simple exercise in homological algebra; we leave it to the reader.

This diagram will be used during the proof of Proposition 6.1.

3.2. The case when A is concentrated in degree 0
Let T be a topos, and let q = (q∗,q−1) be a point of T ; that is, a morphism from the set

topos Set to T ; see [3, IV, Définition 6.1]. If E is a set, q∗E is called a skyscraper sheaf;

see [20, Tag 00Y9].
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Lemma 3.3. Let k be a field, and let F = ∏
j∈J qj∗Vj , where J is a set and, for every

j ∈ J , Vj is a k -vector space and qj is a point of T . Then F is an injective object of the

category of sheaves of k -vector spaces on T .

Note that, in Lemma 3.3, J is allowed to be infinite, and the Vj may be infinite-

dimensional over k .

Proof. If {Fj }j∈J is a collection of sheaves of injective k -vector spaces on T , then
∏

j Fj

is also injectve. Therefore, it suffices to show that qj∗Vj is injective for every j ∈ J . In
the category of k -vector spaces, every object is injective. Note that qj∗ is a right adjoint
even when viewed as a functor between the associated ringed topoi of k -vector spaces;

see [3, IV, Proposition 13.4]. It follows that each qj∗ preserves injective objects, and the

conclusion follows.

Assume now that T has sufficiently many points, and let {qi }i∈I be a conservative

family of points of T ; see [20, Tag 00YK]. Let k be a field. There is an endofunctor of the
category of k -vector spaces on T given on objects V by

S (V ) :=
∏
i∈I

qi∗q−1
i V

and defined in an obvious way on morphisms. Iterating S , for every k -vector space V
on T we obtain a cosimplicial k -vector space S ∗(V ); see [9, 8.1.4]. By definition, the

degree i component S i (V ) of S ∗(V ) is given by iteratively applying S on V i +1 times.
Applying the associated (nonnormalised) cochain complex functor K (−), we get a quasi-

isomorphism V → K (S ∗V ). By Lemma 3.3, every term of K (S ∗V ) is injective, and so

V → K (S ∗V ) is an injective resolution of k -vector spaces on T . It may be helpful for the
reader to note that this is a special case of [9, Theorem 8.1.5].

Let now k = Fp , and let A be an Fp-algebra on T . In [9, (8.3.2)], a π -equivariant map

K (S ∗A)⊗p → Hom(e−1W ,K (S ∗A)) (3.2)

is constructed. We will need the details of the construction of (3.2) during the proof of
Lemma 3.4. We have a sequence of π -equivariant cochain maps

W (p,Z) → Hom(∇k,t) → Hom(K (S ∗A)⊗p,K ((S ∗A)⊗p) (3.3)

→ Hom(K (S ∗A)⊗p),K (S ∗A)),

defined as follows:

– The first map (from left to right) is the composition of two homomorphisms � :
W (p,Z) → Hom(∇k,t) and � : Hom(∇k,t) → Hom(∇k,t), both defined in [9, p.
217].2

– The second map is induced from the composition EAM̂ of the functors M̂ and EA,
as defined in [9, p. 193]. That this is a homomorphism of complexes is checked in

[9, p. 194].

2In [9, p. 217], W (p,Z) is denoted by W. The complex Hom(∇k,t) is defined in [8, 3.1], where
it is denoted by Hom(∇k,t).
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– The multiplication map A⊗p → A induces a cosimplicial map S ∗(A⊗p) → S ∗A,
and hence a cochain map K ((S ∗A)⊗p) → K (S ∗A). Consider the cosimplicial

map (S ∗A)⊗p → S ∗(A⊗p) given by [9, Lemma 8.2.3] and the induced cochain

map K (S ∗A)⊗p → K (S ∗(A⊗p)). The third map is induced by the composition

K (S ∗A)⊗p → K (S ∗(A⊗p)) → K (S ∗A).

Because A is p-torsion, (3.3) factors through the projection W (p,Z) → W . Using the
adjunction between e∗ and e−1 and the tensor-hom adjunction, we get the following

canonical isomorphisms:

Hom(W ,Hom(K (S ∗A)⊗p,K (S ∗A))) = Hom(e−1W ,Hom(K (S ∗A)⊗p,K (S ∗A)))

= Hom(e−1W ⊗K (S ∗A)⊗p,K (S ∗A)) (3.4)

= Hom(K (S ∗A)⊗p,Hom(e−1W ,K (S ∗A))).

We define (3.2) to be the image of (3.3) under this chain of isomorphisms.

On the other hand, applying (2.1) with I = K (S ∗A), we have another homomorphism

K (S ∗A)⊗p → Hom(e−1W ,K (S ∗A)). (3.5)

Lemma 3.4. The homomorphisms (3.2) and (3.5) are homotopic.

Proof. We construct the following commutative diagram of π -equivariant maps:

W (p,Z)0 Hom(∇k,t) Hom(K (S ∗A)⊗p,K ((S ∗A)⊗p)) Hom(K (S ∗A)⊗p,K (S ∗A))

Hom(A⊗p,A⊗p) Hom(A⊗p,A)

Z Hom((∇k)0,t0) Hom(S (A)⊗p,S (A)⊗p) Hom(S (A)⊗p,S (A)).

ε

∼

Here, the top row is obtained by applying the functor Z 0(−) of 0-cocycles to (3.3).

If C1 and C2 are cochain complexes in an additive category A, there is a natural map

Hom(C1,C2) → Hom((C1)
0,(C2)

0).

Moreover, if A is abelian, this map factors as

Hom(C1,C2) → Hom(Z 0(C1),Z 0(C2)) → Hom((C1)
0,(C2)

0).

All of these homomorphisms are contravariantly functorial in C1 and covariantly
functorial in C2. This is how the square on the left and the two squares on the right

are constructed. The pentagon of solid arrows in the center is induced by the functor

EAM̂ . This completes the construction of the solid arrows in the previous diagram.
We have (∇k)0 = t0 = M (0, . . . ,0) (see [8, End of p. 213] for the notation), and the

bottom map Z → Hom((∇k)0,t0) sends 1 to the identity. Hence, the composition Z →
Hom(S (A)⊗p,S (A)⊗p) sends 1 to the identity. Because id ∈ Hom(A⊗p,A⊗p) is π -invariant,
we obtain the dashed arrow.

The composition η : Z → Hom(A⊗p,A) of the bottom row sends 1 to the p-fold
multiplication map mp : A⊗p → A. Because A is p-torsion, the composition of the top
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row factors through W0 and Z → Hom(A⊗p,A) factors through Fp . This proves that the
square of π -equivariant maps

W0 Hom(K (S ∗A)⊗p,K (S ∗A))

Fp Hom(A⊗p,A)

ε

η

is commutative. We have adjunction isomorphisms

Hom(Fp,Hom(A⊗p,A)) = Hom(e−1
Fp,Hom(A⊗p,A))

= Hom(e−1
Fp ⊗A⊗p,A)

= Hom(A⊗p,Hom(e−1
Fp,A)),

which are compatible with those of (3.4). Applying the adjunctions to the above square,

we get a commutative square of π -equivariant homomorphisms

K (S ∗A)⊗p Hom(e−1W ,K (S ∗A))

A⊗p A,
mp

where the top horizontal map is (3.2), the left vertical map is a monomorphism in every

degree and a quasi-isomorphism and the right vertical map is a π -injective resolution.

By definition, the map (3.5) fits in a square (2.1) of the same form. The conclusion now
follows from [20, Tag 013S].

Proposition 3.5. Let A be an Fp-algebra on T .

(a) All negative Steenrod operations on H
∗(T ,A) are zero.

(b) The operations Sq0 and P0 are induced by the Frobenius endomorphism A → A.

Proof. (a) It suffices to show that Di(x ) = 0 for every x ∈ H q(K (S ∗A)) and every i >

q(p −1) (i ≥ (q +2)(p −1) would be sufficient). Let x ∈ H q(K (S ∗A)).

By definition, ��(ei) ∈ ∏
j Hom((∇k)j ,ti+j ); thus,

��(ei)q
′ ∈ Hom((∇k)q ′,ti+q ′) = Hom(M (q ′, . . . ,q ′), ⊕∑

ih=i+q ′ M (i1, . . . ,ip)).

Now, EAM̂ and the multiplication A⊗p → A induce a homomorphism

f i,q ′
: Hom(M (q ′, . . . ,q ′), ⊕∑

ih=i+q ′ M (i1, . . . ,ip)) → Hom((K (S ∗A)⊗p)i+q ′
,S q ′

A).

By Lemma 3.4,

θ∗(ei ⊗ x⊗p) = (f i,q ′
(��(ei)q

′
))(x⊗p),

where i + q ′ = pq ; that is, q ′ = pq − i . It thus suffices to prove that ��(ei )q
′ = 0, where

q ′ = pq − i . By [8, Theorem 5.1.2], this holds when i > q ′(p − 1). This is equivalent to

i > (pq − i)(p −1); that is, i > q(p −1), which is true by assumption.
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(b) As in Section 2.1, in the case p �= 2, for every integer n we let

ν(n) := (−1)n(n−1)(p−1)/4((p −1)/2)! .

Note that (((p − 1)/2)!)2 ≡ (−1)(p+1)/2(mod p), and so ν(n)ν(−n) ≡ 1(mod p). By
definition, P0(x ) = ν(−q)Dq(p−1)(x ) when p > 2, and Sq0(x ) = Dq(x ) when p = 2.
Assume that p > 2. Let

f (q)q := ��(eq(p−1))
q : M (q, . . . ,q) → ⊕∑

ih=pqM (i1, . . . ,ip).

By [8, Theorem 5.1.2], all of the components of f (q)q are zero, except M (q, . . . ,q) →
M (q, . . . ,q), which is given by multiplication by an integer congruent to ν(q) modulo p.
It follows that

Dq(p−1)(x ) = θ∗(eq(p−1) ⊗ x⊗p) = ν(q)S q(p−1)(m⊗p)(x⊗p) = ν(q)S q(p−1)(Fr)(x )

for every x ∈ H q(K ). Here Fr : A → A denotes the Frobenius endomorphism of A. In the
last step, we have used the fact that Fr = m⊗p ◦ i , where i : A → A⊗p is defined on sections

by a 
→ a⊗p . Therefore,

P0(x ) = ν(−q)Dq(p−1)(x ) = ν(−q)ν(q)S q(p−1)(Fr)(x ) = S q(p−1)(Fr)(x ),

as desired. A similar argument (with no sign issues) works when p = 2.

4. Steenrod operations on Čech cohomology

4.1. The Eilenberg–Zilber operad

Let R be a commutative ring with identity. For every n ≥ 0, let �n be the standard

n-dimensional simplicial set and denote by R[�n ] the free simplicial R-module on �n .

We let � and �N be the cosimplicial cochain complexes of R-modules such that

�n := K (R[�n ]), �n
N := KN (R[�n ])

for all n ≥ 0. Here K (−) and KN (−) are the unnormalised and normalised cochain complex

functors, respectively. For all n ≥ 0, �n and �n
N are nonpositively graded, �n

N is bounded

and �n is unbounded in the negative direction.

Let T be a topos. If M and N are two cosimplicial cochain complexes of R-modules on
T , we define a cochain complex Hom�(M ,N ) of R-modules on T as the equaliser of∏

r≥0

Hom(M r,N r ) ⇒
∏

[r ]→[s]

Hom(M r,N s),

where the second product is over all arrows in the simplicial category �, and the two

maps are induced by pre-composition and post-composition. This definition is a special

case of [14, (2.1)]. When T = Set , so that M and N are cosimplicial cochain complexes

of R-modules, we denote Hom�(M ,N ) by Hom�(M ,N ).
Recall that we write (e∗,e−1) : T →Set for the morphism of topoi such that e∗ = �(T ,−)

and e−1 is the constant sheaf functor.
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Lemma 4.1. Let C be a cosimplicial nonnegatively graded cochain complex of R-modules
on T . Then we have a commutative diagram

Tot(KN (C )) Tot(K (C ))

Hom�(e−1�N ,C ) Hom�(e−1�,C ),

� �

where the vertical arrows are isomorphisms and the horizontal arrows are cochain
homotopy equivalences.

