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Formation behaviour of the kinetic Cucker–Smale
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In this paper, we focus on the formation behaviour of the kinetic Cucker–Smale
model for initial datum without compact support for the position variable.
Comparing with the case of compact support, the attractive force between particles
is weak. First, we obtain the existence and uniqueness of the classical solution to the
kinetic Cucker–Smale model by standard approximation method. Second, by using
the characteristic flow, we overcome the difficulty brought by the weak attractive
force between particles through some estimates and establish the formation
behaviour, i.e., consensus of velocity, of the classical solution to the kinetic
Cucker–Smale model. Finally, for the measure-valued solution to the kinetic
Cucker–Smale model, the formation behaviour is also established.
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1. Introduction

Collective behaviour in many body systems is ubiquitous in real life, which can be
interpreted as flocking, swarming, aggregation. The Cucker–Smale model is one of
the well-known models to describe the emergent behaviour in flocks, introduced by
Cucker and Smale in [8, 9]. The Cucker–Smale model of N particles is given by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dxi

dt
= vi, i = 1, 2, . . . , N,

dvi

dt
=

N∑
j=1

mjH(|xj − xi|)(vj − vi),
(1.1)

where the communication rate H is

H(s) =
1

(1 + s2)β
, β � 0. (1.2)

Here (xi(t), vi(t)) ∈ Rd × Rd represent the position and velocity of the ith particle,
1 � i � N . This model has been extensively studied in the literature, from different
aspects, for example, collision avoiding [1, 7], flocking with hierarchical leadership
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[17, 24], rooted leadership [18, 19], bi-cluster flocking [11], discrete form flocking
[21, 22] and so on. In order to describe the dynamics of large number of particles,
Ha and Tadmor derived the following kinetic Cucker–Smale model in [13]:

∂tf + v·∇xf + divv(L[f ]f) = 0, f(0, x, v) = f0(x, v), (1.3)

where L[f ] is the alignment force given by

L[f ](t, x, v) = −
∫

R2d

v − ω

(1 + |x− y|2)β
f(t, y, ω) dy dω, β � 0. (1.4)

The unknown function f(t, x, v) � 0 denotes a microscopic density of particle at
time t � 0 and position x ∈ Rd, moving with velocity v ∈ Rd. Existence, uniqueness
and stability results for model (1.3)–(1.4) have also been studied in [2–5, 10, 12,
15]. Besides, Karper, Mellet and Trivisa added a confinement potential to establish
the global existence of the weak solutions in [14] for initial data in L1 ∩ L∞ with
compact support in velocity variable. Moreover, the global existence of measure-
valued solutions for (1.3)–(1.4) with a weak singular communication weight was
established in [20].

The flocking behaviour of the kinetic Cucker–Smale model is proved in [4] when
the initial datum f0 is compactly supported in x and v, that is, the support in
velocity shrinks towards its mean velocity exponentially fast while the support in
position is bounded around the position of the centre of mass. More precisely, there
are some positive constants C and α depending on suppf0 and β such that∫

R2d

|v − vc|2f(t, x, v) dxdv � Ce−αt, vc = ‖f0‖−1
L1

∫
R2d

vf0(x, v) dxdv, (1.5)

when β ∈ [0, 1/2]. Besides, if the initial datum has compact velocity-position
support, i.e., there exists a positive constant λ such that

sup
{∣∣∣v − x

λ

∣∣∣ : (x, v) ∈ suppf0
}
<∞,

Chen and Yin established a new type of collective behaviour in [6] when β > 1,
that is, some velocity-position moments decay:∫

R2d

∣∣∣∣v − x

t+ λ

∣∣∣∣k f(t, x, v) dxdv → 0, ∀ k � 2.

In the above results, they all require that the initial datum has a compact
support of position in some sense. The target in this paper is to find some col-
lective behaviours under more general condition for the support of position. We
first observe that even if the support of position is unbounded while the velocity
support is concentrate on one single point, the system (1.3)–(1.4) will still reach
the equilibrium state (see example 1.2), which is very different from the previous
results. Therefore, the following question is natural:

Question: Assume that the initial datum f0 is not compactly supported in x, are
there any other collective behaviours to the system (1.3)–(1.4)?

In this paper, we study the above question when β ∈ [0, 1/2] and show that the
velocity support of the solution to (1.3)–(1.4) will be asymptotically concentrated
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on its mean velocity. We will call the above behaviour as formation behaviour
defined as below:

Definition 1.1. The kinetic Cucker–Smale model (1.3)–(1.4) has a formation
behaviour when the classical solution f to (1.3)–(1.4) satisfies the following result:

lim
t→∞

∫
R2d

|v − vc|2f(t, x, v) dxdv = 0, vc = ‖f0‖−1
L1

∫
R2d

vf0(x, v) dxdv.

The formation behaviour is a relaxed concept from the original flocking
behaviour, which only concerns the aggregation of velocities and do not care about
the evolution of position support. Therefore, asymptotic formation behaviour even
allows an unbounded position support, which is compatible with the non-compact
framework of this paper. Next, we provide an example to illustrate the differ-
ence between the flocking behaviour and the formation behaviour. To this end,
we introduce the following infinite-particle Cucker–Smale model:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dxi

dt
= vi,

dvi

dt
=

∞∑
j=1

mjH(|xj − xi|)(vj − vi), t > 0,

xi(0) = xi0, vi(0) = vi0,

(1.6)

with total mass M > 0,
∞∑

j=1

mj = M, mj > 0. (1.7)

This model was first proposed in [26]. The measure curve given by

f(x, v, t) =
∞∑

i=1

miδ(x− xi(t))δ(v − vi(t))

is a weak measure-valued solution to (1.3)–(1.4) for β � 1
2 and initial data

{xi0, vi0}i∈N belonging to l2m(Rd) × l∞(Rd), where l2m(Rd) is defined as:

l2m(Rd) =

⎧⎨⎩x = (x1, x2, . . .)

∣∣∣∣∣∣
( ∞∑

i=1

mi|xi|2
) 1

2

<∞
⎫⎬⎭ .

Example 1.2. Suppose that the dimension d = 2. We set the initial data as follows:

mi =
1

(i)4
, xi0 = (i, i), vi0 = (1, 1), i = 1, 2, . . .

All particles will move with the same velocity, but the position support of the
corresponding measure-valued solution is always unbounded. This is a formation
behaviour, but not a flocking behaviour.
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The main results of this paper are threefold. First, in subsection 2.1, we establish
the existence and uniqueness of the classical solution to (1.3)–(1.4) without compact
support by the standard approximation method; see theorem 2.5. The method
to prove this theorem is described below. We first summarize the main results
about the kinetic Cucker–Smale model for compactly supported initial data. Then,
by using the characteristic flow, we show the non-expansion of velocity support
(see lemma 2.4). Besides, we construct a sequence of approximate solutions and
demonstrate the compactness of these approximate solutions. Moreover, we pass
through the limit to obtain a global unique classical solution to (1.3)–(1.4) without
compact support.

Second, in subsection 2.2, we obtain the formation behaviour of the classical
solution to (1.3)–(1.4) by contradiction; see theorem 2.7. This theorem provides a
rigorous proof of the emergence of asymptotic formation behaviour. By employing
the boundedness of velocity support, we first provide some important differential
equations (see lemma 2.6). Then, we establish the Grönwall’s inequality on some
positive time interval, which helps us to construct a decreasing sequence. By split-
ting the integral of the initial datum, we demonstrate that the velocity moment
of order 2 of the solution after translation tends to zero asymptotically, i.e., the
formation behaviour of the classical solution to (1.3)–(1.4).

Finally, in § 3, the formation behaviour of the measure-valued solution to
(1.3)–(1.4) is presented. We first recall some related knowledge about the measure-
valued solutions. Then, we show the stability of the classical solution to (1.3)–(1.4)
under p−Wasserstein distance. Moreover, we regularize the initial datum to
obtain a sequence of approximate solutions. By showing that the sequence of the
approximate solutions is a Cauchy sequence, we get a measure-valued solution to
(1.3)–(1.4). The proof of the formation behaviour of the measure-valued solution
to (1.3)–(1.4) is similar to theorem 2.7.

The paper is organized as follows. In § 2, we establish the uniqueness, existence
and formation behaviour of the classical solution to (1.3)–(1.4). In § 3, the corre-
sponding results similar to the classical solution are obtained on the measure-valued
solutions to the kinetic Cucker–Smale model. Finally, § 4 is devoted to the summary
of our main results.

Notation.

Cb

(
R2d

)
=
{
f
∣∣f ∈ C

(
R2d

)
and bounded

}
,

Cc

(
R2d

)
=
{
f
∣∣f ∈ C

(
R2d

)
with compact support

}
,

C0

(
R2d

)
=
{
f
∣∣f ∈ C

(
R2d

)
and vanishing at infinity

}
,

C1
0

(
R2d

)
=
{
f
∣∣f ∈ C0

(
R2d

)
and ∂xif, ∂vif ∈ C0

(
R2d

)
, i = 1, 2, . . . , d

}
,

C1
b

(
R2d

)
=
{
f
∣∣f ∈ Cb

(
R2d

)
and ∂xif, ∂vif ∈ Cb

(
R2d

)
, i = 1, 2, . . . , d

}
.

