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Abstract. Let V be a countably generated right vector space over a division ring
D. If D �∼= �/2�, �/3�, then for any γ ∈ EndD(V ), there exists α ∈ AutD(V ) such that
γ + α, γ − α−1 ∈ AutD(V ). This gives a generalization of [D. Zelinsky, Proc. Amer.
Math. Soc. 5 (1954), 627–630, Theorem].

2010 Mathematics Subject Classification.

In [6, Theorem], Zelinsky proved that every linear transformation over a division
ring is the sum of two automorphisms with the exception of the identity transformation
on a space of two elements. In [5], Nicholson and Varadarjan proved that every linear
transformation over an infinite-dimensional vector space is the sum of an idempotent
and an automorphism. The main purpose of this paper is to generalize Zelinsky’s result
and investigate new decompositions of countably linear transformations. Let V be a
countably generated right vector space over a division ring D. If D �∼= �/2�, �/3�, we
prove that for any γ ∈ EndD(V ), there exists α ∈ AutD(V ) such that γ + α, γ − α−1 ∈
AutD(V ). Furthermore, there exists σ ∈ AutD(V ) such that γ 2 + σγ + 1 ∈ AutD(V ).

Throughout, GLn(D) denotes the n-dimensional general linear group over a
division ring D and Mn(D) denote the ring of all n × n matrices over D with an
identity In. We use D∗ to denote the set of all non-zero elements in D and � to denote
the set of all natural numbers. Let V be a countably generated right vector space over
a division ring D. EndD(V ) and AutD(V ) stand for the sets of all endomorphisms and
all automorphisms on V , respectively. Let {x1, x2, · · · , xn, · · ·} be a basis of V . We say
that σ : V → V is a shift operator if σ (xk) = xk+1 for all k ∈ �.

LEMMA 1. Let V be a countably generated right vector space over a division ring
D and σ ∈ EndD(V ) be a shift operator. Then there exists α ∈ AutD(V ) such that σ +
α, σ − α−1 ∈ AutD(V ).

Proof. Let

C =

⎛
⎜⎝

0 0 0

1D 0 0

0 1D 0

⎞
⎟⎠ , L =

⎛
⎜⎝

0 0 1D

0 0 0

0 0 0

⎞
⎟⎠ ,
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and let

A =

⎛
⎜⎜⎜⎜⎜⎝

C 0 0 · · ·
L C 0 · · ·
0 L C · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Then A is a column-finite matrix over D. It is easy to verify that C3 = L2 = 0. Let

B =

⎛
⎜⎜⎜⎜⎜⎝

C 0 0 · · ·
0 C 0 · · ·
0 0 C · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ , D =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · ·
L 0 0 · · ·
0 L 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Then

A =

⎛
⎜⎜⎜⎜⎜⎝

C 0 0 · · ·
L C 0 · · ·
0 L C · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ = B + D.

Choose a basis {x1, x2, x3, · · ·} of V . Construct two transformations ε, δ ∈ EndD(V )
given by

ε(x1, x2, x3, . . .) = (x1, x2, x3, . . .)B,

δ(x1, x2, x3, . . .) = (x1, x2, x3, . . .)D.

Then

(ε + δ)(x1, x2, x3, . . .)
= (x1, x2, x3, . . .)(B + D)

= (x1, x2, x3, . . .)

⎛
⎜⎜⎜⎝

C 0 0 · · ·
L C 0 · · ·
0 L C · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

= σ (x1, x2, x3, . . .),

and then σ = ε + δ. Clearly, ε3 = δ2 = 0. Thus, σ = (δ + 1) + (ε − 1) and σ = (δ −
1) + (ε + 1). Let α = −(δ + 1). Then α−1 = δ − 1. It is easy to verify that (ε − 1)−1 =
−ε2 − ε − 1 and (ε + 1)−1 = ε2 − ε + 1. Therefore, σ + α, σ − α−1 ∈ AutD(V ), as
asserted. �

LEMMA 2. Let D be a division ring and n ∈ �. If D �∼= �/2�, �/3�, then for any
γ ∈ Mn(D), there exists α ∈ GLn(D) such that γ + α, γ − α−1 ∈ GLn(D).

