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Abstract

The paper deals with the following problem: characterize Tichonov spaces X whose realcompactification
vX is a Lindelof X-space. There are many situations (both in topology and functional analysis) where
Lindelof £ (even K-analytic) spaces vX appear. For example, if E is a locally convex space in the
class ® in sense of Cascales and Orihuela (® includes among others (LM)-spaces and (DF)-spaces),
then v(E’, o(E’, E)) is K-analytic and E is web-bounded. This provides a general fact (due to Cascales—
Kakol-Saxon): if E € ®, then o(E’, E) is K-analytic if and only if o(E’, E) is Lindelof. We prove a
corresponding result for spaces C,(X) of continuous real-valued maps on X endowed with the pointwise
topology: vX is a Lindelof X-space if and only if X is strongly web-bounding if and only if C,(X) is
web-bounded. Hence the weak™ dual of C,(X) is a Lindeldf X-space if and only if C,,(X) is web-bounded
and has countable tightness. Applications are provided. For example, every E € ® is covered by a family
{A, : @ € Q) of bounded sets for some nonempty set Q ¢ N,
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1. Introduction

There are many situations where one should decide if the realcompactification vX of
a (Tichonov) space X is a Lindelof X-space (or K-analytic); see [1, 7] for references.
For separable X the space vX is Lindelof if and only if every base in X is complete [2].
When exactly is vX a Lindelof Z-space? The following, see [1, 13], shows the link
between Lindeldf X-spaces vX and envelopes Z of spaces C,(X).

Prorosition 1.1. The space vX is a Lindeldf X-space if and only if there exists a
Lindelof =-space Z such that C,(X) C Z C RX.

A Tichonov space X is called a Lindelof Z-space if there is an upper semicontinuous
compact-valued map from a nonempty subset Q ¢ N*' covering X; see [1, 12]. If the
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same holds for Q = N¥, then X is called K-analytic. The space X is quasi-Suslin if
there exists a set-valued map T from N" into X covering X which is quasi-Suslin, that
is, if @, — a in NV and x, € T(e,), then (x,), has a cluster point in 7'(@); see [15].
Note that a space is K-analytic if and only if it is Lindelof and quasi-Suslin, and also
the fact that K-analytic implies Lindelof Z.

Suppose we have a family {A, : @ € N"'} of (compact) subsets of X covering X
such that A, CAg if @ <f; such a family is called a (compact) resolution on X.
A space X which has a compact resolution is quasi-Suslin by [3, Proposition 1]. Then
its realcompactification vX is K-analytic. Indeed, if 7 : @ — T(a) is a quasi-Suslin
set-valued map on N, every T(a) is countably compact, so its closure T(a) in vX
is compact. Then a — T'(«) is upper semicontinuous, so Z :=|J T(«) is K-analytic.
Since X ¢ Z c vX, then Z = vZ = vX is K-analytic. Thus every Lindel6f space with a
compact resolution is K-analytic. A resolution {A, : @ € N*'} in a locally convex space
is a bounded resolution if all A, are bounded.

A locally convex space E belongs to the class G if there is a resolution {4, : @ € N*'}
of subsets in (E’, o(E’, E)) such that each sequence in any A, is equicontinuous;
see [6]. All (LM)-spaces (hence metrizable locally convex spaces), dual metric spaces
(hence (DF)-spaces), the space of distributions D’(€Q) and real analytic functions A(Q)
for open Q C RY, belong to the class ®; see [6, 10].

In [10] we proved that the weak™ dual (E’, o(E’, E)) of a locally convex space E
in ® is quasi-Suslin. Hence (by the above argument) we have the following general
property.

() If a locally convex space E belongs to the class ® then v(E’, o(E’, E)) is
K-analytic.

This provides an alternative approach to the result from [4] stating that for any
locally convex space E in the class ®, the space (E’, o(E’, E)) is K-analytic if and only
if (E’, o(E’, E)) is realcompact if and only if (E, o(E, E’)) has countable tightness.
Consequently, the weak™ dual of an (LF)-space is K-analytic.