2. Classical solution

In this section, we establish the uniqueness, existence and formation behaviour of
the classical solution to (1.3)–(1.4).
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2.1. Existence and uniqueness

To obtain the solution to (1.3)–(1.4) without compact support, we construct a
sequence of solutions with compact support to approximate it. To this end, let
us summarize the main findings of the kinetic Cucker–Smale model for compact
support in the following lemma.

Lemma 2.1 [4, 13]. Let f0 ∈ C1
c (R2d) be the nonnegative initial datum. Then, there

exists a unique global classical solution f � 0 to (1.3)–(1.4) satisfying the following
properties:
(1) The total mass and its average velocity are conserved:

d
dt

∫
R2d

f(t, x, v) dxdv = 0, (2.1)

d
dt

∫
R2d

vf(t, x, v) dxdv = 0. (2.2)

(2) The kinetic flocking behaviour: when β ∈ [0, 1/2], there exist some positive C
and α depending only on suppf0 and β such that∫

R2d

|v − vc|2f(t, x, v) dxdv � Ce−αt, vc = ‖f0‖−1
L1

∫
R2d

vf0 dxdv. (2.3)

(3) According to the fact that L[f ] is continuous in t and Lipschitz continu-
ous in (x, v), the corresponding characteristic flow (X(t, 0, x, v), V (t, 0, x, v))
associated to{

Ẋ(t, 0, x, v) = V (t, 0, x, v), X(0, 0, x, v) = x,

V̇ (t, 0, x, v) = L[f ](t,X(t, 0, x, v), V (t, 0, x, v)), V (0, 0, x, v) = v

is a well-defined homeomorphism for each fixed time t and a C1-function
of time t. Besides, the solution f to (1.3)–(1.4) is given by f(t, x, v) =
(X(t, 0, x, v), V (t, 0, x, v))#f0 in the mass transportation notation, i.e., for all
φ ∈ C1

b (R2d) :∫
R2d

φ(x, v)f(t, x, v) dxdv =
∫

R2d

φ(X(t, 0, x, v), V (t, 0, x, v))f0(x, v) dxdv.

Remark 2.2.

(1) As mentioned in [4], if f ∈ L1([0, T ) × R2d) is a classical solution to
(1.3)–(1.4), then μ(t, x, v) = f(t, x, v) dxdv is a measure-valued solution to
(1.3)–(1.4), where the definition of the measure-valued solution to (1.3)–(1.4)
will be stated later in definition 3.1.

(2) The support of a continuous function f is the closure of the set {x : f(x) 	=
0}, and the support of a Borel measure μ on R2d is the closure of the set
{(x, v) ∈ R2d : μ(Br(x, v)) > 0, ∀ r > 0}.
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(3) Let μ be a Borel measure on Rn, and let T : Rn → Rn be a measurable
map. The push-forward measure of μ by T is the measure T#μ defined by
T#μ(O) = μ(T−1(O)), for all Borel set O ⊂ Rn.

Next, we show the non-expansion of velocity support of the classical solution to
(1.3)–(1.4), which is important in the estimation for approximate solutions. We first
recall a fundamental lemma below, which is obtained in [23].

Lemma 2.3. Let g : [0, T ] → R be a continuous function, we define:

D−g(t) = lim
h→0+

g(t) − g(t− h)
h

.

If for any t ∈ [0, T ], we have D−g(t) � 0, then g(t) is non-increasing in [0, T ].

Then, we provide the following lemma to prepare for the existence and uniqueness
of the classical solution to (1.3)–(1.4).

Lemma 2.4. Assume that f is a classical solution stated in lemma 2.1. Then f
satisfies

sup
(x,v)∈suppf(t)

|v| � sup
(x,v)∈suppf0

|v| for any t � 0. (2.4)

Proof. First, the characteristic flow is well-defined:{
Ẋ(t, 0, x, v) = V (t, 0, x, v), X(0, 0, x, v) = x,

V̇ (t, 0, x, v) = L[f ](t,X(t, 0, x, v), V (t, 0, x, v)), V (0, 0, x, v) = v.
(2.5)

Following from (1.3)–(1.4), we get that

∂tf + v · ∇xf + L[f ] · ∇vf = −fdivvL[f ] = df

∫
R2d

f(t, y, ω)
(1 + |x− y|2)β

dy dω.

Thus, we have

f(t,X(t, 0, x, v), V (t, 0, x, v))

= f0(x, v) · exp
{
d

∫ t

0

∫
R2d

f(s, y, ω)
(1 + |X(s, 0, x, v) − y|2)β

dy dω ds
}
, (2.6)

which means

(x, v) ∈ suppf0 ⇐⇒ (X(t, 0, x, v), V (t, 0, x, v)) ∈ suppf(t).

Denote that

m(t) := sup
(x,v)∈suppf(t)

|v| = sup
(x,v)∈suppf0

|V (t, 0, x, v)|.

We claim that m(t) is continuous with respect to t and

D−m(t) := lim
h→0+

m(t) −m(t− h)
h

� 0.
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(1) m(t) is continuous with respect to t. If not, there exists some ε0 > 0 and tn → t
such that

|m(tn) −m(t)| � ε0.

Choose (x0, v0) ∈ suppf0 such that

|V (t, 0, x0, v0)| = sup
(x,v)∈suppf0

|V (t, 0, x, v)|, (2.7)

since X(t, 0, x, v), V (t, 0, x, v) are smooth on t, x, v and the support of f0 is
compact. We choose (xn, vn) ∈ suppf0 such that

|V (tn, 0, x0, v0)| � |V (tn, 0, xn, vn)| = m(tn).

Since (tn, xn, vn) are bounded, there exists a subsequence (tnk
, xnk

, vnk
) converges

to (t, x̄, v̄) such that

m(t) = lim
k→∞

|V (tnk
, 0, x0, v0)| � lim

k→∞
m(tnk

) = |V (t, 0, x̄, v̄)| � m(t),

which contradicts with the selection of tn.
(2) D−m(t) � 0. First, using (2.5) we have

d
dt

|V (t, 0, x0, v0)|

= − V (t, 0, x0, v0)
|V (t, 0, x0, v0)| · L[f ](t,X(t, 0, x0, v0), V (t, 0, x0, v0))

= − V (t, 0, x0, v0)
|V (t, 0, x0, v0))| ·

{∫
R2d

V (t, 0, x0, v0) − ω

(1 + |X(t, 0, x0, v0) − y|2)β
f(t, y, ω) dy dω

}
� 0,

since |ω| � |V (t, 0, x0, v0)| for any (y, ω) ∈ suppf(t). Then

D−m(t) = lim
h→0+

m(t) −m(t− h)
h

� lim
h→0+

|V (t, 0, x0, v0)| − |V (t− h, 0, x0, v0)|
h

=
d
dt

|V (t, 0, x0, v0)| � 0.

By lemma 2.3, we obtain

sup
(x,v)∈suppf(t)

|v| � sup
(x,v)∈suppf0

|v|.

�

Now, we establish the existence and uniqueness of the classical solution to
(1.3)–(1.4) when the initial datum f0 is not compactly supported in x. The cal-
culation in our proof for the following theorem is similar to [6, theorem 3.2], but
the properties used are very different. For the convenience of the readers, we provide
a complete proof below.
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Theorem 2.5. Suppose that the initial datum f0 ∈ C1
0 (R2d) ∩ L1(R2d) is nonnega-

tive and satisfies:

ρ := sup
(x,v)∈suppf0

|v| <∞, (2.8)

mp :=
∫

R2d

|x|pf0(x, v) dxdv <∞, (2.9)

for some constants ρ > 0 and p � 1. Then, there exists a unique global classical
solution f ∈ C1([0, ∞) × R2d) ∩ L∞([0, ∞);L1(R2d)) to (1.3)–(1.4) such that

sup
(x,v)∈suppf(t)

|v| � ρ. (2.10)

Proof. We first use lemma 2.1 to construct a sequence of approximate solutions.
Then, we prove the compactness of approximate solutions and pass to the limit to
obtain a global solution. Furthermore, by the characteristic flow, the regularity of
the solution is obtained. Finally, we demonstrate the uniqueness of the solution.

Step 1: Approximate solutions. Let fn
0 = f0(x, v) · χn, where χn ∈ C∞

c (R2d),
0 � χn � 1, |∇χn| � 2

n and

χn =

{
1, |x| � n,

0, |x| � 2n.

For any fixed n, there exists a unique global classical solution fn to (1.3)–(1.4)
with initial datum fn

0 by lemma 2.1. Combined (2.8) with lemma 2.4, the velocity
support of fn is uniformly bounded, i.e.,

sup
(x,v)∈suppfn(t)

|v| � ρ. (2.11)

And (2.1) gives

‖fn(t)‖L1 = ‖fn
0 ‖L1 � ‖f0‖L1 . (2.12)

Next, for any fixed n, we define the characteristic flow of fn as follows:{
Ẋn(s, t0, x, v) = Vn(s, t0, x, v), Xn(t0, t0, x, v) = x,

V̇n(s, t0, x, v) = L[fn](s,Xn(s, t0, x, v), Vn(s, t0, x, v)), Vn(t0, t0, x, v) = v,
(2.13)

where s � 0, t0 � 0. By the forward characteristic flow we have

fn(t,Xn(t, 0, x, v), Vn(t, 0, x, v))

= fn
0 (x, v) · exp

{
d

∫ t

0

∫
R2d

fn(s, y, ω)
(1 + |Xn(s, 0, x, v) − y|2)β

dy dω ds
}
. (2.14)

For simplicity, the forward characteristic flow (Xn(t, 0, x, v), Vn(t, 0, x, v)) is
denoted by (Xn(t), Vn(t)).

