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Abstract
The fault-tolerant control issue of aircraft engines with actuator dynamics and faults is investigated in this paper. By
proposing a novel intelligent sliding mode fault-tolerant control (ISMFTC) method, which combines an adaptive
dynamic programming (ADP) sliding surface with Grey Wolf Optimizer (GWO) for controller parameter optimi-
sation, the goal is to achieve quality steady-state and dynamic performance in aircraft engines while maintaining
strong fault-tolerance properties. Firstly, by considering not only actuator dynamics but also actuator faults, an
uncertain nonlinear cascaded model of aircraft engines is developed according to characteristic of aircraft engines
and their actuators. Secondly, an ADP-based sliding surface is proposed for considered aircraft engine uncertain
nonlinear cascaded system. It can obtain a certain sense of optimised performance, and could be solved by ADP
strategy off-line as well. Thirdly, fault-tolerant controller is obtained on the basis of sliding mode theory and adaptive
fault estimation law, namely, ADP-based ISMFTC controller. Meanwhile, GWO is integrated into the investigation
of ADP-based ISMFTC controller, optimised designable control parameters are obtained subsequently. Besides,
robustness analysis is elaborated according to Lyapunov theory, fault estimation error is bounded and states of
closed-loop system are uniformly ultimately bounded. Simulation on a twin-shaft turbofan aircraft engine, indicates
the effect of proposed ADP-based ISMFTC method.

Nomenclature
A8 nozzle throat area
ecH residual error of the NN expression
GWO Grey Wolf Optimizer
H(·) Hamiltonian function
J() optimal cost function
K f learning rate matrix in adaptive law
Ks positive control gain matrix
nh high pressure compressor speed
nl low pressure compressor speed
p number of neurons
Q(·) positive semi-definite matrix
T5 total temperature of low-pressure turbine
u input vector
ufault actuator fault vector
V(t) Lyapunov function
Wf b fuel flow

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society.

https://doi.org/10.1017/aer.2024.68 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.68
https://orcid.org/0009-0000-9020-0839
https://orcid.org/0009-0000-6086-4546
mailto:lfxiao@nuaa.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/aer.2024.68&domain=pdf
https://doi.org/10.1017/aer.2024.68


2 Xiao et al.

W c ideal NN weights
x state vector
ẋ state vector derivative
x̂ state vector estimation
x̃ state vector error
x∗ optimal control state vector
y output vector

Greek symbol
α diagonal matrix
ε unknown approximation error of this NN
� external disturbance
η lumped uncertainty vector

1.0 Introduction
The aircraft engine provides thrust to move aircraft forward and speed to take off. Increasing demands
on the performance of aircraft engines have resulted from development of science and technology in
industry, which undoubtedly makes design of aircraft engine control more challenging [1–3]. The control
systems in aircraft engines are implemented by many kinds of actuators. Due to high temperature, high
pressure and alternating stress in aircraft engines, actuator faults are prone to inevitably appear. In the
event of serious faults, the consequences would be unimaginable. Obviously, a fault-tolerant control
(FTC) is especially crucial for aircraft engines.

Because of strong robustness and comparatively easy policy, sliding mode control (SMC) method and
SMC-based FTC strategy have garnered significant attention from researchers in the field of science and
engineering worldwide [4–10]. During design of SMC and closed-loop systems, it is important to design
a sliding surface which is not susceptible to mismatch uncertainty [11, 12]. In Ref. [13], a disturbance
observer was developed to estimate unmatched disturbances in the system, and the estimated distur-
bance is then utilised to derive sliding surface. The observer for disturbance increased sophistication
and inconvenience of a controller design. According to Ref. [14], integral SMC law has two parts, one
continuous and one discontinuous. By rejecting mismatched uncertainties through the continuous part
of control, sliding surface became insensitive. In this process, continuous control is achieved through
complex zero-sum games and online neural network training, which are not beneficial for practical use
and engineering achievements. In Refs [15, 16], optimal control was utilised to design sliding surfaces,
yet they were unable to obtain sliding surfaces to adapt mismatched uncertainties.

Reference [17] proposed a multi-regulation control strategy for single-input systems, with regulators
in the form of sliding mode used for regulation. The design method was expounded through a detailed
simulation example about thrust control of a turbofan engine. Detailed simulation examples of turbofan
engine thrust control were presented to illustrate the design method. Based on an online estimation,
which uses gradient adaptation law and low-pass filter, Ref. [18] proposed an adaptive SMC method
for aircraft engines. Reference [19] proposed a sliding mode control method to ameliorate the fixity
of aircraft engine, simulation was given based on a linear model of aircraft engine. All of Refs [17–
19] did not consider the fault of actuators. In Ref. [20], based on an adaptive diagnostic observer, a
novel sliding mode fault-tolerant control (SMFTC) strategy was proposed for aircraft engine systems
with uncertainties and disturbances. Ref. [21] presented an intelligent FTC strategy for a more electric
AC/DC hybrid electric power system for aircraft, aiming at ensuring the safety of aircraft engine and
improving quality of power supply. However, both Refs [20, 21] did not take the actuator dynamics into
consideration.

