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As is weil known there has been an explosion of interest in classical dynarnics re­
sulting from the relatively recent "discovery" that classical deterministic systems can 
be chaotic or in some sense random. Actually, their complexity had already been weil 
appreciated by Poincare in 1892 (MacKay, R. S. and Meiss, J. D. (1987), p. 7). Much 
interesting work is currently being done on classical chaos in both physics and philos­
ophy. However, in the last fifteen years or so, the interest of some physicists has 
turned to the possibility that chaos, or chaotic behavior can be found in quantum me­
chanics as weil. Unfortunately, things are much less clear cut in the quantum case 
than in the classical. In fact, there is very little agreement about whether chaos in 
quantum mechanics even exists. In part this is because there is apparently no general­
ly accepted definition of what chaos in quantum mechanics could be. Despite this, 
the number of conferences and proceedings devoted to the topic of quantum chaos ap­
pears to be increasing at a rapid rate. In this paper I present some of the problems that 
have led to this rather strange situation. In particular, I will discuss one fairly influen­
tial proposal about how to define quantum chaos. I will focus on a particularly nasty 
and rather old problem in the foundations of physics; narnely, that of understanding 
the connections between quantum and classical mechanics. Paradoxically, it appears 
that what gets studied under the rubric "quantum chaos" is parasitic upon classical dy­
narnics . I want to suggest some ways of understanding this. 

The paper is structured as follows. In the fust section, I discuss briefly the nature 
and importance of chaos in classical physics. Section 2 outlines why it is so difficult 
to find chaos in quantum mechanics and presents a proposal for defining quantum 
chaos that explicitly recognizes this difficulty. The remaining 3 sections are an at­
tempt to understand and elucidate the main features of this definition. In section 3 I 
begin to discuss to nature of the serniclassical systems referred to in the definition. 
This involves a discussion of the Correspondence Principle and the relations between 
the so-called "old quantum theory" and both classical mechanics and modern quan­
tum mechanics. In section 4 I try to elucidate the crucial notion of "the classical 
counterpart" to a quantum system. Finally, I conclude in section 5 with a brief assess­
ment of the status of semiclassical mechanics as a discipline distinct, in some impor­
tant sense, from both classical and quantum mechanics . 
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1. Classical Chaos 

Before tuming to the discussion of quantum chaos, Jet me very briefly discuss clas­
sical chaos. 1 will be concemed here primarily with conservative Hamiltonian systems, 
ignoring for the most part chaos in so-called dissipative systems. There are, of course, 
conservative Hamiltonian systems that exhibit the most regular behavior imaginable. 
For example, an ideal hannonic oscillator such as a one-dimensional pendulum has a 
trajectory in its two dimensional phase space which for each particular energy is a sim­
ple circle in the (x,p) plane. At the same time, there are also Hamiltonian systems that 
can exhibit observational behavior that is apparently random. Here we can think of an 
(ideal) hard sphere gas in a box. By "observational" behavior here too, 1 mean the be­
havior of the trajectories that represent the system's evolution over time according to 
Harnilton's equations of motion in a 2N-dimensional phase space (where N is the num­
ber of degrees of freedom of the system). At the "regular" end of this "dynarnical spec­
trum" where the pendulum is found there are the integrable systems. These systems 
have their trajectories confined (at least) to N-dimensional doughnuts or tori in the larg­
er 2N-dimensional phase space. Furthermore, if one has two possible initial states that 
are nearby in phase space, then the trajectories starting from those points will diverge 
from one another at most linearly in time-that is, relatively slowly. Since the trajectory 
is confined to a torus, the evolution of the system will be either periodic or multiply pe­
riodic in time. At the other end of the spectrum are the chaotic systems. The trajecto­
ries for these systems can wander throughout the entire 2N-l-<limensional surface of 
constant energy in the phase space. Furthermore, they exhibit extreme sensitive depen­
dence on initial conditions: Trajectories from nearby initial states diverge exponentially 
from one another in time. This exponential divergence of trajectories is responsible for 
the observed randomness in the system's behavior. There is really an entire range of 
dynamical systems (again, even within the restriction to conservative Hamiltonian sys­
tems) in between the integrable and the chaotic; these are the so-called KAM systems, 
named after Kolmogorov, Arnold, and Moser. For the conceptual purposes of this 
paper, however, I will concentrate primarily on the two extremes. 

