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Abstract. It is shown that every finitely generated projective module PR over a
semiprime ring R has the smallest FI-extending essential module extension HFI(PR)
(called the absolute FI-extending hull of PR) in a fixed injective hull of PR. This module
hull is explicitly described. It is proved that Q̂FI(End(PR)) ∼= End(HFI(PR)), where
Q̂FI(End(PR)) is the smallest right FI-extending right ring of quotients of End(PR)
(in a fixed maximal right ring of quotients of End(PR)). Moreover, we show that a
finitely generated projective module PR over a semiprime ring R is FI-extending if
and only if it is a quasi-Baer module and if and only if End(PR) is a quasi-Baer ring.
An application of this result to C∗-algebras is considered. Various examples which
illustrate and delimit the results of this paper are provided.

2000 Mathematics Subject Classification. Primary 16N60, 16D40; Secondary
16S50.

An important technique used to study an algebraic object is to search for an
overobject that has the following properties: (1) it belongs to a class K with some
desirable properties; (2) it is explicitly computable; (3) information can be transferred
between the base object and its overobject (thus one tries to find an overobject from K

which is ‘close to’ the base object).
In module theory the class of injective modules and, its generalization, the class of

extending modules have the property that every submodule of a member is essential in
a direct summand of the member. This property, originated by Chatters and Hajarnavis
in [21], ensures a rich structure theory for these classes. Although every module has
an injective hull, it is usually hard to compute. For many modules a minimal essential
extension which belongs to the class of extending modules may not exist (e.g. ⊕∞

n=1��,
see comment above Proposition 8). Moreover the class of extending modules lacks
some important closure properties (e.g. it is not closed under direct sums).

Throughout this paper all rings are associative with identity and R denotes such
a ring. All modules are unitary. Recall from [12] that a right R-module MR is FI-
extending if every fully invariant submodule of MR is essential in a direct summand
of MR. A ring R is right FI-extending if RR is FI-extending. Note that the set of fully
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invariant submodules of a module MR includes the socle, Jacobson radical, torsion
submodule for a torsion theory (e.g., Z(MR), the singular submodule), and MI for
all right ideals I of R, etc. Hence, the FI-extending condition provides an ‘economical
use’ of the extending condition by targeting only the fully invariant submodules, and
thus some of the most important submodules of MR for an essential splitting of MR.
Natural examples of FI-extending rings and modules abound: direct sums of uniform
modules, more specifically all finitely generated Abelian groups, semisimple modules,
prime rings, serial rings, semiprime right finitely pseudo-Frobenius (FPF) rings. Also
it is shown in [13, Corollary 1.9] that semiprime right Noetherian group algebras over
a field are right FI-extending. Note that in this case if the group is Abelian, then the
group algebra is extending.

In [19] we showed that every semiprime ring R has the smallest right FI-extending
right ring of quotients Q̂FI(R). In this paper, we further develop the FI-extending
concept by showing that over a semiprime ring R, every finitely generated projective
module PR has the smallest FI-extending essential extension HFI(PR) (called the
absolute FI-extending hull of PR) in a fixed injective hull of PR. Moreover, HFI(PR) is
easily computable (see Theorem 6 and Proposition 8), it is from a class for which direct
sums and direct summands are FI-extending, and since HFI(PR) is finitely generated
and projective over Q̂FI(R), we are assured of a reasonable transfer of information
between PR and HFI(PR) (e.g. see Theorem 12 and Corollary 13).

Since many well-known types of Banach algebras are semiprime (e.g. C∗-algebras),
our results are applicable. Finitely generated modules over a Banach algebra are
considered in [26]. Kaplansky [28] defined AW ∗-modules over a C∗-algebra and
used them to answer several questions concerning automorphisms and derivations
on certain types of C∗-algebras. Furthermore work using these modules appeared in
[6]. Moreover, from [20, p. 352], every algebraically finitely generated C∗-module M is
projective, hence HFI(M) exists. Since every C∗-algebra A is both semiprime and non-
singular, Q̂FI(A) always exists by [19]. Also in [19], we characterized all C∗-algebras
with only finitely many minimal prime ideals and showed that for such A, Q̂FI(A)
is also a C∗-algebra. Thus our results should yield fruitful applications to projective
modules over C∗-algebras, as well as many other algebras in Functional Analysis.

According to [15] a module MR is called strongly FI-extending if every fully
invariant submodule of MR is essential in a fully invariant direct summand of MR (e.g.
a non-singular FI-extending module). Note that the class of strongly FI-extending
modules is closed under direct summands and is contained in the class of FI-extending
modules. A ring R is said to be right strongly FI-extending if RR is strongly FI-extending.
We use FI (resp., E, SFI) to denote the class of FI-extending (resp., extending, strongly
FI-extending) right modules or the class of right FI-extending (resp., right extending,
right strongly FI-extending) rings according to the context (see [7–10, 12, 13 and 33]
for details and examples of the (strongly) FI-extending property of modules and rings,
also see [21] and [23] for the extending property of modules and rings).

