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Abstract

Let k be a perfect field of characteristic p > 0 and let W be the ring of Witt vectors of k.
In this article, we give a new proof of the Frobenius descent for convergent isocrystals
on a variety over k relative to W. This proof allows us to deduce an analogue of the
de Rham complexes comparison theorem of Berthelot [D-modules arithmétiques. II.
Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) 81 (2000)] without assuming a
lifting of the Frobenius morphism. As an application, we prove a version of Berthelot’s
conjecture on the preservation of convergent isocrystals under the higher direct image
by a smooth proper morphism of k-varieties.

1. Introduction

1.1 Let k be a perfect field of characteristic p > 0. A good p-adic cohomology theory on a variety
over k is the rigid cohomology developed by Berthelot [Ber86, Ber96a]. The coefficients for this
theory are (over-)convergent F -isocrystals: they play a similar role of the lisse `-adic sheaves in
`-adic cohomology. In [Ber86, 4.3] and [Tsu03], Berthelot and Tsuzuki conjectured that under
a smooth proper morphism of varieties over k, the higher direct image of an (over-)convergent
(F -)isocrystal is still an (over-)convergent (F -)isocrystal analogue to the `-adic case. Various
cases and variants of this conjecture have been proved by Tsuzuki [Tsu03], Shiho [Shi07b],
Étesse [Éte12], Caro [Car15], etc. We refer to an article of Lazda [Laz16] for a survey of these
results and the relation between them. The goal of this article is to prove a version of Berthelot’s
conjecture for convergent isocrystals in the context of convergent topos developed by Ogus
(Theorem 1.9).

1.2 In [Ogu84, Ogu07], Ogus introduced a crystalline-like site: convergent site, and defined a
convergent isocrystal as a crystal on this site. Let us briefly recall his definition.

Let W be the ring of Witt vectors of k, K its fraction field and X a scheme of finite type
over k. We denote by Conv(X/W) the category of couples (T, u) consisting of an adic flat formal
W-scheme of finite type T and a k-morphism u from the reduced subscheme T0 of the special fiber
of T to X. Morphisms are defined in a natural way. A family of morphisms {(Ti, ui)→ (T, u)}i∈I
is a covering if {Ti→ T}i∈I is a Zariski covering.

The functor (T, u) 7→ Γ(Tzar,OT[1p ]) is a sheaf of rings that we denote by OX/K . An OX/K-
module amounts to giving the following data:

(i) for every object (T, u) of Conv(X/W), an OT[1p ]-module FT of Tzar;

(ii) for every morphism f : (T1, u1) → (T2, u2) of Conv(X/W), an OT1-linear morphism cf :
f∗(FT2)→ FT1

satisfying a cocycle condition for the composition of morphisms as in [BO15, 5.1].
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On higher direct images of convergent isocrystals

A convergent isocrystal on Conv(X/W) is a coherent crystal of OX/K-modules F on

Conv(X/W), i.e. for every object (T, u) of Conv(X/W), FT is coherent and, for every morphism

f of Conv(X/W), the transition morphism cf is an isomorphism. We denote by Iso†(X/W)

the category of convergent isocrystals on Conv(X/W). If X is smooth over k, there exists

a canonical functor ι from Iso†(X/W) to the category of crystals of OX/W-modules on the

crystalline site Crys(X/W) up to isogeny [Ogu07, 0.7.2]. Its essential image satisfies certain

convergent conditions (cf. [Ber96a, 2.2.14]).

1.3 In [Ogu84, 4.6], Ogus showed that the category Iso†(X/W) satisfies the descent property

under a proper and surjective morphism of k-schemes. Then, if X ′ denotes the base change of

X by the Frobenius morphism of k, the functorial morphism of convergent topoi induced by the

relative Frobenius morphism FX/k : X → X ′ gives an equivalence of categories:

F ∗X/k,conv : Iso†(X ′/W)
∼−→ Iso†(X/W) (1.3.1)

that we call Frobenius descent.

A convergent F -isocrystal on Conv(X/W) is a couple (E , ϕ) of a convergent isocrystal E
on Conv(X/W) and an isomorphism ϕ between E and its pullback via the absolute Frobenius

morphism of X (cf. § 5.14 for a precise definition).

1.4 To study the higher direct image of convergent (F -)isocrystals, we need the notion of

convergent topos over a p-adic base developed by Shiho [Shi02, Shi07a].1 Let S be an adic flat

formal W-scheme of finite type, S0 the reduced subscheme of its special fiber and X an S0-scheme.

We define the convergent site Conv(X/S) of X relative to S and the category Iso†(X/S) of

convergent isocrystals on Conv(X/S) as in § 1.2 (cf. Definition 3.1 and § 3.16). Shiho generalized

Ogus’ proper surjective descent for convergent isocrystals in this setting [Shi07b, 7.3].

We denote by (X/S)conv,fppf the topos of fppf sheaves on the category Conv(X/S) (§ 3.4).

As a first step towards Berthelot’s conjecture, we show the following result.

Theorem 1.5 (Theorem 5.2). Suppose that the Frobenius morphism FS0 : S0 → S0 is flat.

Let X be an S0-scheme locally of finite type, X ′ = X ×S0,FS0
S0 and FX/S0

: X → X ′ the

relative Frobenius morphism. The functorial morphism of topoi FX/S0,conv : (X/S)conv,fppf →

(X ′/S)conv,fppf is an equivalence of topoi.

Our proof is inspired by a site-theoretic construction of the Cartier transform of Ogus–

Vologodsky due to Oyama [OV07, Oya17] and its lifting modulo pn developed by the

author [Xu19]. By Gabber–Bosch–Görtz’s faithfully flat descent theory for coherent sheaves

in rigid geometry [BG98], we obtain a new proof of the Frobenius descent (1.3.1).

Corollary 1.6 (Proposition 5.7). Keep the hypotheses of Theorem 1.5. The direct image and

inverse image functors of FX/S0,conv induce equivalences of categories quasi-inverse to each other:

Iso†(X/S)� Iso†(X ′/S). (1.6.1)

1 Actually, Shiho developed a theory of a log convergent site and log convergent cohomology over a p-adic base
with log structure.
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1.7 Keep the notation of Theorem 1.5 and suppose that there exist smooth liftings X of X

and X′ of X ′ over S (in particular, X is smooth over S0). We denote by Ω̂1
X/S the OX-module

of differentials of X relative to S. Given a convergent isocrystal E ∈ Ob(Iso†(X/S)), there
exists an integrable connection ∇ : EX → EX⊗OX

Ω̂1
X/S on the coherent OX[1p ]-module EX

(Proposition 3.17). We denote by EX⊗OX
Ω̂•X/S the associated de Rham complex. We deduce from

Theorem 1.5 the following result about comparing de Rham complexes for the Frobenius descent.

Corollary 1.8 (Corollary 5.9). Keep the above notation and let f : X → S0 be the canonical
morphism. There exists a canonical isomorphism between de Rham complexes of E and of
FX/S0,conv ∗(E ) in D(X ′zar, f

−1(OS)):

FX/S0∗(EX⊗OX
Ω̂•X/S)

∼−→ (FX/S0,conv ∗(E ))X′ ⊗OX′
Ω̂•X′/S. (1.8.1)

In [Ber96b], Berthelot introduced a sheaf D† of differential operators over X and described
(over-)convergent isocrystals in terms of arithmetic D†-modules. If there exists a lifting
F : X → X′ of the relative Frobenius morphism FX/S0

, he used F to establish a version of

Frobenius descent for arithmetic D†-modules and a comparison result for de Rham complexes
(cf. [Ber00, 4.2.4 and 4.3.5]). The above results can be viewed as a counterpart of Berthelot’s
results for convergent isocrystals without assuming a lifting of Frobenius morphism.

Our main result is the following.

Theorem 1.9 (Corollary 8.3). Let g :X→ Y be a smooth proper morphism of k-schemes locally
of finite type. The higher direct image of a convergent isocrystal (respectively F -isocrystal) on
Conv(X/W) (§ 1.3) is a convergent isocrystal (respectively F -isocrystal) on Conv(Y/W).

Our proof relies on a preprint of Shiho [Shi07a] on relative crystalline cohomology of
convergent isocrystals.

In [Ogu84], Ogus described Ri gconv ∗(OX/K) in terms of relative crystalline cohomology.

Morrow showed that Ri gconv ∗(OX/K) coincides with the higher direct images in crystalline
cohomology when Y is smooth [Mor19]. Our approach follows a similar line of their work.

In a recent preprint of Di Proietto, Tonini and Zhang [DTZ18], they showed that the higher
direct image of an isocrystal (crystal on the crystalline site (X/W)crys up to isogeny) via gcrys
is still an isocrystal when Y is smooth. Our result is compatible with theirs via the functor ι
(§ 1.2). However, two results are independent and are proved in different methods.

1.10 In the following, we explain the structure of this article and the strategy for proving
Theorem 1.9.

Section 2 contains general notation and a review of isocrystals on crystalline sites. In § 3, we
recall the definition of the convergent topos over a p-adic base and results on the cohomology
of convergent isocrystals following Shiho [Shi07a]. In § 4, we show that under a smooth proper
morphism of smooth k-schemes X → Y , the higher direct image of a convergent isocrystal on
Conv(X/W) is a ‘p-adic convergent isocrystal’ on Conv(Y/W), i.e. it satisfies the property of a
coherent crystal in a certain subcategory of Conv(Y/W) (Proposition 4.8). Section 5 is devoted
to the Frobenius descent (Theorem 1.5 and Corollary 1.6). Using Dwork’s trick and Theorem 1.5,
we deduce Theorem 1.9 in the case where Y is smooth over k (Theorem 5.10). In § 6, we briefly
review Raynaud’s approach to rigid geometry following Abbes’ book [Abb10]. Section 7 is devoted
to a modification of convergent topos which allows us to apply the faithfully flat descent in rigid
geometry in the full extent. Based on previous results and Ogus’ proper surjective descent, we
complete the proof of Theorem 1.9 in the non-smooth case in § 8.
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2. Preliminary

2.1 In this article, p denotes a prime number, k denotes a perfect field of characteristic p, W
the ring of Witt vectors of k and K the fraction field of W.

Let X be an adic formal W-scheme. For any n > 1, we denote by Xn the reduction modulo
pn of X. If we use a gothic letter X to denote an adic formal W-scheme, the corresponding roman
letter X will denote its special fiber X1.

We denote by S the category whose objects are adic formal W-schemes of finite type [Abb10,
2.3.13] and morphisms are adic morphisms [Abb10, 2.2.7]. By [EGAI, 6.1.5(v)], morphisms of S
are of finite type. We denote by S� the full subcategory of S consisting of flat formal W-schemes
of finite type.

2.2 Let A be an abelian category. We denote by AQ the category with the same objects as A
such that the set of morphisms is given for any object M,N of A by

HomAQ(M,N) = HomA (M,N)⊗ZQ.

For any object M of A , we denote its image in AQ by MQ.

2.3 Let X be an object of S. For any OX-module F , we set F [1p ] = F ⊗Zp Qp.

We denote by Coh(OX) (respectively Coh(OX[1p ])) the category of coherent OX-modules

(respectively OX[1p ]-modules). The canonical functor Coh(OX)→ Coh(OX[1p ]) defined by F 7→
F [1p ] induces an equivalence of categories Coh(OX)Q

∼−→ Coh(OX[1p ]) [AGT16, III.6.16].

2.4 Let C and D be two sites, Ĉ (respectively D̂) the category of presheaves of sets on C
(respectively D) and u : C → D a functor. We have a functor

û∗ : D̂ → Ĉ , G 7→ û∗(G ) = G ◦ u.

It admits a right adjoint û∗ : Ĉ → D̂ [SGA4, I 5.1].
If u : C → D is a cocontinuous (respectively continuous) functor and F (respectively G ) is

a sheaf on C (respectively D), then û∗(F ) (respectively û∗(G )) is a sheaf on D (respectively C )
[SGA4, III 1.2, 2.1 and 2.2].

Let C̃ (respectively D̃) be the topos of the sheaves of sets on C (respectively D) and

u : C → D a cocontinuous functor. Then u induces a morphism of topoi g : C̃ → D̃ defined by
g∗ = û∗ and g∗ = a ◦ û∗, where a is the sheafification functor (cf. [SGA4, III 2.3]).

Proposition 2.5 [Oya17, 4.2.1]. Let C be a site, D a site whose topology is defined by a

pretopology, C̃ (respectively D̃) the topos of sheaves on C (respectively D) and u : C → D
a functor. Assume that:

(i) u is fully faithful;

(ii) u is continuous and cocontinuous;

(iii) for every object V of D , there exists a covering {u(Ui)→ V }i∈I of V in D with objects Ui
of C .