To sum up this section, Jet me note the following. Classical chaos, I take it, is a 
property of the dynamics of systems. In particular, at least a necessary condition for a 
system to be chaotic is that its evolution exhibit an exponentially sensitive depen­
dence on initial conditions. Integrable systems show no such behavior, and it is this 
fact that is primarily responsible for the relative ease with which their equations of 
motion can be solved.2 One of the great benefits for physical theory coming from the 
discovery of chaotic dynamical behavior, has been that it provides (at least in certain 
ideal cases) a dynamical justification for attributing certain statistical/ergodic proper­
ties to deterrninistic systems. One can in effect prove that certain deterministic sys­
tems such as the hard sphere gas will behave in a way that is statistically indistin­
guishable from a roulette wheel. Demonstrations such as these take us a long way to­
wards justifying various a priori statistical assumptions that are characteristic of clas­
sical statistical mechanics . One question for future research is whether quantum 
chaos (or at least what some people take tobe quantum chaos) can play any sort of 
analogous role in grounding quantum statistical mechanics. Unfortunately, I do not 
have the time to consider this question here. 

2. Quantum Chaos? 

There are reasons why one might on the one hand expect and on the other, hope to 
~nd a quantum analog of classical chaotic time evolution. First there is the belief that 
m the limit classical mechanics should be recoverable from quantum mechanics. 
This, of course, is based on some appeal to and understanding of the Correspondence 
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Principle which was originally formulated by Bohr. The idea, roughly, is that because 
of this principle there must be chaos in those quantum systems whose classical 
analogs are chaotic. The main interpretive problems here are twofold . First, we must 
try to understand the exact nature of the limit referred to in the statement of the 
Correspondence Principle. Second, we must also try to understand what the phrase 
"classical analog of a quantum system" is supposed to mean. 1 will have considerably 
more to say about these problems below. At this point, however, 1 just want to note 
that there are relatively obvious grounds for expecting chaos to be present in quantum 
mechanics: Classical chaos is apparently a genuine and ubiquitous phenomenon. 
Given that quantum mechanics is supposed to be the more fundamental theory, it 
should be able to explain the observed classical behavior of dynamical systems, re­
gardless of whether that behavior is chaotic or not. 

As 1 mentioned, there is also a hope or desire to find a quantum analog of classically 
chaotic time evolution. This derives from the need, just as in the classical case, to 
ground certain a priori probabilistic or statistical assumptions of quantum statistical 
mechanics. Again, because of time constraints these issues will not be addressed here. 
Now there are compelling reasons to conclude that despite these hopes and expccta­
tions, quantum mechanics itself can exhibit nothing like the chaotic evolutions one wit­
nesses in classical mechanics. In what follows 1 will consider finite, closed, isolated 
quantum systems-roughly the quantum equivalent to my earlier restriction to conser­
vative classical Harniltonian systems. Tue dynamical evolutions of quantum systems 
are governed by the Schrödinger equation. This is a partial differential equation and is 
of a completely different mathematical structure than the ordinary differential equations 
governing the evolution of classical systems. Let A be the Hamiltonian operator for a 
finite, closed, isolated quantum system. The time dependent Schrödinger equation de­
scribes the evolution of the state vector 11/f(q. t)) as follows: 

(i) in%tl'lf<q,t))=ttl'l'<q.t)) 

This equation has as its general solution the following: 

(ii) l 'lf(q, t)}= L c.I rp.}e -Y.E,• 

where the l<p.} and Ea are the eigenstates and eigenvalues of H . But, 11/f(q,t)) is a 
multiply or conditionally periodic function in time. Given this then, the expectation 
value of any observable A is likewise multiply periodic. 

(iii) (A) = ~ c' c A e-Y.<E, -E. >• 
1 .L..J11 ,m. II II Gm 

Recall that classically the integrable systems are those with dynamical trajectories 
confined to N-dimensional tori in phase space. Their evolutions are multiply periodic 
unlike chaotic systems which do not exhibit such regular behavior. 