If NR is a submodule of MR, then NR is essential (resp., dense also called rational )
in MR if for any 0 �= x ∈ M, there exists r ∈ R such that 0 �= xr ∈ N (resp., for any
x, y ∈ M with 0 �= x, there exists r ∈ R such that xr �= 0, and yr ∈ N). For R-modules
MR and NR, we use NR ≤ MR, NR ≤ess MR and NR � MR to denote that NR is a
submodule of MR, NR is an essential submodule of MR and NR is a fully invariant
submodule of MR, respectively. Let E(MR) denote an injective hull of a module MR.
Recall that a right ring of quotients T of a ring R is an overring of R such that RR is
dense in TR. An overring S of a ring R is called a right essential overring of R if RR

is essential in SR. For a ring R, J(R), B(R), Matn(R) and Q(R) denote the Jacobson
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radical of R, the set of central idempotents of R, the n × n matrix ring over R and the
maximal right ring of quotients of R, respectively.

DEFINITION 1. We fix an injective hull E(MR) of MR and a maximal right ring of
quotients Q(R) of R.

(i) Let M be a class of right R-modules and MR a right R-module. We call, when
it exists, a module HM(MR) the absolute M hull of MR if HM(MR) is the
smallest essential extension of MR in E(MR) that belongs to M.

(ii) Let K be a class of rings and R a ring. We call, when it exists, a ring Q̂K(R)
the K absolute to Q(R) right ring hull of R if Q̂K(R) is the smallest right ring of
quotients of R in Q(R) that belongs to K.

LEMMA 2 ([17, Lemma 1.4]). Let T be a right ring of quotients of a ring R.
(i) For right ideals X and Y of T, if XT ≤ess YT , then XR ≤ess YR.

(ii) If XR � TR, then XR ≤ess TXTR.

We recall from [22, 29, 36] that a ring R is called quasi-Baer (resp., Baer) if the
right annihilator of every right ideal (resp., non-empty subset) of R is generated, as a
right ideal, by an idempotent (see [11, 22, 36] for more on quasi-Baer rings). The class
of quasi-Baer rings is denoted by qB. Mewborn [32] showed the existence of a Baer
absolute to Q(R) ring hull for a commutative semiprime ring R (which, in this case,
coincides with Q̂qB(R)). For more details on Q̂qB(R) and its applications, see [19].

LEMMA 3 ([19, Theorem 3.3]). Assume that R is a semiprime ring. Then Q̂FI(R) =
RB(Q(R)) = Q̂qB(R), where RB(Q(R)) is the subring of Q(R) generated by R and
B(Q(R)).

LEMMA 4. Let T be a right ring of quotients of a ring R. Then End(TR) =
End(TT ) ∼= T.

Proof. See [31, p. 94] for the proof. �
LEMMA 5. If MR is a FI-extending module, then f M ⊆ M for any central idempotent

f of End(E(MR)).

Proof. Let f ∈ B(End(E(MR))). Then f E(MR) ∩ M � MR. Since MR is FI-
extending, there is g = g2 ∈ End(MR) such that f E(MR) ∩ MR ≤ess gMR ≤ess gE(MR),
where g is the projection from E(MR) = E(gMR) ⊕ E((1 − g)MR) to E(gMR). Note that
f E(MR) ∩ MR ≤ess f E(MR). Thus f = g since f is a central idempotent in End(E(MR)).
Therefore f M = gM = gM ⊆ M. �

The converse of Lemma 5 does not hold. For this, see RR in Example 9.
Observe that when R is semiprime End(⊕nRR) ∼= Matn(R) ⊆ Matn(Q̂FI(R)) ∼=
End(⊕nQ̂FI(R)Q̂FI(R)) = End(⊕nQ̂FI(R)R) by Lemma 4. Thus, in the sequel, we
identify End(⊕nRR) as a subring of End(⊕nQ̂FI(R)Q̂FI(R)) = End(⊕nQ̂FI(R)R).

We first show the existence of the absolute FI-extending hull for every finitely
generated projective module over a semiprime ring. Also this module hull is explicitly
described.

THEOREM 6. Every finitely generated projective module PR over a semiprime ring
R has the absolute FI-extending hull HFI(PR). Explicitly, HFI(PR) ∼= e(⊕nQ̂FI(R)R)
where P ∼= e(⊕nRR), for some n and e = e2 ∈ End(⊕nRR).

Proof. Step 1. Q̂FI(R)R is strongly FI-extending. �
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Proof of Step 1. Let T = Q̂FI(R). Then T = RB(Q(R)) (by Lemma 3) is semiprime
and quasi-Baer. To show that TR is strongly FI-extending, let XR � TR. By Lemma 2(ii),
XR ≤ess TXTR. From [12, Theorem 4.7], there exists c ∈ B(T) such that TXTT ≤ess

cTT . By Lemma 2(i), TXTR ≤ess cTR. By Lemma 4, End(TR) = End(TT ) ∼= T . Hence
for any λ ∈ End(TR), λ(cT) = c(λT). Thus cTR � TR, so TR is strongly FI-extending
as XR ≤ess cTR.