In this note, motivated by these facts about the class ®, we prove the following
theorem.

TueoreM 1.2. For a Tichonov space X the following are equivalent.

(i) vX is a Lindelof X-space.

(1) X is strongly web-bounding.

(iii) Cp(X) is web-bounded.

(iv) L,(X), the weak™ dual of C,(X), is web-bounded.

(v)  C,(X) is a dense subspace of a locally convex space which is a Lindelof Z-space.
(vi) L,(vX) is a Lindeldf Z-space.

At the first glance, Theorem 1.2 looks somewhat technical but it covers many
concrete cases. Theorem 1.2 contains the equivalence between (i) and (ii) in
[8, Theorem 10] and can be applied to describe the following general property for
any locally convex space E in the class 6.
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CoroLLARY 1.3. If E is a locally convex space in the class ®, then E is web-bounded.
Consequently, E is covered by a family of bounded sets {A,, : a € Q} for some nonempty
Qc N,

On the other hand, for any uncountable discrete space X the space C,(X) =R¥ is
not in the class ® by [5] and does not admit a bounded resolution by [11, Corollary 1]
as a nonmetrizable Baire locally convex space. In fact a Baire locally convex space is
web-bounded if and only if it is metrizable; see [8] or [11, Theorem 1].

A space (respectively a locally convex space) E is strongly web-bounding [14]
(respectively web-bounded [3]) if there is a family {A, : o € Q} of sets covering E
B=(m)€Q mj=n;, j=1,...,k}, then (x;); is functionally bounded (respectively
bounded). Clearly if E is web-bounded, then the sets A, are bounded. It is easy to see
that a locally convex space E with a bounded resolution is web-bounded. A cosmic
space X is o-compact if and only if C,(X) has a bounded resolution [9]. A web-
bounded space Cp,(X) is angelic. Indeed, by Theorem 1.2 the space vX is a Lindelof
X-space. Then Cp,(vX) is angelic [14] and C,(X) is angelic by [7, Note 4].

2. Proof of theorem and corollaries

We shall need the following result of Nagami [12] (see also [1, Proposition IV.9.2])
and Proposition 2.2.

ProrosiTion 2.1. A space X is a Lindeldof Z-space if and only if there exists a
compactification bX of X and a countable family F of compact sets in bX such that if
xeXandy € bX \ X there exists Be€ F for whichxe Bandy ¢ B.

Prorosition 2.2. For a locally convex space E the following are equivalent.

(a) E is web-bounded.

(b) (E,0(E,E")) is embedded in a locally convex Lindelof X-space (W, (W, E")),
where EC W C (E")*.

(©) (E',o(E’, E))is web-bounded.

(d) (E',0(E',E)) is embedded in a locally convex Lindeldf X-space (Z, o(Z, E)),
where E' C Z C E* and E* denotes the algebraic dual of E.

Proor. Indeed, (a) implies (d): assume that E is web-bounded and {A,:a@ €X}is a
covering of E such that if @ = (n;) € X and x; € Cy;,,...n,.» then (xi)x is bounded. Clearly
for each @ € X and each x’ € E’ there exists k € N such that x'(Cy, n,..,) C [k, k].
Set
Z:={x'€eE :Na=(m)eX FkeN, x'(Cynyn) C [k, k]}.

Since (Cy, ,...n )k i decreasing, then Z is a vector subspace of E* and E' CZ C
E* c RE. Using a proof similar to that used in the next page for showing that (ii)
implies (i), we find that (Z, 0(Z, E)) is a Lindelof Z-space. The fact that (d) implies
c) is obvious. The fact that (c) implies (b) is proved as follows: by hypothesis
(E',0(E’, E)) is web-bounded and if we apply to this space the fact that (a) implies

https://doi.org/10.1017/S000497271100270X Published online by Cambridge University Press


https://doi.org/10.1017/S000497271100270X

[4] Lindelof Z-spaces vX 117

(d) we find that (E, o(E, E’)) is embedded in a Lindelof X locally convex space
(W, (W, E")). The proof that (b) implies (a) is trivial. The proposition has thus been
proved. O

We are ready to prove Theorem 1.2; the proof is motivated by [I,
Proposition IV.9.3].