Adaptive dynamic programming (ADP) approach has strong relationship with optimal control [22],
and ADP arithmetic has also been applied to the design of SMC in recent years. In Ref. [23], neural-
network for a species of uncertain nonlinear systems via ADP was investigated, which is based on robust
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optimal control, and the uncertain nonlinear system’s robust optimal controller was derived by means
of adding a feedback gain to the optimal control design of nominal system. Main objective of Ref. [24]
was to design a SMC methodology based on ADP, as a result, the closed-loop system with time-varying
disturbances could be stable and the approximately optimal control performance of sliding mode dynam-
ics can be promised. In Ref. [14], ADP was introduced to integral SMC for systems with mismatched
disturbance, but ADP was merely employed to stabilise sliding mode dynamics instead of designing
sliding surface at first hand. Reference [25] studied an FTC scheme for a species of cascade nonlinear
systems based on SMC and ADP, however, actuator dynamics and control parameters optimisation were
not taken into consideration.

In light of the reaching law approach being widely used in SMC to achieve satisfactory reaching
mode, many intelligent optimal control algorithms are incorporated into the design of SMC for advance-
ment of intelligent optimisation. One such example is the Grey Wolf Optimizer (GWO). As it is named,
GWO simulates predatory behaviour of grey wolf [26]. Because of advantage that off-line GWO is sim-
ple to realise with high precision, GWO has been applied to many practical applications, in recent years
[21, 27, 28]. It can be observed that GWO is one of the promising optimal algorithms for achieving low
and similar designable parameter optimisation in SMFTC for aircraft engines.

Therefore, the purpose of this paper is to put forward an intelligent sliding mode fault-tolerant control
(ISMFTC) method based on ADP, for aircraft engines with actuator dynamics and faults, together with
mismatched uncertainties and parameter optimisation issues.

The primary contributions are summarised as follows.

• An uncertain nonlinear cascaded model of aircraft engines with actuator dynamics and faults is
developed.

• A novel ADP-based sliding surface is designed for aircraft engines, which has good robustness
to mismatched uncertainties, and chattering is well suppressed.

• An intelligent sliding mode fault-tolerant controller is proposed based on GWO, and combined
with adaptive fault estimation strategy to deal with actuator faults in aircraft engines.

• Robustness analysis is given based on Lyapunov theory, including stability of sliding surface and
reaching ability of sliding surface. It is demonstrated that the fault estimation error is bounded
and closed-loop system states are uniformly ultimately bounded (UUB).

The structure of this remaining paper is as follows: Section 2 shows the control problem formulation
of aircraft engines, including development of uncertain nonlinear cascaded model of aircraft engines
with actuator dynamics and faults, and control objective of this paper. Section 3 presents the design
of ADP-based intelligent SMFTC (ADP-based ISMFTC) method for aircraft engines. Both ADP-based
sliding surface design and sliding mode fault-tolerant controller design are given in Subsection 3.1.
Subsection 3.2 illustrates the robustness analysis, not only stability of sliding surface is proposed, but
also reaching ability of sliding surface is expressed. Intelligent parameters optimisation for ADP-based
SMFTC based on GWO, is considered in Subsection 3.3. Simulation on a twin-shaft turbofan aircraft
engine is shown in Section 4, so that the effect of proposed ADP-based ISMFTC strategy is confirmed.
Section 5 draws the conclusions of this paper.

2.0 Control problem formulation of aircraft engines
2.1 Nonlinear model of aircraft engines
Aircraft engines are characterised by their high complexities and nonlinearities, and can be
described by

ẋ = f (x, u) (1a)
y = g(x, u) (1b)
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Figure 1. General structure of aircraft engine [1].

where x = [x1, · · · , xn]T ∈Rn represents state vector, u = [u1, · · · , um]T ∈Rm represents the input vector,
y = [y1, · · · , yr]T ∈Rr represents the output vector. n, m, and r are the dimensions of state, input and
output, respectively. f (·) and g(·) are nonlinear vector functions, respectively.

For a twin-shaft aircraft engine, state vector x can include low-pressure spool speed nl and high-
pressure spool speed nh; control vector u may contain main fuel flow Wfb, nozzle throat area A8; output
vector y can be composed of low-pressure spool speed nl, total temperature of low-pressure turbine T5.

A typical general structure of twin-shaft turbofan aircraft engine is shown in Fig. 1 [1]. Fan, low-
pressure compressor (LPC) and low-pressure turbine (LPT) are connected by a single shaft and thus
rotate synchronously. High-pressure compressor (HPC) and high-pressure turbine (HPT) are located
adjacent to the combustor and are connected by a separate shaft. Numbers are used to identify engine
stations, only part of numbers are shown in Fig. 1. For example, numbers 20–24 are used to designate
points between fan inlet and LPC outlet, and numbers 41–48 is used for HPT. Fuel flow (WF) is delivered
by a pump, variable bleed valve (VBV) and variable stator vanes (VSV), which are the actuators utilised
in this type of aircraft engine. For some aircraft engines, nozzle throat area is adjustable as well.

Hence, for a twin-shaft turbofan aircraft engine, low-pressure spool speed nl and high-pressure spool
speed nh can be chosen as state vector x ; fuel flow Wfb and nozzle throat area A8 may be contained in
control vector u; some measurable variables, such as high-pressure spool speed nh, total temperature of
low-pressure turbine T5, can be used to compose output vector y, while some calculated variables, such
as thrust, compressor surge, can also be combined into output vector y [20, 21, 29].