Step 2. HFI(⊕nRR) = ⊕nQ̂FI(R)R.

Proof of Step 2. Note that Q̂FI(R)R is FI-extending by Step 1, so ⊕nQ̂FI(R)R is
FI-extending [12, Theorem 1.3]. Suppose that NR is FI-extending with ⊕nRR ≤ NR ≤
E(⊕nRR) = ⊕nE(RR). Note that B(Q(R)) = B(End(E(RR)). Take f ∈ B(Q(R)). Let f In

be the n-by-n diagonal matrix with f on the diagonal, where In is the identity matrix
in End(⊕nE(RR)) ∼= Matn(End(E(RR))). Then f In ∈ B(End(⊕nE(RR))). Thus by
Lemma 5,

f InN ⊆ N, so f In

⎛
⎜⎝

R
...
R

⎞
⎟⎠ ⊆ N, where

⎛
⎜⎝

R
...
R

⎞
⎟⎠ = ⊕nRR.

Observe that Q̂FI(R) = RB(Q(R)) from Lemma 3. Therefore ⊕nQ̂FI(R)R ≤ NR, hence
HFI(⊕nRR) = ⊕nQ̂FI(R)R.

Step 3. HFI(e(⊕nRR)) = e(⊕nQ̂FI(R)R).

Proof of Step 3. We may assume that PR = e(⊕nRR). Therefore, ⊕nQ̂FI(R)R =
e(⊕nQ̂FI(R)R) ⊕ (1 − e)(⊕nQ̂FI(R)R). Since Q̂FI(R)R is strongly FI-extending by Step
1, ⊕nQ̂FI(R)R is strongly FI-extending by [15, Theorem 3.3]. Hence e(⊕nQ̂FI(R)R) is
strongly FI-extending [15, Theorem 2.4]. Let NR be FI-extending such that e(⊕nRR) ≤
NR ≤ E(e(⊕nRR)). Then ⊕nRR = e(⊕nRR) ⊕ (1 − e)(⊕nRR) ≤ NR ⊕ (1 − e)(⊕nRR) ≤
NR ⊕ E[(1 − e)(⊕nRR)]. Now since NR is FI-extending and E[(1 − e)(⊕nRR)] is
injective, NR ⊕ E[(1 − e)(⊕nRR)] is FI-extending [12, Theorem 1.3]. Hence, by Step
2, HFI(⊕nRR) = ⊕nQ̂FI(R)R ≤ NR ⊕ E[(1 − e)(⊕nRR)].

To prove that e(⊕nQ̂FI(R)R) ≤ NR, take eα ∈ e(⊕nQ̂FI(R)R) with α ∈ ⊕nQ̂FI(R)R.
Since e(⊕nQ̂FI(R)R) ≤ NR ⊕ E[(1 − e)(⊕nRR)], eα = n + y for some n ∈ N and y ∈
E[(1 − e)(⊕nRR)]. Thus

eα − n = y ∈ [e(⊕nQ̂FI(R)R) + N] ∩ E[(1 − e)(⊕nRR)].

Note that E[e(⊕nQ̂FI(R)R)] = E[e(⊕nRR)] because e(⊕nRR) ≤ess e(⊕nQ̂FI(R)R).
So [e(⊕nQ̂FI(R)R) + N] ∩ E((1 − e)(⊕nRR)] ≤ E[e(⊕nRR)] ∩ E[(1 − e)(⊕nRR)] = 0.
Hence eα − n = y = 0, so eα = n ∈ N. Therefore e(⊕nQ̂FI(R)R) ≤ NR. Consequently,
HFI(e(⊕nRR)) = e(⊕nQ̂FI(R)R).

Step 4. HFI(PR) ∼= e(⊕nQ̂FI(R)R).

Proof of Step 4. Let σ : PR → e(⊕nRR) be an isomorphism. Then σ can be
extended to an isomorphism σ : E(PR) → E(e(⊕nRR)). It is easy to check that
HFI(PR) = σ−1(e(⊕nQ̂FI(R)R)) ∼= e(⊕nQ̂FI(R)R). �

REMARK. From the proof of Theorem 6, we see that the absolute strongly FI-extending
hull and the absolute FI-extending hull of a finitely generated projective module PR
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over a semiprime ring R coincide (hence both direct sums and direct summands of
HFI(PR) are FI-extending). Thus HSFI(PR) ∼= e(⊕nQ̂FI(R)R), where P ∼= e(⊕nRR),
for some n and e = e2 ∈ End(⊕nRR).

If R is not semiprime, the above remark does not hold. For example, let R = �3[S3],
the group algebra of S3 over the field �3 of three elements, where S3 is the symmetric
group on {1, 2, 3}. As was shown in [15, Example 1.1], RR is not strongly FI-extending.
Thus, HSFI(RR) does not exist because RR is injective.