Step 2: Compactness. Fix T > 0, we show that the sequence {fn} is relatively
compact in C([0, T ];C0(R2d)).
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First, we claim that {fn} is uniformly bounded and equicontinuous with respect
to (x, v). It follows from (2.11) that for any (x, v) ∈ suppfn(t),

|L[fn]| �
∫

R2d

|v − ω|
(1 + |x− y|2)β

fn(t, y, ω) dy dω

� 2ρ‖fn(t)‖L1 � C. (2.15)

Moreover, we get that

|∂vL[fn]| =
∣∣∣∣∫

R2d

1
(1 + |x− y|2)β

fn(t, y, ω) dy dω
∣∣∣∣ � ‖fn(t)‖L1 � C,

|∂xL[fn]| = 2β
∣∣∣∣∫

R2d

v − ω

(1 + |x− y|2)β
· x− y

(1 + |x− y|2)fn(t, y, ω) dy dω
∣∣∣∣

� 4βρ‖fn(t)‖L1 � C,

|divv(∂xiL[fn])| = 2βd
∣∣∣∣∫

R2d

(x− y) · (0, 0, ..., 1, ..., 0, 0)i

(1 + |x− y|2)β+1
fn(t, y, ω) dy dω

∣∣∣∣
� 2βd‖fn(t)‖L1 � C, (2.16)

where (0, 0, . . . , 1, . . . , 0, 0)i = (0, 0, . . . , 0, 1︸︷︷︸
i-th

, 0, . . . , 0, 0). Following from

(2.15), (2.16) and the equalities

∂tfn + v · ∇xfn + L[fn] · ∇vfn = −fndivv(L[fn]),

∂t∂xifn + v · ∇x∂xifn + L[fn] · ∇v∂xifn = −(∂xifn)divv(L[fn]) − fndivv(∂xiL[fn])

− (∂xiL[fn]) · ∇vfn,

∂t∂vifn + v · ∇x∂vifn + L[fn] · ∇v∂vifn = −(∂vifn)divv(L[fn])) − ∂xifn

− (∂viL[fn]) · ∇vfn,

there exists an increasing continuous function R(t) independent of n such that

‖fn(t)‖L∞ + ‖∂xfn(t)‖L∞ + ‖∂vfn(t)‖L∞ � R(t). (2.17)

Therefore, {fn} is uniformly bounded and equicontinuous with respect to (x, v).
Second, we demonstrate that fn ∈ C([0, T ];C0(R2d)). For any ε > 0, there exists

some sufficiently large r > 0 such that

f0(x, v) < ε if |v| > r,

since f0 ∈ C0(R2d). By the backward characteristic flow we can rewrite (2.14) as

fn(t, x, v) = fn
0 (Xn(0, t, x, v), Vn(0, t, x, v))

· exp
{
d

∫ t

0

∫
R2d

fn(s, y, ω)
(1 + |Xn(s, t, x, v) − y|2)β

dy dω ds
}

� fn
0 (Xn(0, t, x, v), Vn(0, t, x, v))eCt.
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Using (2.13), (2.15) and the definition of the characteristic flow,

|Vn(0, t, x, v)| � |v| − |Vn(0, t, x, v) − v| � |v| − Ct.

Combing with (2.18), we deduce

fn(t, x, v) � εeCt if |v| > r + Ct.

Similarly, for any ε > 0, there exists some sufficiently large r > 0 such that

f0(x, v) < ε if |x| > r.

Then, using (2.11), we obtain

fn(t, x, v) < εeCt if |x| > r + Ct.

Combining above arguments, for any ε > 0, there exists some r > 0 such that

fn(t, x, v) < ε if (t, x, v) ∈ [0, T ] × (Br ×Br)c,

which yields that fn ∈ C([0, T ];C0(R2d)). And for any fixed t ∈ [0, T ], {fn(t)} is
relatively compact in C0(R2d) by above estimates.

Finally, we show that {fn} is equicontinuous with respect to t. For any (t, x, v) ∈
[0, T ] × Rd ×Bρ, from (2.15)–(2.17) we obtain

|∂tfn(t, x, v)| � |v · ∇xfn| + |L[fn] · ∇vfn| + |fndivv(L[fn])| � C.

Moreover, for any (t, x, v) ∈ [0, T ] × Rd ×Bc
ρ, we have fn(t, x, v) ≡ 0, which

means |∂tfn(t, x, v)| = 0. Thus, {fn} is equicontinuous with respect to t.
Combining above estimates, we know that fn is relatively compact in

C([0, T ];C0(R2d)). Thus, there is a subsequence of fn (still denoted as fn) which
uniformly converges to a continuous function f ∈ C([0, T ];C0(R2d)). It follows from
(2.11) and (2.12) we obtain that

sup
(x,v)∈suppf(t)

|v| � ρ (2.18)

and f ∈ L∞([0, T ];L1(R2d)).
Step 3: Regularity. We define the characteristic flow of f as follows:{
Ẋ(s, t0, x, v) = V (s, t0, x, v), X(t0, t0, x, v) = x,

V̇ (s, t0, x, v) = L[f ](s,X(s, t0, x, v), V (s, t0, x, v)), V (t0, t0, x, v) = v,
(2.19)

where s � 0, t0 � 0. For simplicity, the forward characteristic flow (X(t, 0, x, v),
V (t, 0, x, v)) is denoted by (X(t), V (t)). Then, for any (x, v) ∈ suppf0 we have

|Xn(t, 0, x, v) −X(t, 0, x, v)| �
∫ t

0

|Vn(s, 0, x, v) − V (s, 0, x, v)| ds (2.20)
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and

|Vn(t, 0, x, v) − V (t, 0, x, v)|

�
∫ t

0

|L[fn](τ,Xn(τ), Vn(τ)) − L[f ](τ,X(τ), V (τ))| dτ

�
∫ t

0

∫
R2d

∣∣∣∣ Vn(τ)−ω

(1 + |Xn(τ)− y|2)β
fn(τ, y, ω)− V (τ) − ω

(1 + |X(τ) − y|2)β
f(τ, y, ω)

∣∣∣∣ dy dω dτ.

(2.21)
Now, recall that

sup
(x,v)∈suppf0

|Vn(t)| � ρ, sup
(x,v)∈suppf(t)

|v| � ρ.

Then, for any (x, v) ∈ suppf0 we obtain∣∣∣∣ Vn(τ) − ω

(1 + |Xn(τ) − y|2)β
fn(τ, y, ω) − V (τ) − ω

(1 + |X(τ) − y|2)β
f(τ, y, ω)

∣∣∣∣
�
∣∣∣∣ Vn(τ) − ω

(1 + |Xn(τ) − y|2)β
fn(τ, y, ω) − Vn(τ) − ω

(1 + |Xn(τ) − y|2)β
f(τ, y, ω)

∣∣∣∣
+
∣∣∣∣ Vn(τ) − ω

(1 + |Xn(τ) − y|2)β
f(τ, y, ω) − V (τ) − ω

(1 + |Xn(τ) − y|2)β
f(τ, y, ω)

∣∣∣∣
+
∣∣∣∣ V (τ) − ω

(1 + |Xn(τ) − y|2)β
f(τ, y, ω) − V (τ) − ω

(1 + |X(τ) − y|2)β
f(τ, y, ω)

∣∣∣∣
� C|fn − f |(τ, y, ω) + C(|Vn(τ) − V (τ)| + |Xn(τ) −X(τ)|)f(τ, y, ω).

Combining the above estimates, there exists some constant C depending only on
T, β, ρ such that

|Vn(t) − V (t)| + |Xn(t) −X(t)|

� C

∫ t

0

‖fn(τ) − f(τ)‖L1 dτ + C‖f0‖L1

∫ t

0

|Vn(τ) − V (τ)| + |Xn(τ) −X(τ)|dτ.
(2.22)

Moreover, using (2.9), (2.11) and (2.13), there exists some CT depending only on
p, T , ρ, mp, ‖f0‖L1 such that∫

R2d

(1 + |x| + |v|)pfn(t, x, v) dxdv =
∫

R2d

(1 + |Xn(t)| + |Vn(t)|)pfn
0 (x, v) dxdv

�
∫

R2d

(1 + |x| + |ρt| + |ρ|)pfn
0 (x, v) dxdv

� CT ,

which implies∫
(Br×Br)c

(1 + r)pfn(t, x, v) dxdv �
∫

(Br×Br)c

(1 + |x| + |v|)pfn(t, x, v) dxdv � CT .
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Therefore, for any ε > 0, there exists some r > 0 such that∫
(Br×Br)c

fn(t, x, v) dxdv < ε, ∀t ∈ [0, T ].

