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Abstract

The paper deals with the following problem: characterize Tichonov spaces X whose realcompactification
υX is a Lindelöf Σ-space. There are many situations (both in topology and functional analysis) where
Lindelöf Σ (even K-analytic) spaces υX appear. For example, if E is a locally convex space in the
class G in sense of Cascales and Orihuela (G includes among others (LM)-spaces and (DF)-spaces),
then υ(E′, σ(E′, E)) is K-analytic and E is web-bounded. This provides a general fact (due to Cascales–
Kakol–Saxon): if E ∈G, then σ(E′, E) is K-analytic if and only if σ(E′, E) is Lindelöf. We prove a
corresponding result for spaces Cp(X) of continuous real-valued maps on X endowed with the pointwise
topology: υX is a Lindelöf Σ-space if and only if X is strongly web-bounding if and only if Cp(X) is
web-bounded. Hence the weak∗ dual of Cp(X) is a Lindelöf Σ-space if and only if Cp(X) is web-bounded
and has countable tightness. Applications are provided. For example, every E ∈G is covered by a family
{Aα : α ∈Ω} of bounded sets for some nonempty set Ω ⊂ NN.
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1. Introduction

There are many situations where one should decide if the realcompactification υX of
a (Tichonov) space X is a Lindelöf Σ-space (or K-analytic); see [1, 7] for references.
For separable X the space υX is Lindelöf if and only if every base in X is complete [2].
When exactly is υX a Lindelöf Σ-space? The following, see [1, 13], shows the link
between Lindelöf Σ-spaces υX and envelopes Z of spaces Cp(X).

P 1.1. The space υX is a Lindelöf Σ-space if and only if there exists a
Lindelöf Σ-space Z such that Cp(X) ⊂ Z ⊂ RX .

A Tichonov space X is called a Lindelöf Σ-space if there is an upper semicontinuous
compact-valued map from a nonempty subset Ω ⊂ NN covering X; see [1, 12]. If the
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same holds for Ω = NN, then X is called K-analytic. The space X is quasi-Suslin if
there exists a set-valued map T from NN into X covering X which is quasi-Suslin, that
is, if αn→ α in NN and xn ∈ T (αn), then (xn)n has a cluster point in T (α); see [15].
Note that a space is K-analytic if and only if it is Lindelöf and quasi-Suslin, and also
the fact that K-analytic implies Lindelöf Σ.

Suppose we have a family {Aα : α ∈ NN} of (compact) subsets of X covering X
such that Aα ⊂ Aβ if α 6 β; such a family is called a (compact) resolution on X.
A space X which has a compact resolution is quasi-Suslin by [3, Proposition 1]. Then
its realcompactification υX is K-analytic. Indeed, if T : α 7→ T (α) is a quasi-Suslin
set-valued map on NN, every T (α) is countably compact, so its closure T (α) in υX
is compact. Then α 7→ T (α) is upper semicontinuous, so Z :=

⋃
T (α) is K-analytic.

Since X ⊂ Z ⊂ υX, then Z = υZ = υX is K-analytic. Thus every Lindelöf space with a
compact resolution is K-analytic. A resolution {Aα : α ∈ NN} in a locally convex space
is a bounded resolution if all Aα are bounded.

A locally convex space E belongs to the classG if there is a resolution {Aα : α ∈ NN}
of subsets in (E′, σ(E′, E)) such that each sequence in any Aα is equicontinuous;
see [6]. All (LM)-spaces (hence metrizable locally convex spaces), dual metric spaces
(hence (DF)-spaces), the space of distributions D′(Ω) and real analytic functions A(Ω)
for open Ω ⊂ RN, belong to the class G; see [6, 10].

In [10] we proved that the weak∗ dual (E′, σ(E′, E)) of a locally convex space E
in G is quasi-Suslin. Hence (by the above argument) we have the following general
property.

(∗) If a locally convex space E belongs to the class G then υ(E′, σ(E′, E)) is
K-analytic.

This provides an alternative approach to the result from [4] stating that for any
locally convex space E in the classG, the space (E′, σ(E′, E)) is K-analytic if and only
if (E′, σ(E′, E)) is realcompact if and only if (E, σ(E, E′)) has countable tightness.
Consequently, the weak∗ dual of an (LF)-space is K-analytic.

In this note, motivated by these facts about the class G, we prove the following
theorem.

T 1.2. For a Tichonov space X the following are equivalent.