Therefore, despite the fact that there is a formal correspondence between the clas­
sical Hamiltonian and the quantum Hamiltonian operator (gatten by replacing the po­
sition variable q with the operator q. and the momenturn variable p with the operator 

-iha~ /oq ), 

afinite and bound quantum system governed by the Schrödinger equation cannot ex­
hibit the sort of sensitive dependence on its initial state characteristic of the classical 
chaotic systems. 

https://doi.org/10.1017/S0270864700009188 Published online by Cambridge University Press

https://doi.org/10.1017/S0270864700009188


53 

There is another reason to be sceptical about the possibility of finding chaos in 
quantum systems. This has to do with the fact that there really is no analog of a clas­
sical trajectory in the quantum theory. In a classically chaotic system the "typical" 
trajectory eventually (that is, in the limit t -t oo) explores the entire available phase 
space, becoming infinitely convoluted. There is complexity at all Jevels of descrip­
tion. But quantum mechanics involves Planck's constant which has the units of phase 
space area, and through the uncertainty relations places a limit on the Jevel at which 
such structure can be resolved. Regions of the phase space get "smoothed over" so 
that the concept of complexity at infinitely fine scales has no meaning in quantum 
mechanics. These considerations have led a number of investigators to give up com­
pletely the idea of a chaotic time evolution in quantum mechanics . Instead, they 
focus attention on other phenomena that appear to correlate with classically chaotic 
motion. An influential Statement of this position is provided by Michael Berry: 

Although we do not have chaotic quantum evolution, we do have here a new 
quantum phenomenon that emerges in the serniclassical limit in systems that 
classically are chaotic .... (1987, p. 184.) 

In fact Berry is Jed to formulate the following definition, not of quantum chaos, but 
rather, of the study of this new type of phenomena-what he calls "quantum chaology." 

Definition. Quantum chaology is the study of semiclassical, but nonclassical, 
phenomena characteristic of systems whose classical counterparts exhibit 
chaos . (1989, p. 335.) 

There are a number of things going on in this definition, and the remainder of this 
paper will largely be an attempt to sort them out. 

3. Classical/Quantum Correspondences 

Berry's definition of quantum chaology focuses on systems whose classical coun­
terparts exhibit chaotic evolutions. lt seems then that one of the most important is­
sues requiring discussion is this notion of a "classical counterpart" of a system. 1 will 
take this up in detail in the next section. A second feature of the definition is that it 
refers to the semiclassical behavior of these systems with classically chaotic counter­
parts. This means that the systems are studied in the so-called semiclassical limit. 
This is the limit as Planck 's constant li goes to zero. Of course, since Planck's con­
stant is not a dimensionless parameter, this is really the limit in which Planck's con­
stant can be considered to be negligible in comparison with other quantities having 
the sarne dimensions; namely, the classical actions. We will need to try to further un­
derstand the nature of this Iimit. For now Jet me simply note that it must be distin­
guished from what we can call the "classical lirnit" in which 1i is identically equal 
to zero . This difference will be crucial to the argument Jater on. 

Berry considers several exarnples of the kinds of phenomena that get discussed at 
Quantum Chaos conferences as a way of showing that his definition of quantum 
chaology captures what is being studied. 1\vo such phenomena are the morphologies 
of wavefunctions and the statistical distributions of energy levels for bound systems. 
For example, it is apparently the case that probability distributions derived from 
wavefunctions of systems whose classical counterparts are chaotic are quite different 
in form than those whose classical counterparts are integrable. Likewise, energy lev­
els are characterized by different statistical distributions depending on the nature of 
the "corresponding" classical dynarnics . Berry argues that both sorts of phenomena 
are quantum theoretical as opposed to classical. ln the case of wave-functions this is, 
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he claims, because in the classical limit (i.e., when h = 0) waves would oscillate in­
finitely fast and so wavefunctions simply won't exist. Likewise, the distribution of 
energy levels is quantum mechanical and not classical because the energy in bound 
classical systems is a continuous variable-there are no discrete energy eigenvalues. 
He concludes his paper with the following statement: 

The spirit of the definition is not restrictive. Rather it is intended to reflect in a 
positive way what distinguishes quantum from classical chaology, namely seeking, 
discovering and explaining new phenomena which although semiclassically emer­
gent are neverthelessfally quantum mechanical. (1989, p. 336. My emphasis.) 