Proof. The cochain complex Hom�(e−1�,C ) is given in degree n by the equaliser of∏
r≥0

∏
q∈Z

Hom(e−1K (Z[�r ])q,(C r )q+n) ⇒
∏

[r ]→[s]

∏
q∈Z

Hom(e−1K (Z[�r ])q,(C s)q+n).

If M is an R-module on T , then Hom(e−1R,M ) ∼= M . It follows that

Hom(e−1K (Z[�r ])q,(C s)q+n) ∼= ((C s)q+n)
⊕�r−q

is a direct sum of copies of (C s)q+n , parametrised by the set �r−q of (−q)-dimensional
simplices of �r . Thus, Hom�(e−1�,C ) in degree n is the equaliser of∏

r≥0

∏
q∈Z

((C r )q+n)
⊕�r−q ⇒

∏
[r ]→[s]

∏
q∈Z

((C s)q+n)
⊕�r−q .

We now construct the map Tot(K (C )) →Hom�(e−1�,C ) in degree n. For every integer

0 ≤ i ≤ n, let σi ∈ �i
i be the fundamental class. If r is another integer and σ ∈ �r

i , we
define (C i)n−i → ((C r )n−i)⊕�r

i on the component relative to σ as the homomorphism

induced by the map [i ] → [r ] given by σi 
→ σ . where the first map is induced by the

inclusion {σi } ↪→ �i
i , and the other two maps are induced by the map [i ] → [r ] arising

from σi 
→ σ . We set (C i)n−i → ((C r )q+n)
⊕�r−q equal to zero when q �= −i . These maps

assemble to a homomorphism from Tot(K (C )) to the product on the left, which respects

the equaliser condition. We thus get a homomorphism

TotK (C ) → Hom�(e−1�,C ).

It is an isomorphism whose inverse is induced by projection onto the factors corresponding

to the fundamental classes of the �i
i . The proof for KN (C ) is entirely analogous, with

the difference that one only works with nondegenerate simplices. The commutativity of

the diagram is then obvious.

If A is a cosimplicial object of an abelian category, the map KN (A) → K (A) is a

homotopy equivalence. Applying this to the category of cochain complexes of R-modules
on T , we see that KN (C ) → K (C ) is a homotopy equivalence of double complexes (that

is, complexes of complexes). Passing to total complexes, we obtain the required cochain

homotopy equivalence Tot(KN (C )) → Tot(K (C )).

We define Z := End(�), the endomorphism operad of � in the category of cochain

complexes of R-modules; see [14, Construction 2.3]. Similarly, we define ZN := End(�N ).
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By definition, for every j ≥ 0 we have cochain complexes

Z(j ) = Hom�(�,�⊗j ), ZN (j ) = Hom�(�N ,�
⊗j
N ),

which are concentrated in nonpositive degrees.

Lemma 4.2. For every j ≥ 0, we have a homotopy equivalence ZN (j ) → Z(j ).

The maps of Lemma 4.2 assemble to a quasi-isomorphism of operads ZN → Z, but we

will not need this.

Proof. By Lemma 4.1, it is enough to show that the composition

Tot(KN (�
⊗j
N )) → Tot(K (�

⊗j
N )) → Tot(K (�⊗j )) (4.1)

is a homotopy equivalence.

If A is a cosimplicial object in an abelian category A, by the Dold–Kan correspondence

we have a decomposition K (A) = KN (A)⊕D(A) in the category of cochain complexes

of A; see [20, Tag 019I] or [10, Theorem III.2.5]. The complex D(A) is homotopically
equivalent to zero, and so the inclusion KN (A) → K (A) is a cochain homotopy

equivalence, natural in A. The cochain homotopy between the identity on K (A) and the

composition K (A) → KN (A) → K (A) is also natural in A; see the paragraph preceding
[10, Theorem 2.4].

We apply this to the case whenA is the category of cochain complexes of R-modules and

then pass to total complexes. If a bicomplex is homotopy equivalent to zero (as a complex
in the category of complexes), then its totalisation is also homotopy equivalent to zero.

Thus, if C is a cosimplicial R-module, we have a decomposition TotK (C ) = TotKN (C )⊕
TotD(C ), and TotD(C ) is homotopically equivalent to zero. Letting C = �

⊗j
N , we deduce

that the first map in (4.1) is a homotopy equivalence.
We have a decomposition � = �N ⊕�′. (For every n ≥ 0, (�′)n is the subcomplex of

K (R[�n ]) generated by degenerate simplices.) Thus, �⊗j = �
⊗j
N ⊕U , where U is a direct

sum of terms of the form U1 ⊗·· ·⊗Uj , where Uh ∈ {�N ,�′} and at least one of the Uh

equals �′. Passing to total complexes, we see that in order to prove that the second map

is a homotopy equivalence, it suffices to show that each K (U1 ⊗ ·· ·⊗Uj ) is homotopy

equivalent to zero (as a complex of complexes), because then Tot(K (U1 ⊗·· ·⊗Uj )) will
also be homotopically trivial. The classical Alexander–Whitney map gives a homotopy

equivalence between K (U1 ⊗·· ·⊗Uj ) and K (U1)⊗·· ·⊗K (Uj ), so it suffices to show that

the latter are homotopically trivial.

Because the homotopies in the Dold–Kan correspondence are functorial, K (�′) is
homotopically trivial (as a complex in the category of complexes). Let M , N and N ′
be double complexes, and let f : N → N ′ be a homotopy equivalence in the category of

complexes of complexes: f n : N n → (N ′)n is a homotopy equivalence for every n, and the
homotopies commute with vertical differentials. Then id⊗f : M ⊗N → M ⊗N ′ is also

a homotopy equivalence (here ⊗ is the tensor product in the category of complexes of

complexes). Because K (�′) is homotopically trivial and at least one Uh is equal to �′, we
conclude that each K (U1)⊗·· ·⊗K (Uj ) is homotopically equivalent to zero (as a complex

of complexes), as desired. We conclude that the K (U1)⊗·· ·⊗K (Uj ) are homotopically

trivial, and so the second map of (4.1) is also a homotopy equivalence.
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Note that the operad defined in [14, Definition 3.1] is denoted there by Z, but it

coincides with our ZN . By a result of Mandell [14, Proposition 3.2], for all j ≥ 0 there is

an augmentation map ZN (j ) → R which is a quasi-isomorphism. By [14, Proposition 3.3],
there are an E∞-operad E and a quasi-isomorphism of operads αN : E →ZN . In particular,

E(j ) is an R[	j ]-free resolution of R for every j ≥ 0, concentrated in nonpositive degrees,

and we have a 	j -equivariant quasi-isomorphism of cochain complexes αN (j ) : E(j ) →
ZN (j ).
Pre-composing with αN (j ), we obtain a 	j -equivariant quasi-isomorphism

α(j ) : E(j ) → Z(j ).

Because W (p,R) and E(p) are both R[π ]-free resolutions of R, by [20, Tag 0649] there

exists a π -homotopy equivalence W (p,R) → E(p) commuting with the augmentations.
The composition

W (p,R) → E(p)
α(p)−−→ Z(p) (4.2)

is a π -equivariant quasi-isomorphism. Because e−1 is exact (it commutes with colimits

and finite limits), e−1α(p) and the pullback of (4.2) are also quasi-isomorphisms.

4.2. The relative Čech complex

In [14], May defined an E∞-algebra structure on Čech cochains, thus obtaining Steenrod

operations on the Čech cohomology of sheaves. This alternative definition is a crucial
ingredient in the proofs of Theorem 1.1(v) and Theorem 1.2(a). Note that May works in

the category of sheaves on a topological space but, as we explain below, his arguments

may be easily adapted to the setting of sheaves on a site; this is explicitly mentioned in

[14, §4, p. 9 and Remark 5.10].
Let T be a topos, let R be a commutative ring with identity and let F be a cochain

complex of R-modules on T . We fix an equivalence of T with the category of sheaves on a

site S admitting a terminal object; by Giraud’s criterion [3, IV, Théorème 1.2(i’)] such S
always exists (it is usually straightforward to exhibit a concrete S in practice). We view

F as a complex of sheaves of R-modules on S via this equivalence.

Let e be a terminal object of S, and let U be the Čech nerve (that is, the 0-coskeleton)
of a cover of e in S. For every r ≥ 0 let ηr : Ur → e denote the unique map to e, and let

(ηr∗,η−1
r ) : T /Ur → T be the associated morphism of topoi. We define Č0(U ,F ) as the

cosimplicial complex of sheaves on S such that

Č0(U ,F )r,s := ηr∗(η−1
r (F s))

and whose differentials are induced from those of F and the degeneracy maps of U .
Similarly, we denote by Č(U ,F ) := K (Č0(U ,F )) the bicomplex of sheaves on S such that

Č(U ,F )r,s := ηr∗(η−1
r (F s))

and whose differentials are induced from those of F and the alternating sums of the face

maps of U . We set

Č0(U ,F ) := �(T ,Č0(U ,F )), Č (U ,F ) := �(T ,Č(U ,F )),
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the global section functor being applied level-wise. Thus, for all r,s ≥ 0,

Č (U ,F )r,s = �(T ,ηr∗(η−1
r (F s))) = �(T /Ur,η

−1
r (F s)) = �(Ur,F s).

When S is the big fppf site of a scheme, for every s ≥ 0 the cochain complex Č(U ,F )∗,s
is the relative Čech complex of F s of [20, Tag 06X7]. The unit maps F s → η0∗(η−1

0 (F s))

induce a homomorphism of bicomplexes F → Č(U ,F ) that is natural in F ; here F is

regarded as a bicomplex concentrated in the zeroth row. Passing to total complexes, we
obtain a homomorphism of complexes of sheaves

ιF : F → Tot Č(U ,F ).

The map ιF is a quasi-isomorphism of complexes of sheaves; we refer the reader to [16,

Lemma 2.4.18] for a proof in the case when F is concentrated in degree 0 (i.e., a sheaf).
The proof for arbitrary F is entirely analogous and goes as follows. Because η0 : U0 → e is

a cover, one may check the property after pulling back to S/U0. The pullback of Č(U ,F )

is the Čech complex of η∗
0F with respect to the Čech nerve of pr2 : U0 ×U0 → U0. In

other words, we may assume that U0 → e has a section. In this case, F → Č(U ,F ) is a
homotopy equivalence (of complexes of complexes), given by the same formulas as [16,

Lemma 2.4.18]. Passing to total complexes, we deduce that ιF is a homotopy equivalence,

and hence a quasi-isomorphism.
If F ′ is another cochain complex of R-modules on T , we have a natural homomorphism

∪ : Tot Č(U ,F )⊗Tot Č(U ,F ′) → Tot Č(U ,F ⊗F ′). (4.3)

The map (4.3) is compatible with ιF,ιF ′ and ιF⊗F ′ in an obvious way.