Proor. (i) = (i). Assume X is strongly web-bounding and that {A,:a@€ZX} is a
covering of X verifying the web-bounding condition. Then for each f e C(X) and
each a = (n;) € X there exists k € N such that f(Cy,p,..n,) C [k, k]. Then the set

Z:={feR*:Va=m)eX, keN, f(Cyn.n)C [~k kl} (2.1)
satisfies the following condition:
C,(X)c Z cRX. (2.2)

Endow Z with the topology induced by RX. Let R =R U {—co, +co} be the natural
compactification of R. Then ﬁx is a compactification of Z. For each a = (n;) € ¥ and
k €N let Fyx = Fp pn,--n, be the closure in RX of the set

{f €RX: f(Cpynyn) C [k, K1)
Now S :={F, @ € X, k € N} is a countable family of compact subsets of EX. Clearly

R\ z=® \Ru®X\ 2).
—X
Take g € ZR \Z. Ifge EX \ R¥, then there exists a € X such that g(a) € {—oo, +00}.
There exists @ = (n;) € Z such that a € A,. Then from g(C,,,,...,) N {—00, 400} # 0 it
follows that g ¢ Foy for each k € N.
If g € R\ Z, then there exists a = (n;) € X such that 8(Cyinyemy) € [k, k] for each

k eN. Also g ¢ F foreach k € N. Therefore, if f € Zand g € @X \ Z, then there exists
a = (n;) € X such that g ¢ F, for each k € N, and from the definition of Z it follows
that for this @ there exists a k € N such that f € F,. Therefore by Proposition 2.1 it
follows that Z is a Lindel6f X-space. Finally we apply Proposition 1.1 to show that uX
is a Lindelof X-space.

(i) = (ii). For the converse implication, assume that vX is a Lindelof Z-space. Then
there exists £ ¢ N and an upper semicontinuous map 7T from X into compact sets in
vX covering uX. Set A, := T(a@) N X for @ = (ny) € X. Take a sequence x; € Cyy, ,...n,-
Then there exists a sequence (a;); in £ which converges to a such that x; € T'(a;) for
each k e N. Since T is upper semicontinuous, then the set {x; : k € N} is countably
compact; hence it is functionally bounded in vX, and then also in X.

(iii) = (1). Replace X in (2.1) and (2.2) by C,(X). If C,(X) is web-bounded,
one gets (analogously as above) that there exists a Lindelof X-space Z such that
L,(X)cZcR%Y®, Since X C L,(X), then X ¢ Z c R,
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Now note that the space vX is a Lindelof X-space. Indeed, if Y is the closure of X
in Z, then Y is Lindelof X. Since every real-valued function on X can be continuously
extended to R, then vX = v¥ =Y is Lindel6f X.

(i) = (iii). If vX is Lindelof Z, then by Proposition 1.1 there exists a Lindel6f
2-space Z such that C,(X) CZ C RX and then C,(X) is web-bounded.

To prove the equivalence of (iii) and (v) we apply Proposition 2.2.

(iii) & (iv). Since L,(X)" = C,(X) we again apply Proposition 2.2.

(i) = (vi). This implication follows from [1, Proposition 0.5.13].

(vi) = (i). This implication follows from the fact that vX is closed in L,(vX). O

CoroLLARY 2.3. The following conditions are equivalent.

(1)  Cp(X) is web-bounded and X is Lindelof.

(i) L,(X) is a Lindeldf Z-space.

(iii) C,(X) is a web-bounded space with countable tightness.

Proor. (i) = (ii). Assume C,(X) is web-bounded and X Lindelof. By Theorem 1.2
the space X = vX is a Lindelof X-space, and then by [1, Proposition 0.5.13] the space
L,(X) is a Lindelof X-space.

(i) = (). If L,(X) is a Lindelof Z-space, then X C L,(X) as a closed subspace
[1, Proposition 0.5.9] is also a Lindeldf X-space. By Theorem 1.2 the space C,(X) is
web-bounded.