I disagree with this last claim. The phenomena being studied-the morphologies of 
wavefunctions and the statistical distributions of eigenvalues-are not classical . But 
this does not mean automatically that they are "fully quantum mechanical ." In fact , 1 
will try to show that there are very good reasons to assert that the phenomena being 
observed in the semiclassical limit are neither classical nor fully quantum mechanical 
in nature. In other words, I think that we do not really observe new quantum phenom­
ena in the semiclassical limit of systems whose classical counterparts are chaotic. 
Instead, we observe semiclassical phenomena. There is really a third theory involved 
here; and what is interesting and worthy of further philosophical investigation are the 
relations between it and both the classical and quantum theories. (An important ques­
tion is whether this semiclassical "theory" is genuine or realistic, or whether it is 
some kind of artifact of the mathematical and philosophical problem of understanding 
the connection(s) between classical and quantum mechanics.) 

Berry is correct in focusing on "the study of semiclassical .. . phenomena charac­
teristic of systems whose classical counterparts exhibit chaos." And, if we, with him 
want to call this "quantum chaology" that is perfectly fine. But, I think that the phe­
nomena being studied, the semiclassical, but nonclassical properties and behavior, are 
not quantum mechanical phenomena either. They are properties of semiclassical sys­
tems . I hope that the following discussion of the nature of semiclassical mechanics 
can be seen as supporting this point of view. 

To begin this discussion we need to get a better idea of the nature of semiclassical 
systems. In particular, what can be said about the type or types of correspondence 
that are said to obtain between these systems and their classical and quantum counter­
parts? lt is helpful in answering these questions to consider the quantum theory as it 
was before 1925 when Heisenberg published his matrix mechanics paper. This "old 
quantum theory" resulted from attempts to explain observed nonclassical phenomena, 
such as the existence of discrete spectral lines, by appealing to an apparently ad hoc 
mixture of "quantum" postulates and classical principles. lt is weil known that some 
of the quantum postulates were completely at odds with the classical theory. For ex­
ample, one of Bohr's boldest assumptions was that atomic systems could be found 
only in certain special states-the so-called stationary states characterized by a dis­
crete set of allowed energies. The postulate of the existence of stationary states is in 
direct contradiction with the principles of classical electrodynamics. Despite these 
conllicts, the basic idea was to characterize the behavior of atomic systems to as great 
an extent as possible using the principles of classical dynamics. 

This methodology proved remarkably successful in explaining the behavior of cer­
tain simple systems such as the hydrogen atom. Bohr, for instance, was able to derive 
a theoretical value for the Rydberg constant that was in remarkable agreement with 
the experimentally determined value. Nevertheless, it was soon noted that when ap-
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plied to atoms that are only slightly more complicated (the helium atom for instance), 
the theory was quite unsuccessful. 

lt was recognized very early on that the problems were largely dynamical in na­
ture. The old quantum theory appeared to give reasonable results for systems whose 
motions are periodic or multiply periodic-that is, for integrable systems. But it was 
a disaster when applied to nonintegrable systems. Thus the helium atom could not be 
effectively treated because it was modeled as a heavy nucleus with two orbiting elec­
trons-that is, as a classical three-body problem, a nonintegrable system. 
Considerations such as these led Born to remark in 1924 that 

. . . (T)he development of the quantum theory has shown that these [periodic and 
multiply periodic motions] probably exhaust the types of motions for which classi­
cal mechanics gives a valid description of the stationary states ... . (1967, p. 53.) 