Let j ≥ 0 be an integer, and let C be a cosimplicial complex of R-modules on T . The
Alexander–Whitney map is a homomorphism

e−1Z(j )⊗ (TotK (C ))⊗j → TotK (C⊗j ), (4.4)

where on the right we are taking tensor products of cosimplicial objects. Under the

identifications provided by Lemma 4.1, (4.4) is given by the composition

Hom�(e−1�,e−1�⊗j )⊗Hom�(e−1�,C )⊗j

→ Hom�(e−1�,e−1�⊗j )⊗Hom�(e−1�⊗j ,C⊗j )

→ Hom�(e−1�⊗j ,C⊗j )⊗Hom�(e−1�,e−1�⊗j )

→ Hom�(e−1�,C⊗j ),

where the first map is induced by the j -fold tensor product, the second is the (graded)
switch isomorphism and the third is induced by composition. This is a special case of

[14, Construction 2.6] (to see this, note that e−1 commutes with finite limits, and so

e−1 End(�)(j ) = End(e−1�)(j )). Of course, if T is the set topos, so that C is just a
cosimplicial cochain complex of R-modules, (4.4) takes the form

Z(j )⊗ (TotK (C ))⊗j → TotK (C⊗j ). (4.5)
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4.3. May’s construction

Let A be a commutative differential graded R-algebra on T . We have a 	p-equivariant

homomorphism3

Z(p)⊗Tot Č (U ,A)⊗p → Tot Č (U ,A). (4.6)

Under the identifications of Lemma 4.1, (4.6) is defined as the composition

Hom�(�,�⊗p)⊗Hom�(�,Č0(U ,A))⊗p

→ Hom�(�,Č0(U ,A)⊗p)

→ Hom�(�,Č0(U ,A⊗p))

→ Hom�(�,Č0(U ,A)),

where the first homomorphism is the Alexander–Whitney map, the second homo-

morphism is induced by the natural map Č0(U ,A)⊗p → Č0(U ,A⊗p) and the third

homomorphism is induced by the multiplication map A⊗p → A.

Remark 4.3. It is clear that (4.4) is functorial in C and that (4.6) is functorial in A.

Let T ′ be another topos, let e ′ be a terminal object in some site with associated topos
equivalent to T ′ and let η′ : U ′ → e ′ be the Čech resolution of a cover of e ′. Let φ :
Č0(U ,R) → Č0(U ′,R) be a map of cosimplicial (cochain) complexes, such that for every

n ≥ 0 the map �(T ,ηn∗η−1
n R) → �(T ′,η′

n∗(η′
n)−1R) is a homomorphism of R-algebras. (In

fact, because R is concentrated in degree zero, φ is just a homomorphism of cosimplicial

R-algebras.) Because (4.5) is functorial in C , it is compatible with φ. Moreover, thanks

to the additional assumptions on φ, the second and third maps in the definition of (4.6)

are also compatible with φ. In other words, we have a commutative diagram

Z(p)⊗Tot Č (U ,R)⊗p Tot Č (U ,R)

Z(p)⊗Tot Č (U ′,R)⊗p Tot Č (U ′,R),

where the horizontal arrows are the Alexander–Whitney maps and the vertical maps are

induced by φ. We will use this remark in the proof of Theorem 1.2(a).

We now show that (4.6) is induced by a morphism of sheaves.

Lemma 4.4. There exists a morphism of complexes of sheaves of R-modules

e−1Z(p)⊗Tot Č(U ,A)⊗p → Tot Č(U ,A)

3In [14, Theorem 5.5] a similar map is constructed, with Z replaced by ZN and Č (U ,A) replaced
by the totalisation of the restricted Čech complex. The homomorphism (4.6) is the reason why
we use Z instead of ZN . The operad ZN only acts on the restricted Čech cochains (see [14,
(4.2)]), which are only useful when the covers are monomorphisms (e.g., open embeddings);
see, for example, [15, III, Remark 2.2(d)].
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such that the composition

Z(p)⊗Tot Č (U ,A)⊗p → �(T ,e−1Z(p))⊗�(T , Tot Č(U ,A)⊗p) → Tot Č (U ,A)

obtained by passage to global sections coincides with (4.6).

Proof. Because equalisers are limits and e−1 commutes with limits, we have

e−1Hom�(M ,N ) ∼= Hom�(e−1M ,e−1N )

for any two cosimplicial cochain complexes M and N . Recall also that e−1 commutes

with tensor products. We define the following composition:

Hom�(e−1�,e−1�⊗p)⊗Hom�(e−1�,Č0(U ,A))⊗p

→ Hom�(e−1�,Č0(U ,A)⊗p)

→ Hom�(e−1�,Č0(U ,A⊗p))

→ Hom�(e−1�,Č0(U ,A)).

Here the first homomorphism is the Alexander–Whitney map of [14, Construction 2.6],

this time with the category of cochain complexes of R-modules on T as target category.

The proof of [14, Proposition 4.4] immediately adapts to give a map Č0(U ,A)⊗p →
Č0(U ,A⊗p), which in turn induces the second homomorphism in the composition above.

The third homomorphism is induced by the multiplication A⊗p → A. It is clear that

passing to global sections yields the composition defining (4.6).

Pre-composing with the pullback of (4.2), we obtain a π -equivariant map

e−1W (p,R)⊗Tot Č(U ,A)⊗p → Tot Č(U ,A). (4.7)

Taking global sections and pre-composing with the adjunction unit and the natural map

Tot Č (U ,A)⊗p → �(T , Tot Č(U ,A))⊗p , we finally get

θ̌ : W (p,R)⊗Tot Č (U ,A)⊗p → Tot Č (U ,A). (4.8)

The map θ̌ is uniquely defined up to π -homotopy equivalence. It is compatible with base

change along homomorphisms of rings R → S in an obvious way.

Lemma 4.5. Let A be an R-algebra on T . Then the pair (Tot Č (U ,A),θ̌ ) construced

above is an object of C(p,R).

Proof. We have to check properties (i) and (ii) of Section 2.1.
(i) By Lemma 4.1, we see that Z(p)0 is the cochain complex

R 0−→ R id−→ R 0−→ R → ··· ,
where the first copy of R is in degree 0. The Alexander–Whitney map is the identity in
the 0th row. It is now easy to check that, in degree 0, (4.6) is the map

�(T ,η0∗η−1
0 A)⊗p → �(T ,η0∗η−1

0 A)

obtained from the multiplication A⊗p → A by applying the adjunction unit and then

taking global sections. Composing with α(p) and W (p,R) → E(p), we deduce (i).
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(ii) We may take V = E(p) and j equal to the map W (p,R) → E(p) appearing in

(4.2).

Lemma 4.6. We have a π-homotopy commutative square

Č(U ,A)⊗p Hom(e−1W (p,R),Č(U ,A))

A⊗p A
mp

ι
⊗p
A

where the top horizontal map is adjoint to (4.7).

Proof. If we regard A as a cosimplicial cochain complex that is zero in positive levels (so
all maps in the cosimplicial direction are zero), it is easy to check that the Alexander–

Whitney map (4.4) for F = A is just e−1(ε)⊗ id, where ε :Z(p) → R is the augmentation

map.

By the functoriality and equivariance of the Alexander–Whitney map, we then have a
π -equivariant commutative diagram

e−1Z(p)⊗Tot Č(U ,A)⊗p Tot Č(U ,A)⊗p Tot Č(U ,A)

e−1Z(p)⊗A⊗p A⊗p A.e−1(ε)⊗id

id⊗ι
⊗p
A ι

⊗p
A

mp

ιA

By the tensor-hom adjunction, we obtain a π -equivariant commutative diagram

Tot Č(U ,A)⊗p Hom(e−1Z(p), Tot Č(U ,A))

A⊗p A Hom(e−1Z(p),A)
mp

ιA ι∗A

We obtain the conclusion by composing with the map

Hom(e−1Z(p), Tot Č(U ,A)) → Hom(e−1W (p,R), Tot Č(U ,A))

induced by (4.2).

4.4. Relation with derived functor cohomology

Let ν :A→ I be a standard injective resolution by R-modules. We define a homomorphism

H ∗(Tot Č (U ,A)) → H
∗(T ,A) (4.9)

as follows. The resolution ν induces a homomorphism

ν∗ : Tot Č (U ,A) → Tot Č (U ,I ).

The map ιI induces a homomorphism �(ιI ) : �(T ,I ) → Tot Č (U ,I ).

Lemma 4.7. The map �(ιI ) is a quasi-isomorphism.
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Proof. By [20, Tag 03AW], we have Ȟ i(U ,I q) = 0 for all i > 0 and q ≥ 0. Here Ȟ i (U ,−)

denotes Čech cohomology with respect to U . The conclusion now follows from the

application of [20, Tag 0133] to the double complex Č (U ,I ).

Thus, we have a morphism �(ιI )
−1 ◦ ν∗ in the derived category, and we define (4.9) as

the induced homomorphism in cohomology.
The next lemma shows that (4.9) comes from a homomorphism of sheaves.

Lemma 4.8. There is a homomorphism h : Tot Č(U ,A) → I such that h ◦ ιA = ν and the
map induced in cohomology by �(T ,h) is (4.9).

Proof. By naturality, we have a commutative diagram

A Tot Č(U ,A)

I Tot Č(U ,I ).

ιA

ν ξ

ιI

(4.10)

Because ν, ιA and ιI are quasi-isomorphisms, so is ξ . It follows that every arrow in (4.10)

is an isomorphism in the derived category. Note that �(ξ) is the map ν∗ defined in the

previous paragraph. Because I is injective in every degree, there exists a cochain map

ρ : Tot Č(U ,I ) → I

such that ρ ◦ ιI is homotopic to the identity on I (apply [20, Tag 05TG] to the map ι−1
I

in the derived category). Define h := ρ ◦ ξ . Then by [20, Tag 05TG] the top triangle of

(4.10) is homotopy commutative. Thus, we have a diagram

A Tot Č(U ,A)

I Tot Č(U ,I )

ιA

ξh

ρ

(4.11)

where the bottom triangle is commutative and the top triangle is commutative in the

derived category and so is homotopy commutative by [20, Tag 013S].
We pass to global sections level-wise in (4.11):

�(T ,A) Tot Č (U ,A)

�(T ,I ) Tot Č (U ,I ).

�(ιA)

�(ν) �(ξ)
�(h)

�(ρ)

(4.12)

Note that taking global sections level-wise respects homotopy equivalences; therefore, the

bottom triangle in (4.12) is commutative and the top triangle is homotopy commutative.

By Lemma 4.7, the map �(ιI ) is a quasi-isomorphism and so is an isomorphism in
the derived category. Because �(ρ) ◦ �(ιI ) is homotopic to the identity on �(T ,I ), we

deduce that �(ρ) is a left inverse of �(ιI ) in the derived category, and because �(ιI ) is

an isomorphism in the derived category, we obtain that �(ρ) = �(ιI )
−1 in the derived
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category. It follows that �(h) coincides with �(ιI )
−1 ◦ �(ξ) in the derived category of

cochain complexes. The latter is exactly the map of [20, Tag 08BN]. Because �(h) and

�(ιI )
−1 ◦�(ξ) coincide in the derived category, they induce the same homomorphism in

cohomology, as desired.

Denote by PSh(S) the category of presheaves on S. Following [3, Exposé V, 2.4.2],

for all i ≥ 0 we denote by Hi(S,−) the right derived functors of the forgetful functor
T → PSh(S). If S is an object of S, we denote by H i(S,−) the right derived functors of

�(S,−) : T → Set . For all sheaves F on S, we have H i(S,F ) = H i (T /S,F ).

Proposition 4.9. Assume that H i(Un,Aq) = 0 for every i > 0 and every n,q ≥ 0.
Then (4.9) is an isomorphism. If, moreover, R = Fp , (4.9) is compatible with Steenrod

operations.

Proof. Because we do not have a reference for it, we derive the Cartan–Leray spectral

sequence for A; the original source [3, Exposé V, Théorème 3.2] only applies to the case

when A is concentrated in degree 0. Let A → J be a Cartan–Eilenberg resolution of R-
modules; see [20, Tag 015H] for the definition. We may then let I = TotJ and ν : A → I
be the standard injective resolution induced by totalisation. Applying [20, 08BI] twice,

we see that

Tot(Č (U ,I )) = Tot(Č (U ,J )) = Tot(Č (U , Tot(K ))),

where the Tot(−) in the middle is the totalisation of a triple complex, and by definition

K is the double complex with terms

K r,s := ⊕a+b=r�(Ua,J b,s)

and maps induced by those of J and U . On the other hand, by Lemma 4.7 we have a
quasi-isomorphism

�(ιI ) : R�(T ,A) = �(T ,I ) → Tot(Č (U ,I )).