Obviously, the dynamic model of aircraft engine in (1) is too complex, which should be avoided in
designing control laws to minimise computation load and meet real-time requirements more efficiently.
Therefore, linearised aircraft engine dynamic model is often utilised in controller design, particularly
for prolonged operation at specific points like the rated working point or cruise point. Generally, the
linearised dynamic model of (1) is given as

ẋ = Ax + Bu (2a)
y = Cx + Du (2b)

In general, such a linearised model (2) is valid at steady-state operating points, primarily. To enhance
the feasibility of model (2) across a wider range, one approach is to incorporate nonlinear terms [30],
e.g.,

ẋ = Ax + Bu + G(x) (3a)
y = Cx + Du (3b)

where G(·) can be a very general nonlinear term.
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Through this extension, aircraft engine model becomes nonlinear again. It is hoped that nonlinear
control design technique can be more convenient to carry out, compared with designing controller based
on (1), while the control performance can be improved even over a large flight envelope, compared with
designing controller based on (2).

Then, let f (x) � Ax + G(x), h(x, u) � Cx + Du, then system (3) can be written as

ẋ = f (x) + Bu (4a)
y = h(x, u) (4b)

2.2 Uncertain nonlinear cascaded model of aircraft engines with actuator dynamics and faults
Taking into account manufacturing tolerances, aging of aircraft engine, flight destabilisations, unmod-
eled nonlinear dynamics, and other factors, uncertainties must be accounted for in the dynamic model
of aircraft engine. Thus, when considering uncertainties, corresponding uncertain model of system
(4) is

ẋ = f (x) + Bu + η (5a)
y = h(x, u) (5b)

where η is the lumped uncertainty vector, including unmodelled nonlinear dynamics, parameter uncer-
tainties and so on. For example, a description of η can be η = �f (x) + �Bu + �(t), where �f (x) is the
uncertainty of f (x), �Bu is the uncertainty of Bu, �(t) is external disruption with respect to time.

In order to analyse the dynamic performance of actuators, first-order inertial lags are used for
actuators in the design process [31], that is

u̇ = −α−1u + α−1u0 (6)

where u0 is the control signal before first-order inertial lags, and α = diag{α1, α2, ...αm} is diagonal
matrix. αi > 0, (i = 1, · · · , m) are time constants.

Actuators’ faults should be considered, based on (5) and (6), gives

ẋ = f (x) + Bu + η (7a)
u̇ = −α−1u + α−1(u0 + ufault) (7b)
y = h(x, u) (7c)

where ufault is actuator fault vector.
Let x̄ =

[
x̄T

1 , x̄T
2 ]T �=

[
xT, uT]T, f 1(x̄1)

�= f (x), g1(x̄1)
�= B, f 2(x̄)

�= −α−1u, g2(x̄)
�= α−1, then (7) can be

re-written to

˙̄x1 = f 1(x̄1) + g1(x̄1)x̄2 + η (8a)
˙̄x2 = f 2(x̄) + g2(x̄)(u0 + ufault) (8b)
y = h(x̄) (8c)

Undoubtedly, (8) shows that aircraft engine model with actuator dynamics is a species of nonlinear
cascade systems [32, 33], arising mismatched uncertainties and actuator faults [34, 35]. Its structure is
shown in Fig. 2.

State x̄2 in subsystem (8a) is supposed virtual control [36], which can be devised based on the nominal
form of system (8).

The nominal system of (8) can be written as

˙̄x1 = f 1(x̄1) + g1(x̄1)x̄2 (9a)
˙̄x2 = f 2(x̄) + g2(x̄)u0 (9b)
y = h(x̄) (9c)
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Aircraft engine

(Eq.8a)

Actuators

(Eq.8b)

2=u x0u 1 ,x y

Actuator faults

faultu η
Lumped uncertainty

Figure 2. Cascaded structure of aircraft engine control system with actuator dynamics.

Figure 3. Engine line and operating limits on compressor map [1].

2.3 Control objective
The primary purpose of this paper is to design a novel sliding surface and the corresponding fault-
tolerant control method. It will make the following quadratic performance indicator (10) to be minimised
when the closed-loop system is approaching the designed sliding surface.

J =
∫ ∞

t

Q(x̄1) + (
x̄T

1 Qx̄1 + x̄T
2 Rx̄2

)
dτ , (10)

where Q(·) is positive semi-definite matrix, which is associated with the lumped uncertainty, Q, R
are weight matrices with appropriate dimensions. Obviously, the performance index (10) reflects the
requirement on uncertainty, regulation and control law, simultaneously.

Assumption 1. The lumped uncertainty η is bounded by a function η̄ with η̄(0) = 0.

Assumption 2. ufault is an unknown bounded actuator fault vector. It can be either an unknown slowly
changing fault vector or a constant bias actuator fault vector, meaning u̇fault = 0.

Remark 1. In (5), η may depend on state x, since it is lumped disturbance. Commonly, it is limited to
a restricted area for the operation of aircraft engine to ensure the reliability of aircraft engine [1, 37].