With the development of contemporary quantum mechanics following 1925, Bohr's 
old quantum theory was superseded and the dynamical problems just mentioned were 
completely set aside. However, what is tcday known as semiclassical mechanics 
should be seen as a natural extension of the old quantum theory--one quite consonant 
with the aim of treating the behavior of atomic systems using classical mechanics to 
as great an extent as possible. Nevertheless, semiclassical mechanics also clearly and 
crucially draws on what we now know about quantum mechanics. 

lt is clear from this brief discussion of the old quantum theory that its success de­
pends somehow on an association or correspondence between certain features of the 
atomic system of interest and the dynamics of some classical system. Hans Radder 
has made a detailed and interesting study of the nature of the correspondence obtain­
ing between the classical theory and the old quantum theory. He finds that there are 
three periods in the historical development of the old quantum theory which can be 
identified by different uses or interpretations of the Correspondence Principle. In the 
first phase, from about 1913-1915 Bohr speaks of correspondence in terms of a "nu­
merical agreement of the values of some physical quantities in classical mechanics 
and electrodynamics andin Bohr's atomic theory." (Radder 1991, p. 203.) There was 
no claim during this period that any kind of conceptual continuity or correspondence 
between the two theories existed. However, the subsequent remarkable successes of 
the atomic theory in dealing with systems exhibiting multiply periodic motions led to 
the belief that there was more to the correspondence than simple numerical agreement 
in some restricted domain. In this second phase the correspondence was taken to be 
conceptual as well. For example, Kramers in 1919 (1956) argued for correspondence 
not just in the domain of !arge quantum numbers, but rather for all quantum numbers. 
Quantum frequencies were taken to be equivalent to certain averages over classical 
orbital frequencies. In Radder's words, "the same fundamental concepts [e.g. classi­
cal frequencies and harmonics, as weil as classical Fourier coefficients] which govem 
the motion of electrons in their orbits, and the same function .. . determining transi­
tion probabilities are claimed to underlie both kinds of theory." (Radder 1991, p. 206.) 

With the realization that Bohr's old quantum theory fails for all but the most sim­
ple atomic systems came the third phase in which the optimism that led to these 
claims of conceptual correspondence gave way to pessimism and ultimately to the 
complete abandonment of Bohr's conception of atomic systems. There remained a 
kind of numerical (and formal) correspondence in certain domains but the idea that 
the atomic theory, now weil on its way to being reconstructed by Heisenberg and oth­
ers, talked about the same sorts of entities and properties as did the classical theory 
was completely abandoned. 
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What I want to claim now is that with respect to modern semiclassical mechanics 
the situation is different Radder is correct in identifying three separate theories as rele­
vant for consideration: (1) classical mechanics and electrodynamics, (2) Bohr's atomic 
or "old" quantum theory, and (3) modern quantum mechanics. But what needs to be 
recognized is that just as in the historical discussion he offers, any modern discussion of 
the correspondence between classical and quantum mechanics also needs to consider 
relations of correspondence between three separate theories; between both the classical 
and semiclassical theories, and between the semiclassical and quantum theories. I 
would contend that in the latter case, a certain conceptual correspondence obtains even 
though the two theories must be understood as distinct. These, I believe, are all issues 
that are worthy of further investigations. Here 1 can only outline why 1 think this is so. 

4 . The Classical Counterpart of a Quantum System 

I would now like to discuss a plausible elucidation of the counterpart relation that ap­
pears in Berry's definition of quantum chaology. lt will give us some insight into the na­
ture of the systems studied in quantum chaology as weil as some clues about why differ­
ent types of classical motions (integrable or chaotic) can be said to correspond to differ­
ent morphologies in wavefunctions and different statistical distributions of energy levels. 

The idea of a classical counterpart depends crucially on geometric aspects of the 
classical phase space-3 For the purposes of discussion we will consider a one degree 
of freedom bound system-an oscillator. (This is analogous to Bohr's early under­
standing and treatrnent of the hydrogen atom.) Let us consider this system at a partic­
ular constant energy. Then the phase space diagram for the system at that energy may 
look like the curve L in figure 1. 

p 

Figure 1. Level Curve I: of a one dimensional oscillator. 

The classical state of the system at a given time is specified by giving both the po­
sition q and the momentum p. The state of a quantum system at a given time will, we 
know, be specified by a wavefunction 'I' (q). We would like to associate a wavefunc­
tion with the one dimensional surface or curve :E. 