Thus, the spectral sequence associated to K (see [20, Tags 0130, 0132]) reads:

E r,s
2 := H r (Tot(Č (U ,Hs(A)))) ⇒ H r+s(T ,A). (4.13)

Here Hs(A) is defined as the presheaf sending V 
→ H s(V ,A). It is easy to see that

the edge maps on the bottom horizontal row of (4.13) coincide with (4.9). Under the

assumptions of the lemma, the E2-page of (4.13) is concentrated in the bottom row;
hence, (4.9) is an isomorphism.

Assume now that R = Fp . We have the following diagram, where the two smaller

triangles and rectangles are π -homotopy commutative:
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Tot Č(U ,A)⊗p Hom
Fp (e−1W , Tot Č(U ,A))

A⊗p A

I ⊗p Hom
Fp (e−1W ,I ).

h⊗p h∗

ι
⊗p
A

Because ιA is a quasi-isomorphism of complexes over a field, ι
⊗p
A is also a quasi-

isomorphism. A diagram chase now shows that the outer square is commutative in the

derived category. Because every term of Hom(W ,I ) is Fp [π ]-injective, it follows from

[20, Tag 05TG] that the outer square is π -homotopy commutative. By the tensor-hom

adjunction, we obtain a π -homotopy commutative square

e−1W ⊗Tot Č(U ,A)⊗p Tot Č(U ,A)

e−1W ⊗ I ⊗p I .

θ̌

id⊗h⊗p h

θ

Passing to global sections in the last square and pre-composing with the adjunction unit,
we see that �(h) induces an morphism

(Tot Č (U ,A),θ̌ ) → (�(T ,I ),θ)

in C(p). Because (4.9) is induced by �(h), it is compatible with Steenrod operations, as
desired.

Remark 4.10. (i) The homomorphism (4.9) is defined in [20, Tag 08BN], at least when

T is the ringed topos of a ringed space (X ,OX ). The construction easily adapts to the

case of arbitrary topoi; this is how we constructed (4.9).
(ii) The main ingredient in our proof of Proposition 4.9 is Lemma 4.8, which shows

that (4.9) comes from a map of sheaves. This is crucial, because in order to compare the

Steenrod operations of May with those of Drury in Proposition 4.9 one cannot pass to
global sections too soon. More precisely, we cannot prove directly that the outer square

of global section is π -homotopy commutative, without first showing that the outer square

of sheaves is π -homotopy commutative. This is because �(T ,ν) : �(T ,A) → �(T ,I ) is not
necessarily a quasi-isomorphism.

5. De Rham cohomology of stacks and approximation arguments

Let p be a prime number, let k be a field of characteristic p and let X be a smooth

algebraic stack over k . We denote by �X /k the de Rham complex of X , viewed as a

complex of big étale sheaves on X . We write H ∗
dR(X /k) for the de Rham cohomology of

X ; that is, the hypercohomology of �X /k . We consider the following property of X .
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Property 5.1. For every d ≥ 0, there exist a smooth k -scheme of finite type Zd and a
morphism Zd → X such that the induced map H ∗

dR(X /k) → H ∗
dR(Zd/k) is injective in

degrees ≤ d .

We denote by D(k) the derived category of k -vector spaces, and for all h ∈ Z we let

D(k)≥h be the subcategory of D(k) consisting of complexes with cohomology equal to

zero in all degrees < h. Let f : X → Y be a morphism of smooth k -stacks, and let d ≥ 0
be an integer. Following [1, Definition 5.1], we say that f is a d -Hodge equivalence if for

all j ≥ 0 the cone of Rf ∗ : R�(Y ,�
j
Y /k ) → R�(X ,�

j
X /k ) belongs to D(k)≥d−j . If f is a d -

Hodge equivalence, then by [1, Remark 5.2] the induced map f ∗ : H i
dR(Y /k) → H i

dR(X /k)

is an isomorphism for all i < d .

Lemma 5.2. Let X be a smooth k -scheme of finite type, let Z ⊆ X be a closed subscheme

of codimension d + 1 and let U := X \ Z . Then the inclusion U ↪→ X is a d-Hodge
equivalence.

Proof. If i ≥ 0 is an integer and F is a sheaf on X , we denote by H i(U ,F ) the value at F
of the ith derived functor of �(U ,−), viewed as a functor from abelian sheaves on X to
abelian groups. Using [20, Tag 01E1] and the identification �

j
U /k = �

j
X /k |U , we see that

H ∗(U ,�
j
X /k ) = H ∗(U ,�

j
X /k |U ) = H ∗(U ,�

j
U /k ).

Thus, it suffices to show that the natural map H i(X ,�
j
X /k ) → H i(U ,�

j
X /k ) is an

isomorphism for all 0 ≤ i ≤ d .
Because X is a smooth k -scheme, �

j
X /k is a locally free sheaf on X . Recall that if R is

a local Noetherian ring and M and N are finitely generated R-modules, then depth(M ⊕
N ) = min{depthM , depthN }. (To see this, use the Ext characterisation of depth.) Thus,

for all x ∈ X and all 0 ≤ j ≤ dimOX ,x , we have

depth�
j
X /k,x = depthOX ,x = dimOX ,x = codimX {x }.

Here we are computing depths of OX ,x -modules. The last equality is the fact that a

regular local ring is Cohen–Macaulay. Therefore, for all z ∈ Z we have

depth�
j
X /k,z ≥ codimX Z = d +1.

By [11, Exposé III, Proposition 3.3], this implies that H i(X ,�
j
X /k ) → H i(U ,�

j
X /k ) is an

isomorphism for all 0 ≤ i ≤ d , as desired.

Proposition 5.3. Let Y be a smooth quasi-projective k -scheme, let G be a linear
algebraic k -group and let X := [Y /G ]. Then X satisfies Property 5.1.

Proof. Let d ≥ 0 be an integer. There exists a representation V of G , a closed G-invariant

subscheme Z ⊆ V of codimension ≥ d +2, such that the complement U := V \Z is the

total space of a G-torsor U → U /G , where U /G is a smooth quasi-projective k -scheme.
By Lemma 5.2, the inclusion U ↪→ V is a (d +1)-Hodge equivalence. By [1, Proposition

5.10(1)], the inclusion U ×k Y ↪→ V ×k Y is also a (d + 1)-Hodge equivalence, and it is

G-equivariant if we let G act diagonally. By [1, Proposition 5.10(2)], the induced open
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embedding (U ×k Y )/G ↪→ [(V ×k Y )/G ] is a (d +1)-Hodge equivalence. By [1, Remark

5.2], this implies that for all i ≤ d the natural maps

H i
dR([(V ×k Y )/G ]/k) → H i

dR(((U ×k Y )/G)/k)

are isomorphisms.
Using the zero section of the vector bundle [(V ×k Y )/G ] → [Y /G ], we see that

H ∗
dR(X /k) is a direct summand of H ∗

dR([(V ×k Y )/G ]/k). We conclude that for all i ≤ d
the pullback homomorphisms

H i
dR(X /k) → H i

dR(((U ×k Y )/G)/k)

are injective. Because Y is quasiprojective, (U ×k Y )/G is a scheme, and hence

Zd := (U ×k Y )/G → X

satisfies Property 5.1.

Remark 5.4. (i) Let G ↪→ GLn be a faithful representation of G over k , for some

n ≥ 2. Then X = [Y /G ] ∼= [(Y ×G GLn)/GLn ]. Here Y ×G GLn is the fppf-quotient of
Y ×k GLn by the diagonal action of G . Because Y is smooth and quasiprojective, the

fppf-quotient is represented by a smooth quasiprojective k -scheme. Thus, in the course

of proving Proposition 5.3, we could have assumed that G = GLn for some n ≥ 1.
When G = GLn for some n ≥ 1, we can be more explicit about the representations that

we use. Namely, let r ≥ 0 be an integer, let V := Mn,n+r , the k -vector space of n ×(n +r)-

matrices, on which GLn acts by multiplication on the left, let Z be the locus of matrices

of rank < n, and U := V \Z . If r is sufficiently large, Z has codimension ≥ d +1 in V .
We have a GLn -torsor U → U /GLn , where U /GLn = Gr(n,n + r) is a Grassmannian.

(ii) In the setting of Lemma 5.2, assume that k is of characteristic zero. Then

H i
dR(X /k) → H i

dR(U /k) is injective for all 0 ≤ i ≤ 2d + 1. The proof goes by induction,
cutting X by a smooth divisor Y and using the logarithmic de Rham complex

�X /k (logY ); see [6, Lemma p. 11].

(iii) When X =BG for a finite or reductive k -group G , Property 5.1 has been established

by B. Antieau et al. in [1, Theorem 1.2] by a completely different argument. The Zd

exhibited by them are smooth projective k -varieties.

6. Steenrod operations on de Rham cohomology

Let p be a prime number, let k be a field of characteristic p and let X be a smooth

algebraic stack over k . We apply the construction of Section 2 to the case where T is the

big étale topos of X and A = �X /k is the de Rham complex, viewed as a commutative
differential graded Fp-algebra on T . We thus obtain Steenrod operations on H ∗

dR(X /k).

The purpose of this section is to show, under additional assumptions on X , that negative

Steenrod operations on H ∗
dR(X /k) are zero and to compute Sq0 and P0.
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6.1. Compatibility with cohomology on the crystalline topos

Let X be a smooth scheme over k . Let XZar, XZAR, Xét, XÉT denote the small and big

Zariski sites of X , and the small and big étale sites of X , respectively. We may view �X /k

as a complex of sheaves on each of these four sites. We have an obvious commutative

diagram of morphisms of sites:

XÉT Xét

XZAR XZar.

Because X is of finite type over k , �X /k is a complex of quasicoherent sheaves on X ; hence,
each map in the previous diagram induces an isomorphism between the hypercohomology

of �X /k computed in each of those sites. Applying Lemma 3.1 to the morphisms of

topoi associated to each of the arrows appearing, we see that the Steenrod operations on
H ∗

dR(X /k) do not depend on the choice of site.

We write (X /k)cris for the crystalline site of X over k , where we regard k as a divided

power ring, with the unique divided power structure with respect to the ideal (0). Let

(u∗,u−1) : (X /k)cris → XZar be the morphism of topoi defined in [4, Proposition 5.18].4

By [4, 5.19], the unit id → u∗u−1 is an isomorphism of functors, and in particular we have

a canonical isomorphism

�X /k
∼−→ u∗u−1�X /k . (6.1)

Let OX /k be the structure sheaf of (X /k)cris; see [4, Example 5.2(1)]. By the
Poincaré lemma in crystalline cohomology [4, Theorem 6.12], there is a canonical quasi-

isomorphism OX /k → L(�X /k ) of complexes of abelian sheaves on (X /k)cris, where OX /k

is viewed as a complex concentrated in degree zero. Here L is the linearisation functor of

[4, Construction 6.9 and below]. Applying [4, Proposition 6.10] to S = Speck and Y = X ,

we see that there is a natural isomorphism L(�X /k )
∼−→ u−1�X /k . Composing these two

maps, we obtain a canonical quasi-isomorphism

ψ : OX /k
∼−→ u−1�X /k

on (X /k)cris. Moreover, ψ is a homomorphism of sheaves of differential graded k -algebras
(OX /k is concentrated in degree 0).
We have �((X /k)cris,−) = �(XZar,−)◦u∗, and so

R�((X /k)cris,−) = R�(XZar,−)◦Ru∗. (6.2)

Because u−1�X /k is acyclic with respect to u∗, the natural map

u∗u−1�X /k → Ru∗u−1�X /k (6.3)

is an isomorphism in the derived category; see [4, Corollary 5.27] or the proof of [4,

Theorem 7.1]. The composition of Ru∗(ψ), the inverse of (6.3) and the inverse of (6.1)

4In [4], u−1 is denoted by u∗.
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yield a canonical isomorphism

Ru∗(OX /k )
∼−→ �X /k (6.4)

in the derived category of sheaves of abelian groups on XZar. It may be helpful for the

reader to note that this is exactly the isomorphism of [4, (7.1.2)]. Using (6.2), we obtain

a canonical isomorphism

H ∗((X /k)cris,OX /k )
∼−→ H

∗(XZar,�X /k ) = H ∗
dR(X /k). (6.5)

Because OX /k is a sheaf of k -algebras on (X /k)cris, on the left side of (6.5) we also have
Steenrod operations.

