A NOTE ON A SEQUENCE OF CONTRACTION MAPPINGS

S.P. Singh* and W. Russell

Let E be a metric space. A mapping T of the space E into itself is said to be a contraction if there exists a number k, with 0 < k < 1 such that

for any two points $x, y \in E$. Every contraction mapping is continuous.

The well-known Banach contraction principle is the following: if T is a contraction mapping of a complete metric space E into itself, then T has a unique fixed point. i.e. Tx = x has a unique solution.

Contraction mappings on metric space have been of interest for many years. In the present note we study a theorem on a sequence of contraction mappings and fixed points.

The following result is proved in [1, page 6].

THEOREM 1. Let E be a complete metric space, and let T and $T_n(n = 1, 2, ...)$ be contraction mappings of E into itself with the same Lipschitz constant k < 1, and with fixed points u and u respectively. Suppose that $\lim_{n \to \infty} T_n x = Tx$ for every $x \in E$. Then $\lim_{n \to \infty} u_n = u$.

Definition. Let (E,d) be a metric space and $\epsilon>0$. A finite sequence x_0,x_1 , ..., x_n of points of E is called an $\underline{\epsilon-chain\ joining}$ x and x if

$$d(x_{i-1}, x_i) < \epsilon,$$
 (i = 1,2, ..., n).

The metric space (E,d) is said to be ϵ -chainable if, for each pair (x,y) of its points, there exists an ϵ -chain joining x and y.

The well-known result due to Edelstein [2, page 76] is the following.

THEOREM 2. Let T be a mapping of a complete ϵ -chainable metric space (E,d) into itself, and suppose that there is a real number k with $0 \le k < 1$ such that

^{*}This research was partially supported by NRC Grant A-3097.

$$d(x, y) < \varepsilon \implies d(Tx, Ty) \le kd(x, y)$$
.

Then T has a unique fixed point u in E, and u = $\lim_{n\to\infty} T^n x_0$ where x_0 is an arbitrary element of E.

In the above theorem Edelstein has taken an $\,\epsilon$ -chainable metric space and has considered contraction mappings.

We now construct and prove a theorem by considering a sequence of such mappings.

THEOREM 3. Let (E,d) be a complete ϵ -chainable metric space, and let T_n (n = 1,2, ...) be mappings of E into itself, and suppose that there is a real number k with $0 \le k < 1$ such that

$$d(x,y) < \varepsilon \implies d(T_n x, T_n y) \le kd(x,y)$$
 for all n.

If u_n (n = 1,2,...) are the fixed points for T_n and $\lim_{n\to\infty} T_n = Tx$ respectively for every $x \in E$, then T has a unique fixed point u and $\lim_{n\to\infty} u_n = u$.

<u>Proof.</u> (E, d) being ϵ -chainable we define for $x, y \in E$,

$$d_{\varepsilon}(x, y) = \inf \sum_{i=1}^{p} d(x_{i-1}, x_{i})$$

where the infimum is taken over all ϵ -chains x_0, x_1, \dots, x_p joining $x_0 = x$ and $x_p = y$. Then d_{ϵ} is a distance function on E satisfying

- (i) $d(x, y) \leq d_{\varepsilon}(x, y)$
- (ii) $d(x,y) = d_{\epsilon}(x,y)$ for $d(x,y) < \epsilon$.

From (ii) it follows that a sequence $\{x_n\}$, $x_n \in E$ is a Cauchy sequence with respect to d_{ϵ} if and only if it is a Cauchy sequence with respect to d and is convergent with respect to d_{ϵ} if and only if it converges with respect to d. Hence, (E,d) being complete, (E,d) is also a

complete metric space. Moreover T_n (n = 1,2,...) are contraction mappings with respect to d_{ϵ} . Given $(x,y) \in E$, and any ϵ -chain x_0, x_1, \ldots, x_p with $x_0 = x$, $x_p = y$, we have $d(x_{i-1}, x_i) < \epsilon$ (i = 1,2,...,p), so that $d(T_n x_{i-1}, T_n x_i) \le kd(x_{i-1}, x_i) < \epsilon$ (i = 1,2,...,p). Hence $T_n x_0, \ldots, T_n x_p$ is an ϵ -chain joining $T_n x$ and $T_n y$ and

$$d_{\varepsilon}(T_{n}x, T_{n}y) \leq \sum_{i=1}^{p} d(T_{n}x_{i-1}, T_{n}x_{i}) \leq k \sum_{i=1}^{p} d(x_{i-1}, x_{i}).$$

 $\boldsymbol{x}_0^{}$, $\boldsymbol{x}_1^{}$, ..., $\boldsymbol{x}_p^{}$ being an arbitrary $\epsilon\text{-chain,}$ we have

$$d_{\varepsilon}(T_{n}x, T_{n}y) \leq kd_{\varepsilon}(x, y)$$
.

Now since T_n (n = 1,2,...) are contraction mappings with respect to d_{ϵ} and (E, d_{ϵ}) is a complete metric space, then $Tx = \lim_{n \to \infty} T_x \text{ is a contraction mapping with respect to } d_{\epsilon}. \text{ Moreover } n \to \infty$ $T \text{ has a unique fixed point } u \text{ and } \lim_{n \to \infty} u_n = u \text{ by Theorem 1.}$

This unique fixed point is given by

$$\lim_{n\to\infty} d_{\varepsilon}(T^{m}x_{0}, u) = 0 \text{ for } x_{0} \in E \text{ arbitrary.}$$

But (i) at the beginning of this proof implies

$$\lim_{n\to\infty} d(T^m x_0, u) = 0.$$

The authors wish to express their thanks to the referee for his suggestions regarding the improvement of the paper.

REFERENCES

- 1. F.F. Bonsall, Lectures on some fixed point theorems of cunctional analysis. (Tata Institute of Fundamental Research, Bombay, 1962.)
- 2. M. Edelstein, On fixed and periodic points under contractive mappings. Jour. Lond. Math. Soc. 37 (1962) 74-79.

Memorial University of Newfoundland St. John's Newfoundland