(i) υX is a Lindelöf Σ-space.
(ii) X is strongly web-bounding.
(iii) Cp(X) is web-bounded.
(iv) Lp(X), the weak∗ dual of Cp(X), is web-bounded.
(v) Cp(X) is a dense subspace of a locally convex space which is a Lindelöf Σ-space.
(vi) Lp(υX) is a Lindelöf Σ-space.

At the first glance, Theorem 1.2 looks somewhat technical but it covers many
concrete cases. Theorem 1.2 contains the equivalence between (i) and (ii) in
[8, Theorem 10] and can be applied to describe the following general property for
any locally convex space E in the class G.
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C 1.3. If E is a locally convex space in the class G, then E is web-bounded.
Consequently, E is covered by a family of bounded sets {Aα : α ∈Ω} for some nonempty
Ω ⊂ NN.

On the other hand, for any uncountable discrete space X the space Cp(X) = RX is
not in the class G by [5] and does not admit a bounded resolution by [11, Corollary 1]
as a nonmetrizable Baire locally convex space. In fact a Baire locally convex space is
web-bounded if and only if it is metrizable; see [8] or [11, Theorem 1].

A space (respectively a locally convex space) E is strongly web-bounding [14]
(respectively web-bounded [3]) if there is a family {Aα : α ∈Ω} of sets covering E
(for some nonempty Ω ⊂ NN) such that if α = (nk) ∈Ω and xk ∈Cn1,n2,...,nk :=

⋃
{Aβ :

β = (mk) ∈Ω, m j = n j, j = 1, . . . , k}, then (xk)k is functionally bounded (respectively
bounded). Clearly if E is web-bounded, then the sets Aα are bounded. It is easy to see
that a locally convex space E with a bounded resolution is web-bounded. A cosmic
space X is σ-compact if and only if Cp(X) has a bounded resolution [9]. A web-
bounded space Cp(X) is angelic. Indeed, by Theorem 1.2 the space υX is a Lindelöf
Σ-space. Then Cp(υX) is angelic [14] and Cp(X) is angelic by [7, Note 4].

2. Proof of theorem and corollaries

We shall need the following result of Nagami [12] (see also [1, Proposition IV.9.2])
and Proposition 2.2.

P 2.1. A space X is a Lindelöf Σ-space if and only if there exists a
compactification bX of X and a countable family F of compact sets in bX such that if
x ∈ X and y ∈ bX \ X there exists B ∈ F for which x ∈ B and y < B.

P 2.2. For a locally convex space E the following are equivalent.

(a) E is web-bounded.
(b) (E, σ(E, E′)) is embedded in a locally convex Lindelöf Σ-space (W, σ(W, E′)),

where E ⊂W ⊂ (E′)∗.
(c) (E′, σ(E′, E)) is web-bounded.
(d) (E′, σ(E′, E)) is embedded in a locally convex Lindelöf Σ-space (Z, σ(Z, E)),

where E′ ⊂ Z ⊂ E∗ and E∗ denotes the algebraic dual of E.

P. Indeed, (a) implies (d): assume that E is web-bounded and {Aα : α ∈ Σ} is a
covering of E such that if α = (nk) ∈ Σ and xk ∈Cn1n2···nk , then (xk)k is bounded. Clearly
for each α ∈ Σ and each x′ ∈ E′ there exists k ∈ N such that x′(Cn1n2···nk ) ⊂ [−k, k].

Set
Z := {x′ ∈ E′ : ∀α = (ni) ∈ Σ, ∃k ∈ N, x′(Cn1n2···nk ) ⊂ [−k, k]}.

Since (Cn1,n2,...,nk )k is decreasing, then Z is a vector subspace of E∗ and E′ ⊂ Z ⊂
E∗ ⊂ RE . Using a proof similar to that used in the next page for showing that (ii)
implies (i), we find that (Z, σ(Z, E)) is a Lindelöf Σ-space. The fact that (d) implies
c) is obvious. The fact that (c) implies (b) is proved as follows: by hypothesis
(E′, σ(E′, E)) is web-bounded and if we apply to this space the fact that (a) implies
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(d) we find that (E, σ(E, E′)) is embedded in a Lindelöf Σ locally convex space
(W, σ(W, E′)). The proof that (b) implies (a) is trivial. The proposition has thus been
proved. �

We are ready to prove Theorem 1.2; the proof is motivated by [1,
Proposition IV.9.3].