Proposition 6.1. Let X be a smooth scheme over k . For every i ≥ 0, the isomorphism

(6.5) is compatible with Steenrod operations.

Proof. We apply Lemma 3.1 to T = T ′ = (X /k)cris, (f∗,f −1) = (id, id), A = f −1A =OX /k ,

A′ = u−1�X /k and ψ as the map f −1A′ → A. We obtain that the isomorphism

ψ∗ : H ∗((X /k)cris,OX /k )
∼−→ H

∗((X /k)cris,u−1�X /k )

is compatible with Steenrod operations.
We now apply Lemma 3.1 to T ′ = (X /k)cris, T = XZar, (f∗,f −1) = (u∗,u−1), A = �X /k ,

A′ = u−1�X /k and the identity as homomorphism f −1A → A′. We obtain that the induced

homomorphism

H ∗
dR(X /k) → H

∗((X /k)cris,u−1�X /k )

is compatible with Steenrod operations.

By Remark 3.2, we see that this is in fact the isomorphism induced by the inverse of
(6.3). Thus, (6.5) is compatible with Steenrod operations, as desired.

Remark 6.2. Let Fr :OX /k →OX /k be the Frobenius endomorphism, and let � : �X /k →
�X /k be the endomorphism given by the Frobenius OX → OX in degree zero, and zero
in all other degrees. Note that � is a map of complexes because d(f p) = pf p−1d(f ) = 0
for every section f of OX . We have a commutative square

OX /k u−1�X /k

OX /k u−1�X /k .

ψ

Fr u−1�

ψ

It follows that we have a commutative diagram

H ∗((X /k)cris,OX /k ) H
∗((X /k)cris,u−1�X /k ) H ∗

dR(X /k)

H ∗((X /k)cris,OX /k ) H
∗((X /k)cris,u−1�X /k ) H ∗

dR(X /k),

ψ∗

Fr∗ (u−1�)∗ �∗
ψ∗

where the horizontal arrows on the right come from Lemma 3.1 as in the proof of

Proposition 6.1. As we observed in the course of proving Proposition 6.1, the horizontal

https://doi.org/10.1017/S1474748021000177 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000177


524 F. Scavia

maps on the right are isomorphisms, and the composition of their inverse with ψ∗ is
(6.5). It follows that (6.5) transports the Frobenius endomorphism to �∗. We will use

this remark during the proof of Proposition 6.5.

6.2. Vanishing of negative operations

Let X be a smooth algebraic stack of finite type over k .

Proposition 6.3. If X satisfies Property 5.1, the negative Steenrod operations on

H ∗
dR(X /k) are zero.

Proof. By Lemma 3.1 and Proposition 5.3, we may assume that X is a smooth scheme

of finite type over k . By Proposition 6.1, it suffices to show that the negative Steenrod

operations on H ∗((X /k)cris,OX /k ) are zero. Because OX /k is concentrated in degree 0,
this follows from Proposition 3.5.

6.3. Determination of Sq0 and P0

LetA be an abelian category with sufficiently many injectives, let B be an abelian category
and let F : A → B be a left exact additive functor. Let (A,d) be a cochain complex with

Ai ∈A for all i and Ai = 0 for i < 0. We have the two hypercohomology spectral sequences

′E rs
1 := RsF (Ar ) ⇒ H r+s(RF (A))

and

′′E rs
2 := RrF (H s(A)) ⇒ H r+s(RF (A)).

Let A → I ∗∗ be a Cartan–Eilenberg resolution of A; see [20, Tag 015H]. The two spectral
sequences above are the spectral sequences associated to the double complex F (I ∗∗); see
[20, Tag 015J]. Associated to these spectral sequences, we have edge homomorphisms

′ei : H i (RF (A)) → RiF (A0), ′′ei : RiF (H 0(A)) → H i(RF (A)).

Now let φ ∈ Hom(A0,A0) and assume that d1φ = 0. We also denote by φ the induced

map A0 → Ker(d1) = H 0(A). We have a cochain map � : A → A, given by �0 := φ and

�i := 0 for all i > 0.

Lemma 6.4. The diagram

H ∗(RF (A)) H ∗(RF (A))

R∗F (A0) R∗F (H 0(A))

�∗

′e
φ∗

′′e

is commutative.

Proof. By assumption, the map � : A → A factors as

A → A0[0]
φ−→ H 0(A)[0] → A.
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We deduce that �∗ factors as

H ∗(RA(F ))
ψ ′−→ H ∗(RF (A0[0]))

φ∗−→ H ∗(RF (H 0(A)[0]))
ψ

′′
−→ H ∗(RA(F )).

Here ψ ′ and ψ ′′ come from the functoriality of the E∞-pages of the first and second

spectral sequences, respectively. Consider now the following commutative diagram:

H ∗(RA(F )) H ∗(RF (A0[0])) H ∗(RF (H 0(A)[0])) H ∗(RA(F ))

H ∗(RA(F )) R∗F (A0) R∗F (H 0(A)) H ∗(RF (A)).

ψ ′ φ∗

�

ψ ′′

�
′e φ∗ ′′e

The commutativity of the square on the left (respectively right) follows from the naturality

of the edge maps in the first (respectively second) hypercohomology spectral sequence.
The square in the middle is commutative, because the E2-pages of the first and second

spectral sequences for the hypercohomology of a complex concentrated in degree 0
coincide.

We immediately obtain the following result.

Proposition 6.5. Assume that X satisfies Property 5.1, and let Sq0 (if p = 2) and P0

(if p > 2) be the zeroth Steenrod operation on H ∗
dR(X /k).

(a) The homomorphisms P0 and Sq0 factor as

H ∗
dR(X /k) → H ∗(X ,OX ) → H ∗(X ,OX ) → H ∗

dR(X /k),

where the first map is an edge homomorphism in the Hodge spectral sequence, the second
map is induced by the Frobenius endomorphism of OX and the third map is an edge

homomorphism in the conjugate spectral sequence.

(b) If p > 2, the composition

H 0(X ,�1
X /k ) ↪→ H 1

dR(X /k)
P0−→ H 1

dR(X /k)

is equal to zero. Similarly, if p = 2, the composition

H 0(X ,�1
X /k ) ↪→ H 1

dR(X /k)
Sq0−−→ H 1

dR(X /k)

is equal to zero.

Proof. By Property 5.1 and Lemma 3.1, we may assume that X is a smooth scheme

of finite type over k . By Proposition 6.5, Sq0 and P0 are induced by the Frobenius

endomorphism of OX /k . We deduce from Remark 6.2 that Sq0 and P0 are induced by the
homomorphism � : �X /k → �X /k given by the Frobenius φ : OX → OX in degree zero,

and zero everywhere else.

(a) The Hodge and conjugate spectral sequences for X are a special case of the first
and second hypercohomology spectral sequences, letting A be the category of sheaves of

k -vector spaces over X , A be the de Rham complex of X and � and φ as in the previous

paragraph. Now (a) follows from Lemma 6.4.
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(b) This follows from (a) and the exact sequence of low degree terms in the Hodge

spectral sequence

0 → H 0(X ,�1
X /k ) → H 1

dR(X /k) → H 1(X ,OX ).

Remark 6.6. The Steenrod operations P0 and Sq0 are not equal to the identity; see

Proposition 3.5(b) or Proposition 6.5(b). From Theorem 1.2(a) (to be proved in the next
section) we also see that they are not identically zero. As another example, let E be an

elliptic curve over Fp . Then the Steenrod operations in degree 0 are trivial on H ∗
dR(E/Fp)

if and only if E is ordinary. More generally, the behavior of Sq0 and P0 is related to the

Frobenius and Hodge filtration on crystalline cohomology; see, for example, [4, Chapter
8]. We will not make use of this remark in the sequel.

Remark 6.7. (i) It would be interesting to know whether Property 5.1 holds for an
arbitrary smooth stack of finite type over k . By Proposition 6.5, this would imply the

validity Theorem 1.1(iv) for all such stacks.

(ii) One could remove the requirement that Y be quasiprojective by showing that
the crystalline Poincaré lemma for algebraic spaces of M. Olsson [17, Corollary 2.5.4] is

compatible with Steenrod operations. We chose not to do so in this article, in order to

remain within classical crystalline cohomology. Note that the crystalline Poincaré lemma
for algebraic k -stacks (even Deligne–Mumford k -stacks) is not known. For example, [17]

only addresses the situation of a representable morphism X → S , where X and S are

Deligne–Mumford stacks. If one had a Poincaré lemma for algebraic k -stacks, one could

probably prove Theorem 1.1(iv) more generally and without recourse to Property 5.1.

Proposition 6.8. Let X be a smooth affine k -scheme. Then the pth-power Steenrod

operations on H ∗
dR(X /k) are trivial.

Proof. Because X is affine, we have H i(X ,�
j
X /k ) = 0 for all i > 0 and j ≥ 0. Thus, we may

apply Proposition 4.9 to S the big étale (or Zariski) site of X , U the Čech nerve of the

identity X → X and A = �X /k . We deduce that the Steenrod operations on H ∗
dR(X /k)

are trivial if and only if the Steenrod operations on H ∗(Tot Č (U ,�X /k )) are trivial. It

is easy to see that �(X ,�X /k ) is a summand of Tot Č (U ,�X /k ) and that the projection

Tot Č (U ,�X /k ) → �(X ,�X /k ) is a quasi-isomorphism. The summand �(X ,�X /k ) arises

as the totalisation of the cosimplicial submodule of Č0(U ,�X /k ) given by �(X ,�X /k ) in
level zero, and zero in higher levels. Thus, there is a commutative square

Z(p)⊗Tot Č (U ,�X /k )⊗p Tot Č (U ,�X /k )

Z(p)⊗�(X ,�X /k )⊗p �(X ,�X /k ),

where the vertical arrows are the natural projections, the top horizontal arrow is (4.6)

and the bottom arrow is a direct summand of the top arrow. Because �(X ,�X /k ) is the

totalisation of the degree zero component of Č0(U ,�X /k ), it follows from the definitions

that the bottom arrow is the tensor product of the augmentation of Z(p) and the p-fold
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multiplication of �X /k . Pre-composing with the quasi-isomorphism W → Z(p) of (4.2),

we obtain a commutative square

W ⊗Tot Č (U ,�X /k )⊗p Tot Č (U ,�X /k )

W ⊗�(X ,�X /k )⊗p �(X ,�X /k ).

θ̌

ε⊗mp

Here θ̌ is the map of (4.8), ε is the augmentation of W and mp is the p-fold multiplication

map. Because the projection Tot Č (U ,�X /k ) → �(X ,�X /k ) is a quasi-isomorphism,

the conclusion will follow if we can show that the pth-power Steenrod operations on
H ∗(�(X ,�X /k )) associated to the object (�(X ,�X /k ),ε ⊗mp) of C(p) are trivial. This is

true by Remark 2.2.

6.4. Bockstein homomorphism

Lemma 6.9. Let k be a field, let X be an algebraic stack over k and denote by XÉT and

XSM the big étale and big smooth sites of X , respectively.
(a) Let F be an étale sheaf of abelian groups on X . Then F is a smooth sheaf on X ,

and the canonical homomorphism

H ∗(XÉT,F ) → H ∗(XSM,F )

is an isomorphism.

(b) Assume that chark = p > 0 and that X is smooth over k . The canonical
homomorphism

H ∗
dR(X /k) → H

∗(XSM,�X /k )

is an isomorphism, compatible with Steenrod operations.

Proof. (a) This follows from the fact that a covering in the smooth topology can always

be refined by a covering in the étale topology; see [20, Tags 055V, 00VX].