Figure 3 displays an aircraft engine operating line and various constraints represented on a com-
pressor map. In Fig. 3, aircraft engine operating line represents points of compressor pressure ratio and
mass flow rate obtained under steady-state conditions as the engine input changes. There are idle limit,
maximum speed limit, turbine temperature limit and so on. Because speeds are selected to be state x
usually, the state is bounded. Meanwhile, the control signals u in aircraft engines are limited without
doubt. More detailed illustration can be found in Ref. [1]. Thus, it is suitable to assume that the lumped
uncertainty η is bounded by a function η̄.

Remark 2. Slowly changing and constant bias actuator faults are types of common faults in aircraft
engines actuators. Take faults in aircraft engines fuel pumps as an example. Among the same batch of
fuel pumps, they may discharge different amounts of fuel at the same input speed, and this difference
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is a constant value. With the extension of the service time of the pump, the pump will be worn, which
will affect the flow of the pump. Such a fault occurs slowly and can be regarded as slow change fault of
pump.

3.0 ADP-based SMFTC design for aircraft engines
There are two common methods to reduce chattering: minimising control gain and smoothing out the
control law. This paper uses an adaptive law to detect faults, reducing uncertainty and control gain.
Additionally, a saturation function, or boundary layer technology, is employed in the simulation to reduce
chattering.

Typically, constructing an SMC system design involves two main steps: creating a desired sliding
surface and developing a suitable controller to enable the states to reach the sliding surface and maintain
position on it [4, 38]. In order to ensure that the whole system is stable robustly, robustness analysis
should be performed. And the robustness analysis has two parts correspondingly, one is the stability of
sliding surface, the other is the reaching ability of sliding surface.

In this section, the design of ADP-based sliding surface will be given at first, then the construction
of sliding mode fault-tolerant controller with adaptive law will be shown, the robustness analysis which
includes analysis of both the stability of sliding surface and the reaching ability of sliding surface, will
be introduced at last.

3.1 ADP-based sliding surface design
For the system (8), a ADP-based sliding mode function is designed as

s = x̄2 + 1

2
R−1gT

1 (x̄1)(∇σ c(x̄1))TŴc (11)

where s = [s1, · · · , sm]T ∈Rm is sliding mode variable for system (8), σ c(·) is an activation function
vector of critic neural network (critic NN) in ADP, ∇σ c(·) is gradient with respect to x̄1 denoted as
∇σ c

�= ∂σ c
∂ x̄1

, and Ŵc is an estimation of ideal weight vector in ADP. The corresponding sliding surface is
S= {x̄|s(x̄) = 0}.

3.2 Sliding mode fault-tolerant controller design
Let ̂̄x∗

2

�= − 1
2
R−1gT

1 (x̄1)(∇σ c(x̄1))TŴc, then (11) turns to

s = x̄2 − ˆ̄x∗
2 (12)

hence, the derivative of sliding mode variable, i.e. ṡ, can be written as (13) according to (11) and (8b).

ṡ = ˙̄x2 − ˙̄̂x∗
2

= f 2(x̄) + g2(x̄)(u0 + ufault) − ˙̄̂x∗
2 (13)

The novel sliding mode fault-tolerant controller u0 with ADP-based sliding surfaceS is constructed as

u0 = g−1
2 (x̄)

(
˙̂x∗

2 − f 2(x) − Ks

(
sgn(s)

)) − ûfault, (14)

with adaptive fault estimation law
˙̂ufault = K f gT

2 (x̄)s, (15)

where Ks, K f are positive control gain matrix (14) and learning rate matrix in adaptive law (15),
respectively. sgn(s) = [sgn(s1), · · · , sgn(sm)]T, sgn(si), (i = 1, · · · , m) are sign functions. ûfault is
estimation of actuator fault vector.
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3.3 Robustness analysis
3.3.1 Stability of sliding surface
When analysing stability of sliding surface S, nominal system (9) is considered. According to (9a), x̄2

can be considered as virtual control input of subsystem (10). Considering the performance index (21),
optimal cost function (OCF) can be defined as

J∗(x̄1) = min
x̄2∈A(�)

∫ ∞

t

Q(x̄1) + (
x̄T

1 Qx̄1 + x̄T
2 Rx̄2

)
dτ , (16)

where A(�) is admissible control set on the compact set �, and the Hamilton-Jacobi-Bellman (HJB)
equation of this system is given as

0 = min
x̄2∈A(�)

H (x̄1, x̄2, ∇J∗(x̄1)) (17)

where H(·) is the Hamiltonian function of this optimal control problem

H(x̄1, x̄2, ∇J(x̄1)) = Q(x̄1) + (x̄T
1 Qx̄1 + x̄T

2 Rx̄2)

+ (∇J(x̄1))T(f 1(x̄1) + g1(x̄1)x̄2). (18)

with J(0) = 0.
Therefore, by differentiating (16) with respect to x̄∗

2, the optimal control policy is

x̄∗
2 = −1

2
R−1gT

1 (x̄1)∇J∗(x̄1) (19)

Considering control law (19) is unbounded, a generalised nonquadratic utility function[39] can be
used to resolve problem of input constraints.