Proof. Assume that D �∼= �/2�, �/3�. Then | D | ≥ 4. Let x, y ∈ D. If x = y = 0,
then x + u, y − u−1 ∈ D∗ with u = 1D. If x �= 0, then we choose v ∈ D such that
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v �∈ {0, y,−x−1}. Set u = v−1. Then, x + u, y − u−1 ∈ D∗. If y �= 0, then we choose
u ∈ D such that u �∈ {0,−x, y−1}. Hence, x + u, y − u−1 ∈ D∗. Therefore, for any
x, y ∈ D, we can find u ∈ D∗ such that x + u, y − u−1 ∈ D∗.

Given any β, γ ∈ Mn(D), we can find β11, γ11 ∈ D, β12, γ12 ∈ M1×(n−1)(D),
β21, γ21 ∈ M(n−1)×1(D) and β22, γ22 ∈ M(n−1)×(n−1)(D) such that

β =
(

β11 β12

β21 β22

)
, γ =

(
γ11 γ12

γ21 γ22

)
.

It will suffice to prove that β + δ, γ − δ−1 ∈ GLn(D) for some δ ∈ GLn(D). From the
previous discussion, we can find a1, a2 ∈ D∗ such that β11 + a = u1 ∈ D∗ and γ11 −
a−1 = u2 ∈ D∗. Since β22 − β21u−1

1 β12, γ22 − γ21u−1
2 γ12 ∈ Mn−1(D), from induction

hypothesis, we can find b ∈ GLn−1(D) such that β22 − β21u−1
1 β12 + b = v1 ∈ GLn−1(D)

and γ22 − γ21u−1
2 γ12 − b−1 = v2 ∈ GLn−1(D). As a result, we deduce that

β + diag(a, b) =
(

u1 β12

β21 v1 + β21u−1
1 β12

)
,

γ − diag(a−1, b−1) =
(

u2 γ12

γ21 v2 + γ21u−1
2 γ12

)

Clearly, (
u1 β12

β21 v1 + β21u−1
1 β12

)
=

(
1 0

β21u−1
1 1

) (
u1 β12

0 v1

)
,

(
u2 γ12

γ21 v2 + γ21u−1
2 γ12

)
=

(
1 0

γ21u−1
2 1

) (
u2 γ12

0 v2

)
.

Thus, (
u1 β12

β21 v1 + β21u−1
1 β12

)
,

(
u2 γ12

γ21 v2 + γ21u−1
2 γ12

)
∈ GLn−1(D).

By induction, we conclude that β + δ, γ − δ−1 ∈ GLn(D) for some δ ∈ GLn(D). Choose
β = γ . Then we obtain the result. �

Let D = �/3�. Choose x = 2 ∈ D. We see that there is no u ∈ D∗ such that x +
u, x − u−1 ∈ D∗. But we see that for any x ∈ D, there exists a u ∈ D∗ such that x −
u, x − u−1 ∈ D∗. Thus, the later condition is far from the previous.

LEMMA 3. Let V be a countably generated right vector space over a division ring
D, and let γ ∈ EndD(V ) be such that V is spanned by {y, γ (y), γ 2(y), . . .}. If D �∼=
�/2�, �/3�, then there exists α ∈ AutD(V ) such that γ + α, γ − α−1 ∈ AutD(V ).

Proof. Let V �= 0. If γ n(y) �∈ yD + γ (y)D + γ 2(y)D + · · · + γ n−1(y)D for all n ∈ �,
then {y, γ (y), γ 2(y), . . .} forms a basis of V . Since γ is a shift operator with respect
to this basis, by virtue of Lemma 1, we have α ∈ AutD(V ) such that γ + α, γ − α−1 ∈
AutD(V ).
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Suppose there exists some n ∈ � such that γ n(y) ∈ yD + γ (y)D + γ 2(y)D + · · · +
γ n−1(y)D. If n is minimal with this property, then {y, γ (y), γ 2(y), . . . , γ n−1(y)} forms a
basis of V ; hence, EndD(V ) ∼= Mn(D). By virtue of Lemma 2, the result follows. �

LEMMA 4. Let V be a countably generated right vector space over a division ring
D, D �∼= �/2�, �/3�, let γ ∈ EndD(V ) and U be a γ -invariant vector subspace of V.
Assume that V = U + K where K = yD + γ (y)D + γ 2(y)D + · · · for some y ∈ V. If
there exists α′ ∈ AutD(U) such that γ |U + α′, γ |U − (α′)−1 ∈ AutD(U), then there exists
α ∈ AutD(V ) such that γ + α, γ − α−1 ∈ AutD(V ).