P. (ii) ⇒ (i). Assume X is strongly web-bounding and that {Aα : α ∈ Σ} is a
covering of X verifying the web-bounding condition. Then for each f ∈C(X) and
each α = (nk) ∈ Σ there exists k ∈ N such that f (Cn1n2···nk ) ⊂ [−k, k]. Then the set

Z := { f ∈ RX : ∀α = (ni) ∈ Σ, ∃k ∈ N, f (Cn1n2···nk ) ⊂ [−k, k]} (2.1)

satisfies the following condition:

Cp(X) ⊂ Z ⊂ RX . (2.2)

Endow Z with the topology induced by RX . Let R = R ∪ {−∞, +∞} be the natural

compactification of R. Then R
X

is a compactification of Z. For each α = (ni) ∈ Σ and

k ∈ N let Fα|k = Fn1n2···nk be the closure in R
X

of the set

{ f ∈ RX : f (Cn1n2···nk ) ⊂ [−k, k]}.

Now S := {Fα|k, α ∈ Σ, k ∈ N} is a countable family of compact subsets of R
X

. Clearly

R
X
\ Z = (R

X
\ RX) ∪ (RX \ Z).

Take g ∈ Z
R

X

\ Z. If g ∈ R
X
\ RX , then there exists a ∈ X such that g(a) ∈ {−∞, +∞}.

There exists α = (ni) ∈ Σ such that a ∈ Aα. Then from g(Cn1n2···nk ) ∩ {−∞, +∞} , ∅ it
follows that g < Fα|k for each k ∈ N.

If g ∈ RX \ Z, then there exists α = (ni) ∈ Σ such that g(Cn1n2···nk ) * [−k, k] for each

k ∈ N. Also g < Fα|k for each k ∈ N. Therefore, if f ∈ Z and g ∈R
X
\ Z, then there exists

α = (ni) ∈ Σ such that g < Fα|k for each k ∈ N, and from the definition of Z it follows
that for this α there exists a k ∈ N such that f ∈ Fα|k. Therefore by Proposition 2.1 it
follows that Z is a Lindelöf Σ-space. Finally we apply Proposition 1.1 to show that υX
is a Lindelöf Σ-space.

(i)⇒ (ii). For the converse implication, assume that υX is a Lindelöf Σ-space. Then
there exists Σ ⊂ NN and an upper semicontinuous map T from Σ into compact sets in
υX covering υX. Set Aα := T (α) ∩ X for α = (nk) ∈ Σ. Take a sequence xk ∈Cn1,n2,...,nk .
Then there exists a sequence (αk)k in Σ which converges to α such that xk ∈ T (αk) for
each k ∈ N. Since T is upper semicontinuous, then the set {xk : k ∈ N} is countably
compact; hence it is functionally bounded in υX, and then also in X.

(iii) ⇒ (i). Replace X in (2.1) and (2.2) by Cp(X). If Cp(X) is web-bounded,
one gets (analogously as above) that there exists a Lindelöf Σ-space Z such that
Lp(X) ⊂ Z ⊂ RCp(X). Since X ⊂ Lp(X), then X ⊂ Z ⊂ RCp(X).
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Now note that the space υX is a Lindelöf Σ-space. Indeed, if Y is the closure of X
in Z, then Y is Lindelöf Σ. Since every real-valued function on X can be continuously
extended to RCp(X), then υX = υY = Y is Lindelöf Σ.

(i) ⇒ (iii). If υX is Lindelöf Σ, then by Proposition 1.1 there exists a Lindelöf
Σ-space Z such that Cp(X) ⊂ Z ⊂ RX and then Cp(X) is web-bounded.

To prove the equivalence of (iii) and (v) we apply Proposition 2.2.
(iii)⇔ (iv). Since Lp(X)′ = Cp(X) we again apply Proposition 2.2.
(i)⇒ (vi). This implication follows from [1, Proposition 0.5.13].
(vi)⇒ (i). This implication follows from the fact that υX is closed in Lp(υX). �

C 2.3. The following conditions are equivalent.

(i) Cp(X) is web-bounded and X is Lindelöf.
(ii) Lp(X) is a Lindelöf Σ-space.
(iii) Cp(X) is a web-bounded space with countable tightness.

P. (i) ⇒ (ii). Assume Cp(X) is web-bounded and X Lindelöf. By Theorem 1.2
the space X = υX is a Lindelöf Σ-space, and then by [1, Proposition 0.5.13] the space
Lp(X) is a Lindelöf Σ-space.

(ii) ⇒ (i). If Lp(X) is a Lindelöf Σ-space, then X ⊂ Lp(X) as a closed subspace
[1, Proposition 0.5.9] is also a Lindelöf Σ-space. By Theorem 1.2 the space Cp(X) is
web-bounded.