Then the morphism of topoi g : C̃ → D̃ defined by g∗ = û∗ and g∗ = û∗ (2.4) is an equivalence
of topoi.
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2.6 In the following, S denotes an object of S� and X an S-scheme.
We equip pOS with the canonical PD-structure γ. Recall that the crystalline site Crys(X/S)

is defined as follows [BO15, 7.17]: an object is a quadruple (U, T, ι, δ) consisting of an open
subscheme U of X, a scheme T over Sn for some integer n > 1, a closed immersion ι : U → T
and a PD-structure δ on Ker(OT → OU ) compatible with γ. A morphism from (U ′, T ′, ι′, δ′) to
(U, T, ι, δ) of Crys(X/S) consists of an open immersion U ′ → U and an S-morphism T ′ → T
compatible with ι′, ι and the PD-structures. A family of morphisms {(Ui, Ti) → (U, T )}i∈I is
a covering if each morphism Ti → T is an open immersion and |T | =

⋃
i∈I |Ti|. We denote by

(X/S)crys the topos of sheaves of sets on Crys(X/S).
The presheaf of rings defined by (U, T ) 7→ Γ(T,OT ) is a sheaf that we denote by Ocrys

X/S. For

an Ocrys
X/S-module F and an object (U, T ) of Crys(X/S), we denote by FT the evaluation of F

at (U, T ) [BO15, 5.1].

Definition 2.7 ([BO15, 6.1], [Shi07a, 1.8]). (i) We say that an Ocrys
X/S-module F is a crystal if,

for every morphism f : (U ′, T ′)→ (U, T ) of Crys(X/S), the transition morphism f∗(FT )→FT ′

is an isomorphism.
(ii) We say that a crystal F is a crystal of Ocrys

X/S-modules of finite presentation if FT is an

OT -module of finite presentation for every object (U, T ) of Crys(X/S).
(iii) We denote by C (Ocrys

X/S) the category of crystals of Ocrys
X/S-modules of finite presentation.

Objects of C (Ocrys
X/S)Q (§ 2.2) are called isocrystals.

2.8 Crystals have an equivalent description in terms of modules equipped with hyper-PD-
stratification and of modules with integrable connection. Let us briefly recall these notions.

Let X be an adic formal S-scheme of finite type and X2 = X×S X. Let G be an adic formal
X2-scheme and let q1, q2 : G→ X be the canonical projections. A formal X-groupoid structure
over S on G are three adic morphisms α : G×X G → G, ι : X → G and η : G → G, where
the fibered product G×X G is taken on the left (respectively right) for the X-structure defined
by q2 (respectively q1), satisfying the compatibility conditions for groupoids (cf. [Xu19, 4.7]).
We set q13 = α and q12, q23 : G×X G→ G, the projections in the first and second components,
respectively.

Let G be a formal X-groupoid over S and M an OX-module. An OG-stratification on M is
an OG-linear isomorphism ε : q∗2(M)

∼−→ q∗1(M) satisfying ι∗(ε) = idM and the cocycle condition
q∗12(ε) ◦ q∗23(ε) = q∗13(ε).

2.9 Suppose that X is smooth over S and admits a smooth lifting X over S. We denote by
PX/S the adic formal X2-scheme defined by the PD-envelope of the diagonal immersion X→ X2

compatible with the canonical PD-structure γ (§ 2.6). By the universal property of the PD-
envelope, the formal X2-scheme PX/S is equipped with a formal X-groupoid structure (§ 2.8).

Given an object F of C (Ocrys
X/S) (Definition 2.7), the coherent OX-module FX = lim

←−n>1FXn is

equipped with an OPX/S
-stratification and then an integrable connection relative to S. Moreover,

the following categories are canonically equivalent (see [BO15, 6.6] and [Sta, 07JH]).

(i) The category C (Ocrys
X/S).

(ii) The category of coherent OX-modules equipped with an OPX/S
-stratification.

(iii) The category of coherent OX-modules equipped with a topologically quasi-nilpotent
integrable connection relative to S [BO15, 6.1].
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Proposition 2.10 ([Ogu07, 0.7.5], [Shi07a, 1.23]). Keep the assumption of § 2.9. Let M be a
coherent OX[1p ]-module and ε an OPX/S

-stratification on M . There exist a coherent OX-module

M◦ and an OPX/S
-stratification ε◦ on M◦ such that (M◦[1p ], ε◦⊗ id) is isomorphic to (M, ε).

Definition 2.11 [SGA6, I 1.3.1]. Let (T , A) be a ringed topos. We say that an A-module M
of T is locally projective of finite type if the following equivalent conditions are satisfied:

(i) M is of finite type and the functor HomA(M,−) is exact;

(ii) M is of finite type and every epimorphism of A-modules N →M admits locally a section;

(iii) M is locally a direct summand of a free A-module of finite type.

When T has enough points and, for every point x of T , the stalk of A at x is a local
ring, the locally projective A-modules of finite type are locally free A-modules of finite type
[SGA6, I 2.15.1].

Lemma 2.12. Let X be a smooth formal W-scheme, M a coherent OX-module and ∇ an
integrable connection on M relative to W. Then M [1p ] is a locally projective OX[1p ]-module

of finite type (2.11). In particular, given a coherent OX[1p ]-module with an OPX/W
-stratification

(M, ε) (respectively an object E of C (Ocrys
X/W)), M (respectively EX[1p ]) is a locally projective

OX[1p ]-module of finite type.

Proof. The first assertion is a standard result (cf. [Kat70, 8.8] and [Ked10, 1.2]). Then the second
assertion follows from § 2.9 and Proposition 2.10. 2

2.13 We denote by uX/S,crys : (X/S)crys→ Xzar the canonical morphism of topoi [BO15, 5.12]
and by gX/S,crys the composition

gX/S,crys : (X/S)crys→ Xzar→ Szar,

which is ringed by Ocrys
X/S and OS. We call R• gX/S,crys ∗(−) the relative crystalline cohomology.

For an isocrystal E = FQ with F ∈ Ob(C (Ocrys
X/S)), we set (§ 2.1)

Rq gX/S,crys ∗(E ) = Rq gX/S,crys ∗(F )

[
1

p

]
, R gX/S,crys ∗(E ) = R gX/S,crys ∗(F )

[
1

p

]
.

It is clear that the above definition is independent of the choice of F .
When X is smooth and proper over S and S is separated, Shiho proved that the relative

crystalline cohomology Rq gX/S,crys ∗(E ) is a coherent OS[1p ]-module [Shi07a, 1.15]. Moreover, he

showed a base-change result for relative crystalline cohomology (cf. [Shi07a, 1.16 and 1.19]).

3. Convergent topos and convergent isocrystals

In this section, S denotes an adic flat formal W-scheme of finite type and X denotes an S-scheme.
For any scheme T , we denote by T0 the reduced subscheme of T .

Definition 3.1 ([Ogu84, 2.1], [Shi07a, 2.4]). We define a category Conv(X/S) as follows.

(i) An object of Conv(X/S) is a pair (T, u) consisting of an adic formal S-scheme of finite
type which is flat over W and an S-morphism u : T0→ X.
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(ii) Let (T′, u′) and (T, u) be two objects of Conv(X/S). A morphism from (T′, u′) to (T, u)

is a S-morphism f : T′ → T such that the induced morphism f0 : T ′0 → T0 is compatible with

u′ and u.

We denote an object (T, u) of Conv(X/S) simply by T if there is no risk of confusion.

It is clear that if X → Y is a nilpotent immersion of S-schemes, the category Conv(X/S) is

canonically equivalent to Conv(Y/S).

3.2 Let f : (T′, u′) → (T, u) and g : (T′′, u′′) → (T, u) be two morphisms of Conv(X/S). We

denote by Z the closed formal subscheme of T′ ×T T′′ defined by the ideal of p-torsion elements

of OT′×TT′′ . The fibered product of f and g in Conv(X/S) is represented by Z, which is flat over

W, equipped with the composition Z0→ T ′0 ×T0 T ′′0 → X induced by u′ and u′′.

If either T′′→ T or T′→ T is flat, then Z is equal to T′ ×T T′′.

3.3 Let T be an object of S. We denote by Zar/T (respectively Tzar) the Zariski site (respectively

topos) of T.

We say that a family of morphisms {fi : Ti→ T}i∈I of S is an fppf covering if each morphism

fi is flat and if |T| =
⋃
i∈I fi(|Ti|). Since T is quasi-compact, each fppf covering of T admits a

finite fppf subcovering of T. Note that fppf coverings in S are stable by base change and by

composition.

We denote by Fft/T the full subcategory of S/T consisting of adic flat formal T-schemes and

by Tfppf the topos of sheaves of sets on Fft/T, equipped with the topology generated by fppf

coverings.

Given a morphism f : T′ → T of S, the canonical functor Fft/T → Fft/T′ (respectively

Zar/T → Zar/T′) defined by Y 7→ Y ×T T′ is continuous and left exact. For τ ∈ {zar, fppf}, it

induces the functorial morphism of topoi fτ : T′τ → Tτ .

3.4 We say that a family of morphisms {(Ti, ui) → (T, u)}i∈I of Conv(X/S) is a Zariski

(respectively fppf ) covering if the family of morphisms {Ti→ T}i∈I of S is a Zariski (respectively

fppf) covering. By § 3.3, Zariski (respectively fppf) coverings in Conv(X/S) form a pretopology.

For τ ∈ {zar, fppf}, we denote by (X/S)conv,τ the topos of sheaves of sets on Conv(X/S),

equipped with the τ -topology.

Remark 3.5. The above definition of a convergent site is slightly different from that of [Ogu84,

Shi07a], where the authors considered a category whose objects are triples (T, Z, u), where T is

the same as above, Z is a closed subscheme of definition of T such that T0→ T factors through Z

and u : Z → X is an S-morphism. However, it follows from Proposition 2.5 that the convergent

topoi (with Zariski topology) defined in two different ways are equivalent and we freely use

results of [Shi07a] in our setting.

3.6 Let (T, u) be an object of Conv(X/S) and τ ∈ {zar, fppf}. The canonical functor

Fft/T (respectively Zar/T)→ Conv(X/S), (f : T′→ T) 7→ (T′, u ◦ f0)

is cocontinuous and induces a morphism of topoi (§ 2.4)

sT : Tτ → (X/S)conv,τ , ∀τ ∈ {zar, fppf}. (3.6.1)
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For any sheaf F of (X/S)conv,τ , we set FT = s∗T(F ), called the evaluation of F at T. For any
morphism f : T′→ T of Conv(X/S), we have a canonical morphism (§ 3.3)

βf : FT→ fτ∗(FT′) (3.6.2)

and we denote its adjoint by
γf : f∗τ (FT)→ FT′ . (3.6.3)

It is clear that γid = id. If f is a morphism of Fft/T (respectively Zar/T), fτ is the localization
morphism at T′ and then γf is an isomorphism. If g : T′′ → T′ is another morphism of
Conv(X/S), one verifies that γg◦f = γf ◦ f∗τ (γg).

Proposition 3.7. For τ ∈ {zar, fppf}, a sheaf F of Conv(X/S)conv,τ is equivalent to the
following data:

(i) for every object (T, u) of Conv(X/S), a sheaf FT of Tτ ;

(ii) for every morphism f : (T′, u′)→ (T, u), a transition morphism γf (3.6.3)

subject to the following conditions.

(a) If f is the identity morphism of (T, u), then γf is the identity morphism.

(b) If f : T′→ T is a morphism of Zar/T (respectively Fft/T), then γf is an isomorphism.

(c) If f and g are two composable morphisms, then we have γg◦f = γf ◦ f∗τ (γg).

Proof. Given a datum {FT, γf} as in the proposition, for any morphism f : T′ → T of
Conv(X/S), the morphism γf induces a morphism FT(T) → FT′(T

′). In view of conditions
(a) and (c), the correspondence T 7→ FT(T) defines a presheaf F on Conv(X/S). In view
of condition (b), F is a sheaf and the above construction is quasi-inverse to § 3.6. Then the
proposition follows. 2

3.8 Note that the fppf topology on Conv(X/S) is finer than the Zariski topology. Equipped
with the fppf topology on the source and the Zariski topology on the target, the identical functor
id : Conv(X/S)→ Conv(X/S) is cocontinuous and induces a morphism of topoi (§ 2.4)

α : (X/S)conv,fppf → (X/S)conv,zar. (3.8.1)

If F is a sheaf of (X/S)conv,fppf , then α∗(F ) is equal to F as presheaves. If G is a sheaf of
(X/S)conv,zar, then α∗(G ) is the sheafification of G with respect to the fppf topology.

3.9 Let g : S′→ S be a morphism of S� (§ 2.1), X ′ an S′-scheme and f : X ′→ X a morphism
compatible with g, i.e. the diagram

X ′ //

f
��

S′ //

��

S′

g

��
X // S // S

(3.9.1)

is commutative. For any object (T, u) of Conv(X ′/S′), (T, f ◦u) defines an object of Conv(X/S).
We obtain a functor that we denote by

ϕ : Conv(X ′/S′)→ Conv(X/S), (T, u) 7→ (T, f ◦ u). (3.9.2)

It is clear that ϕ commutes with the fibered product (§ 3.2).
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Lemma 3.10. (i) Let (T, u) be an object of Conv(X ′/S′) and g : (Z, w)→ ϕ(T, u) a morphism of
Conv(X/S). Then there exist an object (Z, v) of Conv(X ′/S′) and a morphism h : (Z, v)→ (T, u)
of Conv(X ′/S′) such that g = ϕ(h).