According to [25], E(MR) is called �-injective if ⊕�E(MR) is injective for any
non-empty set �. Thus E(MR) is �-injective if and only if E(⊕�MR) = ⊕�E(MR) for
any non-empty set �.

COROLLARY 7. Assume that R is a semiprime right Goldie ring. Then every projective
right R-module PR has the absolute FI-extending hull. Moreover, if P ∼= e(⊕�RR) with
e = e2 ∈ EndR(⊕�RR), then HFI(PR) ∼= e(⊕�Q̂FI(R)R).

Proof. By [25, Lemma 2 and Corollary 3], if a ring R is semiprime right
Goldie, then E(RR) is �-injective. Now the rest of the proof follows from that of
Theorem 6. �

The FI-extending hull of a module, in general, is distinct from the injective hull of
the module or its extending hull (if it exists). From Corollary 7, HFI(⊕���) = ⊕���,
where � is the ring of integers. However in E(⊕���) = ⊕���, where � is infinite
and � is the field of rational numbers, there is not even a minimal extending essential
extension of ⊕���. Our next result gives an alternative description of HFI(PR) from
Theorem 6.

PROPOSITION 8. Assume that PR is a finitely generated projective module over a
semiprime ring R. Then HFI(PR) ∼= P ⊗R Q̂FI(R) as Q̂FI(R)-modules. Hence HFI(PR)
is also a finitely generated projective Q̂FI(R)-module.

Proof. The proof is routine. As in Step 3 of the proof of Theorem 6, we may
assume that P = e(⊕nRR) with e = e2 ∈ Matn(R). Let α ∈ P ⊗R Q̂FI(R). Then there
are a1, a2, . . . , an, b1, b2, . . . , bn, c1, c2, . . . , cn ∈ R and q1, q2, . . . , qk ∈ Q̂FI(R) such
that �

α = e

⎛
⎜⎜⎜⎝

a1

a2
...

an

⎞
⎟⎟⎟⎠ ⊗ q1 + e

⎛
⎜⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎟⎠ ⊗ q2 + · · · + e

⎛
⎜⎜⎜⎝

c1

c2
...

cn

⎞
⎟⎟⎟⎠ ⊗ qk.

Since HFI(PR) = e(⊕nQ̂FI(R)R) by Theorem 6, σ : P ⊗R Q̂FI(R) → HFI(PR) can be
defined by

σ (α) = e

⎛
⎜⎜⎜⎝

a1q1 + b1q2 + · · · + c1qk

a2q1 + b2q2 + · · · + c2qk
...

anq1 + bnq2 + · · · + cnqk

⎞
⎟⎟⎟⎠ ∈ HFI(PR).

Then σ is an onto homomorphism. To show that σ is one-to-one, note
that τ : (⊕nRR) ⊗R Q̂FI(R) ∼= ⊕nQ̂FI(R) by corresponding γ1 ⊗ x1 + · · · + γm ⊗
xm ∈ (⊕nRR) ⊗R Q̂FI(R) (with γi ∈ ⊕nRR and xi ∈ Q̂FI(R) for i = 1, 2, . . . , m) to
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γ1x1 + γ2x2 + · · · + γmxm ∈ ⊕nQ̂FI(R). Since P = e(⊕nRR), so P ⊗R Q̂FI(R) is a direct
summand of (⊕nRR) ⊗R Q̂FI(R). Thus τ |P⊗RQ̂FI(R) = σ , hence σ is one-to-one. So
P ⊗R Q̂FI(R) ∼= HFI(PR). Moreover, σ is a Q̂FI(R)-module isomorphism. �

The existence of absolute FI-extending hulls is not always guaranteed, even in the
presence of non-singularity, as the next example shows.

EXAMPLE 9. There exists a right non-singular ring R such that RR does not have
the absolute FI-extending hull. Let F be a field and let

R =
⎧⎨
⎩

⎛
⎝a 0 x

0 a y
0 0 c

⎞
⎠ ∣∣ a, x, y, c ∈ F

⎫⎬
⎭ .

Then R is right non-singular with Q(R) = Mat3(F). Assume to the contrary that there
exists HFI(RR). Let

H1 =
⎛
⎝F 0 F

0 F F
0 0 F

⎞
⎠ and H2 =

⎧⎨
⎩

⎛
⎝a + b a x

0 b y
0 0 c

⎞
⎠ ∣∣ a, b, c, x, y ∈ F

⎫⎬
⎭ .

Then H1 and H2 are right FI-extending rings (see [17, Example 3.19]). Since H1 and
H2 are right rings of quotients of R, it follows that H1 and H2 are FI-extending right
R-modules by [17, Proposition 1.8]. Thus HFI(RR) ⊆ H1 ∩ H2 = R, so HFI(RR) = RR.
By [14, Corollary 1.6], RR is not FI-extending. Thus we have a contradiction.