Combining above inequality with the fact that fn uniformly converges to f , then

lim
n→∞ ‖fn − f‖L∞([0,T ];L1(R2d)) = 0. (2.23)

Now, using (2.22) and (2.23), we prove that (Xn(t, 0, x, v), Vn(t, 0, x, v)) uni-
formly converges to (X(t, 0, x, v), V (t, 0, x, v)). Thus, we can pass to the limit
in (2.14). Replacing variables (x, v) with (X(0, t, x, v), V (0, t, x, v)), we use the
backward characteristic flow to get that

f(t, x, v) = f0(X(0, t, x, v), V (0, t, x, v))

· exp
{
d

∫ t

0

∫
R2d

f(s, y, ω)
(1 + |X(s, t, x, v) − y|2)β

dy dω ds
}
.

(2.24)

According to L[f ] ∈ C([0, T ];C1(R2d)), we obtain that X(s, t0, x, v), V (s, t0,
x, v) ∈ C1([0, T ] × [0, T ] × R2d). Then, from (2.24) we get that f ∈ C1([0, T ] ×
R2d) and it satisfies {

∂tf + v · ∇xf + divv(L[f ]f) = 0,

f(0, x, v) = f0(x, v).
(2.25)

Step 4: Uniqueness. Suppose that there exist two solutions, f and h, with the
same initial datum f0. The forward characteristic flows of f and h are denoted by
(Xf (t), Vf (t)) and (Xh(t), Vh(t)). We will show that for any fixed T > 0,

E(t) :=
∫

R2d

(|Xf (t) −Xh(t)| + |Vf (t) − Vh(t)|)f0(x, v) dxdv = 0, ∀t ∈ [0, T ].

Note that

f(s, y, ω) = (Xf (s, 0, y, ω), Vf (s, 0, y, ω))#f0

and

h(s, y, ω) = (Xh(s, 0, y, ω), Vh(s, 0, y, ω))#f0.

It is straightforward to check that

|Xf (t) −Xh(t)| �
∫ t

0

|Vf (s) − Vh(s)|ds (2.26)

https://doi.org/10.1017/prm.2022.47 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.47


Formation behaviour of the kinetic Cucker–Smale model 1327

and

|Vf (t) − Vh(t)|

�
∫ t

0

|L[f ](s,Xf (s), Vf (s)) − L[h](s,Xh(s), Vh(s))|ds

�
∫ t

0

∫
R2d

∣∣∣∣ Vf (s) − Vf (s, 0, y, ω)
(1 + |Xf (s) −Xf (s, 0, y, ω)|2)β

− Vh(s) − Vh(s, 0, y, ω)
(1 + |Xh(s) −Xh(s, 0, y, ω)|2)β

∣∣∣∣
· f0(y, ω) dy dω ds.

For simplicity, we denote

(Yf (s), Uf (s)) = (Xf (s, 0, y, ω), Vf (s, 0, y, ω)),

(Yh(s), Uh(s)) = (Xh(s, 0, y, ω), Vh(s, 0, y, ω)).

Then, for any (x, v) ∈ suppf0 we have∫
R2d

∣∣∣∣ Vf (s) − Uf (s)
(1 + |Xf (s) − Yf (s)|2)β

− Vh(s) − Uh(s)
(1 + |Xh(s) − Yh(s)|2)β

∣∣∣∣ f0(y, ω) dy dω

�
∫

R2d

∣∣∣∣ Vf (s) − Uf (s)
(1 + |Xf (s) − Yf (s)|2)β

− Vh(s) − Uh(s)
(1 + |Xf (s) − Yf (s)|2)β

∣∣∣∣ f0(y, ω) dy dω

+
∫

R2d

∣∣∣∣ Vh(s) − Uh(s)
(1 + |Xf (s) − Yf (s)|2)β

− Vh(s) − Uh(s)
(1 + |Xh(s) − Yh(s)|2)β

∣∣∣∣ f0(y, ω) dy dω

� C(|Xf (s) −Xh(s)| + |Vf (s) − Vh(s)|) +
∫

R2d

|Uf (s) − Uh(s)|f0(y, ω) dy dω

+ 2ρCβ

∫
R2d

|Yf (s) − Yh(s)|f0(y, ω) dy dω

� C(|Xf (s) −Xh(s)| + |Vf (s) − Vh(s)|)

+ C

∫
R2d

(|Yf (s) − Yh(s)| + |Uf (s) − Uh(s)|)f0(y, ω) dy dω. (2.27)

Combing (2.26) with (2.27), for any (x, v) ∈ suppf0 we obtain

|Xf (t) −Xh(t)| + |Vf (t) − Vh(t)|

� C

∫ t

0

(|Xf (s) −Xh(s)| + |Vf (s) − Vh(s)|) ds

+ C

∫ t

0

∫
R2d

(|Yf (s) − Yh(s)| + |Uf (s) − Uh(s)|)f0(y, ω) dy dω ds

� C

∫ t

0

(|Xf (s) −Xh(s)| + |Vf (s) − Vh(s)|) ds+ C

∫ t

0

E(s) ds,

which implies that there exists a positive constant C depending only on T , β, ρ,
‖f0‖L1 such that

E(t) � C

∫ t

0

E(s) ds, ∀t ∈ [0, T ].
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By the Grönwall’s inequality, we get that E = 0 and then the uniqueness of solution.
�

2.2. Formation behaviour of the classical solution

In order to establish the formation behaviour of the classical solution to the
kinetic Cucker–Smale model, we provide the following lemma.

Lemma 2.6. If f is the classical solution as stated in theorem 2.5, then for any
t � 0 we have:

d
dt

∫
R2d

f(t, x, v) dxdv = 0, (2.28)

d
dt

∫
R2d

vf(t, x, v) dxdv = 0, (2.29)

d
dt

∫
R2d

|v|2f(t, x, v) dxdv = −
∫

R4d

|v − ω|2
(1 + |x− y|2)β

f(t, x, v)f(t, y, ω) dxdv dy dω.

(2.30)

Proof. We first show that for any φ ∈ C1
b (R2d),

d
dt

∫
R2d

φf(t, x, v) dxdv =
∫

R2d

{v · ∇xφ+ ∇vφ · L[f ]} f(t, x, v) dxdv. (2.31)

Choose a smooth cut-off function

ϕR(·) = ϕ(·/R) ∈ C∞
c (Rd) such that 0 � ϕR � 1, |∇ϕR| � 2/R,

ϕR ≡ 1 on BR(0) and ϕR ≡ 0 on Rd \B2R(0).

Then we have

d
dt

∫
R2d

ϕR(v)ϕR(x)φf(t, x, v) dxdv =
∫

R2d

ϕR(v)ϕR(x)φ∂tf dxdv

= −
∫

R2d

ϕR(v)ϕR(x)φ(v · ∇xf + divv(L[f ]f)) dxdv.
(2.32)

By direct calculation, we obtain

−
∫

R2d

ϕR(v)ϕR(x)φ(v · ∇xf) dxdv =
∫

R2d

ϕR(v)fv · ∇x(ϕR(x)φ) dxdv

=
∫

R2d

ϕR(v)fφv · ∇x(ϕR(x)) dxdv +
∫

R2d

ϕR(v)fϕR(x)v · ∇x(φ) dxdv

�
∫

R2d

|ϕR(v)vfφ||∇x(ϕR(x))|dxdv +
∫

R2d

ϕR(v)fϕR(x)v · ∇x(φ) dxdv

� 2
R

∫
R2d

|ϕR(v)vfφ|dxdv +
∫

R2d

ϕR(v)fϕR(x)v · ∇x(φ) dxdv.
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This yields

lim
R→∞

−
∫

R2d

ϕR(v)ϕR(x)φ(v · ∇xf) dxdv =
∫

R2d

v · ∇x(φ)f dxdv.

By repeating the above procedure, we have

lim
R→∞

−
∫

R2d

ϕR(v)ϕR(x)φdivv(L[f ]f) dxdv =
∫

R2d

∇vφ · L[f ]f(t, x, v) dxdv.

Thus, let R→ ∞, from (2.32) we can obtain (2.31).
Now, recall that

sup
(x,v)∈suppf(t)

|v| � ρ.

Choose another smooth cut-off function χρ ∈ C1
c (Rd) such that 0 � χρ � 1, χρ ≡ 1

on Bρ+1, and χρ ≡ 0 on Rd \B2ρ+2. The time derivative of velocity moments can
be checked directly by taking φ = 1, viχρ, |v|2χρ in (2.31), respectively.

d
dt

∫
R2d

viχρf(t, x, v) dxdv =
∫

R2d

∇v(viχρ) · L[f ]f(t, x, v) dxdv

= −
∫

R2d

∫
R2d

vi − ωi

(1 + |x− y|2)β
χρf(t, x, v)f(t, y, ω) dxdv dy dω

−
∫

R2d

∫
R2d

vi(v − ω)
(1 + |x− y|2)β

· ∇v(χρ)f(t, x, v)f(t, y, ω) dxdv dy dω

= −
∫

R2d

∫
Rd×Bρ+1

vi − ωi

(1 + |x− y|2)β
f(t, x, v)f(t, y, ω) dxdv dy dω

= −
∫

R2d

∫
R2d

vi − ωi

(1 + |x− y|2)β
f(t, x, v)f(t, y, ω) dxdv dy dω

= 0

and

d
dt

∫
R2d

|v|2χρf(t, x, v) dxdv =
∫

R2d

∇v(|v|2χρ) · L[f ]f(t, x, v) dxdv

= −2
∫

R2d

∫
R2d

v · (v − ω)
(1 + |x− y|2)β

χρf(t, x, v)f(t, y, ω) dxdv dy dω

−
∫

R2d

∫
R2d

|v|2(v − ω)
(1 + |x− y|2)β

· ∇v(χρ)f(t, x, v)f(t, y, ω) dxdv dy dω

= −2
∫

R2d

∫
Rd×Bρ+1

v · (v − ω)
(1 + |x− y|2)β

f(t, x, v)f(t, y, ω) dxdv dy dω

= −2
∫

R2d

∫
R2d

v · (v − ω)
(1 + |x− y|2)β

f(t, x, v)f(t, y, ω) dxdv dy dω

= −
∫

R2d

∫
R2d

|v − ω|2
(1 + |x− y|2)β

f(t, x, v)f(t, y, ω) dxdv dy dω.
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Here we used the change of variable (x, v) ↔ (y, ω) and Fubini’s theorem. �

With the above preparations, we establish the formation behaviour of the classical
solution to (1.3)–(1.4) without compact support for position variable.