(ii) Equipped with the Zariski topology (respectively fppf topology) (§ 3.4) on both sides,
the functor ϕ is continuous and cocontinuous.

Proof. (i) By considering compositions Z→ T→ S′ and Z0 → T0 → X ′, we obtain an object
(Z, v) of Conv(X ′/S) and a morphism h : (Z, v)→ (T, u) of Conv(X ′/S′) such that g = ϕ(h).

(ii) A family of morphisms {(Ti, ui)→ (T, u)}i∈I of Conv(X ′/S′) is a Zariski (respectively
fppf) covering if and only if its image by ϕ is a Zariski (respectively fppf) covering. Since ϕ
commutes with the fibered product, the continuity of ϕ follows from [SGA4, III 1.6].

Let {(Ti, ui) → ϕ(T, u)}i∈I be a Zariski (respectively fppf) covering. By (i), there exists a
Zariski (respectively fppf) covering {(Ti, vi) → (T, u)}i∈I mapping by ϕ to the given element.
Then ϕ is cocontinuous by [SGA4, III 2.1]. 2

3.11 By § 2.4 and Lemma 3.10, the functor ϕ (3.9.2) induces a morphism of topoi

fconv,τ : (X ′/S′)conv,τ → (X/S)conv,τ (3.11.1)

such that the pullback functor is induced by the composition with ϕ. For a sheaf F of (X/S)conv,τ
and an object T of Conv(X ′/S′), we have (Proposition 3.7)

(f∗conv,τ (F ))T = Fϕ(T). (3.11.2)

For any morphism h of Conv(X ′/S′), the transition morphism of f∗conv,τ (F ) associated to g
(Proposition 3.7) is equal to the transition morphism of F associated to ϕ(h).

By considering inverse image functors, one verifies that the following diagram commutes
(3.8.1):

(X ′/S′)conv,fppf
fconv,fppf //

α′

��

(X/S)conv,fppf

α

��
(X ′/S′)conv,zar

fconv,zar // (X/S)conv,zar

(3.11.3)

3.12 Let T be an object of S and F a coherent OT[1p ]-module. Since T is quasi-compact, by

Gabber–Bosch–Görtz’s fppf descent for coherent OT[1p ]-modules [Abb10, 5.11.11], the presheaf
on Fft/T

(f : T′→ T) 7→ Γ(T′, f∗zar(F ))

is a sheaf for the fppf topology. In particular, OT[1p ] defines a sheaf of rings of Tfppf that we still

denote by OT[1p ]. We call abusively a coherent OT[1p ]-module of Tfppf a sheaf of Tfppf associated

to a coherent OT[1p ]-module.

3.13 We define a presheaf of rings OX/S[1p ] on Conv(X/S) by

(T, u) 7→ Γ

(
T,OT

[
1

p

])
. (3.13.1)

By fppf descent (§ 3.12), OX/S[1p ] is a sheaf for the fppf topology. Since the fppf topology is finer
than the Zariski topology, it is also a sheaf for the Zariski topology.
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For any object (T, u) of Conv(X/S), we have (OX/S[1p ])T = OT[1p ]. If F is an OX/S[1p ]-module

of (X/S)conv,τ , FT is an OT[1p ]-module of Tτ . For any morphism f : T′→ T of Conv(X/S), the

transition morphism γf (Proposition 3.7) extends to an OT′ [
1
p ]-linear morphism (§ 3.12)

cf : f∗τ (FT)→ FT′ . (3.13.2)

In view of Proposition 3.7, we deduce the following description for OX/S[1p ]-modules.

Proposition 3.14. For τ ∈ {zar, fppf}, an OX/S[1p ]-module F of (X/S)conv,τ is equivalent to

the following data:

(i) for every object T of Conv(X/S), an OT[1p ]-module FT of Tτ ;

(ii) for every morphism f : T′→ T of Conv(X/S), an OT′-linear morphism cf (3.13.2),

which is subject to the following conditions.

(a) If f is the identity morphism, then cf is the identity.

(b) If f : T′→ T is a morphism of Zar/T (respectively Fft/T), then cf is an isomorphism.

(c) If f and g are two composable morphisms, then we have cg◦f = cf ◦ f∗τ (cg).

Definition 3.15. Let F be an OX/S[1p ]-module of (X/S)conv,τ for τ ∈ {zar, fppf}.

(i) We say that F is coherent if for every object T of Conv(X/S), FT is coherent (§ 3.12).

(ii) We say that F is a crystal if for every morphism f of Conv(X/S), cf is an isomorphism.

With the notation of § 3.11, the morphism fconv,τ is ringed by OX′/S[1p ] and OX/S[1p ]. The

inverse image functor of modules f∗conv,τ sends coherent OX/S[1p ]-modules (respectively crystals)

to coherent OX′/S′ [
1
p ]-modules (respectively crystals).

3.16 Let E be a coherent crystal of OX/S[1p ]-modules of (X/S)conv,zar. By fppf descent (§ 3.12),

E is also a sheaf for the fppf topology. In particular, the direct image and inverse image functors

of α (§ 3.8) induce an equivalence between the category of coherent crystals of OX/S[1p ]-modules

of (X/S)conv,zar and the category of coherent crystals of OX/S[1p ]-modules of (X/S)conv,fppf .

Following [Ogu84, Shi07a], for τ ∈ {zar, fppf}, a coherent crystal of OX/S[1p ]-modules of

(X/S)conv,τ is called a convergent isocrystal of (X/S)conv,τ . We denote the full subcategory

of OX/S[1p ]-modules consisting of these objects by Iso†(X/S).

We say that a convergent isocrystal E is locally projective if for every object T of Conv(X/S),

ET is locally projective of finite type (Definition 2.11).

Proposition 3.17 ([Ogu07, 0.7.2], [Shi07a, 2.35]). Suppose that X is smooth over S. There

exists a canonical functor (Definition 2.7)

ι : Iso†(X/S)→ C (Ocrys
X/S)Q. (3.17.1)

The construction of ι, that we will briefly recall in § 3.20, is based on the following construction

in formal geometry.
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3.18 Let Y be an object of S� and A an open ideal of finite type of Y containing p [Abb10,
2.1.19]. We denote by Y′ the admissible blow-up of A in Y [Abb10, 3.1.2]. The ideal A OY′ is
invertible [Abb10, 3.1.4(i)] and Y′ is flat over W [Abb10, 3.1.4(ii)]. We denote by Y(A /p) the
maximal open formal subscheme of Y′ on which

(A OX′)|X(A /p) = (pOX′)|X(A /p) (3.18.1)

and we call it the dilatation of A with respect to p [Abb10, 3.2.3.4 and 3.2.7]. Note that Y(A /p)

is the complement of Supp(A OY′/pOY′) in Y′ [EGAI, 0.5.2.2].
Let Z be a closed subscheme of Y and I the ideal sheaf associated to the canonical morphism

Z→Y. For any n> 1, we denote by TZ,n(Y) the dilatation of I n+pOY with respect to p [Ogu84,
2.5].2 By (3.18.1), there exists a morphism from the reduced subscheme of (TZ,n(Y))1 to Z which
fits into the following diagram:

(TZ,n(Y))1,red //

��

TZ,n(Y)

��
Z // Y

(3.18.2)

In particular, TZ,n(Y) defines an object of Conv(Z/W).
The universal property of dilatation [Abb10, 3.2.6] can be reinterpreted in the following way.

Proposition 3.19 [Xu19, 3.5]. Keep the notation and assumptions of § 3.18. Let T be an adic
flat formal W-scheme, T (1) the closed subscheme of T defined by the ideal sheaf {x ∈ OT |xp = 0}
and f : T→ Y an adic morphism. Suppose that there exists a morphism T → Z (respectively
T (1)
→ Z) which fits into the following diagram:

T //

��

T

f
��

Z // Y

(respectively T (1) //

��

T)

f

��
Z // Y

Then there exists a unique adic morphism g : T → TZ,1(Y) (respectively g : T → TZ,p(Y))
lifting f .

3.20 We briefly review the construction of ι (Proposition 3.17) in the case where X is separated
and admits a smooth lifting X over S.

We set QX/S = TX,p(X
2), the dilatation of the diagonal immersion X→ X2 = X×SX (§ 3.18).

Using its universal property (Proposition 3.19), one verifies that QX/S is equipped with a formal
X-groupoid structure (§ 2.8) (cf. [Xu19, 4.11]).

Let E be an object of Iso†(X/S). The canonical morphisms p1, p2 : QX/S → X give rise
to morphisms of Conv(X/S). Since E is a crystal, the composition of transition morphisms
ε = c−1p1 ◦ cp2 defines an OQX/S

-stratification on EX (§ 2.8).

Using 3.19, the canonical morphism PX/S→ X2 induces a morphism of formal X-groupoids
PX/S→ QX/S (cf. [Xu19, 5.12]). By taking the inverse image, we obtain an OPX/S

-stratification

on EX and then a crystal of Ocrys
X/S-modules of finite presentation up to isogeny by § 2.9 and

Proposition 2.10. The construction is clearly functorial.

2 The union of rigid space
⋃
n>1 TZ,n(Y)rig is the same as the tube of Z in Y introduced by Berthelot (cf. [Ber96a,

1.1.2 and 1.1.10]).
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3.21 There exists a canonical morphism of topoi uX/S : (X/S)conv,zar → Xzar

(cf. [Ogu07, § 4]). Suppose that S is separated and that X admits a smooth lifting f : X→ S.
Let E be a convergent isocrystal of (X/S)conv,zar. By § 2.9 and Proposition 2.10, there exists an

integrable connection on EX relative to S and we denote by EX⊗OX
Ω̂•X/S the associated de Rham

complex. Then there exists a canonical isomorphism in the derived category D(Xzar, f
−1(OS[1p ]))

[Shi07a, 2.33]
RuX/S∗(E )

∼−→ EX⊗OX
Ω̂•X/S. (3.21.1)

Based on the above isomorphism, the finiteness and the base-change property of relative
crystalline cohomology (§ 2.13), Shiho showed the following results.

Theorem 3.22 [Shi07a, 2.36]. Assume that S is separated and thatX is smooth and proper over
S. Let E be a convergent isocrystal of (X/S)conv,zar and gconv,zar : (X/S)conv,zar→ (S/S)conv,zar
the functorial morphism. Then there exists a canonical isomorphism in the derived category of
OS[1p ]-modules (§ 2.13 and Proposition 3.17)

(R gconv,zar ∗(E ))S
∼−→ R gX/S,crys ∗(ι(E )). (3.22.1)

In particular, (Ri gconv,zar ∗(E ))S is coherent for any i > 0.

Theorem 3.23 [Shi07a, 2.37]. Keep the assumption of Theorem 3.22 and suppose moreover that
E is locally projective (§ 3.16). Then (R gconv,zar ∗(E ))S is a perfect complex of OS[1p ]-modules.

Theorem 3.24 [Shi07a, 2.38]. Let ϕ : S′ → S be an adic morphism of adic separated flat
formal W-schemes of finite type, X ′ = X ×S S′ and ϕconv,zar : (X ′/S′)conv,zar → (X/S)conv,zar
the functorial morphism of convergent topoi (3.11.1). Then, for a locally projective convergent
isocrystal E of (X/S)conv,zar, we have a canonical isomorphism in the derived category of OS′ [

1
p ]-

modules:
Lϕ∗zar((R gconv,zar ∗(E ))S)

∼−→ (R g′conv,zar ∗(ϕ
∗
conv,zar(E )))S′ . (3.24.1)

4. Higher direct images of a convergent isocrystal are p-adically convergent

4.1 In this section, we keep the notation of § 3 and let g : X → Y denote a morphism of
S-schemes.

Let T be an object of Conv(Y/S) and τ ∈ {zar, fppf}. By fppf descent for morphisms of formal
W-schemes [Abb10, 5.12.1], the presheaf associated to T is a sheaf for the fppf (respectively
Zariski) topology that we denote by T̃. We set XT0 = X ×Y T0 and we denote by

gX/T,τ : (XT0/T)conv,τ → (T0/T)conv,τ ,

ωT : (XT0/T)conv,τ → (X/S)conv,τ

the functorial morphisms of topoi (3.11.1).

Lemma 4.2 [Ber74, V 3.2.2]. There exists a canonical equivalence of topoi:

(X/S)
conv,τ/g∗conv,τ (T̃)

∼−→ (XT0/T)conv,τ , (4.2.1)

which identifies the localization morphism and ωT.