Considering (17), by substituting the optimal control policy (19) into Hamiltonian function (18), HJB
Equation (17) can be given as

0 = Q(x̄1) + (x̄T
1 Qx̄1 + x̄∗

2
TRx̄∗

2) + (∇J(x̄1))T(f 1(x̄1) + g1(x̄1)x̄∗
2)

= Q(x̄1) + x̄T
1 Qx̄1 + (∇J∗(x̄1))Tf 1(x̄1)

− 1

4
(∇J∗(x̄1))

Tg1(x̄1)R
−1gT

1 (x̄1)∇J∗(x̄1) (20)

which means that H(x̄1, x̄∗
2, ∇J∗(x̄1)) = 0.

The choice of Q(x̄1) is important in robust stabilisation scheme. Here, Q(x̄1) is specified as

Q(x̄1) = 1
8
(∇J∗(x̄1))

T∇J∗(x̄1) + 2η̄2 (21)

and Q(x̄1) ≥ 0 meets. Based on the help of this form, the following lemma showing stability of the
sliding-mode dynamics of the systems (9) is derived as follows.

Lemma 1. [25] Consider nominal subsystem (9a) and quadratic performance index (10) with the
specified form of Q(x̄1) (21), it is supposed that the HJB Equation (20) is a solution of J∗(x̄1). x̄∗

2 is given
by (19), and the sliding surface defined by s = x̄2 − x̄∗

2 = 0 exists. On this sliding surface, sliding-mode
dynamics of this mismatched uncertain nonlinear system described by (8) is asymptotic stability.

Proof of Lemma 1. On the basis of the Theorem 1 in [40], it is evident that the optimal control policy
(19) can guarantee asymptotic stability of the uncertain nonlinear subsystem (8a). On the sliding surface,
x̄2 = x̄∗

2(x̄1) is hold and explicitly state x̄2 is asymptotically convergent to the equilibrium point as well.

Because the analytical solution of the HJB Equation (20) is rather difficult to calculate, ADP with
NN approximation is used in the following to find the siding surface by obtaining a numerical solution
for (20).

Assumption 3. On the compact set �, The ideal NN weights Wc are bounded, the NN activa-
tion functions and their gradient are bounded, the NN approximation error and its gradient are
bounded, i.e., ‖ Wc ‖≤ λW , ‖ σ c(x̄1) ‖≤ λσ , ‖ ∇σ c(x̄1) ‖≤ λ∇σ , ‖ εc(x̄1) ‖≤ λε, and ‖ ∇εc(x̄1) ‖≤ λ∇ε,
where λW , λσ , λ∇σ , λε, λ∇ε are existing unknown boundaries.
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Assumption 4. For the nominal subsystem (9a) with the quadratic performance index (10) and substi-
tuting the optimal control policy (19) into the subsystem (9a), let Js(x̄1) be a continuously differentiable
function and simultaneously a Lyapunov function candidate, it is assumed that J̇s(x̄1) can be written as

J̇s(x̄1) = (∇Js(x̄1))T (
f1(x̄1) + g1(x̄1)x̄∗

2

)
< 0. (22)

and the positive definite matrix 
 ∈Rn ensures that (23) is true, where λmin(
) represents the minimal
eigenvalue of the matrix 
.

(∇Js(x̄1))
T (

f1(x̄1) + g1(x̄1)x̄∗
2

) = −(∇Js(x̄1))T
∇Js(x̄1) ≤ −λmin(
) ‖ ∇Js(x̄1)‖2 (23)

Given the sake of universal approximation property of NN, approximate J∗(x̄1) by NN with only one
hidden layer can be given as

J∗(x̄1) = WT
c σ c(x̄1) + εc(x̄1) (24)

where Wc ∈Rp is the ideal weight, σ c(x̄1) ∈Rp is the activation function, p is the number of neurons,
and εc(x̄1) is the unknown approximation error of this NN.

Thus, partial derivative of the OCF (24) is written as

∇J∗(x̄1) = ∂J∗(x̄1)

∂ x̄1

= (∇σ c(x̄1))
TWc + ∇εc(x̄1). (25)

and the optimal control policy is yielded as

x̄∗
2 = −1

2
R−1gT

1 (x̄)((∇σ c(x̄))TWc + ∇εc(x̄)). (26)

Define two non-negative matricesA(x̄1),B(x̄1) as

A(x̄1)
�= ∇σ c(x̄1)g1(x̄1)R

−1gT
1 (x̄1)((∇σ c(x̄1))

T

B(x̄1)
�= ∇σ c(x̄1)((∇σ c(x̄1))

T.

With the quadratic performance index (10) and control policy (26) denoted by the NN, the
Hamiltonian function could be given by

H(x̄1, Wc) = x̄T
1 Qx̄1 + WT

c ∇σ c(x̄1)f 1(x̄1) − 1

4
WT

cA(x̄1)Wc + 2η̄2

+ 1

8
WT

cB(x̄1)Wc + ecH = 0 (27)

where the term ecH is the residual error of the NN expression.

ecH = (∇εc(x̄1))
Tf 1(x̄1) − 1

2
(∇εc(x̄1))Tg1(x̄1)R

−1gT
1 (x̄1)((∇σ c(x̄1))TWc

− 1

4
(∇εc(x̄1))Tg1(x̄1)R−1gT

1 (x̄1)∇εc(x̄1) + 1

4
(∇εc(x̄1))

T(∇σ c(x1))TWc

+ 1

8
(∇εc(x̄1))T∇εc(x̄1) (28)