Theorem 2.7. Consider (1.3)–(1.4) with β ∈ [0, 1
2 ]. Suppose that the initial datum

f0 ∈ C1
0 (R2d) ∩ L1(R2d) is nonnegative and satisfies:

ρ := sup
(x,v)∈suppf0

|v| <∞, (2.33)

mp :=
∫

R2d

|x|pf0(x, v) dxdv <∞, (2.34)

for some constants ρ > 0 and p � 1. Then, the following assertion holds:

lim
t→∞

∫
R2d

|v − vc|2f(t, x, v) dxdv = 0, vc = ‖f0‖−1
L1

∫
R2d

vf0 dxdv.

First, the quadratic moment of the velocity will converge to some constant P .
And we are devoted to prove P = 0 by contradiction. For this purpose, we construct
some technical sequence {tk}∞k=1. If P 	= 0, we can derive some tk are inconsistent
with their own definitions. We elaborate our methodology in more detail in the
following three steps:
• Step 1: Through the characteristic flow, some estimates are obtained to deduce

the differential inequality (2.39), which will be further classified and discussed in
step 2.
• Step 2: We begin with t1 = 0 to find some Rt1 satisfying (2.40) and (2.41).

Then, let t2 be the supremum of time s, where s guarantees that the integral of the
square of V (t) in BRt1

is greater than the integral outside BRt1
during the time

interval [t1, s)(V (t) which is denoted by (2.38)). If t2 = ∞, then we deduce P = 0
by (2.39). Otherwise, we can find some Rt2 and t3, where Rt2 and t3 are defined
similarly as Rt1 and t2 respectively. If all tk <∞, we obtain two sequences {tk}∞k=1

and {BRtk
}∞k=1 by induction. Obviously, the integral of the square of V (t) in BRtk

is equal to the integral outside BRtk
when t = tk+1.

• Step 3: By splitting the integral of initial datum f0, we construct some subse-
quence {tkh

}∞h=1 such that the equation (2.46) holds. If P 	= 0, we can derive some
tq such that the integral of the square of V (t) in BRtq

is greater than the integral
outside BRtq

when t = tq+1.

Proof. Recall that

d
dt

∫
R2d

f(t, x, v) dxdv = 0,
d
dt

∫
R2d

vf(t, x, v) dxdv = 0.

Hence ∫
R2d

(v − vc)f(t, x, v) dxdv = 0. (2.35)
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For simplicity of notation, we use v instead of v − vc to calculation below and denote
that

Nv,2(f(t)) :=
∫

R2d

|v|2f(t, x, v) dxdv.

Following from (2.30), we get that Nv,2(f(t)) is non-increasing in t. Thus, we have

lim
t→∞Nv,2(f(t)) = P,

where P � 0. Next, we are devoted to prove that P = 0 by contradiction.
Step 1: A prior estimate. Let (x, v), (y, ω) be the initial data of the forward

characteristic flows of f , that is{
Ẋ(t, 0, x, v) = V (t, 0, x, v), X(0, 0, x, v) = x,

V̇ (t, 0, x, v) = L[f ](t,X(t, 0, x, v), V (t, 0, x, v)), V (0, 0, x, v) = v

and {
Ẏ (t, 0, y, ω) = W (t, 0, y, ω), Y (0, 0, y, ω) = y,

Ẇ (t, 0, y, ω) = L[f ](t, Y (t, 0, y, ω),W (t, 0, y, ω)), W (0, 0, y, ω) = ω.

We rewrite (2.30) as

d
dt

∫
R2d

|V (t, 0, x, v)|2f0(x, v) dxdv

= −
∫

R4d

|V (t, 0, x, v) −W (t, 0, y, ω)|2
(1 + |X(t, 0, x, v) − Y (t, 0, y, ω)|2)β

f0(x, v)f0(y, ω) dxdv dy dω.

(2.36)
Note that

sup
(x,v)∈suppf0

|V (t, 0, x, v)| � ρ, sup
(y,ω)∈suppf0

|W (t, 0, y, ω)| � ρ.

Then, we have

|X(t, 0, x, v) − Y (t, 0, y, ω)| � |x− y| + 2ρt.

For any fixed R > 0, we denote that

HR(t) := inf
x,y∈BR

H(|X(t, 0, x, v) − Y (t, 0, y, ω)|),

where H is defined by (1.2). It is obvious that

HR(t) � H(2R+ 2ρt) =: H̃R(t).

For simplicity, we denote

(V (t),X(t)) = (V (t, 0, x, v),X(t, 0, x, v)), (2.37)

(W (t), Y (t)) = (W (t, 0, y, ω), Y (t, 0, y, ω)). (2.38)
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From (2.35) we have∫
R2d

V (t)f0(x, v) dxdv =
∫

R2d

W (t)f0(y, ω) dy dω = 0,

which means that for any R > 0∫
BR×Rd

V (t)f0(x, v) dxdv = −
∫

Bc
R×Rd

V (t)f0(x, v) dxdv.

The above equality gives

d
dt

∫
R2d

|V (t)|2f0(x, v) dxdv

= −
∫

R4d

|V (t) −W (t)|2
(1 + |X(t) − Y (t)|2)β

f0(x, v)f0(y, ω) dxdv dy dω

� −
∫

BR×Rd×BR×Rd

|V (t) −W (t)|2
(1 + |X(t) − Y (t)|2)β

f0(x, v)f0(y, ω) dxdv dy dω

� −H̃R(t)
∫

BR×Rd×BR×Rd

|V (t) −W (t)|2f0(x, v)f0(y, ω) dxdv dy dω

= −2H̃R(t)
∫

BR×Rd

f0(x, v) dxdv ·
∫

BR×Rd

|V (t)|2f0(x, v) dxdv

+ 2H̃R(t)
∫

Bc
R×Rd

V (t)f0(x, v) dxdv ·
∫

Bc
R×Rd

W (t)f0(y, ω) dy dω

� −2H̃R(t)
∫

BR×Rd

f0(x, v) dxdv ·
∫

BR×Rd

|V (t)|2f0(x, v) dxdv

+ 2H̃R(t)
∫

Bc
R×Rd

f0(x, v) dxdv ·
∫

Bc
R×Rd

|V (t)|2f0(x, v) dxdv. (2.39)

The last inequality of (2.39) holds by∣∣∣∣∣
∫

Bc
R×Rd

V (t)f0(x, v) dxdv ·
∫

Bc
R×Rd

W (t)f0(y, ω) dy dω

∣∣∣∣∣
�
{∫

Bc
R×Rd

f0(x, v) dxdv

} 1
2
{∫

Bc
R×Rd

|V (t)|2f0(x, v) dxdv

} 1
2

·
{∫

Bc
R×Rd

f0(y, ω) dy dω

} 1
2
{∫

Bc
R×Rd

|W (t)|2f0(y, ω) dy dω

} 1
2

=
∫

Bc
R×Rd

f0(x, v) dxdv ·
∫

Bc
R×Rd

|V (t)|2f0(x, v) dxdv.

Besides, for any fixed t � 0, there exists some Rt > 0 such that∫
BRt×Rd

f0(x, v) dxdv � 5
6
‖f0‖L1 (2.40)
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and ∫
BRt×Rd

|V (t)|2f0(x, v) dxdv � 5
6

∫
R2d

|V (t)|2f0(x, v) dxdv. (2.41)

Step 2: The decreasing sequence. Now, we construct two sequences {tk}∞k=1

and {Nv,2(f(tk))}∞k=1 . We begin with t1 = 0 and there exists some Rt1 such that
(2.40) and (2.41) hold for t1. Set

T1 =

{
s ∈ R

∣∣∣∣∣for all τ ∈ [t1, s),
∫

BRt1
×Rd

|V (τ)|2f0(x, v) dxdv

>

∫
Bc

Rt1
×Rd

|V (τ)|2f0(x, v) dxdv

⎫⎬⎭ .

By continuity of V (t) and (2.41), there exists some δ > 0 such that [t1, δ) ⊂ T1.
Define

t2 = supT1.