The lemma can be verified in the same way as [Ber74, V 3.2.2].
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Lemma 4.3 [Ber74, V 3.2.3]. For any OX/S[1p ]-module E of (X/S)conv,τ , there exists a canonical

isomorphism in D+(Tτ ,OT[1p ]):

(R gconv,τ∗(E))T
∼−→ (R gX/T,τ∗(ω

∗
T(E)))T. (4.3.1)

Proof. Let E be an abelian sheaf of (X/S)conv,τ and f : T′→ T a morphism of Conv(Y/S) (§ 4.1).
The morphism f induces a functorial morphism of topoi ϕ : (XT ′0

/T′)conv,τ → (XT0/T)conv,τ ,
which fits into the following commutative diagram:

(XT ′0
/T′)conv,τ

ϕ //

gX/T′,τ

��

(XT0/T)conv,τ

gX/T,τ

��
(T ′0/T

′)conv,τ
fconv,τ // (T0/T)conv,τ

(4.3.2)

We have ωT′ = ωT ◦ ϕ. By Lemma 4.2, ϕ (respectively fconv,τ ) coincides with the localization

morphism on the sheaf g∗X/T,τ (T̃′) (respectively T̃′). Then gX/T,τ∗(ω
∗
T(E)) is the sheaf associated

to the presheaf on Conv(T0/T):

(f : T′→ T) 7→ Γ((XT ′0
/T′)conv,τ , ω

∗
T′(E)).

The sheaf (gconv,τ∗(E))T is associated to the presheaf

(f : T′→ T) 7→ Γ((X/S)
conv,τ/g∗conv,τ (T̃

′), E|g∗conv,τ (T̃′)).

By Lemma 4.2, we deduce a canonical isomorphism of Tτ :

(gconv,τ∗(E))T
∼−→ (gX/T,τ∗(ω

∗
T(E)))T. (4.3.3)

Since ωT coincides with a localization morphism, if I• is an injective resolution of E, ω∗T(I•)
is an injective resolution of ω∗T(E). Then the isomorphism (4.3.1) follows from (4.3.3). 2

Remark 4.4. Keep the notation of Lemma 4.3. Let f : T′→ T be a morphism of Conv(Y/S). It
induces morphisms of topoi (4.3.2). We consider canonical morphisms

f∗τ (Ri gX/T,τ∗(ω
∗
T(E))T)→ (f∗conv,τ (Ri gX/T,τ∗(ω

∗
T(E))))T′

∼−→ Ri gX/T′,τ∗(ω
∗
T′(E))T′ , (4.4.1)

where the first morphism is the transition morphism of Ri gX/T,τ∗(ω
∗
T(E)) associated to f and

the second one is an isomorphism because ωT′ = ωT ◦ ϕ,ϕ, fconv,τ are localization morphisms
[SGA4, V 5.1].

In view of the proof of Lemma 4.3, via (4.3.1), the above composition is compatible with the
transition morphism of Ri gconv,τ∗(E) associated to f :

f∗τ ((Ri gconv,τ∗(E))T)→ (Ri gconv,τ∗(E))T′ . (4.4.2)

Corollary 4.5 [BBM82, 1.1.19]. Let E be a convergent isocrystal of (X/S)conv,fppf . We have
(§ 3.8)

Ri α∗(E ) = 0, ∀i > 1. (4.5.1)

The assertion can be verified in the same way as [BBM82, 1.1.19].
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Corollary 4.6. Let S′ → S be a morphism of S� (§ 2.1), Y ′ an S′-scheme and h : Y ′ → Y a

morphism compatible with S′ → S. We set X ′ = X ×Y Y ′ and we denote by g′ : X ′ → Y ′ and

h′ : X ′→ X the canonical morphisms:

X ′
h′ //

g′

��
2

X

g

��
Y ′

h // Y

Then, for any OX/S[1p ]-module E of (X/S)conv,τ , the base-change morphism

h∗conv,τ (R gconv,τ∗(E))
∼−→ R g′conv,τ∗(h

′∗
conv,τ (E)) (4.6.1)

is an isomorphism.

Proof. Let T be an object of Conv(Y ′/S′). We denote abusively the image of T in Conv(Y/S)

by T. We set XT0 = T0 ×Y X(= T0 ×Y ′ X ′). By applying Lemma 4.3 to g and g′, one verifies

that the evaluations of the two sides of (4.6.1) at T are both isomorphic to (R gX/T,τ∗(ω
∗
T(E)))T

and that (4.6.1) induces an isomorphism between them. Then the assertion follows. 2

4.7 In the remainder of this section, we consider the case where S = Spf(W) and X,Y are

schemes over S = Spec(k). We denote by pConv(X/W) the full subcategory of Conv(X/W)

consisting of objects (T, u) such that u can be lifted to a k-morphism ũ : T → X. Given an

object T of pConv(X/W) and a morphism f : T′ → T of Conv(X/W), then T′ is still

an object of pConv(X/W). Objects of pConv(X/W) are closely related to ‘p-adic enlargements’

in [Ogu84].

We end this section by showing the following result.

Proposition 4.8. Suppose that Y is smooth over k and that g : X → Y is smooth and proper.

Let E be a convergent isocrystal of (X/W)conv,τ for τ ∈ {zar, fppf} and i an integer > 0. We

have:

(i) for every object T of pConv(Y/W) (§ 4.7), Ri gconv,τ∗(E )T is coherent (§ 3.12);

(ii) for every morphism f of pConv(Y/W), the associated transition morphism cf of

Ri gconv,τ∗(E ) is an isomorphism.

Lemma 4.9. Suppose that X is smooth over k. A convergent isocrystal E of (X/W)conv,zar is

locally projective (§ 3.16).

Proof. The question being local, we may assume that X admits a smooth lifting X over W. By

Lemma 2.12 and Proposition 3.17, EX is locally projective. Since every object T of Conv(X/W)

locally admits a morphism to X, we deduce that E is locally projective. 2

Lemma 4.10. Keep the assumption of Proposition 4.8 and assume moreover that Y admits a

formal smooth lifting Y over W. Let E be a convergent isocrystal of (X/W)conv,zar. Then there

exists an OPY/S
-stratification on (Ri gconv,zar ∗(E ))Y. In particular, (Ri gconv,zar ∗(E ))Y is locally

projective of finite type (Definition 2.11).
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Proof. We take again the notation of § 3.20 for Y → Spf(W) and we set Z = QY/W, which

we consider as an object of Conv(Y/W), and F = Ri gconv,zar ∗(E ). By Lemma 4.3, we have

canonical isomorphisms

FY
∼−→ (Ri gX/Y,zar ∗(ω

∗
Y(E )))Y, FZ

∼−→ (Ri gX/Z,zar ∗(ω
∗
Z(E )))Z. (4.10.1)

By Theorem 3.22, FY is coherent. The projections p1, p2 : Z → Y define two morphisms of
Conv(Y/W) and induce two morphisms of topoi

(XZ0/Z)conv,zar
∼−→ (X ×Y,p1 Z/Z)conv,zar→ (X/Y)conv,zar,

(XZ0/Z)conv,zar
∼−→ (X ×Y,p2 Z/Z)conv,zar→ (X/Y)conv,zar.

Since X is smooth over k, E is locally projective by Lemma 4.9. The projections p1, p2 are

rig-flat [Abb10, 5.4.12]. By Theorem 3.24 and Remark 4.4, p1, p2 induce isomorphisms

p∗2(FY)
∼−−→
cp2

FZ
∼
←−−
cp1

p∗1(FY). (4.10.2)

By a standard argument, the isomorphism c−1p1 ◦ cp2 defines an OQY/W
-stratification on FY.

Taking pullback by PY/W → QY/W (Proposition 3.17), we obtain an OPY/W
-stratification on

FY. The second assertion follows from Lemma 2.12. 2

4.11 In the following, we prove Proposition 4.8. By Lemma 4.9, E is locally projective. We set

F i
τ = Ri gconv,τ∗(E ) and G i

τ = (Ri gX/T,τ∗(ω
∗
T(E ))) (§ 4.1). By Lemma 4.3, we have a canonical

isomorphism

F i
τ,T

∼−→ G i
τ,T. (4.11.1)

Proof of Proposition 4.8 for Zariski topology. (i) Since (T, u) is an object of pConv(Y/W), we

take a lifting ũ : T → Y of u and we set XT = X ×Y T . Then we have a canonical equivalence

(XT0/T)conv,τ
∼−→ (XT /T)conv,τ (Definition 3.1) and the assertion follows from Theorem 3.22.

(ii) The question being local, by Corollary 4.6, we may therefore assume that Y is affine and

admits a smooth lifting Y over W. Then F i
zar,Y and G i

zar,Y are locally projective of finite type

by Lemma 4.10.

We first prove the assertion (ii) for a morphism h : T→ Y of pConv(Y/W) with target Y.

By Theorem 3.24, we have a spectral sequence

Ei−j,j2 = Li−j h
∗
zar(G

j
zar,Y)⇒ G i

zar,T. (4.11.2)

Since each G j
zar,Y is locally projective of finite type, we deduce that Ei−j,j2 = 0 for i 6= j. Then the

transition morphism of F i
zar,Y associated to f is an isomorphism by Remark 4.4 and (4.11.1).

Since the question is local, for a general morphism f : (T′, u′) → (T, u) of pConv(Y/W),

we may assume that u can be lifted to a morphism h : T → Y of pConv(Y/W). By the

previous result, ch and ch◦f are isomorphisms. Then we deduce that cf is an isomorphism by

Proposition 3.14(c).

4.12 Proof of Proposition 4.8 for fppf topology. We consider the presheaf P on Conv(Y/W)

defined by

(T, u) 7→ Hi((XT0/T)conv,fppf , ω
∗
T(E )).
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By Corollary 4.5, the right-hand side is isomorphic to Hi((XT0/T)conv,zar, ω
∗
T(α∗(E ))). We set

F i
zar = Ri gconv,zar ∗(α∗(E )). By Lemma 4.3, the fppf (respectively Zariski) sheaf associated to

P is F i
fppf (respectively F i

zar). Then we deduce a canonical isomorphism (3.8.1)

α∗(F i
zar)

∼−→ F i
fppf . (4.12.1)

Let T be an object of pConv(Y/W). By Proposition 4.8 for Zariski topology and fppf descent,
we deduce that F i

fppf,T is the fppf sheaf associated to the coherent OT[1p ]-module F i
zar,T (§ 3.12)

and hence is coherent. Assertion (i) follows.
Since F i

fppf,T is the fppf sheaf associated to F i
zar,T, assertion (ii) follows from Proposition 4.8(ii)

for Zariski topology and (4.12.1). 2

5. Frobenius descents

5.1 In this section, S denotes an adic flat formal W-scheme of finite type. We suppose that the
Frobenius morphism FS0 : S0 → S0 of the reduced subscheme of S is flat (and hence faithfully
flat). Let X be an S0-scheme locally of finite type. We denote by (−)′ the base-change functor
FS0 and by FX/S0

: X → X ′ the relative Frobenius morphism of X relative to S0. Then we have
a commutative diagram

X
FX/S0 //

  

X ′ //

2

��

X

��
S0

FS0 // S0

(5.1.1)

The following theorem is one of the main results in this section.

Theorem 5.2. Suppose that the Frobenius morphism FS0 : S0→ S0 is flat. For every S0-scheme
locally of finite type X, the functorial morphism of convergent topoi (3.11.1) of FX/S0

induces
an equivalence of topoi

FX/S0,conv,fppf : (X/S)conv,fppf
∼−→ (X ′/S)conv,fppf . (5.2.1)

Proof. The morphism FX/S0,conv,fppf is induced by the functor (3.9.2):

ρ : Conv(X/S)→ Conv(X ′/S), (T, u) 7→ (T, FX/S0
◦ u). (5.2.2)

Note that FX/S0
◦ u = u′ ◦ FT0/S0

.
By 3.10 and Lemmas 5.4 and 5.5 in the following, the functor ρ satisfies the conditions of

Proposition 2.5. Then the theorem follows from Proposition 2.5. 2

Lemma 5.3. Let Y be a reduced S0-scheme, Z an S0-scheme and g1, g2 : Y → Z two S0-
morphisms. We put hi = g′i ◦ FY/S0

: Y → Y ′→ Z ′ for i = 1, 2. If h1 = h2, then g1 = g2.

Proof. Since FY/S0
is a homeomorphism and h1 = h2, then |g1| = |g2| on the underlying

topological spaces. Since the question is local, we can reduce to the case where Y, Z, S0 are
affine.

Since Y is reduced and separated over S0, FY/S0
is schematically dominant [EGAI, 5.4.2]

and we deduce that g′1 = g′2 [EGAI, 5.4.1]. The Frobenius morphism FS0 is faithfully flat. Then
the functor Y 7→ Y ′ from the category of affine S0-schemes to itself is faithful. The lemma
follows. 2
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Lemma 5.4. The functor ρ is fully faithful.

Proof. The functor ρ is clearly faithful. We prove its fullness. Let (T1, u1) and (T2, u2) be two

objects of Conv(X/S) and g : ρ(T1, u1) → ρ(T2, u2) a morphism of Conv(X ′/S). We set g0 :

T1,0→ T2,0, the induced morphism. To show that the morphism T1→ T2 defines a morphism of

Conv(X/S) which is sent to g by ρ, it suffices to show that u1 = u2 ◦ g0. Since g is a morphism

of Conv(X ′/S), we have a commutative diagram

T1,0
g0 //

FT1,0/S0
��

T2,0

FT2,0/S0
��

(T1,0)
′

u′1 ""

g′0 // (T2,0)
′

u′2||
X ′

Then the assertion follows from Lemma 5.3 applied to u1 and u2 ◦ g0. 2

Lemma 5.5. (i) Let (T, u) be an object of Conv(X ′/S) such that T is affine and that u : T0 →

X ′ factors through an affine open subscheme U ′ of X ′. Then there exist an object (Z, v) of

Conv(X/S) and an fppf covering {f : ρ(Z, v)→ (T, u)} in Conv(X ′/S).