In the view that the ideal NN weights are unknown, the estimation of NN weight vector Ŵc is utilised
to approximate the OCF (24)

Ĵ∗(x̄1) = Ŵ
T
c σ c(x̄1) (29)

then an approximation of the partial derivative of the OCF (24) is

∇ Ĵ∗(x̄1) = ∂ Ĵ∗(x̄1)

∂x1

= (∇σ c(x̄1))TŴc. (30)
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the approximate optimal control policy can be expressed as

ˆ̄x∗
2 = −1

2
R−1gT

1 (x̄1)(∇σ c(x̄1))TŴc. (31)

and the approximate Hamiltonian function is given as

Ĥ(x̄1, Wc) = x̄T
1 Qx̄1 + Ŵ

T
c ∇σ c(x̄1)f 1(x̄1)

− 1

4
Ŵ

T

cA(x̄1)Ŵc + 2η̄2(x̄1) + 1

8
Ŵ

T
cB(x̄1)Ŵc (32)

Define ec = Ĥ(x̄1, Wc) − H(x̄1, Wc), and W̃c = Wc − Ŵc. According to (27) and (32), the ec with
respect to W̃c is expressed as

ec = Ĥ(x̄1, Wc) − H(x̄1, Wc)

= − W̃
T

c ∇σ c(x̄1)f 1(x̄1) − 1

4
W̃

T
cA(x̄1)W̃c + 1

2
W̃

T
cA(x̄1)Wc

+ 1

8
W̃

T
cB(x̄1)W̃c − 1

4
W̃

T
cB(x̄1)Wc − ecH . (33)

Now, it is required to train the critic NN and to find an updated law of weights by minimising the
simple cost standard Ec = (1/2)e2

c .
An improved weight updated rule [40] is chosen to avoid the difficulty of obtaining a valid initial

control policy.
Then, based on Assumption 4, Js(x̄1) is given as Js(x̄1) = 0.5x̄T

1 x̄1, and a weight updated law of the
critic NN is designed as

˙̂Wc = −αc

(
∂Ec

∂Ŵc

)
− αs

(
∂[(∇Js(x̄1))T(f 1(x̄1) + g1(x̄1) ˆ̄x∗

2)]

∂Ŵc

)
(34)

where αc > 0 and αs > 0 are the basic update rate of critic NN and the learning rate of the additional
stabilisation term, respectively.

By substituting the optimal control strategy (31) into (34), the updated law can be expressed as

˙̂Wc = −αc

(
∂Ec

∂Ŵc

)
+ 1

2
αs∇σ c(x̄1)g1(x̄1)R

−1gT
1 (x̄1)∇Js(x̄1) (35)

Let the weight estimation error (WEE) W̃c is W̃c = Wc − Ŵc, due to Wc will be constant at last,
˙̃Wc = − ˙̂Wc and the dynamics of the WEE can be written as

˙̃Wc = αc

(
∂Ec

∂Ŵc

)
− 1

2
αs∇σ c(x̄1)g1(x̄1)R−1gT

1 (x̄1)∇Js(x̄1), (36)

where

∂Ec

∂Wc

= ec

∂ec

∂Wc

= ec(∇σc(x̄1)f 1(x̄1) − 1

2
A(x̄1)Wc + 1

4
B(x̄1)Wc).
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thus

˙̃Wc = αc

(
− W̃

T
c ∇σ c(x̄1)f 1(x̄1) − 1

4
W̃

T
cA(x̄1)W̃c

+ 1

2
W̃

T
cA(x̄1)Wc + 1

8
W̃

T
cB(x̄1)W̃c − 1

4
W̃

T
cB(x̄1)Wc − ecH)

×
(

∇σ c(x̄1)f 1 + 1

2
A(x1)W̃c − 1

2
A(x̄1)Wc − 1

4
B(x̄1)W̃c + 1

4
B(x̄1)Wc

)

− 1

2
αs∇σ c(x̄1)g1(x̄1)R

−1gT
1 (x̄1)∇Js(x̄1). (37)

Therefore, the following Lemma 2 illustrates the system states’ property on the novel sliding surface.

Lemma 2. In view of the nominal system described by (9) under the provided ADP-based sliding sur-
face (11), the states of system (8) on the sliding surface and the weight error dynamics are uniformly
ultimately bounded (UUB) when the sliding mode exists.

Proof of Lemma 2. The definition of UUB can be found in [41], while according to the theorem 2 in
[40], one can see that state x̄1 on the sliding surface specified by (11) and dynamics of WEE are both
UUB. For the sake of brevity, the proof process will not be proved repeatedly. Besides, in term of the
sliding surface S= {x̄|s(x̄) = 0}, state x̄2 of the system on this sliding surface is also UUB.

Remark 3 It is easy to find that Assumption 4 is a general assumption, which can see details in [42,
43]. Besides, though the use of ADP faces the problem of the training taking too much time, it can be
avoided by off-line training to make sure the real-time performance of the whole control system.

3.3.2 Reaching ability of sliding surface

Theorem 1. For the system described by (8) with mismatched uncertainty, actuator dynamics and faults,
under the proposed control law (14), with the ADP-based sliding surface described by (11), and adap-
tive fault estimation law (15), the closed-loop system’s states are UUB and its fault estimation error is
bounded.

