A NOTE ON A SEQUENCE OF CONTRACTION MAPPINGS
S.P. Singh* and W. Russell
Let E be a metric space. A mapping T of the space E into

itself is said to be a contraction if there exists a number k, with
0 < k < 1 such that

d(Tx, Ty) < kd(x,y)

for any two points x,y e E. Every contraction mapping is continuous.

The well-known Banach contraction principle is the following:
if T is a contraction mapping of a complete metric space E into itself,
then T has a unique fixed point. i.e. Tx = x has a unique solution.

Contraction mappings on metric space have been of interest for many
years. In the present note we study a theorem on a sequence of contraction
mappings and fixed points.

The following result is proved in [1, page 6].

THEOREM 1. Let E be a complete metric space, and let T and
Tn(n = 1,2, ...) be contraction mappings of E into itself with the same

Lipschitz constant k < 1, and with fixed points u and u respectively.
n

Suppose that lim Tnx = Tx for every x ¢ E. Then lim u = u.

n-> o n>w O
Definition. Let (E,d) be a metric space and € > 0. A finite
sequence Xg,X,, ..., X of points of E is called an g-chain joining

x and x if
n

d(x.

i1’ Xi)< €, (i =14,2, ...,n).

The metric space (E,d) is said to be e-chainable if, for each pair
(x,y) of its points, there exists an e-chain joining x and y.

The well-known result due to Edelstein [2, page 76] is the following.
THEOREM 2. Let T be a mapping of a complete e-chainable metric

space (E,d) into itself, and suppose that there is a real number k with
0 < k<1 such that
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d(x,y) < ¢ =——==—=p J(Tx, Ty) < kd(x,y).

Then T has a unique fixed point u in E, and u = lim Tn x0 where
n->

X, is an arbitrary element of E.

In the above theorem Edelstein has taken an e-chainable metric
space and has considered contraction mappings.

We now construct and prove a theorem by considering a sequence of
such mappings.

THEOREM 3. Let (E,d) be a complete e-chainable metric space,
and let Tn(n =1,2, ...) be mappings of E into itself, and suppose that

there is a real number k with 0 < k < 1 such that

d(x,y) < ¢ =————p d(’I‘nx,T y) < kd(x,y) for all n.
s or a’l

I u (n=1,2, ...) are the fixed points for T and lim T x = Tx
n nT— e
respectively for every x ¢ E, then T has a unique fixed point u and
lim u = u.
n
n->w

Proof. (E,d) being e-chainable we define for x,y e E,

p

de(x, y) = inf iizli d(xi_1 , xi)

0" "1

x) =% and xp = y. Then da is a distance function on E satisfying

where the infimum is taken over all e-chains x_, x,, ..., x_joining
P

(1) d(x,y) < 4 (x,y)

(i) d(x,y) ds(x,y) for d(x,y) < €.

From (ii) it follows that a sequence {Xn} S E is a Cauchy
sequence with respect to ds if and only if it is a Cauchy sequence with
respect to d and is convergent with respect to de if and only if it converges

with respect to d. Hence, (E,d) being complete, (E,d ) is also a
€
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complete metric space. Moreover Tn (n =1,2, ...) are contraction
mappings with respect to d_. Given (x,y) e E, and any e-chain
Xyr Xy e ,xp with X, = % xp = y, we have d(xi-i'xi)< e (i =1,2, ...,p),

so that d(TnXi—1’ Tnxi) < kd(xi-i’xi) <ef(i=1,2,...,p). Hence

Tx., ..., Tx isan e-chain joining T x and T y and
n 0 n p n n
p P
T < > .
de( X Tny) < ii d('I‘nxi_1 s Tnxi) <k 12_11 d(x,_i,xi)

x0 s x1 ) e e, Xp being an arbitrary e-chain, we have

dE(Tnx, Tny) < kde(x, y).

Now since Tn (n =1,2, ...) are contraction mappings with

respectto d and (E, ds) is a complete metric space, then
€

Tx = lim T x is a contraction mapping with respect to d . Moreover
n €
n=>-a

T has a unique fixed point u and lim u =u by Theorem 1.
n--w

This unique fixed point is given by

lim d (meo,u) =0 for x
n-—>00 £

0 € E arbitrary.

But (i) at the beginning of this proof implies

lim d(meo,u) =0.
n->e0

The authors wish to express their thanks to the referee for his
suggestions regarding the improvement of the paper.
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