(ii) Keep the assumption and notation of (i). Let g : (T1, u1) → (T, u) be a morphism

of Conv(X ′/S). Then there exist a morphism h : (Z1, v1)→ (Z, v) of Conv(X/S) and an fppf

covering {ϕ : ρ(Z1, v1)→ (T1, u1)} such that the following diagram is Cartesian:

ρ(Z1, v1)
ϕ //

ρ(h)

��
2

(T1, u1)

g

��
ρ(Z, v)

f // (T, u)

(5.5.1)

(iii) Every object of Conv(X ′/S) admits a Zariski covering whose objects satisfy the

conditions of (i).

Proof. (i) We set U = F−1X/S0
(U ′), which is an affine S0-scheme of finite type, and we take a

closed S0-immersion ι0 : U → Y0 = Spec(OS0 [T1, . . . , Td]). We put Y = Spf(OS{T1, . . . , Td}) and

denote by F : Y→ Y the S-morphism defined by sending each Ti to T pi .

Note that Y ′0 = Y0 and the restriction of F on Y0 is the same as the relative Frobenius

morphism FY0/S0
. We have a commutative diagram

U
ι0 //

FU/S0
��

Y0

F |Y0
��

U ′
ι′0 // Y0

(5.5.2)

and a canonical morphism U → U ′ ×Y0,F Y0. We denote the composition of ι′0 : U ′ → Y0 and

Y0 → Y by ι′. Since Y is smooth over S, there exists an S-morphism τ : T → Y lifting
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ι′ ◦ u : T0→ Y. We consider the following commutative diagram:

(T0 ×Y0,F Y0)0 //

��

xx

T×Y,F Y

��

zz
T0 //

��

T

��

U0
//

��

(U ′ ×Y0,F Y0)0

xx

// Y

F
zz

U ′
ι′ // Y

(5.5.3)

where U0→ U ′ is induced by FU/S0
.

If the ideal sheaf associated to ι0 : U ↪→ Y0 is locally generated by polynomials

{f1, . . . , fn} of OS0 [T1, . . . , Td], the ideal sheaf associated to ι′0 ×Y0,F Y0 : U ′ ×Y0,F Y0 ↪→ Y0
(5.5.2) is locally generated by {fp1 , . . . , f

p
n}. Then the canonical morphism U → U ′ ×Y0,F Y0

induces an isomorphism

U0
∼−→ (U ′ ×Y0,F Y0)0.

By (5.5.3) and [EGAI, 4.5.11], we obtain an object (T×Y,F Y, v) of Conv(X/S) and a morphism

f : ρ(T×Y,F Y, v)→ (T, u) of Conv(X ′/S). Since the reduction modulo p of F is faithfully flat

of finite type [Ill96, 3.2], so is F (cf. [Xu19, 7.2]). Then f is an fppf covering (§ 3.4).

(ii) We denote by (Z1, w) the fibered product ρ(Z, v) ×(T,u) (T1, u1) in Conv(X ′/S). By

applying Lemma 3.10 to the projection (Z1, w) → ρ(Z, v), we obtain the Cartesian diagram

(5.5.1). Since ϕ is the base change of f , ϕ is an fppf covering.

(iii) Let (T, u) be an object of Conv(X ′/S) and U ′ an affine open subscheme of X ′. We denote

by TU ′ the open formal subscheme of T associated to the open subset u−1(|U ′|) of |T0| = |T |.
The assertion follows by taking an affine covering of TU ′ for every U ′. 2

Lemma 5.6. Let T be an object of Conv(X ′/S), Z an object of Conv(X/S) and {ρ(Z)→ T} a

morphism of Conv(X ′/S). Then there exist an object Z×TZ of Conv(X/S) and two morphisms

p1, p2 : Z×TZ→ Z of Conv(X/S) such that ρ(Z×TZ) = ρ(Z)×Tρ(Z) and that ρ(p1) (respectively

ρ(p2)) is the projection ρ(Z)×T ρ(Z)→ ρ(Z) on the first (respectively second) component.

Proof. By applying Lemma 3.10(i) to the projection ρ(Z)×Tρ(Z)→ ρ(Z) on the first component,

we obtain an object Z×TZ of Conv(X/S) and a morphism p1 : Z×TZ→ Z as in the proposition.

The existence of p2 follows from the fullness of ρ (Lemma 5.4). 2

We deduce from Theorem 5.2 a new proof of Frobenius descent for convergent isocrystals

(Proposition 5.7) and a comparison of de Rham complexes for the Frobenius descent

(Corollary 5.9).

Proposition 5.7. Keep the assumption of Theorem 5.2. The inverse image and the direct

image functors of FX/S0,conv,zar induce equivalences of categories quasi-inverse to each other

(Definition 3.15):

Iso†(X/S)� Iso†(X ′/S). (5.7.1)
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Proof. By § 3.16, convergent isocrystals are sheaves for fppf topology and we work with fppf
topology in this proof. We write simply (5.2.1) for FX/S0

and we will show that the direct image

and inverse image functors of FX/S0
send coherent crystals of OX/S[1p ]-modules to coherent

crystals of OX′/S[1p ]-modules. The assertion for the inverse image follows from (3.11.2) and we
will prove it for the direct image.

Let F be a coherent crystal of OX/S[1p ]-modules and (T, u) an object of Conv(X ′/S). We

first show that (FX/S0∗(F ))T is coherent. By Lemma 5.5(iii), we may assume that (T, u) satisfies
the conditions of Lemma 5.5(i). Then, by Lemmas 5.5(ii) and 5.6, there exist objects Z and Z×TZ
of Conv(X/S), an fppf covering {f : ρ(Z)→ T} and two morphisms p1, p2 : Z×TZ→ Z such that
ρ(Z×T Z) = ρ(Z)×T ρ(Z) and that ρ(p1) and ρ(p2) are the canonical projections of ρ(Z)×T ρ(Z).
In particular, the morphism of formal schemes Z ×T Z→ Z attached to p1 (respectively p2) is
the projection on the first (respectively second) component.

Since the adjunction morphism F ∗X/S0
FX/S0∗→ id is an isomorphism (Theorem 5.2), we have

(3.11.2)
(FX/S0∗(F ))ρ(Z) = FZ, (FX/S0∗(F ))ρ(Z×TZ) = FZ×TZ. (5.7.2)

Since F is a crystal, we have OZ×TZ-linear isomorphisms

p∗2(FZ)
cp2−−→
∼

FZ×TZ

cp1
←−−
∼

p∗1(FZ). (5.7.3)

Then we obtain a descent datum (FZ, c
−1
p1 ◦ cp2) for the fppf covering {f : Z → T}. By fppf

descent [Abb10, 5.11.11], there exist a coherent OT[1p ]-module M and a canonical OZ-linear

isomorphism f∗(M )
∼−→ FZ.

On the other hand, since FX/S0∗(F ) is a sheaf in fppf topology, there exists an exact sequence

0→ (FX/S0∗(F ))(T)→ (FX/S0∗(F ))(ρ(Z))→ (FX/S0∗(F ))(ρ(Z×T Z)). (5.7.4)

By (5.7.2), we deduce an OT-linear isomorphism M
∼−→ (FX/S0∗(F ))T. In particular,

(FX/S0∗(F ))T is coherent. Hence, FX/S0∗(F ) is coherent.
Following the same argument as in the second part of the proof of [Xu19, 9.13], we show that

for every morphism g of Conv(X/S), the transition morphism cg associated to FX/S0∗(F ) is an
isomorphism, i.e. FX/S0∗(F ) is a crystal. 2

Proposition 5.8. We consider the following diagram:

(X/S)conv,zar
FX/S0,conv,zar//

uX/S

��

(X ′/S)conv,zar

uX′/S
��

Xzar

FX/S0 // X ′zar

(5.8.1)

where vertical arrows are defined in § 3.21. Let E be a convergent isocrystal of (X/W)conv,zar
and denote the structure morphism X → S0 by f . Then there exists a canonical isomorphism
in the derived category D(Xzar, f

−1(OS)):

FX/S0∗(RuX/S∗(E ))
∼−→ RuX′/S∗(FX/S0 conv,zar ∗(E )). (5.8.2)

Proof. We consider E as a coherent crystal of OX/S[1p ]-modules of (X/S)conv,fppf . Then α∗(E )

and E are equal as presheaves and Ri α∗(E ) = 0 for i > 1 (Corollary 4.5). Then the assertion
follows from Theorem 5.2 and the fact that FX/S0

: Xzar→ X ′zar is an equivalence of topoi. 2
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Corollary 5.9. Keep the assumption of Proposition 5.8 and suppose that there exist smooth
liftings X of X and X′ of X ′ over S. Let f : X → S0 be the canonical morphism. Then there
exists a canonical isomorphism between the de Rham complexes of E and of FX/S0,conv,zar ∗(E )
in D(X ′zar, f

−1(OS)):

FX/S0∗(EX⊗OX
Ω̂•X/S)

∼−→ (FX/S0,conv,zar ∗E )X′ ⊗OX′
Ω̂•X′/S. (5.9.1)

Proof. It follows from (3.21.1) and Proposition 5.8. 2

Theorem 5.10. Let g : X → Y be a smooth proper morphism of smooth k-schemes and E
a convergent isocrystal of Conv(X/W)conv,τ . Then Ri gconv,τ∗(E ) is a convergent isocrystal of
Conv(Y/W)conv,τ for every i > 0.

Inspired by Ogus’ arguments in [Ogu84], we use Proposition 4.8 and Dwork’s trick to prove
Theorem 5.10. The proof of Proposition 4.8 relies on the local projectiveness of E , which is
obtained from the smoothness of X and of Y (Lemma 4.9). In Theorem 8.2, we will improve the
above theorem to the non-smooth case.

We first introduce certain subcategories of Conv(X/W).

Definition 5.11. (i) Let n be an integer > 0 and T a k-scheme. We denote by T (n) the closed
subscheme of T defined by the ideal sheaf {x ∈ OT |xp

n
= 0}.

(ii) We denote by Conv(n)(X/W) the full subcategory of Conv(X/W) consisting of objects
(T, u) such that u : T0→ X can be lifted to a k-morphism ũ : T (n)

→ X.

Given an object (T, u) of Conv(n)(X/W) and a morphism (T′, u′)→ (T, u) of Conv(X/W),
then (T′, u′) is also an object of Conv(n)(X/W). In particular, T (0) = T and Conv(0)(X/W)
coincides with pConv(X/W) (§ 4.7).

Lemma 5.12. The functor ρ (5.2.2) sends Conv(n+1)(X/W) to Conv(n)(X ′/W).

Proof. Let (T, u) be an object of Conv(n+1)(X/W) and ũ : T (n+1)
→ X a lifting of u. The

absolute Frobenius morphism T (n)
→ T (n) factors through the closed subscheme T (n+1) and

then the relative Frobenius morphism FT (n)/k factors through (T (n+1))′. We have a commutative
diagram

T0
u

ww
�� ((

X

FX/k
��

T (n+1)ũoo � � //

F
T (n+1)/k

��

T (n)

F
T (n)/k
��vv

X ′ (T (n+1))′
ũ′oo � � // (T (n))′

(5.12.1)

Then the morphism FX/k ◦u can be lifted to a k-morphism T (n)
→X ′ and the lemma follows. 2

5.13 Proof of Theorem 5.10. By Corollary 4.5, it suffices to prove the assertion for fppf topology.

There exists an object G of Iso†(X ′/W) with F ∗X/k,conv,fppf(G ) ' E (Proposition 5.7). If we

set F = Ri gconv,fppf ∗(E ) and H = Ri g′conv,fppf ∗(G ), then we have F ∗Y/k,conv,fppf(H ) ' F by
Theorem 5.2.
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Each object (respectively morphism) of Conv(Y/W) belongs to a subcategory Conv(n)(Y/W)
(Definition 5.11) for some integer n. We prove the following assertions by induction:

(i) for every object T of Conv(n)(Y/W), FT is coherent;

(ii) for every morphism f of Conv(n)(Y/W), the transition morphism cf associated to F is an
isomorphism.

The assertions for n = 0 are proved in Proposition 4.8. Suppose that the assertions hold for
n > 0; we prove them for n + 1. Let (T, u) be an object of Conv(n+1)(Y/W). By (3.11.2), we
deduce that

Hρ(T)
∼−→ FT.

By the induction hypotheses, for any object Z of Conv(n)(X ′/W), HZ is coherent. Then assertion
(i) follows from Lemma 5.12 and the induction hypotheses.