The immediate problem is that quantum states makes reference only to the posi­
tion coordinate q, apparently ignoring the other conjugate half, p, of the full set of co­
ordinates (q,p). We can treat the curve Las a function p(q) in analogy with the wave­
function 'I' (q). However, it is quite apparent that such a "function" would generally 
have more that one value for a given value q. (See figure 2.) 
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p 

Figure2. 

We can get around this problem by splitting I. into two branches, one upper where 
p(q)>O and one Jower where p(q)<O. lt now becomes possible to consider each 
branch as a single-valued function of the variable q: p1 (q) and p2(q). The idea is to 
construct a wave l/f,(q) associated with p1(q) and a second wave l/f,(q) associated 
with P2(q). The superposition of these two waves will then give us the appropriate 
wavefunction associated with the entire surface I.. 

1\vo physical principles guide us in selecting the appropriate form for these wave­
functions . First note that the phase curve I. represents a farnily of trajectories uni­
formly distributed around I., each point being an initial condition for a different trajec­
tory. (Actually, in this one dimensional case each trajectory is equivalent to the curve 
.E.) We would like the intensity of the wave to be proportional, in some sense, to the 
density of points or trajectories in the classical coordinate space q. I f e is a variable 
(an angle variable) that parameterizes the points along I., this density of classical 
points can begatten by "projecting down" r%J from I. onto q. (See figure 3.) 

p 

q 

Ftgure 3. 

The result of the projection looks something like figure 4. Note that this classical 
density curve has a minirnum where the phase space curve in figure 3 is horizontal 
and rises asymptotically as the phase curve approaches the vertical . This is reason­
able if one considers the amount of time the representative point travelling along the 
curve spends in these neigborhoods. When the point is in the neigborhood of q=O, it 
has maximum momentum p, hence maxirnum velocity and spends relatively little 
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time in that neighborhood. Therefore, the density should be at a minimum there. 
Conversely, near the classical turning points q- and q+ the velocity is at a minimum 
and therefore the point spends relatively more time in those neighborhoods. So the 
density should be higher near those values for q. 

1~~1 - 1~d 

q- q 

Figure4. 

But at the classical turning points q- and q+, the projection r%J and hence, the 
density actually becomes infinite. These singularities are called caustics. (In higher 
dimensions they can take on a variety of different forms more complicated than the 
simple points in this example. These different forms can be classified by Rene 
Thom 's catastrophe theory.) The existence and structure of the caustics are crucial el­
ements in determining the form of the wavefunction associated with the surface 1:. 

The second guiding physical principle involves determi_!ling the phase of the wave­
function. Here one appeals to the de Broglie relation p = nk that relates the classical 
momentum to the wave vector of a locally plane wave. This introduces Planck's con­
stant and has the effect of adding an oscillatory structure to the smooth classical back­
ground depicted in figure 4. The full construction yields a probability density !'1'11 

as 
shown in figure 5. The classical projection of figure 4 acts as the smooth envelope for 
the semiclassical oscillations. 

q 

Figure 5. 
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Because of the singularity in the projection at the caustics, the construction just de­
scribed actually breaks down in their neighborhood. In fact, there is a simple geomet­
ric criterion for detennining the neighborhood in which the breakdown occurs. 
Consider fi gure 6. When the area enclosed by :E and the the line q=q' is on the order 
of ll the semiclassical fonnula breaks down and some way of dealing with the infini­
ti es becomes necessary. 

p 

P/q') Area = Ti 
~--t----

q 

Figure 6. 

There is a wonderful solution to this problem due to the Russian mathematician V. 
P. Maslov. (See Maslov, V. P. and Fedoriuk, M. V. (1981).) The idea roughly is to re­
quire that the association between waves and surfaces holds for momentum as well as 
position. In particular, we can, via a similar construction , come up with a momentum 
wavefunction 'l'(p) that will be valid in the neighborhood of the q-caustic (q+). This 
is possible because :Eis a smooth surface and cannot have points which would yield 
singular projections onto both the q and the p axes. One can then define the q-wave­
function in the bad neighborhood near the q-caustic to be the Fourier transfonn of the 
well-behaved p-wavefunction in that neighborhood. 