Proof [Proof of Theorem 1] Select Lyapunov function as

V(t) = 1

2
sTs + 1

2
ũT

faultK
−1
f ũfault (38)

where ũfault is fault estimation error, which is defined as ũfault = ufault − ûfault.
One the basis of Assumption 2, along the sliding mode variable s, the derivative of the Lyapunov

function (38) is

V̇(t) = sTṡ − ũT
faultK

−1
f

˙̂ufault

= sT(f 2(x̄) + g2(x̄)(u0 + ufault) − ˙̄̂x∗
2(x̄1)

) − ũT
faultK

−1
f

˙̂ufault (39)

Based on the control law (14) and the actuator fault compensation law (15), (39) will be expressed
as

V̇(t) = −Ks‖s‖ + sTg2(x)ũfault − ũT
faultK

−1
f

˙̂ufault

= −Ks ‖ s ‖
≤ 0. (40)

Therefore, it is clear that all states of closed-loop system are bounded. In terms of the Lyapunov
theorem and Lemma 2, the sliding modes exist and the overall system exists in UUB states.

Here complete the proof.
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3.4 Intelligent parameters optimisation for ADP-based SMFTC
In this section, GWO will be employed to search the optimal control designable parameters in (14) and
(15) under the multi-target performance indicators of aircraft engine are

JGWO1 =
∫ t

0

xTxdτ (41a)

JGWO2 =
∫ t

0

uT
0 u0dτ (41b)

where JGWO1 reflects steady-state control accuracy requirement, and JGWO2 expresses the interest on input
energy consumption, in view that the state deviation from the equilibrium point is expected to be as
small as possible, while a minimum input energy consumption is also desired at the same time.

Generally speaking, GWO is a meta-heuristic optimisation algorithm, which is encouraged by the
primary phases of grey wolf hunting.

The main mathematical equations of describing the hunting process are:


X(tGWO + 1) = 
Xp(tGWO) − 
A 
D

A = 2
a
r1 − 
a, 
C = 2
r2, 
D =

∣∣∣
C
Xp(tGWO) − 
X(tGWO)
∣∣∣


Dα =
∣∣∣
C1 
Xα − 
X

∣∣∣ , 
Dβ =
∣∣∣
C2 
Xβ − 
X

∣∣∣ , 
Dδ =
∣∣∣
C3 
Xβ − 
X

∣∣∣ , (42)


X1 = 
Xα − 
A1 
Dα, 
X2 = 
Xβ − 
A2 
Dβ , 
X3 = 
Xδ − 
A3 
Dδ,


X(tGWO + 1) = 
X1 + 
X2 + 
X3

3

where the current iteration is represented by t GWO , the position vector of the prey and a grey wolf are
given by 
Xp(tGWO) and 
X(tGWO), respectively. The subscripts (·)α, (·)β and (·)δ are in behalf of the αGWO(best
candidate solution), β

GWO
and δGWO grey wolves, respectively. 
A and 
C are coefficient vectors, with 
a is

decreased from 2 to 0 in the course of iterations, linearly. 
r1 and 
r2 are stochastic vectors in the range of
[0, 1]. 
D, 
X1, 
X2 and 
X3 are instrumental variables.

The optimisation imitates the hunting process of grey wolves, the detailed principle of GWO can be
seen in Refs [21, 44].

According to the SMC fundamental theory [38], Ks is crucial for the control performance of air-
craft engine. Meanwhile, the K f is important for the fault estimation, as shown in the control law (14)
and adaptive law (15). Thus, Ks and K f are key designable parameter matrices in ADP-based SMFTC
controller for obtaining the minimum performance indexes (41).

Therefore, when GWO is applied to reach the parameter optimisation of ADP-based SMFTC for
aircraft engine, the 
X(tGWO) described by (42) for each tGWO can be 
X = [

Ks1 , · · · , Ksn , Kf 1
, · · · , Kfn

]
,

where Ksi , Kfi , (i = 1, · · · , n) are diagonal elements of Ks, K f , respectively.
After obtaining the optimal designable parameters by GWO intelligent optimisation algorithm, the

proposed ADP-based SMFTC method, is called as ADP-based intelligent SMFTC, and it is referred to
as “ADP-based ISMFTC” method for short in the following.

The block diagram of the presented ADP-based ISMFTC method for aircraft engine with actuator
dynamics and faults, is given in Fig. 4.

4.0 Simulation
In this section, the novel ISMFTC with the ADP-based sliding surface is applied in the uncertain nonlin-
ear cascade model of a twin-shaft turbofan aircraft engine with actuator dynamics and faults. According
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,s fK K
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Figure 4. The block diagram of ADP-based ISMFTC method for aircraft engine with actuator dynamics
and faults.

to (8), on the basis of [29, 30], f 1(x̄1), B in g1(x̄1), α in f 2(x̄) and g2(x̄), lumped uncertainty vector η,
fault vector ufault are given as

f 1(x̄1) =
[−2.1022nh − 0.5281nl + 12n2

h − n2
l

1.9240nh − 6.2069nl − 1.7n2
h + n2

l

]

B =
[

92.4704 7410.8640 × 10−4

109.2637 74540.8101 × 10−4

]

α =
[

5 0
0 10

3

]
, η =

[
0.1nhsin (nl)

−0.1nlcos (nh)

]

ufault =
{

[0, 0]T, t < 10
[0.5, 0.8]T, t ≥ 10

Suppose the initial deviation state vector from operating point is x(0) = [0.1, −0.1]T.
In order to make comparison, simulations under the presented ADP-based ISMFTC method and the

traditional sliding mode fault-tolerant control method (TradSMFTC) are illustrated in the following.