(b) By (a), �X /k is a complex of smooth sheaves. We have a homomorphism between
the étale hypercohomology spectral sequence for �X /k to the smooth hypercohomology

spectral sequence for �X /k . Applying (a) to F = �
j
X /k for every j ≥ 0, we see that

this homomorphism is an isomorphism between the E2-pages; hence, it induces an

isomorphism of the abutments. The compatiblity with Steenrod operations is a special

case of Lemma 3.1.

Let (K,θ) ∈ C(p). Recall that one may define a Bockstein homomorphism on H ∗(K ),

assuming that (K,θ) is reduced; that is, that there exists (K̃,θ̃ ) ∈ C(p,Z/2Z) whose

reduction modulo p is isomorphic to (K,θ) and such that K̃ is flat over Z/p2
Z.

Let X be a smooth algebraic stack of finite type over a commutative ring R and assume

that X has affine diagonal over R. By [20, Tag 04YA], there exists a smooth surjective

morphism from a smooth affine R-scheme of finite type to X . Let U be the Čech nerve
of a covering of X by a smooth affine R-scheme. Then �(Un,�

j
X /R) = �(Un,�

j
Un /R) is a

flat R-module for every n,j ≥ 0, and so Tot Č (U ,�X /R) is a complex of flat R-modules.
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Let R → S be a ring homomorphism. By the theorem on cohomology and affine base
change for quasicoherent sheaves [20, Tag 02KG], for all n,j ≥ 0 the canonical map

�
j
Un /R ⊗R S → �

j
(Un )S /S is an isomorphism of quasicoherent OXS -modules. Moreover,

the canonical maps are compatible with the de Rham differentials. We thus obtain an
isomorphism of complexes of S -modules

Tot Č (U ,�X /R)⊗R S ∼−→ Tot Č (US,�XS /S ). (6.6)

Proposition 6.10. Let k be a perfect field of characteristic p, and let X be a smooth
algebraic stack over k . Assume that there exists a smooth algebraic stack X̃ of finite type

and with affine diagonal over W2(k), such that X = X̃ ×W2(k) k . Then there exists a group

homomorphism

β̌ : H ∗
dR(X /k) → H ∗+1

dR (X /k),

satisfying properties (i) and (ii) of Lemma 2.1.

Proof. Let Ũ be the Čech nerve associated to a smooth surjective morphism from a

smooth affine W2(k)-scheme to X̃ and define U := Ũ ×W2(k) k . For every n ≥ 0, Ũn is a
smooth and affine W2(k)-scheme. For all n,j ≥ 0, letting ηn : Un → X denote the natural

projection map, we have an isomorphism �
j
Un /k

∼= η−1
n �

j
X /k of big étale sheaves on Un .

Because Un is affine and �
j
Un /k is a coherent sheaf on Un for every n,j ≥ 0, by Serre’s

vanishing theorem we have H q(Un,�
j
Un /k ) = 0 for all q > 0 and n,j ≥ 0.

Let S be the site whose objects are algebraic stacks over X , whose morphisms are 1-
morphisms of algebraic stacks over X and whose covers are families of jointly surjective

smooth morphisms, and let T be the topos associated to S. With the notation of
Lemma 6.9, we have morphism of sites

XÉT → XSM → S.

Because every algebraic stack has a smooth cover by schemes, by Verdier’s comparison

theorem [3, III, Théorème 4.1] the morphism on the right induces an equivalence of topoi.
In particular, we have an induced isomorphism

H
∗(XSM,�X /k )

∼−→ H
∗(S,�X /k ) = H

∗(T ,�X /k ),

where we also denote by �X /k the sheaf on S induced by the de Rham complex on XSM.

This isomorphism is compatible with Steenrod operations by Lemma 3.1. Combining this

with Lemma 6.9, we get a canonical isomorphism

H ∗
dR(X /k)

∼−→ H
∗(T ,�X /k ),

which is compatible with Steenrod operations.
Note that X is a terminal object in S and that a smooth surjective morphism from a

scheme to X is a cover in S. Moreover, by Lemma 6.9 and [20, Tags 06W0, 0DGB, 03P2],

for all j,n ≥ 0 and i ≥ 1 we have

H i(S/Un,η−1
n �

j
X /k ) = H i((Sch/Un)SM,�

j
Un /k )

= H i((Sch/Un)ÉT,�
j
Un /k )
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= H i((Un)ét,�
j
Un /k )

= H i(Un,�
j
Un /k ) = 0.

In the last step we have used Serre’s vanishing theorem for the cohomology of
quasicoherent sheaves on affine schemes. Thus, we may apply Proposition 4.9 to T , �X /k

and U . We deduce the existence of an isomorphism

H ∗(Tot Č (U ,�X /k ))
∼−→ H ∗

dR(X /k) (6.7)

compatible with Steenrod operations.

The map (4.8) is compatible with extension of scalars; thus, (6.6) induces an
isomorphism

(Tot Č (Ũ ,�X̃ /W2(k)),θ̌ )⊗Z/p2Z Fp ∼= (Tot Č (U ,�X /k ),θ̌ )

in C(p). For every n ≥ 0, because Ũn is smooth over W2(k), by [20, Tag 02G1] the

W2(k)-module �Ũn /W2(k) is finite locally free and, in particular, it is flat. Recall that

W2(k) is flat over Z/p2
Z; in fact, it is the unique flat lifting of k over Z/p2

Z. Therefore,

Tot Č (Ũ ,�X̃ /W2(k)) is flat over Z/p2
Z, and so (Tot Č (U ,�X /k ),θ̌ ) is reduced. As recalled

at the end of Section 2.2, it now follows from [12, Proposition 2.3(v)] that a Bockstein

homomorphism in the setting of May is defined on H ∗(Tot Č (U ,�X /k )). Using (6.7), we

obtain a Bockstein homomorphism on H
∗(X ,�X /k ). The conclusion now follows from

Lemma 2.1.

In the setting of Proposition 6.10, let ι : X ↪→ X̃ be the natural closed embedding.
Following an idea of Totaro [21, Proof of Theorem 11.1], we may define a homomorphism

β : H ∗
dR(X /k) → H ∗+1

dR (X /k) as follows. By [20, Tag 013T], there exists a commutative

diagram

0 ι∗�X /k �X̃ /W2(k) ι∗�X /k 0

0 I1 I2 I3 0,

(6.8)

where the vertical arrows are injective resolutions of sheaves of abelian groups and

the rows are short exact sequences of complexes. Because I1 is injective, passing to
global sections the bottom row of (6.8) remains exact. We define β as the connecting

homomorphism in the associated long exact sequence (see [20, Tag 0111]):

· · · → H i
dR(X /k) → H i

dR(X̃ /W2(k))
ι∗−→ H i

dR(X /k)
β−→ H i

dR(X /k) → ···
It is easy to verify that β does not depend on the choice of (6.8). For every j ≥ 0, Totaro
defines a Bockstein homomorphism on H ∗(X ,�

j
X /k ) by considering a diagram of the form

(6.8) but where �X̃ /W2(k) and ι∗�X /k are replaced by �
j
X̃ /W2(k)

and ι∗�
j
X /k .

Contrary to β̌ of Proposition 6.10, the Bockstein β does not fit in the setting of May

[12]. Therefore, it is not automatic that β satisfies the conclusion of Theorem 1.1(v); we

prove it by relating β to β̌.
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Proof of Theorem 1.1(v). Let �X /k → I be an injective resolution of étale sheaves of

abelian groups on X that is a monomorphism in every degree. The pushforward ι∗
preserves injectives, and because ι : X ↪→ X̃ is a closed embedding, ι∗ is exact. Thus,
ι∗�X /k → ι∗I is an injective resolution of étale sheaves of abelian groups on X̃ , and is a

monomorphism in every degree.

By [20, Tag 013T], there exists a diagram (6.8) where I1 = ι∗I . From [20, Proof of Tag
013T, Step 2], we see that we may also assume that I3 = ι∗I . (Here we use the fact that

ι∗�X /k → ι∗I is a monomorphism in every degree.) In other words, we have a commutative

diagram of short exact sequences

0 ι∗�X /k �X̃ /W2(k) ι∗�X /k 0

0 ι∗I J ι∗I 0,

(6.9)

for some injective resolution of sheaves of abelian groups �X̃ /W2(k) → J . Let Ũ be the

Čech nerve associated to a smooth cover of X̃ by a smooth affine W2(k)-scheme, and let

U := Ũ ×W2(k) k . Because X̃ is smooth and with affine diagonal, so is every Ũn . From

(6.9) we deduce the following commutative diagram of short exact sequences:

0 Tot Č (U ,�X /k ) Tot Č (Ũ ,�X̃ /W2(k)) Tot Č (U ,�X /k ) 0

0 Tot Č (U ,I ) Tot Č (Ũ ,J ) Tot Č (U ,I ) 0

0 �(X ,I ) �(X̃ ,J ) �(X ,I ) 0.

Recall that we defined Tot Č (U ,−) in Section 4.2. The two commutative squares on the

top come from the functoriality of Tot Č (U ,−). The commutativity of the two squares

on the bottom follows from the naturality of (4.10).

Write β ′ : H ∗(Tot Č (U ,I )) → H ∗+1(Tot Č (U ,I )) for the connecting homomorphism
associated to the second line of the above diagram. Because connecting homomorphisms

are compatible with homomorphisms of short exact sequences, for every i ≥ 0 we have a

commutative diagram

H i
dR(X /k) H i(Tot Č (U ,I )) H i(Tot Č (U ,�X /k ))

H i+1
dR (X /k) H i+1(Tot Č (U ,I )) H i+1(Tot Č (U ,�X /k )).

∼

β β ′
β̌

∼

∼ ∼

https://doi.org/10.1017/S1474748021000177 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000177


Steenrod Operations 531

The horizontal maps on the left are isomorphisms by Lemma 4.7 and those on the right
by Proposition 4.9. Note that we apply both results with R = Z. (The composition

H ∗(Tot Č (U ,�X /k )) → H ∗
dR(X /k) is the map of (6.7), where A = �X /k .) The conclusion

now follows from Proposition 6.10.

Remark 6.11. If X is a scheme, one can define a Bockstein homomorphism even without

assuming that X admits a lifting to W2(k), by using the crystalline Poincaré lemma and

the short exact sequence

0 → ι∗OX /k → OX /W2(k) → ι∗OX /k → 0.

If X is a smooth algebraic stack over k , the Hodge filtration for X is defined as the

filtration on H ∗
dR(X /k) arising from the E∞-page of the Hodge spectral sequence for X .

Proposition 6.12. Under the assumptions of Proposition 6.10, for all i ≥ 0 the map

β : H i
dR(X /k) → H i+1

dR (X /k) respects the Hodge filtration for X , and for all 0 ≤ j ≤ i
the induced map H j (X ,�

i−j
X /k ) → H j+1(X ,�

i−j
X /k ) coincides with the Bockstein defined by

Totaro.

Proof. Let T be a topos and assume that we have a commutative diagram

0 A B C 0

0 IA IB IC 0,

(6.10)

where A,B,C are cochain complexes of abelian sheaves on T , concentrated in nonnegative
degrees, the vertical arrows are Cartan–Eilenberg resolutions and the rows are exact. Let

C be the category of complexes of abelian sheaves on T . Define IA[1] as the shift of IA as a

complex in C: IA[1]i,j = I i,j+1
A . The bottom row defines an element of HomD(C)(IC ,IA[1]).

By [20, Tag 05TG], the canonical map HomK (C)(IC ,IA[1]) → HomD(C)(IC ,IA[1]) is an

isomorphism. It follows that there exists a homomorphism of double complexes δ : IC →
IA[1] such that, for every integer i , the homomorphism

H i,∗(�(T ,δ)) : H ∗(�(T ,I i,∗
C )) → H ∗+1(�(T ,I i,∗

A ))

is the connecting map of the hypercohomology long exact sequence associated to

0 → Ai → B i → C i → 0.

The map δ induces a homomorphism from the first hypercohomology spectral sequence

of C to that of A, the latter with vertical degrees shifted by 1. (In Section 6.3, we denoted
these spectral sequences by ′E .) Thus, δ induces a homomorphism between the E∞-pages.