(iii)⇒ (i). This implication follows from [1, Theorem II.1.1].
(i)⇒ (iii). By (ii) the space X ⊂ Lp(X) is Lindelöf Σ. Since countable products of

Lindelöf Σ-spaces are Lindelöf Σ, we apply [1, Theorem II.1.1] to show that Cp(X) has
countable tightness. �

E 2.4. There is a web-bounded space Cp(X) not having countable tightness.

P. Take a quasi-Suslin space X which is not K-analytic; see [3, 4, 15] for such
examples. Then X is not Lindelöf and Cp(X) does not have countable tightness
[1, Theorem II.1.1]. The space X is strongly web-bounding. Indeed, X as quasi-
Suslin admits a resolution {Aα : α ∈ NN} of relatively countably compact sets (hence
functionally bounded). If xk ∈Cn1n2···nk ) for each k ∈ N there exists βk = (mk

n)n ∈ N
N

such that xk ∈ Aβk , n j = mk
j for j = 1, 2, . . . , k. Let an = max{mk

n : k ∈ N}, for n ∈ N and
γ = (an). Since γ > βk for every k ∈ N, then Aβk ⊂ Aγ, so xk ∈ Aγ for all k ∈ N. Then
Cp(X) is web-bounded by Theorem 1.2. �

The following corollary is a version of Corollary 2.3.

C 2.5. Let E be a barrelled space. Then E is web-bounded and (E, σ(E, E′))
has countable tightness if and only if (E′, σ(E′, E)) is a Lindelöf Σ-space.

P. Assume (E, σ(E, E′)) has countable tightness. We show that the space
F := (E′, σ(E′, E)) is realcompact. By the Corson criterion, see [15, p. 137], it is
enough to show that every linear functional f on E which is σ(E, E′)-continuous
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on each σ(E, E′)-closed separable vector subspace is continuous. Note that the
kernel K := f −1(0) is closed in E. Indeed, if y ∈ K, there is a countable D ⊂ K with
y ∈ D (the closure in σ(E, E′)). By assumption, f |lin(D) is σ(E, E′)-continuous;
hence f (y) ∈ f (lin(D)) ⊂ f (K) = {0}, so y ∈ K and f ∈ E′. Let E be web-bounded. By
Proposition 2.2 the space (E′, σ(E′, E)) is also web-bounded. Hence E′ is covered
by a family {Aα : α ∈Ω} of sets such that each sequence x′k ∈Cn1,...,nk is σ(E′, E)-
bounded. By assumption each (x′n)n is equicontinuous, so σ(E′, E)-relatively compact.
Hence F is strongly web-bounding and F = υ(E′, σ(E′, E)) is a Lindelöf Σ-space by
Theorem 1.2. Now assume that F is a Lindelöf Σ-space. Then E is web-bounded by
Theorem 1.2. We again apply [1, Theorem II.1.1] to deduce the countable tightness of
Cp(F). Hence (E, σ(E, E′)) ⊂Cp(F) has countable tightness. �

The next corollary follows from Theorem 1.2 and Proposition 1.1 and supplements
Proposition 1.1.

C 2.6. The space Cp(X) is web-bounded if and only if there is a Lindelöf
Σ-space Z such that Cp(X) ⊂ Z ⊂ RX .

Every (LF)-space, that is, the inductive limit of a sequence of metrizable and
complete locally convex spaces, is a quasi-(LB)-space, that is, has a resolution
consisting of Banach discs, and the strong dual of an (LF)-space is also a quasi-
(LB)-space; see [16]. Clearly every locally complete locally convex space with a
bounded resolution is a quasi-(LB)-space, and every locally convex space that has a
fundamental sequence (S n)n of bounded sets has a bounded resolution: set Aα := Sn1

for α = (nk) ∈ NN. We do not know if any locally convex space in the class G has
a bounded resolution; nevertheless Theorem 1.2 yields Corollary 1.3 listed in the
Introduction. We provide a simple proof of this.

P. We see that F := (E′, σ(E′, E)) is quasi-Suslin by [10]. Hence F is
strongly web-bounding. By Theorem 1.2 the space Cp(F) is web-bounded. Hence
(E, σ(E, E′)) ⊂Cp(F) is web-bounded. �

The following question is motivated by the property labelled (∗) in the Introduction
and Corollary 1.3.

P 2.7. Let E be a web-bounded locally convex space. Is υ(E′, σ(E′, E))
K-analytic?
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