Proof. Obviously, we have a vector subspace M such that V = M ⊕ U . Since U is
γ -invariant, we have a transformation γ : V/U → V/U defined by γ (v) = γ (v). Let
θ : V → V given by θ (m + u) = m for any m ∈ M, u ∈ U . Then θ (V ) = M and θ2 = θ .
This induces a D-isomorphism θ0 : V/U → M. Let ζ = θ0γ θ−1

0 ∈ EndD(M). Then
ζθ0 = θ0γ , and so ζθ0(v) = θ0γ (v) for any v ∈ V . This induces that ζθ (v) = θγ (v). For
any m ∈ M, ζ (m) = ζθ (m) = θγ (m). Hence, θζ (m) = θ2γ (m) = θγ (m). It follows that
γ (m) − ζ (m) ∈ Kerθ = U for all m ∈ M.

By hypothesis, we see that {y, γ (y), (γ )2(y), . . .} spans V/U , and then
{θ0(y), θ0

(
γ (y)

)
, θ0

(
(γ )2(y)

)
, . . .} spans M. Clearly, we have θ0

(
(γ )n(y)

) = ζ n
(
θ0(y)

)
for

all n ∈ �, and so {θ0(y), ζ
(
θ0(y)

)
, ζ 2

(
θ0(y)

)
, . . .} spans M. In light of Lemma 3, there

exists α1 ∈ AutD(M) such that ζ + α1, ζ − (α1)−1 ∈ AutD(M). By assumption, there
exists α′ ∈ AutD(U) such that γ |U + α′, γ |U − (α′)−1 ∈ AutD(U). Define α : V → V
given by α(m + u) = α1(m) + α′(u) for any m ∈ M, u ∈ U . Let β1 = ζ + α1 and β ′ =
γ |U + α′. Let β : V → V given by β(m + u) = β1(m) + (

β ′(u) + γ (m) − ζ (m)
)

for any
m ∈ M, u ∈ U . One easily checks that α ∈ AutD(V ). Furthermore, we see that

(−α + β)(m + u)
= −α1(m) − α′(u) + β1(m) + (

β ′(u) + γ (m) − ζ (m)
)

= ( − α1(m) + β1(m)
) + ( − α′(u) + β ′(u)

) + γ (m) − ζ (m)
= γ (u) + γ (m)
= γ (m + u)

for any m ∈ M, u ∈ U . Thus, γ + α = β. If β(m + u) = 0, then β1(m) = −β ′(u) −
γ (m) + ζ (m) ∈ M

⋂
U = 0; hence, β1(m) = 0. This infers that m = 0. Furthermore,

we get −β ′(u) = 0, and so u = 0. Thus β is a D-monomorphism. Obviously, U ⊆ Imβ.
It suffices to show that M ⊆ Imβ. If m ∈ M, we can find m0 ∈ M such that m = β1(m0).
Also we have u0 ∈ U such that γ (m0) − ζ (m0) = β ′(u0). It is easy to check that

β(m0 + u0)
= β1(m0) + (

β ′(u0) + γ (m0) − ζ (m0)
)

= m.

That is, β is a D-epimorphism, and so γ + α = β ∈ AutD(V ).
Let σ1 = ζ − (α1)−1 and σ ′ = γ |U − (α′)−1. Let δ : V → V given by δ(m + u) =

σ1(m) + (
σ ′(u) + γ (m) − ζ (m)

)
for any m ∈ M, u ∈ U . Then

(α−1 + δ)(m + u)
= α−1

1 (m) + (α′)−1(u) + σ1(m) + (
σ ′(u) + γ (m) − ζ (m)

)
= (

α−1
1 (m) + σ1(m)

) + (
(α′)−1(u) + σ ′(u)

) + γ (m) − ζ (m)
= γ (u) + γ (m)
= γ (m + u)
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for any m ∈ M, u ∈ U . So, γ − α−1 = δ. Analogously, we see that δ ∈ AutD(V ).
Therefore, we complete the proof. �

THEOREM 5. Let V be a countably generated right vector space over a division ring
D, and let γ ∈ EndD(V ). If D �∼= �/2�, �/3�, then there exists α ∈ AutD(V ) such that
γ + α, γ − α−1 ∈ AutD(V ).