This means that for every integer i the map δ induces a homomorphism H
i(T ,C ) →

H
i+1(T ,A) that respects the filtrations and that induces the maps H i,j (�(T ,δ)) upon

taking quotients of successive pieces of the filtrations.

To conclude, it suffices to let T be the big étale site on X̃ , and let (6.10) be as in

(6.8).
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7. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. The naturality follows from Lemma 3.1. Properties (i), (ii), (iii)
hold by Proposition 2.3. Property (iv) follows from Proposition 5.3, Proposition 6.3 and

Proposition 6.5(a). Property (v) was proved in Proposition 6.10.

Proof of Theorem 1.2(a). We denote by BsimpG the simplicial classifying space of G ; see

[13, Chapter 16, §5]. Because G is a finite discrete group, BsimpG is a simplicial set. It is
the quotient of the contractible simplicial set EsimpG by the free action of G . We write

BtopG and EtopG for the geometric realisations of BsimpG and EsimpG , respectively; they

are CW complexes.
Let Fp → I be an injective resolution of sheaves of Fp-vector spaces on BtopG . Let θ :

W ⊗�(BtopG,I )⊗p → �(BtopG,I ) be a π -equivariant homomorphism of Fp [π ]-complexes

such that (�(BtopG,I ),θ) is an element of C(p), as constructed in Section 2. By Lemma 3.4
and [9, Theorem p. 206], the induced Steenrod operations on the sheaf cohomology ring

H ∗(BtopG,Fp) are the classical topological Steenrod operations.

Let X be a paracompact Hausdorff topological space (for example, a CW complex).

Let Op(X ) denote the site of open embeddings of X , and let Homeo(X ) be the site
whose objects are local homeomorphisms Y → X , whose morphisms are continuous maps

Y → Y ′ over X (they are automatically local homeomorphisms) and whose covers are

families {Ui → Y } of jointly surjective local homeomorphisms. Because open embeddings
are local homeomorphisms, there is an obvious morphism of sites Op(X ) → Homeo(X ),

which by Verdier’s comparison theorem [3, III, Théorème 4.1] induces an equivalence

of topoi; see also the beginning of [2, XI, §4]. By Lemma 3.1, we may compute the
Steenrod operations on H ∗(BtopG,Fp) while viewing Fp as a sheaf in either Op(BtopG)

or Homeo(BtopG). It follows that we may apply Proposition 4.9 to the topos associated

to Homeo(BtopG) and to the cover EtopG → BtopG . Let U denote the Čech nerve of

EtopG → BtopG . We have a morphism of simplicial topological spaces U → BsimpG ,
given by the unique map EtopG → {∗} in level 0 and by projections onto the Gn−1 factor

in level n, for all n ≥ 1.
Recall that the big étale topos of BG is the topos associated to the site whose objects are

schemes over BG , whose arrows are morphisms of schemes over BG and whose covers are

families of jointly surjective étale morphisms of schemes over BG . By Verdier’s comparison

theorem, it is also the topos associated to the site whose objects are representable
morphisms of algebraic stacks X → BG , whose arrows are morphisms of algebraic stacks

over BG and whose covers are families of jointly surjective étale morphisms. Because BG
is a terminal object in the second site, we may apply Proposition 4.9 to the big étale

topos of the algebraic stack BG and to the universal G-torsor SpecFp → BG . The Čech
nerve of this morphism is exactly BsimpG .

By Remark 4.3, the projection U → BsimpG and the inclusion Fp ↪→ �BG/Fp induce

the commutative squares of π -equivariant maps:

Z(p)⊗Tot Č (U ,Fp)⊗p Tot Č (U ,Fp)

Z(p)⊗Tot Č (BsimpG,Fp)⊗p Tot Č (BsimpG,Fp)

� �
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and

Z(p)⊗Tot Č (BsimpG,Fp)⊗p Tot Č (BsimpG,Fp)

Z(p)⊗Tot Č (BsimpG,�BG/Fp )⊗p Tot Č (BsimpG,�BG/Fp ).

� �

The vertical maps in the first square are isomorphisms because EtopG is connected and
Fp is a constant sheaf. Because G is discrete, we have η−1

j �
q
BG/Fp

= �
q
Gj /Fp

= 0 for all

q > 0 and j ≥ 0, and η−1
j OBG/Fp = OGj /Fp ; see [20, Tag 06TU]. (Recall that the η−1

j are

pullbacks of sheaves on big étale sites. They have been defined in Section 4.2.) Thus, the

vertical maps in the second square are isomorphisms, too. Combining the two squares

and pre-composing with the quasi-isomorphism W → Z(p) of (4.2), we obtain a square
of π -equivariant maps

W ⊗Tot Č (U ,Fp)⊗p Tot Č (U ,Fp)

W ⊗Tot Č (BsimpG,�BG/Fp )⊗p Tot Č (BsimpG,�BG/Fp ),

θ̌t

θ̌a

where θ̌t and θ̌a are given by (4.8). We conclude that the second projection U → BsimpG
induces an isomorphism

Tot(Č (U ,Fp),θ̌t ) ∼= (Tot Č (BsimpG,�BG/Fp ),θ̌a)

in C(p), and so (1.1) is compatible with Steenrod operations. In particular, we have

Sq0 = Id if p = 2, and P0 = Id if p > 2. From Lemma 2.1 we deduce that β = β ◦Sq0 = Sq1

if p = 2, and β = β ◦P0 = β P0 if p > 2. By the previous part of the proof, we know that
(1.1) is compatible with Sq1 and β P0. Because the same formulas hold for the topological

Bockstein, we conclude that (1.1) is also compatible with Bockstein homomorphisms.

We now turn to proving Theorem 1.2(b) and (c). The following is a special case of the
Künneth formula in de Rham cohomology.

Lemma 7.1. Let k be a field, and let G and H be linear algebraic k -groups. Assume that

the Hodge spectral sequences for BG and BH degenerate. Then

(a) the Hodge spectral sequence for B(G ×k H ) degenerates and
(b) the projections G ×k H → G and G ×k H → H induce an isomorphism of k -algebras

H ∗
dR(BG/k)⊗H ∗

dR(BH /k)
∼−→ H ∗

dR(B(G ×k H )/k).

Proof. (a) By the Künneth formula in Hodge cohomology [21, Proposition 5.1], the

projections of G ×k H onto G and H induce an isomorphism

H ∗
H(BG/k)⊗H ∗

H(BH /k)
∼−→ H ∗

H(B(G ×k H )/k), (7.1)

where H i
H(−/k) := ⊕lH l (−,�i−l ) is Hodge cohomology. This isomorphism is multiplica-

tive and respects the bigrading in Hodge cohomology.
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The Hodge spectral sequence is a spectral sequence of k -algebras, and its E1-page is
Hodge cohomology. By assumption, all differentials are trivial on elements coming from

H ∗
H(BG/k) and H ∗

H(BH /k), and hence on all elements of H ∗
H(B(G ×k H )/k).

(b) By Proposition 5.3, BG and BH satisfy Property 5.1. Let d ≥ 0. Then we may find
morphisms gd : Xd → BG and hd : Yd → BH , where Xd and Yd are smooth k -schemes of

finite type, and the induced maps

g∗
d : H ∗

dR(BG/k) → H ∗
dR(Xd/k), h∗

d : H ∗
dR(BH /k) → H ∗

dR(Yd/k)

are injective in degrees ≤ d . We obtain a commutative diagram

H ∗
dR(BG/k)⊗H ∗

dR(BG/k) H ∗
dR(B(G ×k H )/k)

H ∗
dR(Xd/k)⊗H ∗

dR(Yd/k) H ∗
dR(Xd ×k Yd/k).

g∗
d⊗h∗

d (gd×hd )∗

∼

The bottom horizontal map is an isomorphism by the Künneth formula for the de Rham

cohomology of smooth k -schemes; see [20, Tag 0FM9]. Because k is a field, the map g∗
d ⊗h∗

d
is injective in degrees ≤ d . Because d was arbitrary, we deduce that the top horizontal

map is injective. Because the top horizontal map respects the grading, in order to prove

that it is an isomorphism, it suffices to check that

dimk H n
dR(B(G ×k H )/k) =

∑
i+j=n

dimk H i
dR(BG/k) ·dimk H j

dR(BH /k)

for all n ≥ 0. This immediately follows from (7.1) and (a).

In order to prove Theorem 1.2(b) and (c), we need some auxiliary computations.

Lemma 7.2. Let H ∗
dR(Pn/Fp) = Fp [x ]/(xn+1), where x has degree 2.

(a) If p = 2, then Sq(x ) = x2 and β(x ) = 0.

(b) If p > 2, then P(x ) = xp and β(x ) = 0.

Proof. For a computation of H ∗
dR(Pn/Fp), see [20, Tag 0FMJ]. By Theorem 1.1(iv), the

negative Steenrod operations on P
n are trivial. Recall that H i(Pn,OPn ) is zero for i > 0.

By Theorem 1.1(iv), we deduce that P0 and Sq0 are zero on H i
dR(Pn/Fp) for all i > 0.

Because β(x ) has degree 3, necessarily β(x ) = 0.

Lemma 7.3. Let H ∗
dR(BGm/Fp) = Fp [x ], where x has degree 2.

(a) If p = 2, then Sq(x ) = x2 and β(x ) = 0.

(b) If p > 2, then P(x ) = xp and β(x ) = 0.

Proof. Because β(x ) has degree 3 and H ∗
dR(BGm/Fp) is concentrated in even degrees, we

have β(x ) = 0.
Let f : P1 → BGm be the morphism corresponding to the Gm-torsor A2 \ {0} → P

1. We
may fix an isomorphism H ∗

dR(P1/Fp) ∼=Fp [x ]/(x 2) so that the induced ring homomorphism

f ∗ : H ∗
dR(BGm/Fp) → H ∗

dR(P1/Fp) is given by reduction modulo x2. By Lemma 3.1, f ∗ is

compatible with Steenrod operations.

https://doi.org/10.1017/S1474748021000177 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000177


Steenrod Operations 535

(a) By Theorem 1.1(i) and (iv), we may write Sq(x ) = ax + x2 for some a ∈ F2. By

Lemma 7.2(a), we have Sq0(f ∗(x )) = 0. Thus,

0 = Sq0(f ∗(x )) = f ∗(Sq0(x )) = f ∗(ax ) = af ∗(x ).

This implies that a = 0, and hence Sq(x ) = x2.

(b) By Theorem 1.1(i) and (iv), we may write P(x ) = ax + xp for some a ∈ Fp . By
Lemma 7.2(b), we have P0(f ∗(x )) = 0. Then

0 = P0(f ∗(x )) = f ∗(P0(x )) = f ∗(ax ) = af ∗(x ),

and hence a = 0 and P(x ) = xp .

Let k be a field, let G be a connected reductive k -group and let p be a prime number.

Assume first that k is algebraically closed. Let T be a maximal torus of G , let T̂ be the
character group of T , let B be a Borel subgroup of G containing T and let n := dimG/B .

We have a natural group homomorphism T̂ → CH 1(G/B). We obtain a homomorphism

Symn(T̂ ) → CH n(G/B)
deg−−→ Z

π−→ Z/pZ, (7.2)

where deg is the degree map and π is the projection modulo p. We say that p is a torsion

prime for G if the composition (7.2) is zero. If k is an arbitrary field, we say that p is a

torsion prime for G if p is a torsion prime for Gk . This is the definition given in [21, p.
1592], to which we refer for other equivalent formulations.

Proof of Theorem 1.2(b). Because H ∗
dR(BG/Fp) is concentrated in even degrees and β

has degree 1, necessarily β = 0. It thus suffices to show that all Steenrod operations are
trivial.