Then, for all s ∈ [0, t2), we have∫
BRt1

×Rd

f0(x, v) dxdv ·
∫

BRt1
×Rd

|V (s)|2f0(x, v) dxdv

−
∫

Bc
Rt1

×Rd

f0(x, v) dxdv ·
∫

Bc
Rt1

×Rd

|V (s)|2f0(x, v) dxdv

�
{

5
6
‖f0‖L1 − 1

6
‖f0‖L1

}
1
2

∫
R2d

|V (s)|2f0(x, v) dxdv

� 1
3
‖f0‖L1

∫
R2d

|V (s)|2f0(x, v) dxdv. (2.42)

We divide into two situations to discuss.
(i) t2 = ∞. Combing (2.39) with (2.42) we get

d
dt

∫
R2d

|V (t)|2f0(x, v) dxdv � −2
3
H̃Rt1

(t)‖f0‖L1

∫
R2d

|V (t)|2f0(x, v) dxdv.

Thus we have∫
R2d

|V (t)|2f0(x, v) dxdv � e‖f0‖L1
∫ t
0 − 2

3 H̃Rt1
(s)ds

∫
R2d

|v|2f0(x, v) dxdv

by the Grönwall’s inequality. For β � 1
2 , the function 2

3H̃Rt1
is not integrable at ∞,

which yields

lim
t→∞Nv,2(f(t)) = 0.

(ii) t2 <∞. By the definition of t2 we obtain∫
BRt1

×Rd

|V (t2)|2f0(x, v) dxdv =
∫

Bc
Rt1

×Rd

|V (t2)|2f0(x, v) dxdv.
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Then, using the fact that Nv,2(f(t)) is non-increasing in t, we have

∫
BRt1

×Rd

|V (t1)|2f0(x, v) dxdv −
∫

BRt1
×Rd

|V (t2)|2f0(x, v) dxdv

� 5
6

∫
R2d

|V (t1)|2f0(x, v) dxdv − 1
2

∫
R2d

|V (t2)|2f0(x, v) dxdv

� 5
6

∫
R2d

|V (t1)|2f0(x, v) dxdv − 1
2

∫
R2d

|V (t1)|2f0(x, v) dxdv

� 1
3

∫
R2d

|V (t1)|2f0(x, v) dxdv

� P

3
.

And for all t � 0

∣∣∣∣ d
dt

|V (t)|2
∣∣∣∣ � 2

∫
R2d

|V (t) − ω||V (t)|
(1 + |X(t) − y|2)β

f(t, y, ω) dy dω

� 4ρ2‖f0‖L1 .

Hence

4ρ2‖f0‖2
L1(t2 − t1) �

∫
BRt1

×Rd

4ρ2‖f0‖L1(t2 − t1)f0(x, v) dxdv

�
∫

BRt1
×Rd

∫ t2

t1

∣∣∣∣ d
dt

|V (t)|2
∣∣∣∣ f0(x, v) dxdv

�
∫

BRt1
×Rd

|V (t1)|2f0(x, v) dxdv

−
∫

BRt1
×Rd

|V (t2)|2f0(x, v) dxdv

� P

3
.

Thus, we get

t2 − t1 � P

12‖f0‖2
L1ρ2

(2.43)

and

Nv,2(f(t2)) � Nv,2(f(t1)). (2.44)
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Next, according to theorem 2.5, we set f(t2, x, v) as initial datum. Then, there
exists some Rt2 such that (2.40) and (2.41) hold for t2. Similarly, we denote

T2 =

{
s ∈ R

∣∣∣∣∣for all τ ∈ [t2, s),
∫

BRt2
×Rd

|V (τ)|2f0(x, v) dxdv

>

∫
Bc

Rt2
×Rd

|V (τ)|2f0(x, v) dxdv

⎫⎬⎭ .

By continuity of V (t) and (2.41), there exists some δ > 0 such that [t2, δ) ⊂ T2 and
we define that

t3 = supT2.

We also divide into two situations to discuss.
(i) t3 = ∞. The proof is similar to the case t2 = ∞.
(ii) t3 <∞. We first use the definition of t3 to obtain that∫

BRt2
×Rd

|V (t3)|2f0(x, v) dxdv =
∫

Bc
Rt2

×Rd

|V (t3)|2f0(x, v) dxdv.

Then, similar to the case t2 <∞ we have

t3 − t2 � P

12‖f0‖2
L1ρ2

and

Nv,2(f(t3)) � Nv,2(f(t2)).

By repeating the above procedure, if all tk <∞, there are two sequences {tk}∞k=1

and {Nv,2(f(tk))}∞k=1 . If P 	= 0, we obtain

∞∑
k=1

{tk+1 − tk} = ∞

from

tk+1 − tk � P

12‖f0‖2
L1ρ2

.

Step 3: Split the integral of initial datum. We split R2d = ∪∞
l=1El, where

Ei ∩ Ej = ∅ for i 	= j, El is bounded and

0 < ml :=
∫

El

f0(x, v) dxdv < ‖f0‖L1 .

Moreover, we denote

|vl(tk)|2 :=

∫
El

|V (tk)|2f0(x, v) dxdv∫
El
f0(x, v) dxdv

=

∫
El

|V (tk)|2f0(x, v) dxdv

ml
,
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which yields ∫
R2d

|V (tk)|2f0(x, v) dxdv =
∞∑

l=1

ml|vl(tk)|2. (2.45)

Now, since {v1(tk)}∞k=1 are bounded, there exists a convergence subsequence
{v1(tkh

)}∞h=1 such that

lim
h→∞

|v1(tkh
)| = |v�

1 |.

Via the classical diagonal method, there exists some subsequence {kh}∞h=1 such that

lim
h→∞

|vl(tkh
)| = |v�

l | for all l ∈ N.

Then, using (2.45) we obtain

lim
h→∞

∞∑
l=1

ml|vl(tkh
)|2 =

∞∑
l=1

ml|v�
l |2 = P. (2.46)

Here we used the dominated convergence theorem of discrete form. And there exists
some N1 such that

N1∑
l=1

ml|v�
l |2 � 5

6

∞∑
l=1

ml|v�
l |2.

For N1, for any ε1 > 0, there exists some tkN1
such that for all tkh

> tkN1
,

|vl(tkh
)|2 > |v�

l |2 −
ε1
2l

for all l � N1.

Thus, we can choose ε1 sufficiently small such that

N1∑
l=1

ml|vl(tkh
)|2 �

N1∑
l=1

ml|v�
l |2 − ‖f0‖L1 · ε1

� 5
6

∞∑
l=1

ml|v�
l |2 − ‖f0‖L1 · ε1

>
2
3

∞∑
l=1

ml|v�
l |2. (2.47)

Next, for ε2 = P
3 , there exists some tkε2

such that

Nv,2(f(tk)) < P + ε2 =
4
3
P for all tk � tkε2

. (2.48)

It is obvious that the index Rtk
is unbounded, since

P = lim
k→∞

Nv,2(f(tk)) � lim
k→∞

e
‖f0‖L1

k∑
q=1

∫ tq+1
tq

− 2
3 H̃Rtq

(s)ds

Nv,2(f(0)).
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Above inequality gives P = 0 if the index Rtk
is bounded. Then, combing (2.47)

with (2.48), there exists some Rtq
> 0 and tq+1 > max

{
tkN1

, tkε2

}
such that

∪N1
l=1El ⊂ BRtq

× Rd

and ∫
BRtq

×Rd

|V (tq+1)|2f0(x, v) dxdv �
∫
∪N1

l=1El

|V (tq+1)|2f0(x, v) dxdv

=
N1∑
l=1

ml|vl(tq+1)|2 > 2
3

∞∑
l=1

ml|v�
l |2 =

2
3
P >

1
2
Nv,2(f(tq+1))

=
∫

Bc
Rtq

×Rd

|V (tq+1)|2f0(x, v) dxdv,

(2.49)

which contradicts with the definition of tq+1. Therefore, P = 0. �

Remark 2.8. Similar to the proof of the classical solution to the model (1.3)–(1.4)
in theorem 2.7, we can establish the corresponding formation behaviour of the
solutions to the infinite-particle Cucker–Smale model (1.6)–(1.7) in l2m(Rd) ×
l2m(Rd).

3. Measure-valued solution

In this section, we study the existence, uniqueness and formation behaviour of the
measure-valued solution to (1.3)–(1.4). Let us review the notion of the measure-
valued solution to (1.3)–(1.4).

Definition 3.1. Let P(Rd) be the set of probability measure on Rd. For T ∈ [0, ∞),
μ ∈ L∞([0, T );P(R2d)) is a measure-valued solution to (1.3)–(1.4) with initial
datum μ0 ∈ P(R2d) if the following two assertions hold:
(1) μ is weakly continuous in t:∫

R2d

φ(x, v)μ(t,dx,dv) is continuous in t for any φ ∈ C1
0 (R2d).

(2) μ satisfies (1.3)–(1.4) in the following weak sense:∫
R2d

ψμ(t,dx,dv) −
∫

R2d

ψμ(0,dx,dv)

=
∫ t

0

∫
R2d

(∂sψ + v · ∇xψ + ∇vψ · L[μ])μ(s,dx,dv) ds

for any ψ ∈ C1
0 ([0, T ) × R2d).