EXAMPLE 10. There exists a prime Noetherian ring R (hence R = HFI(RR)) but
HE(RR) does not exist. Let R = Mat2(F [x, y]), where F is a field. Then E(RR) =
Q(R) = Mat2(F(x, y)), where F(x, y) is the field of fractions of F [x, y]. Note that
HFI(RR) = RR. Let S = Mat2(F(y)[x]) and T = Mat2(F(x)[y]). Now both SS and TT

are extending. Thus by [17, Proposition 1.8] SR and TR are extending. Assume to the
contrary that HE(RR) exists. Then HE(RR) ≤ SR ∩ TR. Since SR ∩ TR = RR by [19,
Example 3.10], RR = HE(RR). So RR is extending, which is a contradiction because
the domain F [x, y] is not Prüfer.

LEMMA 11. Assume that R is a semiprime ring. Then Q̂FI(f Rf ) = f Q̂FI(R)f for any
0 �= f = f 2 ∈ R.

Proof. The proof appears in [18]. �
From Osofsky [34], there is a prime ring R with J(R) = 0 such that E(RR) is a non-

rational extension of RR. So Q(R)R is not injective, thus End(E(RR)) �∼= Q(R) as rings
by [31, p. 95, Proposition 3]. Hence Q(End(RR)) �∼= End(E(RR)) (see also [16, Proposi-
tion 2.6]). However, a special case of our next result shows that Q̂FI(R) ∼=
End(HFI(RR)) for a semiprime ring R.

THEOREM 12. Assume that R is a semiprime ring and PR is a finitely generated
projective module. Then we have the following:

(i) Q̂FI(End(PR)) ∼= End(HFI(PR)) as rings.
(ii) Rad(HFI(PR)Q̂FI(R)) ∩ P = Rad(PR), where Rad(−) is the Jacobson radical of

a module.

Proof. (i) Since PR ∼= e(⊕nRR) with e = e2 ∈ Matn(R), it follows that End(PR) ∼=
eMatn(R)e. Also by Theorem 6, HFI(PR) ∼= e(⊕nQ̂FI(R)). Thus End(HFI(PR)) ∼=
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eMatn(End(Q̂FI(R)R)e. Since End(Q̂FI(R)R) ∼= Q̂FI(R) by Lemma 4, End(HFI(PR)) ∼=
eMatn(EndR(Q̂FI(R)R))e ∼= eMatn(Q̂FI(R))e. Now from Lemma 11, Q̂FI(eMatn

(R)e) = eQ̂FI(Matn(R))e because Matn(R) is semiprime and 0 �= e = e2 ∈ Matn(R).
Also by [17, Corollary 5.6] since Matn(Q̂FI(R)) = Q̂FI(Matn(R)), it follows that

End(HFI(PR)) ∼= eQ̂FI(Matn(R))e = Q̂FI(eMatn(R)e) ∼= Q̂FI(End(PR)).

(ii) Let κ : PR → e(⊕nRR) be an isomorphism, where e = e2 ∈ Matn(R). Then
there exists an isomorphism κ : HFI(PR) → e(⊕nQ̂FI(R)R) which is an extension of
κ. Thus to show that Rad(HFI(PR)Q̂FI(R)) ∩ P = Rad(PR), it is enough to see that
Rad(e(⊕nQ̂FI(R)Q̂FI(R)) ∩ e(⊕nRR) = Rad(e(⊕nRR)).

Let MR = e(⊕nRR). Since MR is projective, we have that Rad(MR) =
MJ(R) = e(⊕nRR)J(R) = e(⊕nJ(R)). Now HFI(MR) = e(⊕nQ̂FI(R)) by Theorem 6.
Therefore, HFI(MR) is a projective right Q̂FI(R)-module, so it follows
that Rad(HFI(MR)Q̂FI(R)) = (HFI(M)Q̂FI(R))J(Q̂FI(R)) = e(⊕nQ̂FI(R))J(Q̂FI(R)) =
e(⊕nJ(Q̂FI(R)). Say e(α1 + α2 + · · · + αn) ∈ Rad(HFI(MR)Q̂FI(R)) ∩ M with αi ∈
J(Q̂FI(R)). Then e(α1 + α2 + · · · + αn) = e(r1 + r2 + · · · + rn) for some ri ∈ R. Let
e = (aij) ∈ Matn(R). Then

(ai j)

⎛
⎜⎜⎜⎝

α1

α2
...

αn

⎞
⎟⎟⎟⎠ = (ai j)

⎛
⎜⎜⎜⎝

r1

r2
...

rn

⎞
⎟⎟⎟⎠ ,

so ai1α1 + ai2α2 + · · · + ainαn = ai1r1 + ai2r2 + · · · + ainrn for i = 1, 2, . . . , n. Since
α1, α2, . . . , αn ∈ J(Q̂FI(R)), it follows that ai1α1 + ai2α2 + · · · + ainαn ∈ J(Q̂FI(R))
for i = 1, 2, . . . , n. Thus ai1α1 + ai2α2 + · · · + ainαn = ai1r1 + ai2r2 + · · · + ainrn ∈
J(Q̂FI(R)) ∩ R for i = 1, 2, . . . , n. By [19, Theorem 2.2], J(Q̂FI(R)) ∩ R = J(R), hence
ai1α1 + ai2α2 + · · · + ainαn = ai1r1 + ai2r2 + · · · + ainrn ∈ J(R). Thus

e

⎛
⎜⎜⎜⎝

r1

r2
...

rn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a11r1 + · · · + a1nrn

a21r1 + · · · + a2nrn
...

an1r1 + · · · + annrn

⎞
⎟⎟⎟⎠ ∈ e

⎛
⎜⎜⎜⎝

J(R)
J(R)

...
J(R)

⎞
⎟⎟⎟⎠ = e(⊕nRR)J(R) = Rad(MR).