Assertion (ii) can be verified in the same way by § 3.11 and Lemma 5.12. 2

5.14 The Frobenius homomorphism σ : W→W induces a morphism of topoi (X ′/W)conv,τ →
(X/W)conv,τ for τ ∈ {zar, fppf}. For any sheaf E of (X/W)conv,τ , we denote by E ′ the inverse
image of E to (X ′/W)conv,τ .

A convergent F -isocrystal of Conv(X/W)conv,τ is a pair (E , ϕ) consisting of a convergent
isocrystal E of (X/W)conv,τ and an isomorphism, called a Frobenius structure of E ,

ϕ : F ∗X/k,conv,τ (E ′)
∼−→ E . (5.14.1)

Corollary 5.15. Keep the assumption of Theorem 5.10 and let ϕ be a Frobenius structure
on E . Then, for any i > 0, the pair (Ri gconv,τ∗(E ),Ri gconv,τ∗(ϕ)) is a convergent F -isocrystal of
Conv(Y/W)conv,τ .

Proof. By Theorem 5.10, it suffices to prove the assertion for fppf topology. Consider the
isomorphism

Ri gconv,fppf ∗(ϕ) : Ri gconv,fppf ∗(F
∗
X/k,conv,fppf(E

′))
∼−→ Ri gconv,fppf ∗(E ). (5.15.1)

By Corollary 4.6 and Theorem 5.2, the left-hand side is isomorphic to

F ∗Y/k,conv,fppf((R
i gconv,fppf ∗(E ))′).

Then the assertion follows. 2

6. Review of rigid geometry

6.1 Recall that S denotes the category of adic formal W-schemes of finite type whose morphisms
are W-morphisms of finite type (§ 2.1). The set B of admissible blow-ups in S forms a right
multiplicative system in S [Abb10, 4.1.4]. We denote by R the localized category of S relative
to B. Objects of R are called coherent rigid spaces (over K = W[1p ]).

Let X be an object of R. We denote by 〈X 〉 the set of rigid points of X [Abb10, 4.3.1],
by Ad/X the full subcategory of R/X consisting of open immersions to X , by Xad the topos
of sheaves of sets on Ad/X for the admissible topology [Abb10, 4.3.8] and by OX the structure
sheaf of Xad [Abb10, 4.7.4].

For any object X (respectively morphism f) of S, we denote its image in R by Xrig

(respectively f rig) and we set BX, the full subcategory of S/X consisting of admissible blow-ups.
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6.2 Recall that S� denotes the full subcategory of S consisting of flat formal W-schemes of finite
type (§ 2.1). For any object X of S� and any admissible blow-up ϕ : X′→ X, X′ is still an object
of S� [Abb10, 3.1.4]. Then the set B� of admissible blow-ups in S� forms a right multiplicative
system in S�. By [Abb10, 4.1.15(iii)], the canonical functor S�→ R is essentially surjective and
hence induces an equivalence of categories between the localized category of S� relative to B�

and R.

6.3 Let X be an object of S. We denote the specialization morphism of topoi [Abb10, 4.5.2] by

ρX : Xrig
ad → Xzar. (6.3.1)

For any object (X′, ϕ) of BX, we denote by µϕ the composition

µϕ : Xrig
ad

∼−→ X′rigad

ρX′−−→ X′zar. (6.3.2)

Let F be an OX-module. We denote by F rig the rigid fiber associated to F [Abb10, 4.7.4],
which is a sheaf of Xrig

ad . We have a functorial isomorphism [Abb10, 4.7.4.2]

F rig ∼−→ lim−→
(X′,ϕ)∈B◦X

µ∗ϕ

(
(ϕ∗zar(F ))

[
1

p

])
. (6.3.3)

In particular, OXrig is defined by (OX)rig. The morphism ρX (respectively µϕ) is ringed by OXrig

(respectively Orig
X′ ) and OX [Abb10, 4.7.5].

If F is moreover coherent, we have a canonical isomorphism ρ∗X(F [1p ])
∼−→ F rig [Abb10,

4.7.2.8].

6.4 Let Coh(OXrig) be the category of coherent OXrig -modules over Xrig
ad [Abb10, 4.8.16]. The

inverse image functor of modules ρ∗X induces an equivalence of categories [Abb10, 4.7.8.2, 4.7.29.2
and 4.8.18]

ρ∗X : Coh

(
OX

[
1

p

])
∼−→ Coh(OXrig). (6.4.1)

The functor ρX∗ sends coherent OXrig -modules to coherent OX[1p ]-modules [Abb10, 4.7.8.1] and

defines a quasi-inverse to (6.4.1).

6.5 Let f : X → Y be a morphism of S. It induces a morphism of ringed topoi f rigad : (Xrig
ad ,

OXrig)→ (Yrig
ad ,OYrig) [Abb10, 4.7.2.1]. The diagram

(Xrig
ad ,OXrig)

ρX

��

f rigad // (Yrig
ad ,OYrig)

ρY

��
(Xzar,OX[1p ])

fzar // (Yzar,OY[1p ])

(6.5.1)

is commutative up to canonical isomorphisms [Abb10, 4.7.24.2].
Let F be a coherent OYrig -module. By § 6.4, there exist canonical isomorphisms

ρ∗X(f∗zar(ρY∗(F )))
∼−→ f rig∗ad (ρ∗Y(ρY∗(F )))

∼−→ f rig∗ad (F ).

Then we deduce that the following base-change morphism is an isomorphism:

f∗zarρY∗(F )
∼−→ ρX∗f

rig∗
ad (F ). (6.5.2)
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6.6 We say that a family {Xi → X}i∈I of flat morphisms of R [Abb10, 5.10.1] is an fppf
covering if it admits a finite subfamily {Xj → X}j∈J such that

⋃
j∈J fj(〈Xj〉) = 〈X 〉, i.e.⊔

j∈J Xj → X is faithfully flat [Abb10, 5.10.11]. In view of [Abb10, 5.10.12], fppf coverings
are stable by composition and by base change in R.

Let X be a coherent rigid space. We denote by Rf/X the full subcategory of R/X consisting
of flat morphisms to X . We call fppf topology the topology on Rf/X generated by the pretopology
for which coverings are fppf coverings. We denote by Xfppf the topos of sheaves of sets on this
site.

By fppf descent of morphisms [Abb10, 5.12.4], the fppf topology on Rf/X is subcanonical,
i.e. the presheaf associated to each object of Rf/X is a sheaf for the fppf topology.

6.7 Let F be a coherent OX -module. The presheaf on Rf/X

(f : X ′→ X ) 7→ Γ(X ′, f∗ad(F ))

is a sheaf for the fppf topology by fppf descent for coherent modules on rigid spaces [Abb10,
5.11.11]. In particular, OX defines a sheaf of rings of Xfppf that we still denote by OX . We call
abusively a coherent OX -module of Xfppf a sheaf of Xfppf associated to a coherent OX -module
of Xad.

Given a morphism f : X ′ → X of R, the canonical functor Rf/X → Rf/X ′ defined by
Y 7→ Y ×X X ′ is continuous and left exact. It induces the functorial morphism of topoi ffppf :
X ′fppf → Xfppf , which is ringed by OX and OX ′ .

7. Rigid convergent topos and convergent isocrystals

7.1 In this section, S denotes an adic flat formal W-scheme of finite type and X an S-scheme.
We will introduce a full subcategory of (X/S)conv,zar consisting of sheaves

F = {FT, βf} (§ 3.6) such that the morphism βf is an isomorphism if the underlying morphism
of formal schemes of f is an admissible blow-up. It turns out that this category forms a topos
(X/S)rconv,ad (§ 7.3 and Corollary 7.13) and admits a canonical morphism to (X/S)conv,zar
(§ 7.11). Convergent isocrystals lie in (X/S)rconv,ad and their cohomologies remain unchanged
in this topos (Proposition 7.19 and Corollary 7.25).

We begin by introducing (X/S)rconv,ad and its fppf variant.

Lemma 7.2. We denote by BX/S the set of morphisms in Conv(X/S) (Definition 3.1) whose
underlying morphism on formal schemes is an admissible blow-up. Then it forms a right
multiplicative system in Conv(X/S).

Proof. For any object (T, u) of Conv(X/S), we have a canonical functor sT : BT→ Conv(X/S)
sending (T′, ϕ) to (T′, u◦ϕ0). Then the assertion follows from the facts that admissible blow-ups
form a right multiplicative system in S�/S (§ 6.2) and that the canonical functor Conv(X/S)→ S�S
is faithful. 2

7.3 We denote by RConv(X/S) the localized category of Conv(X/S) relative to BX/S. More
precisely, objects of RConv(X/S) are the same as those of Conv(X/S). For two objects (Z, v),
(T, u) of RConv(X/S), we have

HomRConv(X/S)((Z, v), (T, u)) = lim−→
(Z′,ϕ)∈B◦Z

HomConv(X/S)((Z
′, v ◦ ϕ0), (T, u)). (7.3.1)
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We denote by QX/S the canonical functor

QX/S : Conv(X/S)→ RConv(X/S). (7.3.2)

For an object T (respectively a morphism f) of Conv(X/S), we write Trig = QX/S(T)

(respectively f rig = QX/S(f)) if there is no risk of confusion.

7.4 We denote by Ĉonv(X/S) (respectively R̂Conv(X/S)) the category of presheaves on

Conv(X/S) (respectively RConv(X/S)) and by Q∗X/S : R̂Conv(X/S)→ Ĉonv(X/S) the functor

defined by F 7→F ◦QX/S. The functor QX/S∗ admits a left adjoint QX/S! [SGA4, I 5.1] defined
as follows.

For any object Trig of RConv(X/S), we denote by IT
rig

Q the category whose objects are pairs

(Z, g) consisting of an object Z of Conv(X/S) and a morphism g : Trig
→ Zrig of RConv(X/S).

A morphism (Z′, g′) → (Z, g) is given by a morphism µ : Z′ → Z of Conv(X/S) such that
g = µrig ◦ g′. Then we have [SGA4, I 5.1.1]

QX/S!(F )(Trig) = lim−→
(Z,g)∈(ITrig

Q )◦

F (Z). (7.4.1)

Moreover, we have a commutative diagram [SGA4, I 1.5.4]

Conv(X/S)
QX/S //

��

RConv(X/S)

��

Ĉonv(X/S)
QX/S! // R̂Conv(X/S)

(7.4.2)

where the vertical functors are the canonical functors.

Proposition 7.5. (i) The category (IT
rig

Q )◦ is filtered [SGA4, I 2.7].
(ii) The functor QX/S! is left exact (and hence is exact).
(iii) Fiber products are representable in RConv(X/S) and QX/S commutes with fiber

products.

Proof. We verify the following conditions of [SGA4, I 2.7] for (IT
rig

Q )◦.

(PS1) Given two morphisms u : (Z1, g1) → (Z0, g0) and v : (Z2, g2) → (Z0, g0) of IT
rig

Q , by
Lemma 7.2 and (7.3.1), there exist an admissible blow-up T′ of T and morphisms gi : T′ → Zi
of Conv(X/S) such that grigi = gi and that u ◦ g1 = g0 = v ◦ g2. Then we obtain a morphism

h : T′→ Z1×Z0 Z2 of Conv(X/S) (§ 3.2) and an object (Z1×Z0 Z2, h
rig) of IT

rig

Q dominant (Zi, gi)
for i = 1, 2. The diagram

(Z1 ×Z0 Z2, h
rig) //

��

(Z2, g2)

��
(Z1, g1) // (Z0, g0)

commutes. Then condition (PS1) follows.

(PS2) Let u, v : (Y, g)→ (Z, h) be two morphisms of IT
rig

Q . There exist an admissible blow-up
(T′, ϕ) of T and a morphism g : T′ → Y of Conv(X/S) such that u ◦ g = v ◦ g in Conv(X/S),
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denoted by h. We have grig = g, hrig = h. Then (T′, ϕrig) defines an object of IT
rig

Q and h

(respectively g) defines a morphism from (T′, ϕrig) to (Y, g) (respectively (Z, h)). Condition
(PS2) follows from u ◦ g = v ◦ g = h.

It is clear that IT
rig

Q is non-empty. Given two objects (Z1, g1) and (Z2, g2), there exist an

admissible blow-up T′ of T and morphisms gi : T′ → Zi of Conv(X/S) for i = 1, 2 such that

grigi = gi. Hence, IT
rig

Q is connected. Then assertion (i) follows.
Assertion (ii) follows from (i). Assertion (iii) follows from (ii), (7.4.2) and the fact that the

fiber product is representable in Conv(X/S). 2

7.6 The canonical functor Conv(X/S)→ S�/S defined by (T, u) 7→ T induces a functor

RConv(X/S)→ R/Srig . (7.6.1)

In view of the definition of fiber product in R/Srig [Abb10, 4.1.13], the above functor commutes
with fiber products.

7.7 We say that a family of morphisms {(Ti, ui)rig → (T, u)rig}i∈I of RConv(X/S) is an

admissible (respectively fppf) covering if its image {Trig
i → Trig}i∈I in R is an admissible

(respectively fppf) covering (§ 6.6 and [Abb10, 4.3.8]). By §§ 6.6 and 7.6, admissible (respectively
fppf) coverings form a pretopology. For τ ∈ {ad, fppf}, we call rigid convergent topos of X over
S (with τ -topology) and denote by (X/S)rconv,τ the topos of sheaves of sets on RConv(X/S),
equipped with the topology associated to the pretopology defined by admissible (respectively
fppf) coverings.