The proof of the formation behaviour of the measure-valued solution to
(1.3)–(1.4) is divided into the following four steps. First, we obtain the stabil-
ity of the classical solution, which is formulated in terms of Wasserstein distance.
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Second, we regularize the initial datum and use the theorem 2.5 to obtain a sequence
of approximate solutions, which is a Cauchy sequence in (Pp(R2d), Wp). More-
over, by passing the limit of the approximate solutions, we get a measure-valued
solution. Finally, similar to the classical solution, the formation behaviour of the
measure-valued solution to (1.3)–(1.4) is established.

For Wasserstein distance, we briefly recall the definition and some basic properties
below.

Definition 3.2. Let P(Rd) be the set of probability measure on Rd, and let p ∈
[1, ∞). For any two μ, ν ∈ P(Rd), the Wasserstein distance of order p between μ
and ν is defined by the formula

Wp(μ, ν) := inf

{(∫
Rd×Rd

|x− y|pπ(dx,dy)
) 1

p

: π ∈ Π(μ, ν)

}
,

where Π(μ, ν) is the set of probability measure on Rd × Rd with marginals μ and
ν, respectively. For all integrable (resp. nonnegative) measurable functions ψ, φ
on Rd,∫

Rd×Rd

(ψ(x) + φ(y))π(dx,dy) =
∫

Rd

ψ(x)μ(dx) +
∫

Rd

φ(y)ν(dy). (3.1)

In order to avoid the trouble that Wp may take the value +∞, we consider Wp

on Pp(Rd):

Pp(Rd) :=
{
μ ∈ P(Rd) :

∫
Rd

|z|pμ(dz) <∞
}
.

And list the characterization of the convergence in Wp below as a lemma.

Lemma 3.3 [25]. Pp(Rd) endowed with the p-Wasserstein distance is a complete
metric space. Let (μk)k∈N be a sequence of probability measures in Pp(Rd) and let
μ be another element of Pp(Rd). We say that (μk)k∈N has uniformly integrable
p-moments if for some x0 ∈ Rd :

lim
r→∞

∫
Rd\Br(x0)

|x− x0|p dμk(x) = 0 uniformly with respect to k ∈ N.

Moreover, we say that μk converge weakly to μ if

lim
k→∞

∫
Rd

φ(x)μk(dx) =
∫

Rd

φ(x)μ(dx) for all φ ∈ Cb(Rd). (3.2)

In particular, we have

lim
k→∞

Wp(μk, μ) = 0 ⇔
{
μk converge weakly to μ,

(μk)k∈N has uniformly integrable p-moments.
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Remark 3.4. From the fact that μk converge weakly to μ we can deduce

suppμ ⊂
⋃
k

suppμk.

Now, we first provide the stability result of the classical solution to (1.3)–(1.4).

Lemma 3.5. Assume that the initial probability densities f0, h0 satisfy the assump-
tions of theorem 2.7. For any T > 0, there exists some positive constant CT

depending only upon ρ, β, p, T such that

Wp(f(t), h(t)) � CTWp(f0, h0), ∀t ∈ [0, T ],

where f, h are solutions to (1.3)–(1.4) with initial data f0, h0, respectively.

Proof. For any π0 ∈ Π(f0, h0), we define the forward characteristic flows of f and
h with the initial data (x, v), (y, ω) ∈ R2d as follows:{

Ẋ(t, 0, x, v) = V (t, 0, x, v), X(0, 0, x, v) = x,

V̇ (t, 0, x, v) = L[f ](t,X(t, 0, x, v), V (t, 0, x, v)), V (0, 0, x, v) = v

and {
Ẏ (t, 0, y, ω) = W (t, 0, y, ω), Y (0, 0, y, ω) = y,

Ẇ (t, 0, y, ω) = L[h](t, Y (t, 0, y, ω),W (t, 0, y, ω)), W (0, 0, y, ω) = ω.

The forward characteristic flows of f and h are defined by (X(t), V (t)) and
(Y (t), W (t)). Following from the definition of the characteristic flows and (3.1),
we get

|X(t) − Y (t)| � |x− y| +
∫ t

0

|V (s) −W (s)|ds (3.3)

and

|V (t) −W (t)|

� |v − ω| +
∫ t

0

∣∣∣∣∫
R2d

V (s) − uf

(1 + |X(s) − rf |2)β
f(s, rf , uf ) drf duf

−
∫

R2d

W (s) − uh

(1 + |Y (s) − rh|2)β
h(s, rh, uh) drh duh

∣∣∣∣ ds
= |v − ω| +

∫ t

0

∣∣∣∣∫
R2d

V (s) − Uf (s, 0, rf , uf )
(1 + |X(s) −Rf (s, 0, rf , uf )|2)β

f0(rf , uf ) drf duf

−
∫

R2d

W (s) − Uh(s, 0, rh, uh)
(1 + |Y (s) −Rh(s, 0, rh, uh)|2)β

h0(rh, uh) drh duh

∣∣∣∣ds
� |v − ω| +

∫ t

0

∫
R4d

∣∣∣∣ V (s) − Uf (s)
(1 + |X(s) −Rf (s)|2)β

− W (s) − Uh(s)
(1 + |Y (s) −Rh(s)|2)β

∣∣∣∣π0(dΩr,u) ds,
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where dΩr,u = drf duf drh duh and we denote the forward characteristic flows with
initial data (rf , uf ) and (rh, uh) by (Rf (s), Uf (s)) and (Rh(s), Uh(s)), respectively.
Similar to (2.27), for any t ∈ [0, T ] we get

|V (t) −W (t)| � |v − ω| + C

∫ t

0

|V (s) −W (s)| + |X(s) − Y (s)|ds

+ C

∫ t

0

∫
R4d

|Uf (s) − Uh(s)| + |Rf (s) −Rh(s)|π0(dΩr,u) ds.

(3.4)

Then, from (3.3) and (3.4) we have

|V (t) −W (t)|p + |X(t) − Y (t)|p

� C(|v − ω|p + |x− y|p) + C

∫ t

0

|V (s) −W (s)|p + |X(s) − Y (s)|p ds

+ C

∫ t

0

∫
R4d

|Uf (s) − Uh(s)|p + |Rf (s) −Rh(s)|pπ0(dΩr,u) ds

= C(|v − ω|p + |x− y|p) + C

∫ t

0

|V (s) −W (s)|p + |X(s) − Y (s)|p ds

+ C

∫ t

0

∫
R4d

|X(s) − Y (s)|p + |V (s) −W (s)|pπ0(dxdv dy dω) ds,

(3.5)

where we used the Hölder inequality. By denoting dΩx,v,y,ω = dxdv dy dω we obtain∫
R4d

|V (t) −W (t)|p + |X(t) − Y (t)|pπ0(dΩx,v,y,ω)

� C

∫
R4d

(|v − ω|p + |x− y|p)π0(dΩx,v,y,ω)

+ C

∫ t

0

∫
R4d

|X(s) − Y (s)|p + |V (s) −W (s)|pπ0(dΩx,v,y,ω) ds.

By the Grönwall’s inequality, there exists some positive constant CT depending
only on T , β, p, ρ such that

[∫
R4d

(|X(t) − Y (t)|p + |V (t) −W (t)|p)π0(dxdv dy dω)
] 1

p

� CT

[∫
R4d

(|x− y|p + |v − ω|p)π0(dxdv dy dω)
] 1

p

. (3.6)

Note that

π(t,dxdv dy dω) := (X(t), V (t), Y (t),W (t))#π0(dxdv dy dω) ∈ Π(f(t), h(t)).
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It follows from (3.6) that

Wp(f(t), h(t)) �
[∫

R4d

(|x− y|p + |v − ω|p)π(t,dxdv dy dω)
] 1

p

� CT

[∫
R4d

(|x− y|p + |v − ω|p)π0(dxdv dy dω)
] 1

p

,

and then by the definition of Wp we complete the proof. �

Next, we provide the following lemma to estimate the difference between the
initial datum and the regularized one.

Lemma 3.6 [16]. Let ζε ∈ C∞
c (Rd) be the mollifier. Assume that μ, ν ∈ P(Rd).

Then, for p ∈ [1, ∞) we have

Wp(μ ∗ ζε, μ) � ε (3.7)

and

Wp(μ ∗ ζε, ν ∗ ζε) � Wp(μ, ν). (3.8)

And then we show the global existence and uniqueness of measure-valued solution
to (1.3)–(1.4).

Lemma 3.7. Let the initial datum μ0 ∈ Pp(R2d). If there exists a positive constant
ρ such that

ρ := sup
(x,v)∈suppμ0

|v| <∞. (3.9)

Then, there exists a global unique measure-valued solution μ ∈ L∞([0, T );Pp(R2d))
to (1.3)–(1.4) and

sup
(x,v)∈suppμ(t)

|v| � ρ. (3.10)

Proof. Let fn
0 = μ0 ∗ ζ 1

n
, it is easy to check that fn

0 ∈ C1
0 (R2d) ∩ Pp(R2d) and

suppfn
0 ⊂ suppμ0 + suppζ 1

n
,

which yields that

sup
(x,v)∈suppfn

0

|v| � ρ+ 1.