Therefore, Rad(HFI(MR)Q̂FI(R)) ∩ M ⊆ Rad(MR).
On the other hand, note that J(Q̂FI(R)) ∩ R = J(R) again by [19,

Theorem 2.2]. Thus it follows that Rad(MR) = e(⊕nJ(R)) ⊆ e(⊕nJ(Q̂FI(R))) =
Rad(HFI(MR)Q̂FI(R)), hence Rad(MR) ⊆ Rad(HFI(MR)Q̂FI(R)) ∩ M. So
Rad(HFI(MR)Q̂FI(R)) ∩ M = Rad(MR). Therefore, Rad(HFI(PR)Q̂FI(R)) ∩ P =
Rad(PR). �

When PR is a progenerator, we have the following:

COROLLARY 13. Let R be a semiprime ring.
(i) If PR is a progenerator of the category Mod-R, then HFI(PR)Q̂FI(R) is a

progenerator of the category Mod-Q̂FI(R).
(ii) If R and S are Morita equivalent, then Q̂FI(R) and Q̂FI(S) are Morita

equivalent.
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Proof. (i) Assume that PR is a progenerator for Mod-R. Let PR ∼= e(⊕nRR)
with e = e2 ∈ Matn(R) and let S = End(PR). Then R is Morita equivalent
to S and S ∼= eMatn(R)e with Matn(R)eMatn(R) = Matn(R). Now Q̂FI(S) ∼=
eMatn(Q̂FI(R))e by Lemmas 3 and 11 since S is semiprime. Moreover, we
have that Matn(Q̂FI(R))eMatn(Q̂FI(R)) = Matn(RB(Q(R))eMatn(RB(Q(R)) =
[Matn(R)eMatn(R)]B(Q(R)) = Matn(R)B(Q(R)) = Matn(RB(Q(R))) = Matn(Q̂FI(R))
by noting that Q̂FI(R) = RB(Q(R)) from Lemma 3. Also by Theorem 12(i), it
follows that Q̂FI(S) ∼= Q̂FI(End(PR)) ∼= End(HFI(PR)R) = eMatn(End(Q̂FI(R)R))e ∼=
eMatn(Q̂FI(R))e = End(HFI(PR)Q̂FI(R)). Thus we have that HFI(PR)Q̂FI(R) is a
progenerator of the category Mod-Q̂FI(R).

(ii) This part was proved in [18]. We include a proof for the sake of completeness.
Suppose that R and S are Morita equivalent. Then there exists a progenerator
PR of the category Mod-R such that S = End(PR). Thus by Theorem 12(i),
Q̂FI(S) ∼= End(HFI(PR)R) = End(HFI(PR)Q̂FI(R)), so Q̂FI(R) and Q̂FI(S) are Morita
equivalent. �

We notice that the converse of Corollary 13(ii) is not true. Let R = �[G] the
group ring of G over �, where G is the group of order two. Then R is semiprime by [31,
p. 162, Proposition 8]. Let S = Q̂FI(R). From Lemma 3 and the fact that Q(R) = Q(S),
it follows that Q̂FI(R) = Q̂FI(S). If R and S are Morita equivalent, then R ∼= S since R
and S are commutative (see [30, p. 494, Corollary 18.42]). So we have a contradiction
because R is not quasi-Baer by [13, Example 1.11].

Recall from [37] that a module MR is a quasi-Baer module if for any NR � MR,
there exists h = h2 ∈ � = End(MR) such that 
�(N) = �h, where 
�(N) = {λ ∈ � |
λN = 0}. It is clear that RR is a quasi-Baer module if and only if R is a quasi-Baer ring.
Also it is shown in [37] that MR is quasi-Baer if and only if for any I � � there exists
g = g2 ∈ � such that rM(I) = gM, where rM(I) = {m ∈ M | Im = 0}. Moreover, if MR

is quasi-Baer, then End(MR) is a quasi-Baer ring [37, Theorem 4.1]. Close connections
between quasi-Baer modules and FI-extending modules are investigated in [37].

In the next result, we obtain another close connection between FI-extending
modules and quasi-Baer modules which also generalizes some of the equivalences
in [12, Theorem 4.7].

THEOREM 14. Assume that PR is a finitely generated projective module over a
semiprime ring R. Then the following are equivalent:

(i) PR is (strongly) FI-extending.
(ii) PR is quasi-Baer.