7.8 Let (T, u) be an object of Conv(X/S). The canonical functor (§ 6.2)

rT : S�/T→ Conv(X/S), (f : T′→ T) 7→ (T′, u ◦ f0)

sends admissible blow-ups to BX/S and hence induces a functor

rTrig : R/Trig → RConv(X/S). (7.8.1)

The restriction of (7.8.1) to Ad/Trig (respectively Rf/Trig) is cocontinuous for the admissible
(respectively fppf) topology and induces a morphism of topoi

sTrig : Trig
τ → (X/S)conv,τ , τ ∈ {ad, fppf}. (7.8.2)

For any sheaf F of (X/S)conv,τ , we set FTrig = s∗
Trig(F ). For any morphism f : T′rig→ Trig

of RConv(X/S), we have a canonical morphism

βf : FTrig → fτ∗(FT′rig) (7.8.3)

and we denote its adjoint by
γf : f∗τ (FTrig)→ FT′rig . (7.8.4)

If the morphism of underlying rigid spaces of f belongs to Ad/Trig (respectively Rf/Trig), the
functorial morphism fτ is the localization morphism at T′ and then γf is an isomorphism. If
g : T′′rig → T′rig is another morphism of RConv(X/S), one verifies that γg◦f = γf ◦ f∗τ (γg).

By repeating the proof of Proposition 3.7, we have the following description for a sheaf of
(X/S)rconv,τ .
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Proposition 7.9. For τ ∈ {ad, fppf}, a sheaf F of (X/S)rconv,τ is equivalent to the following
data:

(i) for every object Trig of RConv(X/S), a sheaf FTrig of Trig
τ ;

(ii) for every morphism f : T′rig → Trig of RConv(X/S), a morphism γf (7.8.4)

subject to the following conditions.

(a) If f is the identity morphism of (T, u), then γf is the identity morphism.

(b) If the underlying morphism f : T′rig→ Trig of coherent rigid spaces is a morphism of Ad/Trig

(respectively Rf/Trig), then γf is an isomorphism.

(c) If f and g are two composable morphisms, then we have γg◦f = γf ◦ f∗τ (γg).

7.10 Note that the fppf topology on RConv(X/S) is finer than the admissible topology.
Equipped with the fppf topology on the source and the admissible topology on the target, the
identical functor id : RConv(X/S)→ RConv(X/S) is cocontinuous and induces a morphism of
topoi (§ 2.4)

αr : (X/S)rconv,fppf → (X/S)rconv,ad. (7.10.1)

If F is a sheaf of (X/S)rconv,fppf , then αr∗(F ) is equal to F as presheaves. If G is a sheaf of
(X/S)rconv,ad, then α∗r(G ) is the sheafification of G with respect to the fppf topology.

7.11 Equipped with the Zariski topology on the source and the admissible topology on the
target, the canonical functor QX/S (7.3.2) is clearly continuous. Since the functor QX/S! and
the sheafification functor are exact (§ 7.6), then we have a morphism of topoi

ρX/S : (X/S)rconv,ad→ (X/S)conv,zar (7.11.1)

defined by ρX/S∗ = Q∗X/S and ρ∗X/S = a◦QX/S! (§ 7.6), where a denotes the sheafification functor.

For any object T of Conv(X/S) and any sheaf F of (X/S)rconv,ad, we have (6.3.1)

(ρX/S∗(F ))T = ρT∗(FTrig). (7.11.2)

Let f : Z → T be a morphism of Conv(X/S) and βf rig , γf rig (respectively βf , γf ) transition
morphisms of F associated to f rig (respectively ρX/S∗(F ) associated to f) (§§ 3.6 and 7.8). Via
(7.11.2), we have

βf = ρT∗(βf rig). (7.11.3)

Then γf coincides with the composition of the base-change morphism and ρZ∗(γf rig):

f∗zar(ρT∗(FTrig))→ ρZ∗(f
rig∗
ad (FTrig))

ρZ∗(γfrig )−−−−−−→ ρZ∗(FZrig). (7.11.4)

Proposition 7.12. Let F be a sheaf of (X/S)conv,zar and (T, u) an object of Conv(X/S). There
exists a canonical isomorphism (6.3.2)

(ρ∗X/S(F ))Trig
∼−→ lim−→

(T′,ϕ)∈B◦T

µ∗ϕ(FT′). (7.12.1)

Proof. Let U be an object of Ad/Trig that we consider as an object of RConv(X/S) via rTrig

(7.8.1). By (7.4.1), (ρ∗X/S(F ))Trig is the sheaf associated to the presheaf on Ad/Trig :

U 7→ lim−→
(Z,g)∈(IUQ)◦

F (Z). (7.12.2)
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We denote by JUQ the category of quadruples (T′, ϕ,U, g) consisting of an admissible blow-up

(T′, ϕ) of T, an open formal subscheme U of T′ and an open immersion g : U → Urig over Trig.
A morphism (T′1, ϕ1,U1, g1) to (T′2, ϕ2,U2, g2) is a morphism T′1 → T′2 of BT sending U1 to U2

compatible with g1, g2. The category JUQ is clearly fibered over BT:

JUQ → BT, (T′, ϕ,U, g) 7→ (T′, ϕ).

For any admissible blow-up (T′, ϕ) of T, we denote its fiber by JUQ,T′ . The sheaf µ∗ϕ(FT′) is
associated to the presheaf on Ad/Trig :

U 7→ lim−→
(U,g)∈(JU

Q,T′ )
◦

F (rT(U)). (7.12.3)

Then the right-hand side of (7.12.1) is the sheaf on Ad/Trig associated to the presheaf

U 7→ lim−→
(T′,ϕ,U,g)∈(JUQ)◦

F (rT(U)). (7.12.4)

We have a canonical functor (§ 7.8)

r : JUQ → IUQ (T′, ϕ,U, g) 7→ (rT(U), rTrig(g)).

We denote by J the full subcategory of JUQ consisting of objects such that g is an isomorphism.

Then each morphism of J is Cartesian. Each category (JUQ,T′)
◦ is filtered by [SGA4, I 5.2].

We deduce that (JUQ)◦ is filtered. It is clear that J◦ is cofinal in (JUQ)◦ and hence is filtered
[SGA4, I 8.1.3a].

To prove the assertion, it suffices to show that the induced functor r : J◦→ (IUQ)◦ is cofinal in

the sense of [SGA4, I 8.1.1]. By [Abb10, 4.2.2], for any object (Z, g : U → Zrig) of IUQ, there exists a
morphism h : U→ Z of Conv(X/S) with an open formal subscheme U of some admissible blow-up
T′ of T such that g = hrig, i.e. condition (F1) of [SGA4, I 8.1.3] is satisfied. Given an object
(Z, g) of IUQ, an object (T′, ϕ,U, h) of J and two morphisms f1, f2 : (rT(U), rTrig(h)) → (Z, g),

then f rig1 = f rig2 in RConv(X/S) since h is an isomorphism. By [Abb10, 3.5.9], we deduce
that f1 = f2, i.e. condition (F2) of [SGA4, I 8.1.3] is satisfied. Then the assertion follows from
[SGA4, I 8.1.3b]. 2

Corollary 7.13.

(i) The canonical morphism ρ∗X/SρX/S∗→ id is an isomorphism.

(ii) The functor ρX/S∗ is fully faithful and its essential image consists of sheaves F = {FT, βf}
(§ 3.6) such that βf is an isomorphism for every morphism f of BX/S.

Proof. (i) Let F be a sheaf of (X/S)rconv,ad. Via (7.11.2) and (7.12.1), we consider the evaluation
of ρ∗X/SρX/S∗(F )→ F at an object Trig of RConv(X/S):

lim−→
(T′,ϕ)∈B◦T

µ∗ϕ(µϕ∗(FTrig))→ FTrig . (7.13.1)

In view of the proof of Proposition 7.12, the morphism µ∗ϕ(µϕ∗(FTrig))→ FTrig deduced from
(7.13.1) is nothing but the adjunction morphism. Then the assertion follows from [Abb10, 4.5.27
and 4.5.28].
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(ii) By (i), the functor ρX/S∗ is fully faithful. By (7.11.3), the essential image of ρX/S∗
satisfies the desired property. Let G be a sheaf of (X/S)conv,zar satisfying the desired property.
By (7.11.2), Proposition 7.12 and [Abb10, 4.5.22 and 4.5.27], we deduce that the evaluation of
the adjunction morphism

G → ρX/S∗ρ
∗
X/S(G ) (7.13.2)

at each object of RConv(X/S) is an isomorphism. Then the assertion follows. 2

7.14 Let g : S′ → S be a morphism of S�, X ′ an S′-scheme and f : X ′ → X a morphism
compatible with g as in § 3.9. The canonical functor ϕ : Conv(X ′/S′)→ Conv(X/S) defined by
(T, u) 7→ (T, f ◦ u) (3.9.2) sends admissible blow-ups to admissible blow-ups. Then ϕ induces a
functor that we denote by

ψ : RConv(X ′/S′)→ RConv(X/S). (7.14.1)

Since ϕ commutes with fiber products, the same holds for ψ by § 7.6. In view of Lemma 3.10(i)
and (7.3.1), one verifies that the functor ψ is continuous and cocontinuous for admissible
(respectively fppf) topology in the same way as in Lemma 3.10. By § 2.4, the functor ψ (7.14.1)
induces morphisms of topoi

frconv,τ : (X ′/S′)rconv,τ → (X/S)rconv,τ , τ ∈ {ad, fppf} (7.14.2)

such that the pullback functor is induced by the composition with ψ. For a sheaf F of
(X/S)rconv,τ and an object T of RConv(X ′/S′), we have

(f∗rconv,τ (F ))Trig = Fψ(Trig). (7.14.3)

For any morphism g of RConv(X ′/S′), the transition morphism of f∗rconv,τ (F ) associated to g
is equal to the transition morphism of F associated to ψ(g).

In view of the description of inverse image functors, we deduce the following result.

Corollary 7.15. Keep the assumption and notation of § 3.9 and of § 7.14. The diagram

(X ′/S′)rconv,ad
frconv,ad //

ρX′/S′

��

(X/S)rconv,ad

ρX/S

��
(X ′/S′)conv,zar

fconv,zar // (X/S)conv,zar

is commutative up to canonical isomorphisms.

7.16 We set Orig
X/S = ρ∗X/S(OX/S[1p ]). By (6.3.3) and Proposition 7.12, for any object Trig of

RConv(X/S), we have a canonical isomorphism

(Orig
X/S)Trig

∼−→ OTrig . (7.16.1)

Then, by fppf descent [Abb10, 5.11.11], the presheaf Orig
X/S is also a sheaf for the fppf topology.

For τ ∈ {ad, fppf}, if F is an Orig
X/S-module of (X/S)rconv,τ , FTrig is an OTrig -module. For any

morphism f : T′rig→ Trig of RConv(X/S), the transition morphism γf (Proposition 7.9) extends
to an (OT′rig)-linear morphism (§ 6.7)

cf : f∗τ (FTrig)→ FT′rig . (7.16.2)

In view of Proposition 7.9, we deduce the following description for Orig
X/S-modules.
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Proposition 7.17. For τ ∈ {zar, fppf}, an Orig
X/S-module of (X/S)rconv,τ is equivalent to the

following data:

(i) for every object Trig of RConv(X/S), an OTrig -module FT of Tτ ;

(ii) for every morphism f : T′rig→ Trig of RConv(X/S), an OT′rig -linear morphism cf (7.16.2),

which is subject to the following conditions.

(a) If f is the identity morphism, then cf is the identity.

(b) If the underlying morphism f : T′rig→ Trig of coherent rigid spaces is a morphism of Ad/Trig

(respectively Rf/Trig), then cf is an isomorphism.

(c) If f and g are two composable morphisms, then we have cg◦f = cf ◦ f∗τ (cg).

Definition 7.18. Let F be an Orig
X/S-module of (X/S)rconv,τ .

(i) We say that F is coherent if for every object Trig of RConv(X/S), FTrig is coherent (§ 6.7).

(ii) We say that F is a crystal if for every morphism f of RConv(X/S), cf is an isomorphism.

By fppf descent [Abb10, 5.11.11], the direct image and inverse image functors of αr (7.10.1)
induce equivalences of categories quasi-inverse to each other between the category of coherent
crystals of Orig

X/S-modules of (X/S)rconv,ad and that of (X/S)rconv,fppf .

Proposition 7.19. The direct image and inverse image functors of ρX/S induce equivalences

of categories quasi-inverse to each other between the category of coherent crystals of OX/S[1p ]-

modules of (X/S)conv,zar and that of (X/S)rconv,ad.

Proof. Let F be a coherent crystal of Orig
X/S-modules of (X/S)rconv,ad. By § 6.4 and (7.11.2),

ρX/S∗(F ) is coherent. In view of (6.5.2) and (7.11.4), we deduce that it is also a crystal. By
Corollary 7.13(i), ρ∗X/SρX/S∗(F )→ F is an isomorphism.