So, we have succeeded in associating a wavefunction 'l'(q) with a phase space sur­
face . The main question is why the association should be appropriate. Figure 7, helps 
to illustrate why. 

Schrödinger 

'1'( q) 
Evolutwn 

'I' l ( q) 

t t 
:E 

Hamiltonian 
:Ei 

Evolution 

Figure 7. 

Let :E be an initial classical surface which evolves in time 6t into Li according to the 
classical Hamiltonian equations of motion. If 'l'(q) is the initial wavefunction associ­
ated with :E via the construction outlined above, then it will evolve in the same time 
interval into the wavefunction 'I' (q) according to the Schrödinger equation. The 
point is that in the semiclassical }imit the association persists in time, so that the time 
evolved wavefunction '1'1(q) can be determined from the time evolved surface Li by 
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the same recipe originally used to construct ljl(q) from :E. In other words, if we solve 
the Schrödinger equation asymptotically to lowest order in 1i , we see that the associ­
ation of the wave with the surface is time translation invariant. 

A few remarks on this construction are in order. If the surface :Eis an invariant sur­
face (that is, ü under the Harniltonian evolution it remains unchanged) then the corre­
sponding wavefunction can represent a stationary state. In fact, it will represent a sta­
tionary state ü the phase space area enclosed by the curve is an integral multiple of 1i. 
This is exactly the quantization rule discovered by Bohr et al . in the early days of the 
old quantum theory. So, our construction includes the associations with classical mo­
tions discovered in the old quantum theory. But, the current theory is much more gen­
eral. lt allows for the possibility of studying nonstationary or evolving states of "inte­
grable" systems. Furthermore, because the construction depends only on the ability to 
identify a particular kind of surface in the phase space (a so-called Lagrangian surface), 
it also suggests the possibility of studying wavefunctions that are associated with clas­
sical surfaces that evolve chaotically. 1 do not, however, want to give the impression 
that this is by any means a simple task. In fact, because of the difficulties 1 am about to 
describe, there is, as of now, no general theory of the form of serniclassical wavefunc­
tions for chaotic systems. Nevertheless, the little that is known suffices to suggest some 
general differences in the structure of wavefunctions of systems whose classical coun­
terparts are integrable and those whose counterparts are chaotic. 

Suppose the original curve :Eis not an invariant of the Harniltonian evolution. Then 
it will evolve over time .1t into a new curve Li which, since the Harniltonian evolution 
is measure preserving, will enclose the same area as the original curve I:. Tue shape of 
the new curve depends crucially on the type of motion (integrable or chaotic) under 
which its points evolve. There are basically two distinct morphologies for the evolution 
of !-dimensional surfaces or curves. (In systems with more degrees of freedom-that 
is, with higher dimensional phase spaces-things are more complex.) Noninvariant 
curves evolving under integrable motion exhibit what Berry calls whorls; whereas those 
curves that suffer chaotic evolution develop tendrils. (Berry, et al . (1979), pp. 39ff.) 

t=O t=S t=10 

t =15 t=20 

Figure 8. Development of a Whorl 

Examples of whorls and tendrils can be seen, respectively, in figures 8 and 9. In the 
case of a whorl the curve :E lies in a region surrounding an elliptic ftxed point of the 
evolution. This is a region in phase space that contains stable trajectories that typically 
exhibit no more than linear separation from neighboring trajectories. Tendrils, on the 
other hand, develop when the initial curve :E lies in a chaotic region near a hyperbolic 
ftxed point. In such regions trajectories can be exponentially unstable. Since the area 
enclosed by the curve cannot change during evolution, it will develop lang thin branch­
es that swing violently back and forth as they are affected by the complex phase space 
structure associated with the presence of hyperbolic ftxed points. One measure of the 
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difference in complexity of whorls and tendrils is the rate of increase in the length of 
the curves Li under continuing evolution. For whorls it is expected that the curve's 
Iength will grow Iinearly with time, while for tendrils exponential growth is expected. 