• ADP-based ISMFTC method

To choose Q and R in (10) as Q = I3 and R = 10 × I3, where I3 is three-dimensional identity matrix,
and a critic NN is constructed to approximate the OCF (16) as

Ĵ∗(x1) =Wc1n2
h + Wc2n2

l + Wc3nhnl

where σ c = [n2
h, n2

l , nhnl]T is activation function and Ŵc = [Ŵc1, Ŵc2, Ŵc3]T is the estimation of the ideal
weight of NN, respectively. Select the parameters αc and αs in (34) as αc = 0.1,αs = 0.5. Figure 5
shows that the evolution of the weight vector Ŵc, and the weight vector ultimately converges to
[0.0578, 0.0855, 0.0701]T finally.

According to the constant weight vector Ŵc, the novel ADP-based sliding surface (11) will be
obtained.

To get satisfying controller parameters, ˙̂ufault = 0 GWO is applied to optimise Ks = diag{Ks1 , Ks2},
K f = diag{Kf 1

, Kf2}, therefore, it is suitable to let 
X = [
Ks1 , Ks2 , Kf 1

, Kf2

]
. Table 1 gives the parameters

optimisation results based on GWO.
Simulation results under ADP-based ISMFTC method are given in 6 and Fig. 10.
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Table 1. Parameters optimisation results based on GWO

Parameters Range Results
Ks1 0–10 2.3468
Ks2 0–10 1.2236
Kf 1

0–20 9.8567
Kf2 0–20 12.9465
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Figure 5. Evolution of the critic NN weights Ŵc.

• TradSMFTC method

Through the boundary layer technology, the classical SMC-based FTC is designed as

u0 = g2

(
x̄)−1

(−f 2(x̄) − g2(x̄)ûfault − K f

(
f 1(x̄1) + g1(x̄1)x̄2

) − Kssat(strad)
))

(43)

and the adaptive fault estimation is

˙̂ufault = K f g2(x̄)strad (44)

where the sliding surface is strad = ˙̄x1 + ctradx̄1 with ctrad = 0.1 × I2, where I2 is two-dimensional identity
matrix. Let Ks and K f are the same as those of in ADP-based ISMFTC method. The simulation results
are given Figs. 11 and 12.

From Figs. 6–8, it can be found that fault estimation law (15) designed in this paper, can realise to
estimate large abrupt actuator faults precisely in four seconds. By comparing Fig. 9 with Fig. 11, it is
easy to see that the influence of both the initial deviations and the actuator faults, are much smaller
under ADP-based ISMFTC method than those of under TradSMFTC method, including fluctuation,
convergence and peak values. Figure 10 shows that the control signals are smoother than those of in
Fig. 12, especially the signal of u02 . Tables 2 and 3 also illustrates this situation by comparing the root
mean square. Therefore, the proposed ADP-based ISMFTC method has excellent performance.
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Figure 6. Actuator faults in aircraft engine system.
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Figure 7. Actuator faults estimation.

5.0 Conclusions
An ADP-based intelligent sliding mode fault-tolerant control (ADP-based ISMFTC) method is pro-
posed for aircraft engine systems with actuator dynamics and faults to ensure satisfying steady-state and
dynamic performance, along with strong fault-tolerance performance.
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Figure 8. Actuator faults estimation error.
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Figure 9. Control results under ADP-based ISMFTC-n.

The main characteristic of the ADP-based ISMFTC method are summarised as follows:

• On the basis of the features of aircraft engines and their actuators, an uncertain nonlinear
cascaded model of aircraft engines with both actuator dynamics and actuator faults is formed.

• The presented sliding surface deals with mismatched uncertainty by ADP strategy, which can
can suppress chattering, and can be solved by ADP strategy off-line.
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Figure 10. Control results under ADP-based ISMFTC-u0.
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Figure 11. Control results under TradSMFTC-n.

• In order to get optimised designable control parameters, GWO is combined into the creation of
the ADP-based ISMFTC method.

• Robustness analysis is given based on Lyapunov theory, the closed-loop system states is UUB
and its fault estimation error is bounded at the same time.
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Table 2. Root mean square-n comparison

Method nh(0–10s) nl(0–10s) nh(10–20s) nl(10–20s)
TradSMFTC 0.01545 0.02091 0.02398 0.02471
ISMFTC 0.01276 0.00974 0.01375 0.00980

Table 3. Root mean square-u0 comparison

Method u01(0–10s) u02(0–10s) u01(10–20s) u02(10–20s)
TradSMFTC 0.00881 0.07617 0.5003 0.8105
ISMFTC 0.00617 0.00800 0.5001 0.8083
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Figure 12. Control results under TradSMFTC-u0.

Simulation results indicate that the proposed ADP-based ISMFTC method can make certain that
the twin-shaft turbofan aircraft engine system has excellent performance, including high steady-state
accuracy, smooth dynamic performance and strong fault tolerance and so on.
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