Let G be a coherent crystal of OX/S[1p ]-modules of (X/S)conv,zar and H = ρ∗X/S(G ).

By Tate’s acyclicity [Abb10, 3.5.5], G is contained in the essential image of ρX/S∗

(Corollary 7.13(ii)). Then we have a canonical isomorphism G
∼−→ ρX/S∗(H ) (7.13.2). We deduce

from Proposition 7.12 and Tate’s acyclicity [Abb10, 3.5.5] (respectively (6.5.2) and (7.11.4)) that
H is coherent (respectively is a crystal). Then the assertion follows. 2

7.20 Let g : X → Y be a morphism of S-schemes, T an object of Conv(Y/S) and Trig its image
in RConv(Y/S). By fppf descent for morphisms of coherent rigid spaces [Abb10, 5.12.1], the
presheaf associated to Trig is a sheaf for the fppf (respectively Zariski) topology that we denote
by T̃rig. We set XT0 = X ×Y T0 and, for τ ∈ {ad, fppf}, we denote by

gX/T,τ : (XT0/T)rconv,τ → (T0/T)rconv,τ ,

ωTrig : (XT0/T)rconv,τ → (X/S)rconv,τ

the functorial morphisms of topoi (7.14.2).
By repeating arguments of § 4, we prove the following results in the rigid convergent topos.

Lemma 7.21 (Lemma 4.2). Keep the notation of § 7.20. There exists a canonical equivalence of
topoi:

(X/S)
rconv,τ/g∗rconv,τ (T̃

rig)

∼−→ (XT0/T)rconv,τ , (7.21.1)

which identifies the localization morphism and ωTrig .
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Lemma 7.22 (Lemma 4.3). For any Orig
X/S-module E of (X/S)rconv,τ , there exists a canonical

isomorphism in D+(Trig
τ ,OTrig):

(R grconv,τ∗(E))Trig
∼−→ (R gX/T,τ∗(ω

∗
Trig(E)))Trig . (7.22.1)

Corollary 7.23 (Corollary 4.6). Let S′ → S be a morphism of S�, Y ′ an S′-scheme and h :
Y ′→ Y a morphism compatible with S′→ S. We setX ′ =X×Y Y ′ and we denote by g′ :X ′→ Y ′

and h′ : X ′→ X the canonical morphisms:

X ′
h′ //

g′

��
2

X

g

��
Y ′

h // Y

Then, for any OX/S[1p ]-module E of (X/S)conv,τ , the base-change morphism

h∗rconv,τ (R grconv,τ∗(E))
∼−→ R g′rconv,τ∗(h

′∗
rconv,τ (E)) (7.23.1)

is an isomorphism.

Corollary 7.24 (Corollary 4.5). Let E be a coherent crystal of Orig
X/S-modules of (X/S)rconv,fppf .

Then we have (7.10.1)
Ri αr∗(E ) = 0, ∀i > 1. (7.24.1)

Corollary 7.25. Let E be a coherent crystal of Orig
X/S-modules of (X/S)rconv,ad. Then we have

Ri ρX/S∗(E ) = 0, ∀i > 1. (7.25.1)

Proof. By Lemma 7.21, the Zariski sheaf Ri ρX/S∗(E ) on RConv(X/S) is associated to the
presheaf

Trig 7→ Hi((T0/T)rconv,ad,E |T̃rig).

By [SGA4, V 4.3 and III 4.1], we can replace RConv(X/S) by the full subcategory of objects
whose underlying rigid space is affinoid, and it suffices to show that for such an object Trig,

Hi((T0/T)conv,ad,E |T̃) (7.25.2)

vanishes for i > 1. Let U = {Zrig
i → Zrig}mi=1 be an admissible covering by affinoids of an affinoid

Zrig in R/Trig . The Čech cohomology Ȟ
i
(U ,E |

Z̃rig) is isomorphic to the cohomology Hi(Zrig
ad ,EZrig),

which vanishes by [Abb10, 4.8.26]. Since each admissible covering of Zrig admits a refinement by
finitely many affinoids, the vanishing of (7.25.2) follows from [Sta, 03F9]. 2

8. Higher direct images of a convergent isocrystal

8.1 Let X be a k-scheme locally of finite type. For τ ∈ {ad, fppf}, the Frobenius homomorphism
σ : W→W induces a morphism of topoi (X ′/W)rconv,τ → (X/W)rconv,τ (7.14.2). For any sheaf
E of (X/W)rconv,τ , we denote by E ′ the inverse image of E to (X ′/W)rconv,τ .

As in § 5.14, a pair (E , ϕ) consisting of a coherent crystal of Orig
X/S-modules E of (X/W)rconv,τ

(Definition 7.18) and an isomorphism ϕ : F ∗X/k,rconv,τ (E ′)
∼−→ E is called a convergent F -isocrystal

of (X/W)rconv,τ .
In this section, we prove the following result about the higher direct image of a convergent

(F -)isocrystal of rigid convergent topos.
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Theorem 8.2. Let g : X → Y be a smooth proper morphism of k-schemes locally of finite type
and E (respectively (E , ϕ)) a convergent isocrystal (respectively F -isocrystal) of (X/W)rconv,τ .
Then Ri grconv,τ∗(E ) (respectively (Ri grconv,τ∗(E ),Ri grconv,τ∗(ϕ))) is a convergent isocrystal
(respectively F -isocrystal) of (Y/W)rconv,τ .

By Corollary 7.25, Theorem 8.2 and arguments of § 5.13, we deduce the following variant for
the convergent topos.

Corollary 8.3. Keep the assumption of Theorem 8.2. The higher direct image of a convergent
isocrystal (respectively F -isocrystal) of (X/W)conv,zar (§ 5.14) is a convergent isocrystal
(respectively F -isocrystal) of (Y/W)conv,zar.

We first show that the smooth case of Theorem 8.2 can be deduced from the corresponding
statement in convergent topos (Theorem 5.10).

Proposition 8.4. Keep the notation and assumption of Theorem 8.2. If Y is moreover smooth
over k, then Ri grconv,τ∗(E ) is a coherent crystal of Orig

Y/W-modules.

Proof. We first prove the assertion for the admissible topology. The sheaf F = ρX/W ∗(E ) is a

coherent crystal of Orig
X/W-modules of (X/W)conv,zar and ρ∗X/W(F )

∼−→ E (Proposition 7.19). By

Theorem 5.10, Ri gconv,zar ∗(F ) is a coherent crystal of OY/W[1p ]-modules of (Y/W)conv,zar. We
consider the composition

Ri gconv,zar ∗(F )
∼−→ ρY/W ∗ρ

∗
Y/W(Ri gconv,zar ∗(F ))→ ρY/W ∗(R

i grconv,ad ∗(E )), (8.4.1)

where the first arrow is an isomorphism by Proposition 7.19 and the second arrow is
induced by the base-change morphism. By Lemmas 4.3 and 7.22, Ri gconv,zar ∗(F ) (respectively
ρY/W ∗(R

i grconv,ad ∗(E ))) is the sheaf associated to the presheaf on Conv(Y/W):

T 7→ Hi((XT0/T)conv,zar, ω
∗
T(F )) (respectively T 7→ Hi((XT0/T)rconv,ad, ω

∗
Trig(E ))).

By Corollary 7.25, the canonical morphism

Hi((XT0/T)conv,zar, ω
∗
T(F ))

∼−→ Hi((XT0/T)rconv,ad, ω
∗
Trig(E ))

is an isomorphism. The composition (8.4.1) is induced by the above morphisms and
hence is an isomorphism. In view of the definition of ρY/W ∗ (§ 7.11), we deduce that

ρ∗Y/W(Ri gconv,zar ∗(F ))
∼−→ Ri grconv,ad ∗(E ) by (8.4.1). Then the assertion for admissible topology

follows from Proposition 7.19.
Using Corollary 7.24, one verifies the proposition for fppf topology by comparing

Ri grconv,ad(E ) and Ri grconv,fppf(E ) in a similar way as above. 2

8.5 To prove Theorem 8.2, we use a construction of Ogus in his proof of proper surjective
descent for convergent isocrystals [Ogu84]. Let T be an adic formal W-scheme of finite type
and f : Z → T0 a projective and surjective k-morphism. Then f factors through a closed
immersion Z → PNT0 for some integer N > 1. Let PNT be the formal W-scheme associated to

the inductive system (PNTn)n>1. By § 3.18, we can construct a family of adic formal PNT -schemes

{TZ,n(PNT )}n>0. Based on the following result, Ogus showed the proper surjective descent for
convergent isocrystals [Ogu84, 4.6].
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Theorem 8.6 [Ogu84, 4.7 and 4.8]. For n large enough, the morphism π : TZ,n(PNT ) → T is
faithfully rig-flat (i.e. πrig is faithfully flat) [Abb10, 5.5.9].

A variant of Theorem 5.2 holds for rigid convergent topos.

Proposition 8.7. For every locally of finite type k-scheme X, the morphism

FX/k,rconv,fppf : (X/W)rconv,fppf → (X ′/W)rconv,fppf (8.7.1)

is an equivalence of topoi.

Proof. By Lemma 5.4 and (7.3.1), the canonical functor RConv(X/W) → RConv(X ′/W)
induced by FX/k (7.14.1) is fully faithful. In view of Proposition 2.5, Lemma 5.5 and § 7.11,
the assertion follows. 2

8.8 Proof of Theorem 8.2. We prove the assertion for convergent isocrystals. Then the
assertion for convergent F -isocrystals follows from Proposition 8.7 and a similar argument as in
Corollary 5.15. The question being local (Corollary 7.23), we may assume that Y is separated
and of finite type by Corollary 7.23. Moreover, we may assume that Y is reduced.

By applying alteration to each irreducible component of Y [dJon96, 4.1], there exist a smooth
k-scheme Ỹ and a proper surjective k-morphism Ỹ → Y . By Chow’s lemma [EGAII, 5.6.1], there
exists a surjective k-morphism Z → Ỹ such that the composition f : Z → Ỹ → Y is projective
and surjective. We set F = Ri grconv,fppf ∗(E ). In view of Corollary 7.23 and Proposition 8.4, the

inverse image of F to (Ỹ /W)rconv,fppf is a coherent crystal. Then so is f∗rconv,fppf(F ).
Let (T, u) be an object of Conv(Y/W). The morphism f factors through a closed immersion

Z→ PNY for some integer N > 1. We set TZ = T0×Y Z. We take again the notation of § 8.5 for the
projective and surjective k-morphism TZ → T0. We choose an integer n such that the morphism
π : TTZ ,n(PNT )→ T is faithfully rig-flat (Theorem 8.6). We set R = TTZ ,n(PNT ), R(1) = R ×T R
and denote by p1, p2 : R(1)

→ R two projections.
Note that R and R(1) define objects of Conv(Z/W) by (3.18.2) and then of Conv(Y/W).

Moreover, {πrig : Rrig
→ Trig} defines an fppf covering of RConv(Y/W). Since f∗rconv,fppf(F ) is

a coherent crystal of Orig
Z/W-modules, the following modules are coherent:

FRrig = (f∗rconv,fppf(F ))Rrig , FR(1),rig = (f∗rconv,fppf(F ))R(1),rig (8.8.1)

and we have isomorphisms

prig∗2 (FRrig)
∼−→ FR(1),rig

∼
←− prig∗1 (FRrig). (8.8.2)

Then we obtain a descent datum on FRrig for the fppf covering {πrig : Rrig
→ Trig}. There exist

a coherent OTrig -module M and an isomorphism [Abb10, 5.11.11]

πrig∗(M )
∼−→ FRrig . (8.8.3)

On the other hand, since F is a sheaf for the fppf topology, for any U ∈ Ob(Rf/Trig), we
have an exact sequence

0→ F (U)→ F (U ×Trig Rrig)→ F (U ×Trig R(1),rig). (8.8.4)

By comparing (8.8.3) and (8.8.4), we deduce that FTrig is isomorphic to M and hence is coherent.
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Let g : T′ → T be a morphism of Conv(Y/W). Choose an integer n large enough such that
R′ = TT ′Z ,n(PNT′) → T′ and R = TTZ ,n(PNT ) → T are faithfully rig-flat. Since the construction

of R is functorial, we have a W-morphism h : R′ → R compatible with g. Moreover, h induces
a morphism of Conv(Z/W). The transition morphism of f∗rconv,fppf(F ) associated to hrig is an
isomorphism. Since h dominates g in Conv(Y/W), we deduce that the transition morphism cgrig
of F associated to grig is an isomorphism by fppf descent (cf. [Xu19, proof of 9.13]). Then F is
a crystal and the theorem follows. 2
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Künneth formula for isocrystals, Preprint (2018), arXiv:1812.05153.

2212

https://doi.org/10.1112/S0010437X19007590 Published online by Cambridge University Press

https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
http://www.arxiv.org/abs/1812.05153
https://doi.org/10.1112/S0010437X19007590


On higher direct images of convergent isocrystals
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