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AN EXISTENCE THEOREM
FOR ORDINARY DIFFERENTIAL EQUATIONS
IN BANACH SPACES

Moses A. BOUDOURIDES

The Cauchy problem x' = f(t, z) , x{(0) = z, » is considered in

a non-reflexive Banach space E , where [ 1is weakly continuous.
A local existence theorem is proved using the measure of weak

noncompactness.

Let E be a real Banach space and E* its dual. Norms in both &

and E* are denoted by ||*J} . Let z, € and a, b >0 . We set

I=1[0,a] and D={x €E: ”x—xOH < b}

We consider the ordinary differential equation in E ,

flt, =),
(1)

x(0) = =

0 *
If f € ¢(IxD, E) , local existence theorems for (1) can be proved
through compactness type conditions, such as f being o-Lipschitzian,

where a denotes the measure of non-compactness (for example, [5]1).

It is our purpose to examine the case that f is weakly continuous
and w-Lipschitzian, where w is the measure of noncompactness in the weak
topology {as introduced by De Blasi [4]). To be specific, given any

bounded subset A of a Banach space X , we define
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w(4) = inf{e > 0 : there exists a weakly compact ¢ € X such that
4 c C+eS} ,

where S is the unit closed ball in X . It follows from a well known
characterization of reflexivity that w(4) = 0 for any bounded subset 4
of a reflexive Banach space X . Almost all of the following properties of
w were proved in [4] (for the proof of (10) we used the Weak Ascoli
Theorem of [3]).

LEMMA 1. If A, B are bounded subsets of the Banach space X , then

(1) AcB implies w(4) = w(B) ,

(2) w(4) w@m) , where ¥ denotes the weak closure of 4,

(3) wld) = 0 if and only if A’ is weakly compact,
(4) (4 uB) = max{w(4), w(B)},

(5) w(4) = wl(co 4) ,

(6) w({x}+d) = w(a) , forany = €X,

(7) w(4+B) = w(4) + w(B) ,

(8) w(M) = |r|w(4) , forall X €R,

(9) w( U M) = hud) .
0=3A

If Mc (I, E) (strongly) bounded and equicontinuous, then
(10) w(m) = supfw(M(¢)) : ¢t € I} .
We now state our main result.

THEOREM 2. Let f : I xD > E be weakly continuous, (strongly)
bounded with M = sup{fjf(t, x)|| : (¢, x) € I x D} and w-Lipschitzian,
that is, there extsts a k = 0 such that

w(f(r xB)) =kw(B) , B<D.
Then (1) has a solution on J = [0, h] , where
h < min{a, b/M} and hk < 1 .

By a solution we mean a strongly continuous, once weakly
differentiable function & : J + F satisfying (1) in J with x’

denoting the weak derivative. Of course, such an x 1is strongly
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differentiable almost everywhere in J and satisfies (1) almost everywhere

in J with z' denoting its strong derivative (see [7] and [91).

If f is weakly continuous and ,}Tjr;rfﬂw is weakly compact, then
obviously f is w-Lipschitzian. Furthermore, if f 1is weakly continuous
and E 1is a reflexive Banach space, f 1is trivially w-Lipschitzian.

Thus the results of Kato [8] and Browder [2] (see also [5] and [10]) are

special cases of Theorem 2. We state them as separate corollaries.

COROLLARY 3. Let f : I xD > E be weakly continuous and

f(I x D)* be weakly compact. Then (1) has a solution on J = [0, h] ,
where h = min{a, b/M} and M = suplllf(¢, =) : (£, =) € T x D} .

COROLLARY 4. et E be reflexive and f : I x D + E be weakly
continuous and (strongly) bounded with

M = sup{||f(t, =)|| : (¢, =) € T x D} .
Then (1) has a solution on J = [0, h] , where h = min{a, b/M} .

Proof of Theorem 1. We are going to employ Euler's method of
polygonal lines as it was developed by Szufla in [77] (also in [1]). The

proof proceeds in three steps.

First Step. For any A< D , set

R(4) = xy + U Xco flJ x 4) ,
0=As<h

H= N 4 ,vwhere Q={4cD: R4)c4).
A€Q

It can be easily shown that Q# @ , H# @ and H = R(H) , and so H

i% closed. Moreover H is weakly compact, since

w(#) = w(R(H)) = of ;J_h A co f(7 x B)) = hw(co f(J x H)) = hw(f(J x H))
0sAS

< hkw(H)
and hk <1 implies that w(H) = 0 ; +that is, H = ad weakly compact.
Define

§ = {x : J > H such that z(0)

2y, le(t)-z(t) = Mle-¢'], ¢, t' € J}

As S(t) € H implies w(S(#)) S w(#) =0, for all ¢ € J , and since §
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is bounded and equicontinuous

w(5) = supfu(s(t)) : t €ed} =0 ;

that is, Ew is weakly compact.

Second step. We claim that for any € > 0 there exists a u € S
such that, for all ¢ € J ,

t

“u(t) -z - Io f(s, u(s))ds

< et .

Indeed, the weak continuity of f implies that f is weakly
uniformly continuous on the weakly compact J X H ; that is, for any

€ >0 there is a & > 0 such that, for all x* € E* |
| (72, ©)-fle, y), z*)| =€,
whenever t, s € J , x, y € H such that
|t-s| =8, |z-yll =6 .
We divide J into n subintervals

0=t <t <...<tn=t + A

so that

max |t.~t. .| =< min{8, &/M}
i=l,...,n ° -1

and define a mapping u : J + F as

u(to) =2y

<
—_~
ok
~
1]

u(t;) + (t—ti)f(ti, u(t;)) ,
for
t e [:ti, ti+1] , £ =0,1, , n-1
Clearly, for ¢t € [tt t; +1] .

w(t) = @y + (8)-t)Feg, o) + oo+ (ep-8, )P, s ult, )

+ (e-t,)r (2, ul(t)))

Now a direct computation shows that, for any ¢, t’ € J and for all
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x* € BEY
[ (w(t)-ult"), =*)| < M|t-¢'|
and by a well known consequence of the Hahn-Banach Theorem it is implied

that
lu(£)-u(t")l = M-t

Moreover it is not hard to see that u(t) € H# for all ¢t € J . 1In

fact, u(to) =z, €H andif u(¢) €H for all t € [1;0, ti] , then for

any t € [ti, t u(t) €x + (t_to) co f(J x H) c R(H) = H .

i+1J ?

Finally, if ¢ € [ti’ ti¥1]’ then we can find, for all x* € E* |

< et

t
[u(t) -y - J fls, u(s))ds, x*]
0

and again as a consequence of the Hahn-Banach Theorem

“u(t) - xy - JZ fls, u(s))ds

<et,

which proves the claim.
Third step. Let {en} be a decreasing sequence of real numbers
converging to 0 . By the second step, there exists a sequence {un} cS
such that, for all »n ,
t

”un(t) -, - Jo f(s, un(s))ds

<et, te€dJ.
n

By the Eberlein-Smulian Theorem ([61), Fad weakly compact implies
that S is weakly relatively sequentially compact, that is, there exists

a subsequence {un } of {un} converging weakly in C(J, E) +to some
k

u € S . Hence from the weak uniform continuity of f on the weakly
compact J X H it follows that f(t, u(t)) =w - lim f(¢, u (t))
koo "k

uniformly on ¢J . Thus at the limit we obtain

t
u(t) = x, * J f(s, u(s)]ds , for all ¢t € J .
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Since

Moses A. Boudourides

f 1is weakly continuous, u 1is strongly continuous, once weakly

continuously differentiable on J , where it satisfies (1) with '

denoting the weak derivative of u .
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