(iii) = (i). This implication follows from [1, Theorem II.1.1].

(i) = (iii). By (ii) the space X C L,(X) is Lindelof X. Since countable products of
Lindeldf Z-spaces are Lindeldf X, we apply [1, Theorem I1.1.1] to show that C,(X) has
countable tightness. O

ExampLE 2.4. There is a web-bounded space C,(X) not having countable tightness.

Proor. Take a quasi-Suslin space X which is not K-analytic; see [3, 4, 15] for such
examples. Then X is not Lindeldf and C,(X) does not have countable tightness
[1, Theorem II.1.1]. The space X is strongly web-bounding. Indeed, X as quasi-
Suslin admits a resolution {A, : @ € N"'} of relatively countably compact sets (hence
functionally bounded). If x; € C,,5,..,) for each k € N there exists S = (m¥), € N¥

such that x; € Ag,, n; = m’J‘ forj=1,2,...,k Leta, = max{mﬁ :keN}, forneN and
v = (a,). Since y > f for every k€ N, then Ag CA,, so xx € A, for all k € N. Then
C,(X) is web-bounded by Theorem 1.2. O

The following corollary is a version of Corollary 2.3.

COROLLARY 2.5. Let E be a barrelled space. Then E is web-bounded and (E, o(E, E"))
has countable tightness if and only if (E’, o(E’, E)) is a Lindeldf -space.

Proor. Assume (E, o(E, E’)) has countable tightness. We show that the space
F:=(F',0(E’, E)) is realcompact. By the Corson criterion, see [15, p. 137], it is
enough to show that every linear functional f on E which is o (E, E’)-continuous
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on each o(FE, E’)-closed separable vector subspace is continuous. Note that the
kernel K := f~1(0) is closed in E. Indeed, if y € K, there is a countable D c K with
ye D (the closure in o(E, E)). By assumption, f[lin(D) is o(E, E’)-continuous;
hence f(y) € f(lin(D)) C f(K)=1{0},soye K and f € E’. Let E be web-bounded. By
Proposition 2.2 the space (E’, o(E’, E)) is also web-bounded. Hence E’ is covered

,,,,, . 18 o(E', E)-
bounded. By assumption each (x},), is equicontinuous, so o"(E’, E)-relatively compact.
Hence F is strongly web-bounding and F = v(E’, o(E’, E)) is a Lindel6f Z-space by
Theorem 1.2. Now assume that F is a Lindelof Z-space. Then E is web-bounded by
Theorem 1.2. We again apply [1, Theorem II.1.1] to deduce the countable tightness of
C,(F). Hence (E, o(E, E")) C Cp(F) has countable tightness. O

The next corollary follows from Theorem 1.2 and Proposition 1.1 and supplements
Proposition 1.1.

CoroLLARY 2.6. The space C,(X) is web-bounded if and only if there is a Lindeldf
X-space Z such that C,(X) C Z C R¥.

Every (LF)-space, that is, the inductive limit of a sequence of metrizable and
complete locally convex spaces, is a quasi-(LB)-space, that is, has a resolution
consisting of Banach discs, and the strong dual of an (LF)-space is also a quasi-
(LB)-space; see [16]. Clearly every locally complete locally convex space with a
bounded resolution is a quasi-(LB)-space, and every locally convex space that has a
fundamental sequence ($,), of bounded sets has a bounded resolution: set A, =S,
for @ = () € NV, We do not know if any locally convex space in the class & has
a bounded resolution; nevertheless Theorem 1.2 yields Corollary 1.3 listed in the
Introduction. We provide a simple proof of this.

Proor. We see that F:=(E’,o(E’, E)) is quasi-Suslin by [10]. Hence F is
strongly web-bounding. By Theorem 1.2 the space C,(F) is web-bounded. Hence
(E,o(E, E")) C C\(F) is web-bounded. O

The following question is motivated by the property labelled (*) in the Introduction
and Corollary 1.3.

ProBLEM 2.7. Let E be a web-bounded locally convex space. Is v(E’, o(E’, E))
K-analytic?
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