(iii) End(PR) is a quasi-Baer ring.
(iv) End(PR) is a right FI-extending ring.

Proof. Let PR ∼= e(⊕nRR) with e = e2 ∈ End(⊕nRR) ∼= Matn(R) and n > 0.
(i)⇒(ii) Assume that PR is FI-extending. Then PR = HFI(PR) ∼= e(⊕nQ̂qB(R)R)

by Theorem 6 and Lemma 3. Since End(Q̂qB(R)R) ∼= Q̂qB(R) by Lemma 4, we see that
Q̂qB(R)R is quasi-Baer. So ⊕nQ̂qB(R)R is quasi-Baer [37, Proposition 3.19]. Hence
e(⊕nQ̂qB(R)R) is quasi-Baer from [37, Theorem 3.17]. Therefore PR is quasi-Baer.

(ii)⇒(iii) It follows from [37, Theorem 4.1].
(iii)⇒(i) Suppose that End(PR) is a quasi-Baer ring. Then End(PR) ∼=

eMatn(R)e is quasi-Baer. Now Q̂qB(Matn(R)) = Matn(R)B(Q(Matn(R)) =
Matn(R)B(Matn(Q(R))) = Matn(R)B(Q(R)) = Matn(RB(Q(R))) = Matn(Q̂qB(R)) by
Lemma 3. Thus eMatn(R)e = Q̂qB(eMatn(R)e) = eQ̂qB(Matn(R))e = eMatn
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(Q̂qB(R))e by Lemma 11. Let f ∈ B(Q(R)) = B(End(E(RR))) and let In be
the identity matrix in Matn(R). Then we have that f In ∈ B(Matn(Q(R))) =
B(End(⊕nE(RR))). Thus e · f In · e ∈ eMatn(Q̂qB(R))e = eMatn(R)e. Let e · f In · e =
(αij) ∈ eMatn(R)e ⊆ Matn(R). Then we see that

e

⎛
⎜⎝

f R
...

f R

⎞
⎟⎠ = e · f In

⎛
⎜⎝

R
...
R

⎞
⎟⎠ = e · f In · e

⎛
⎜⎝

R
...
R

⎞
⎟⎠ = e(αi j)e

⎛
⎜⎝

R
...
R

⎞
⎟⎠ ⊆ e

⎛
⎜⎝

R
...
R

⎞
⎟⎠ .

Hence e(⊕nQ̂qB(R)R) = e(⊕nRR) because Q̂qB(R) = RB(Q(R)) by Lemma 3. Hence
from Theorem 6, HFI(e(⊕nRR)) = e(⊕nRR), so e(⊕nRR) is (strongly) FI-extending.
Therefore PR is (strongly) FI-extending.

(iii)⇔(iv) Since End(PR) is semiprime, this equivalence follows from [12, The-
orem 4.7]. �

For a ring R, let Aut(R) denote the group of ring automorphisms of R. Let G be a
subgroup of Aut(R). For r ∈ R and g ∈ G let rg denote the image of r under g. We use
RG to denote the fixed ring of R under G (i.e. RG = {r ∈ R | rg = r for every g ∈ G}).
The skew group ring, R ∗ G, is defined to be R ∗ G = ⊕∑

g∈G Rg with addition given
componentwise and multiplication given as follows: if a, b ∈ R and g, h ∈ G, then
(ag)(bh) = abg−1

gh ∈ Rgh.
Let R be a semiprime ring. For g ∈ Aut(R), let φg = {x ∈ Qm(R) | xrg =

rx for each r ∈ R}, where Qm(R) is the Martindale right ring of quotients of R. We
say that g is X -outer if φg = 0. A subgroup G of Aut(R) is called X-outer on R if every
1 �= g ∈ G is X-outer (see [5, pp. 139–143]).

Assume that G is a finite group of ring automorphisms of a ring R. Say G =
{g1, . . . , gn}. For r ∈ R and α = a1g1 + · · · + angn ∈ R ∗ G with ai ∈ R, define r · α =
rg1 ag1

1 + · · · + rgn agn
n . Then R is a right R ∗ G-module. Moreover, we see that RG RR∗G is

an (RG, R ∗ G)-bimodule. Also End (RR∗G) ∼= RG.
If A is a C∗-algebra (not necessarily unital), then the set F of all norm closed

essential two-sided ideals forms a filter directed downward by inclusion. The ring
Qb(A) denotes the algebraic inductive limit of {M(I)}I∈F , where M(I) is the multiplier
C∗-algebra of I . In [3], the ring Qb(A) is called the symmetric normed algebra of quotients
of A. The norm completion of Qb(A), i.e. the C∗-algebra inductive limit Mloc(A) of
{M(I)}I∈F , is called the local multiplier algebra of A which was used to solve operator
equations on A (see [24] and [35]). In [1–4], Qb(A) and Mloc(A) of a C∗-algebra A have
been extensively studied. For more details on local multiplier algebras, see [5].