Proof. Let γ ∈ EndD(V ) and 
 = {(U, σ, π ) | UD ⊆ V is γ -invariant, γ |U +σ =
π, γ |U −σ−1 = τ, σ, π, τ ∈ AutD(U)}. Partially order 
 by writing (U, σ, π ) ≤
(U ′, σ ′, π ′) if U ⊆ U ′, σ = σ ′ |U , π = π ′ |U . Given (U1, σ1, π1) ≤ (U2, σ2, π2) ≤ · · · in

, then

⋃∞
i=1 Ui is a γ -invariant vector subspace of V . Define σ :

⋃∞
i=1 Ui → ⋃∞

i=1 Ui

given by σ (xi) = σi(xi) for any xi ∈ Ui and π :
⋃∞

i=1 Ui → ⋃∞
i=1 Ui given by π (xi) =

πi(xi) for any xi ∈ Ui. Then γ |⋃∞
i=1 Ui

+σ, γ |⋃∞
i=1 Ui

−σ−1 ∈ AutD
( ⋃∞

i=1 Ui
)
. As a result,( ⋃∞

i=1 Ui, σ, π
) ∈ 
, i.e. 
 is inductive. It follows from Zorn’s lemma that there exists

(W, α, β) ∈ 
 which is maximal in 
. If W �= V , then we can find a y ∈ V − W .
Choose K = yD + γ (y)D + γ 2(y)D + · · · and W0 = W + K . Then W0 is γ -invariant.
In light of Lemma 4, W0 ∈ 
. This gives a contradiction. Therefore, we conclude that
V = W , as required. �

If R is a strongly π -regular ring, then for any x ∈ R there exists an idempotent
e ∈ R such that x2 + ex + 1 ∈ U(R) (see [1, Corollary 13]). For countable linear
transformations over vector spaces, we can derive the following.

COROLLARY 6. Let V be a countably generated right vector space over a division
ring D, and let γ ∈ EndD(V ). If D �∼= �/2�, �/3�, then there exists α ∈ AutD(V ) such
that γ 2 + αγ + 1 ∈ AutD(v).

Proof. In view of Theorem 5, there exists some ε ∈ AutD(V ) such that −γ +
ε,−γ − ε−1 ∈ AutD(V ). Let −γ + ε = α and −γ − ε−1 = σ . Then εγ + 1 = −εσ , this
yields that (γ + α)γ + 1 = −εσ . Therefore, γ 2 + αγ + 1 ∈ AutD(V ), as asserted. �

EXAMPLE 7. Let V = �/3� be the one-dimensional vector space over �/3�. Then for
any γ ∈ EndD(V ), there exists α ∈ AutD(V ) such that γ 2 + αγ + 1 ∈ AutD(V ). But for
some γ ∈ EndD(V ), there is no any α ∈ AutD(V ) such that γ + α, γ − α−1 ∈ AutD(V ).

Proof. Straightforward. �
We note that the conditions D �∼= �/2�, �/3� in Theorem 5 are not necessary as

the following shows.

EXAMPLE 8. Let V = �/2� ⊕ �/2� be the two-dimensional vector space over �/2�,
and let γ ∈ End�/2�(V ). Then there exists α ∈ Aut�/2�(V ) such that γ + α, γ − α−1 ∈
Aut�/2�(V ), and so γ 2 + αγ + 1 ∈ Aut�/2�(V ).

Proof. Clearly, we see that

GL2
(
�/2�

) =
{(

0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)}
.

For any γ ∈ M2
(
�/2�

)
. One directly checks that there exists α ∈ GL2

(
�/2�

)
such that

γ + α, γ − α−1 ∈ GL2
(
�/2�

)
, as required. �
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Let R = End�/2�

(
�/2� ⊕ �/2�

)
. Example 8 means that for any γ ∈ R, there exists

α ∈ U(R) such that γ + α, γ − α−1 ∈ U(R). A natural problem is to ask whether such
condition for a ring is Morita invariant. The answer is negative. It follows from Example
8 that M2

(
�/2�

)
satisfies such condition, while �/2� does not satisfy this one.