Then, from theorem 2.5 we obtain a global unique classical solution fn and

sup
(x,v)∈suppfn(t)

|v| � ρ+ 1. (3.11)
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Combined the lemma 3.5 with (3.7), there exists some integer N such that for any
n, m � N ,

Wp(fn(t), fm(t)) � CTWp(fn
0 , f

m
0 )

� CTWp(fn
0 , μ0) + CTWp(μ0, f

m
0 ) � CT

N
, t ∈ [0, T ],

(3.12)

which yields that fn(t) is a Cauchy sequence in (Pp(R2d), Wp). Thus, by lemma
3.3, there exists a probability measure μ(t) such that fn converges weakly to μ(t)
in Pp(R2d) and

sup
(x,v)∈suppμ(t)

|v| � ρ+ 1. (3.13)

Depending on the remark 3.8, we can replace ρ+ 1 at the right side of the
above inequality with ρ. Now, we claim that μ(t) is a measure-valued solution
to (1.3)–(1.4). Note that∫

R2d

ψfn(t) dxdv −
∫

R2d

ψfn
0 dxdv

=
∫ t

0

∫
R2d

(∂sψ + v · ∇xψ + ∇vψ · L[fn])fn dxdv ds (3.14)

for any ψ ∈ C1
0 ([0, T ) × R2d), since fn is the classical solution with initial datum

fn
0 . Using (3.2), (3.11) and (3.13) we get

lim
n→∞

∫ t

0

∫
R2d

v · ∇xψfn dxdv ds = lim
n→∞

∫ t

0

∫
Rd×Bρ+2

v · ∇xψfn dxdv ds

=
∫ t

0

∫
Rd×Bρ+2

v · ∇xψμ(s,dx,dv) ds =
∫ t

0

∫
R2d

v · ∇xψμ(s,dx,dv) ds. (3.15)

Next, we denote fn(t)⊗2 the product measure fn(t) ⊗ fn(t). And recall the following
inequality:

Wp(fn(t)⊗2, μ(t)⊗2) � 2pWp(fn(t), μ(t)), (3.16)

which can be easily obtained from the definition of Wasserstein distance Wp. Comb-
ing with the fact that fn(t) converges weakly to μ(t) in Pp(R2d), we deduce that
fn(t)⊗2 converges weakly to μ(t)⊗2 in Pp(R4d) from (3.16). Similar to (3.15), we
have

lim
n→∞

∫ t

0

∫
R2d

∇vψ · L[fn]fn dxdv ds

= lim
n→∞−

∫ t

0

∫
R4d

∇vψ · v − ω

(1 + |x− y|2)β
fn(s, x, v)fn(s, y, ω) dxdv dy dω ds

= −
∫ t

0

∫
R4d

∇vψ · v − ω

(1 + |x− y|2)β
μ(s,dx,dv)μ(s,dy,dω) ds

=
∫ t

0

∫
R2d

∇vψ · L[μ]μ(s,dx,dv) ds. (3.17)
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Then, let n→ ∞ we obtain∫
R2d

ψμ(t,dx,dv) −
∫

R2d

ψμ(0,dx,dv)

=
∫ t

0

∫
R2d

(∂sψ + v · ∇xψ + ∇vψ · L[μ])μ(s,dx,dv) ds
(3.18)

from (3.14). Now, we show that μ is weakly continuous in t. For any φ ∈ C1
0 (R2d),

combing (3.13) with (3.18), there exists some constant C depending only on ρ such
that ∣∣∣∣∫

R2d

φμ(t,dx,dv) −
∫

R2d

φμ(s,dx,dv)
∣∣∣∣

=
∣∣∣∣∫ t

s

∫
R2d

(v · ∇xφ+ ∇vφ · L[μ])μ(τ,dx,dv) dτ
∣∣∣∣ � C(t− s),

which yields that μ is weakly continuous in t. At last, similar to the proof of the step
4 in theorem 2.5, μ is the global unique measure-valued solution to (1.3)–(1.4). �

Remark 3.8. If we fix the mollifier differently we can show

sup
(x,v)∈suppμ(t)

|v| � ρ+ ε

for arbitrary small ε > 0.

Except for the regularity of the initial datum, our conditions for the initial datum
of the measure-valued solution to (1.3)–(1.4) are almost the same as those for
the classical solution to (1.3)–(1.4). With the above preparations, we establish the
formation behaviour of the measure-valued solution to (1.3)–(1.4) as below:

Theorem 3.9. Let the initial datum μ0 satisfy the assumptions of lemma 3.7 and
μ be the corresponding measure-valued solution to (1.3)–(1.4). When β ∈ [0, 1

2 ], we
have:

lim
t→∞

∫
R2d

|v − vc|2μ(t,dx,dv) = 0, vc = ‖μ0‖−1
L1

∫
R2d

vμ0(dx,dv).

Proof. Since the overall proof of theorem 3.9 is almost the same as that of theorem
2.7, we will only sketch the proof.

Step 1: Some differential equalities. Similar to lemma 2.6, we can establish
some differential equalities:

d
dt

∫
R2d

μ(t,dx,dv) = 0, (3.19)

d
dt

∫
R2d

vμ(t,dx,dv) = 0, (3.20)

d
dt

∫
R2d

|v|2μ(t,dx,dv) = −
∫

R4d

|v − ω|2
(1 + |x− y|2)β

μ(t,dx,dv)μ(t,dy,dω). (3.21)
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For simplicity of notation, we also use v instead of v − vc to calculation below and
denote that

Mv,2(μ(t)) :=
∫

R2d

|v|2μ(t,dx,dv).

And (3.21) gives

lim
t→∞Mv,2(μ(t)) = P, (3.22)

where P � 0. Next, we are devoted to prove that P = 0.
Step 2: The decreasing sequence. Let (x, v), (y, ω) be the initial data of the

forward characteristic flows of μ, that is{
Ẋμ(t, 0, x, v) = Vμ(t, 0, x, v), Xμ(0, 0, x, v) = x,

V̇μ(t, 0, x, v) = L[μ](t,Xμ(t, 0, x, v), Vμ(t, 0, x, v)), Vμ(0, 0, x, v) = v

and{
Ẏμ(t, 0, y, ω) = Wμ(t, 0, y, ω), Yμ(0, 0, y, ω) = y,

Ẇμ(t, 0, y, ω) = L[μ](t, Yμ(t, 0, y, ω), Wμ(t, 0, y, ω)), Wμ(0, 0, y, ω) = ω.

For simplicity, we denote

(Vμ(t),Xμ(t)) = (Vμ(t, 0, x, v),Xμ(t, 0, x, v)),

(Wμ(t), Yμ(t)) = (Wμ(t, 0, y, ω), Yμ(t, 0, y, ω)).

And rewrite (3.21) as

d
dt

∫
R2d

|Vμ(t)|2μ0(dx,dv) = −
∫

R4d

|Vμ(t) −Wμ(t)|2
(1 + |Xμ(t) − Yμ(t)|2)β

μ0(dx,dv)μ0(dy,dω).

(3.23)
Note that

sup
(y,ω)∈suppμ0

|Wμ(t)| � ρ, sup
(x,v)∈suppμ0

|Vμ(t)| � ρ.

Then

|Xμ(t) − Yμ(t)| � |x− y| + 2ρt.

For any fixed R, we denote

HR(t) := inf
x,y∈BR

H(|Xμ(t) − Yμ(t)|).

It is obvious that

HR(t) � inf
x,y∈BR

H(2R+ 2ρt) =: H̃R(t).

Therefore, similar to (2.39) we have

d
dt

∫
R2d

|Vμ(t)|2μ0(dx,dv) � −2H̃R(t)
∫

BR×Rd×BR×Rd

|Vμ(t)|2μ0(dx,dv)μ0(dy,dω)

+ 2H̃R(t)
∫

Bc
R×Rd×Bc

R×Rd

|Vμ(t)|2μ0(dx,dv)μ0(dy,dω).
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Moreover, using the argument used in the proof of the step 2 in theorem 2.7, there
are two sequences {tk}∞k=1 and {Mv,2(μ(tk))}∞k=1.

Step 3: Split the integral of initial datum. We first split R2d = ∪∞
l=1El,

where Ei ∩ Ej = ∅ for i 	= j, El is bounded and

0 < ml :=
∫

El

μ0(dx,dv) < ‖μ0‖L1 .

Thus, we have

|vl(tk)|2 :=

∫
El

|Vμ(tk)|2μ0(dx,dv)∫
El
μ0(dx,dv)

=

∫
El

|Vμ(tk)|2μ0(dx,dv)

ml

and ∫
R2d

|Vμ(tk)|2μ0(dx,dv) =
∞∑

l=1

ml|vl(tk)|2. (3.24)

Similar to the same argument used in the step 3 in theorem 2.7, we obtain that
P = 0 by contradiction. �

4. Conclusion

In this paper, we obtained the formation behaviour of the kinetic Cucker–Smale
model for classical solution as well as measure-valued solution, whose initial datum
is not compactly supported in x. Even if the compactness condition of support has
been relaxed in this paper, the velocity support has to be compact in any case.
In terms of the classical solution, we first used the characteristic flow to establish
the non-expansion of the velocity support. Then we established the existence and
uniqueness of the classical solution to the kinetic Cucker–Smale model. Futhermore,
we provided a rigorous proof of the emergence of asymptotic formation behaviour.
Finally, for the measure-valued solution to the kinetic Cucker–Smale model, the
formation behaviour is also established.
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