According to [5, Definition 3.2.1, p. 73], for a C∗-algebra A, the C∗-subalgebra
ACb(A) (i.e., the norm closure of ACb(A) in Mloc(A)) of Mloc(A) is called the bounded
central closure of A and denoted by cA, where Cb(A) is the centre Cen(Qb(A)) of Qb(A).
If A = cA, then A is called boundedly centrally closed. It is shown in [5, Theorem 3.2.8
and Corollary 3.2.9, pp. 75–76] that the local multiplier algebra and the bounded
central closure of a C∗-algebra are boundedly centrally closed. Also, it is shown in [19,
Lemma 4.12] that a unital C∗-algebra A is boundedly centrally closed if and only if A
is quasi-Baer.

By [5] a ∗-preserving ring automorphism of a C∗-algebra is called an ∗-auto-
morphism. When A is a unital C∗-algebra with a finite group G of ∗-automorphisms of
A, it was shown in [5, Section 4.4, pp. 139–141] that A ∗ G and AG are C∗-algebras.
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COROLLARY 15. Let A be a unital C∗-algebra and G a finite group of ∗-automorphisms
of A. Then the following conditions (i), (ii) and (iii) are equivalent:

(i) AA∗G is (strongly) FI-extending.
(ii) AA∗G is quasi-Baer.

(iii) AG is a boundedly centrally closed C∗-algebra.
Further, if G is X-outer, then the following conditions (iv) and (v) are equivalent
to conditions (i)–(iii):

(iv) A ∗ G is a boundedly centrally closed C∗-algebra.
(v) A is G-quasi-Baer (i.e. the right annihilator of a G-invariant ideal of A is

generated by an idempotent).

Proof. Recall that End (AA∗G) ∼= AG. Since |G| is invertible, e = |G|−1(
∑

g∈G g) ∈
A ∗ G is an idempotent and AA∗G ∼= e(A ∗ G)A∗G as A ∗ G-modules. Thus AA∗G is a
finitely generated projective module. Thus by [19, Lemma 4.12] AG is quasi-Baer if
and only if AG is boundedly centrally closed. Hence the equivalence of (i)–(iii) follows
immediately from Theorem 14.

Further, assume that G is X-outer. Note that the condition (iv) is equivalent to the
fact that A ∗ G is quasi-Baer. Hence from [19, Lemma 4.12] and [27, Theorem 10], (iii),
(iv) and (v) are equivalent. �

Note that in [37, Example 4.2], there is an example of a module MR such that
End(MR) is a quasi-Baer ring, but MR is not quasi-Baer. In this paper we have shown
that for M = FI, if R is a semiprime ring then HFI(RR) = Q̂FI(R). This motivates the
following problem:

PROBLEM. For a given class M of modules, determine necessary and/or sufficient
conditions on R such that HM(RR) = Q̂M(R).
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S. R., Editors) (Amer. Math. Soc., Providence, RI, 2006), 29–48.

17. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Ring hulls and applications, J. Algebra
304 (2006), 633–665.

18. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Hulls of ring extensions, Canad. Math.
Bull. (in press).

19. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Hulls of semiprime rings with applications
to C∗-algebras, J. Algebra (in press).

20. D. P. Blecher and C. LeMerdy, Operator algebras and their modules – An operator space
approach (Clarendon, Oxford, 2004).

21. A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a
direct summand, Quart. J. Math. Oxford 28 (1977), 61–80.

22. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417–424.
23. N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules (Longman,

Harlow, 1994).
24. G. A. Elliott, Automorphisms determined by multipliers on ideals of a C∗-algebra,

J. Funct. Anal. 23 (1976), 1–10.
25. C. Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966),

179–191.
26. S. Grabiner, Finitely generated, Noetherian, and Artinian Banach modules, Indiana

Univ. Math. J. 26 (1977), 413–425.
27. H. L. Jin, J. Doh and J. K. Park, Group actions on quasi-Baer rings, Canad. Math. Bull.

(in press).
28. I. Kaplansky, Modules over operator algebras, Am. J. Math. 75 (1953), 839–858.
29. I. Kaplansky, Rings of operators (Benjamin, New York, 1968).
30. T. Y. Lam, Lectures on Modules and Rings (Springer-Verlag, Berlin, Germany, 1998).
31. J. Lambek, Lectures on rings and modules (Chelsea, New York, 1986).
32. A. C. Mewborn, Regular rings and Baer rings, Math. Z. 121 (1971), 211–219.
33. B. J. Müller and S. T. Rizvi, Ring decompositions of CS-rings, in Abstracts for methods

in module theory conference (Colorado Springs, May 1991).
34. B. L. Osofsky, A non-trivial ring with non-rational injective hull, Canad. Math. Bull. 10

(1967), 275–282.
35. G. K. Pedersen, Approximating derivations on ideals of C∗-algebras, Invent. Math. 45

(1978), 299–305.
36. A. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970),

127–138.
37. S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32 (2004),

103–123.

https://doi.org/10.1017/S0017089509005023 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509005023