Let T be a maximal torus of G , let g and t be the Lie algebras of G and T , g∗ and t∗
be their duals and Sym(g∗) and Sym(t∗) be the symmetric Fp-algebras on g and t. Fix

an integer i ≥ 0. We have a commutative diagram

H 0(G, Symi(g∗)) H i(BG,�i
BG/Fp

) H 2i
dR(BG/Fp)

H 0(T, Symi (t∗)) H i(BT,�i
BT/Fp

) H 2i
dR(BT/Fp),

∼

∼

(7.3)

where the vertical maps are pullbacks, the horizontal maps on the left are the
isomorphisms of [21, Corollary 2.2] and the horizontal maps on the right arise in the

Hodge spectral sequence for BG and BT ; see [21, Lemma 8.2].

Let T be a split maximal torus of G , and let B be a Borel subgroup of G containing
T . We have a spectral sequence of k -algebras

E ij
2 := H i

H(BG/Fp)⊗H j
H((G/B)/Fp) ⇒ H i+j

H (BT/Fp),

where H i
H(−/Fp) := ⊕lH l (−,�i−l ); see [21, Proposition 9.3]. Because p is not a torsion

prime for G , the spectral sequence degenerates; see the last paragraph of the proof of
[21, Theorem 9.1]. In particular, the pullback map H i(BG,�i

BG/Fp
) → H i(BT,�i

BT/Fp
)

appearing in (7.3) is injective.
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It follows from [21, Corollary 2.2, Theorem 4.1] that H i(BT,�
j
BT/Fp

) = 0 when i �= j .

Thus, H i(BG,�
j
BG/Fp

) = 0 when i �= j . Thus, in the Hodge spectral sequences

E ij
1 := H j (X ,�i

X /Fp ) ⇒ H i+j
dR (X /Fp)

for X = BG,BT , the E1-pages are concentrated in the diagonal i = j . This implies that

the spectral sequences degenerate. From this we obtain that H j
dR(BG/Fp) = 0 for odd j

and that the right horizontal maps in (7.3) are isomorphisms.
Summarising, we have shown that all horizontal arrows in (7.3) are isomorphisms and

all vertical arrows are injective. Because H j
dR(BG/Fp) = 0 for odd j , this shows that the

pullback H ∗
dR(BG/Fp) → H ∗

dR(BT/Fp) is injective.
We fix an isomorphism T ∼= G

n
m, for some n ≥ 0. By Lemma 7.1(b), this induces a ring

isomorphism H ∗
dR(BT/Fp) ∼= Fp [x1, . . . ,xn ], where xi is the pullback of the generator of

H 2
dR(BGm/Fp) along the ith projection BG

n
m → BGm. By Lemma 7.3 and Lemma 3.1,

the Steenrod operations are trivial on the xi and so, by the Cartan formula, they are

trivial on H ∗
dR(BT/Fp).

Remark 7.4. One could also prove Theorem 1.2(b) by establishing the injectivity of
H 0(G, Symi(g∗)) → H 0(T, Symi(t∗)), as follows. It is enough to treat the case when G
is semisimple. Then the injectivity follows from [21, Theorem 8.1] (due to T. A. Springer

and R. Steinberg [19, Section II.3.17’] and P.-E. Chaput and M. Romagny [5, Theorem
1.1]) when p > 2, or when p = 2 and g does not have factors of the form Sp2n . In the

remaining cases, it is a consequence of results of Chaput–Romagny; see the last paragraph

of the proof of [21, Theorem 9.2].

The de Rham cohomology of Bμp was computed for every prime p by Totaro [21,

Proposition 10.1]. We have

H ∗
dR(Bμp/Fp) = Fp [t,v ]/(v2), |t | = 2, |v | = 1. (7.4)

Lemma 7.5. Let Sq and P be the total Steenrod operations on H ∗
dR(Bμp/Fp). With

respect to (7.5), we have the following:

(a) If p = 2, then Sq(t) = t2, β(t) = 0, Sq(v) = 0 and β(v) = t .

(b) If p > 2, then P(t) = tp, β(t) = 0, P(v) = 0 and β(v) = t .

Proof. From the proof of [21, Proposition 10.1], t is defined as the pullback of a generator

of H 2
dR(BGm/Fp) along the inclusion μp ↪→Gm. By Lemma 7.3, we deduce that β(t) = 0,

that Sq(t) = t2 if p = 2 and that P(t) = tp if p > 2.
Because |v | = 1 and v2 = 0, we have Sq(v) = Sq0(v) and P(v) = P0(v). From the

proof of [21, Proposition 10.1], we see that v belongs to the image of the differential
H 0(Bμp,�

1
Bμp/Fp

) → H 1
dR(Bμp/Fp) arising from the Hodge spectral sequence for Bμp .

By Proposition 6.5(b), we deduce that Sq0(v) = 0 and P0(v) = 0.
To prove that β(v) = t , one may apply the Čech-theoretic interpretation given in

Section 6.4 to the presentation of Bμp as [Gm/Gm], where Gm acts on itself via the
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pth-power map. The Čech complex for �1
Bμp/Fp

starts as

k [x±1]dx → k [y±1
1 ,y±1

2 ] 〈dy1,dy2〉 → ·· · .

The homomorphism on the left is given by

f (x )dx 
→ f (yp
1 y2)d(yp

1 y2)− f (y1)dy1.

Using this formula, a simple computation shows that dx/x is a generator for
H 0(Bμp,�

1
Bμp/Fp

) and that βH(dx/x ) = dy1/y1. Here βH is the Bockstein in Hodge

cohomology. The canonical inclusion μp ↪→ Gm induces a commutative diagram of Čech

nerves:

Bμp Gm G
2
m

BGm Speck Gm,

pr1

where pr1 denotes the first projection. If we use the coordinate u for the Gm in the bottom
right corner, then H 1(BGm,�BGm/k ) is generated by du/u, and pr∗

1(du/u) = dy1/y1. This

shows that βH(dx/x ) = pr∗
1(du/u). By [21, Proposition 10.1], the Hodge spectral sequence

for Bμp degenerates and identifies dx/x with v and pr∗
1(du/u) with t . By Proposition 6.12,

it follows that β(v) = t , as desired.

Proof of Theorem 1.2(c). We start with B O2. We have

H ∗
dR(B O2 /F2) = F2[u1,u2], |u1| = 1,|u2| = 2.

We think of O2 as the isometry group of the quadratic form q on A
2
F2

given by q(x,y) = xy .
There is a subgroup H of O2, isomorphic to Z/2Z×μ2, where Z/2Z acts by switching x
and y and μ2 acts by scaling on A

2
F2
. By Theorem 1.2(a) we have

H ∗
dR(B(Z/2Z)/F2) = F2[s], |s| = 1, Sq(s) = s + s2,

and by Lemma 7.5(a) we have

H ∗
dR(Bμ2/F2) = F2[t,v ]/(v2), |t | = 2, |v | = 1, Sq(t) = t2, Sq(v) = 0.

By Lemma 7.1, we have

H ∗
dR(BH /F2) = F2[s,t,v ]/(v2),

compatibly with the projection maps BH → B(Z/2Z) and BH → Bμ2. Applying
Lemma 3.1 to the projections BH → Bμ2 and BH → B(Z/2Z), we obtain

Sq(s) = s + s2, Sq(t) = t2, Sq(v) = 0.

The induced homomorphism H ∗(B O2 /F2) → H ∗(BH /F2) sends u1 
→ s and u2 
→ t +sv ,
and in particular it is injective; see [21, p. 1602]. Note that Sq(t + sv) = t2 and that

u2
2 
→ t2. It follows that

Sq(u1) = u1 +u2
1, Sq(u2) = u2

2 .
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For every r ≥ 1, by Lemma 7.1 we may write

H ∗
dR(B Or

2 /F2) = F2[s1, . . . ,sr,t1, . . . ,tr ].

Here si and ti are the pullback of the classes u1 and u2 in H ∗(B O2 /F2) along the ith
projection B Or

2 → B O2, respectively. Applying Lemma 3.1 to the projections, we see

that

Sq(si) = si + s2
i , Sq(ti) = t2

i .

By [21, Theorem 11.1, Lemma 11.3], we have

H ∗
dR(B O2r /F2) = F2[u1,u2, . . . ,u2r ],

where |ui | = i for every i = 1, . . . ,2r . Moreover, there exists a closed subgroup embedding
ι : Or

2 ↪→ O2r such that the pullback map

ι∗ : H ∗
dR(B O2r /F2) → H ∗

dR(B Or
2 /F2)

is injective and is given by

ι∗(u2a) =
∑

1≤i1<···<ia≤r

ti1 · · · tia , ι∗(u2a+1) =
r∑

m=1

sm
∑

1≤i1<···<ia≤r,ih �=m

ti1 · · · tia .

Because Sq(ti) = t2
i and ι∗ is injective, we have Sq(u2a) = u2

2a . One proves by ascending

induction on 0 ≤ d ≤ a that

ι∗(u4a+1 +
2a−1∑

t=2a−2d

u2a−tu2a+1+t ) =
r∑

m=1

sm
∑

jh �=m

tj1 . . . tjd
∑

ih �=m

ti1 . . . ti2a−d , (7.5)

ι∗(u4a+1 +
2a−1∑

t=2a−2d−1

u2a−tu2a+1+t ) =
r∑

m=1

sm
∑

∃h:jh=m

tj1 . . . tjd
∑

ih �=m

ti1 . . . ti2a−d . (7.6)

In the sums, h is arbitrary, 1 ≤ j1 < · · · < jd ≤ r and 1 ≤ i1 < · · · < i2a−d ≤ r . We define

tjh ,sih := 0 when h > a. When d = 0, (7.5) coincides with the previous expression of
ι∗(u4a+1) in terms of the si and ti and so is true. One then uses (7.5) for d to prove (7.6)

for d and (7.6) for d to prove (7.5) for d +1. By induction, this proves the formulas for

all 0 ≤ d ≤ a. When d = a, (7.5) becomes

ι∗(u4a+1 +
2a−1∑
t=0

u2a−tu2a+1+t ) =
r∑

m=1

sm
∑

ih �=m

t2
i1 . . . t2

ia = ι∗(Sq(u2a+1))+ ι∗(u2a+1)
2.

Because ι∗ is injective, this implies Theorem 1.2(c) for B O2r .

The homomorphism

H ∗
dR(B O2r /F2) → H ∗

dR(B SO2r /F2)

induced by the canonical inclusion SO2r ↪→ O2r sends u1 
→ 0 and ui 
→ ui for i ≥ 2. This
implies Theorem 1.2(c) for SO2r .
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Consider now the composition of closed embeddings

SO2r+1 ↪→ O2r+1 ↪→ O2r+2 ,

where O2r+1 is embedded as the stabiliser subgroup of a nonzero vector of the

standard (2r + 2)-dimensional representation of O2r+2. The induced homomorphism

H ∗
dR(O2r+2 /F2) → H ∗

dR(SO2r+1 /F2) sends u1,u2r+2 
→ 0 and ui 
→ ui for 2 ≤ i ≤ 2r + 1,
proving Theorem 1.2(c) for SO2r+1.

Finally, recall that O2r+1 ∼= SO2r+1 ×μ2. The Künneth isomorphism

H ∗
dR(B SO2r+1 /F2)⊗H ∗

dR(Bμ2/F2)
∼−→ H ∗

dR(B O2r+1 /F2) (7.7)

sends ui 
→ ui for all i , v 
→ v1 and c 
→ c1 (we are using the notation of Lemma 7.5 for

the cohomology of Bμ2). Taking Lemma 7.5 into account, this proves the formulas for

Sq on B O2r+1.
We now consider β. Totaro defines u2a+1 so that βH(u2a) = u2a+1 +u1u2a , where βH is

the Bockstein in Hodge cohomology. (Here we identify the generators for Hodge and de

Rham cohomology, because the Hodge spectral sequence degenerates.) The formula for

β(u2a) follows from Proposition 6.12. Applying β to both sides of the formula for β(u2a),
we get the formula for β(u2a+1). In the case of O2r+1, the formulas for c1 and v1 follow

from Lemma 7.5 and (7.7).
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