Recall that a ring R satisfies unit 1-stable range provided that aR + bR = R with
a, b ∈ R implies that there exists u ∈ U(R) such that a + bu ∈ U(R). A ring R satisfies
Goodearl–Menal condition provided that for any x, y ∈ R, there exists u ∈ U(R)
such that x − u, y − u−1 ∈ U(R) (cf. [2]). As it is well known, Mn

(
�/2�

)
(n ≥ 3) and

Mn
(
�/3�

)
(n ≥ 2) satisfy the Goodearl–Menal condition. From these, we can derive

the following.

PROPOSITION 9. Let R be a semi-local ring. Then the following are equivalent:
(1) For any γ ∈ R, there exists α ∈ U(R) such that γ + α, γ − α−1 ∈ U(R).
(2) R has no homomorphic image �/2�, �/3�.

Proof. (1) ⇒ (2) If R has �/2� as a homomorphic image, then there exists an
ideal I of R such that R/I ∼= �/2�. By hypothesis, there exists some u ∈ U(R) such
that 1 − u ∈ U(R/I). Hence, 1 − 1 = 1 in �/2�, a contradiction. Thus R does not have
�/2� as a homomorphic image. Likewise, it follows from Example 7 that R does not
have �/3� as a homomorphic image.

(2) ⇒ (1) Since R is semi-local, there exist division rings D1, . . . , Dm such that
R/J(R) ∼= ⊕m

i=1 Mni (Di). By hypothesis, either Di �∼= �/2�, �/3� or n ≥ 2; Di ∼= �/2�

or �/3�. If Di �∼= �/2�, �/3�, it follows from Lemma 2 that for any γ ∈ Mni (Di), there
exists α ∈ GLni (Di) such that γ + α, γ − α−1 ∈ GLni (Di). If n ≥ 2; Di ∼= �/2� or �/3�,
it follows from the preceding discussion and Example 8 that for any γ ∈ Mni (Di), there
exists α ∈ GLni (Di) such that γ + α, γ − α−1 ∈ GLni (Di). Thus, for any γ ∈ R, there
exists α ∈ U

(
R/J(R)

)
such that γ + α, γ − α−1 ∈ U(R/J(R)). As units lift modulo

J(R), we conclude that there exists α ∈ U(R) such that γ + α, γ − α−1 ∈ U(R), as
needed. �

COROLLARY 10. Let A be an artinian right R-module. If 1
2 , 1

3 ∈ R, then for any
γ ∈ EndR(A), there exists α ∈ AutR(A) such that γ + α, γ − α−1 ∈ AutR(A).

Proof. Construct two R-morphisms ϕ : A → A given by ϕ(a) = a · 1
2 and φ : A →

A given by φ(a) = a · 1
3 for any a ∈ A. It is easy to verify that ϕ, φ ∈ AutR(A), i.e.

1
2 , 1

3 ∈ EndR(A). As is well known, EndR(A) is semi-local. Therefore, we complete the
proof by Proposition 9. �

For a semi-local ring R, it follows from Proposition 9 that R satisfies Goodearl–
Menal condition if and only if for any γ ∈ R, there exists α ∈ U(R) such that γ + α, γ −
α−1 ∈ U(R). This should be contracted to the following simple fact: a semi-local ring
R satisfies unit 1-stable range if and only if for any γ ∈ R, there exists α ∈ U(R) such
that γ − α, γ − α−1 ∈ U(R). Let V be a countably generated right vector space over a
division ring D, and let γ ∈ EndD(V ). The preceding observation also raises a problem:
if D �∼= �/2�, is there some α ∈ AutD(V ) such that γ − α, γ − α−1 ∈ AutD(V )?

REFERENCES

1. H. Chen, On exchange rings with all idempotents central, Algebra Colloq. 6 (1999),
45–50.

https://doi.org/10.1017/S0017089510000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000121


DECOMPOSITIONS OF COUNTABLE LINEAR TRANSFORMATIONS 433

2. H. Chen, Units, idempotents, and stable range condition, Comm. Algebra 29 (2001),
703–717.

3. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London–San Francisco–
Melbourne, 1979; 2nd ed., Krieger, Malabar, FL, 1991.

4. J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001),
2589–2595.

5. W. K. Nicholson and K. Varadarjan, Countable linear transformations are clean, Proc.
Amer. Math. Soc. 126 (1998), 61–64.

6. D. Zelinsky, Every linear transformation is a sum of nonsingular ones, Proc. Amer.
Math. Soc. 5 (1954), 627–630.

https://doi.org/10.1017/S0017089510000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000121