Figure 9. Development of Tendrils 
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lt should be evident that both sorts of evolutions can lead to the development of 
more caustics. In the case of whorls it will generally be possible (that is, at least for 
reasonable tirnes) to construct wavefunctions according to the recipe outlined above 
using Maslov's method to patch up the wavefunction at the caustics. However, for the 
chaotic evolutions that yield tendrils, caustics will proliferate rapidly. As soon as most 
caustics begin clustering on scales of order 11, the singularities can no longer be dealt 
with. The wavefunction will have undergone a transition to a new regime (a change in 
morphology)-cne in which it can no longer be represented by superpositions of con­
tributions from simple single-valued surfaces. The conjecture, which is quite weil sup­
ported by computations, is that the semiclassical probability density will also undergo a 
change in morphology: For regular systems, the probability will be concentrated near 
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the caustics which mark the spatial boundaries of the classical motion; but, for chaotic 
systems the probability density will actually fall off in the neighborhood of the classical 
boundaries. Corresponding to these different regimes associated with integrable and 
with chaotic classical behavior one also notes two different roles played by Planck's 
constant: In the integrable regime h adds oscillatory detail onto the smooth classical 
structure as we saw in figure 5. However, in the chaotic regime n plays a smoothing 
role, which in effect, wipes out the more detailed classical structure. 

5. Semiclassical Mechanics 

The apparent physical significance of the correspondence of wavefunctions with 
classical surfaces-what l have called the counterpart relation-<lepends in !arge part 
on the time translation invariance of the construction as illustrated in figure 7. In the 
case of integrable evolution on surfaces which are invariants of the Harniltonian, this 
construction persists indefinitely, and this is one major reason behind the successes of 
the old quantum theory. For noninvariant surfaces of integrable systems, and more 
importantly, for surfaces evolving under chaotic Harniltonians, the time translation in­
variance breaks down rapidly as we have seen. But this breakdown itself, as 1 have 
tried to argue, appears tobe explicable at least qualitatively in terms of the prolifera­
tion of caustics, and this fact too supports the claim that the counterpart relation has 
physical significance. Thus, the construction does appear to be more than an artifact 
of the problem of understanding the classical/quantum connections. 

So, to return to the question of classical/quantum correspondence once again, have 
we finally been able to illuminate a meaningful direct correspondence or connection 
between classical and quantum mechanics? Unfortunately, the answer is "no." There 
are two reasons for this, one having to do with a failure at the "quantum end," the 
other with a failure at the "classical end." Consider the quantum failure fust. 

The construction, as 1 have noted, persists over time (to the extent that it does) 
only in the semiclassical limit as n ~o . In quantum mechanics, on the other hand, h 
is !arge relatively speaking. lt acts as a smoothing parameter that tends to obscure de­
tailed classical phase space structure. So, the semiclassical limit is the limit in which 
quantum considerations become negligible; whereas quantum mechanics proper is 
supposed to reign over the domain in which Planck's constant cannot be considered 
negligible. There is something almest magical going on here. We introduced the 
quantum of action h through the de Broglie relation when we constructed the wave­
function yr(q) associated with the surface L. However, for the construction tobe 
physically relevant-for the time translation invariance to hold-we must take the 
limit as h ~O. In some sense we try to throw away the quantum element that was 
just introduced. So how can it be true, as Berry claims, that the phenomena being 
studied are "/ ully quantum mechanical"? 

The magic comes because something is left after the Iimit gets taken, and it is this 
remainder that constitutes the problem with the "classical end." When the Iimit is 
taken we do not simply recover the classical behavior that we started with since, as 
Berry notes, we are still talking about wavefunctions and discrete energy levels. And, 
these are definitely not classical dynamical concepts. The reason for the remainder is 
the singular nature or nonanalyticity of the h=O, classical Jimit. Roughly, this means 
that quantum mechanics is not, for instance, like the special theory of relativity. That 
theory can mathematically and straightforwardly be related by perturbation to classi­
cal mechanics with the introduction of the dimensionless factor (v/c)2 as a perturba­
tion parameter (relative velocity of the coordinate frames/speed of light)2. In the pre­
sent case, h cannot play an analogous role as a perturbation parameter. In other 

https://doi.org/10.1017/S0270864700009188 Published online by Cambridge University Press

https://doi.org/10.1017/S0270864700009188


63 

words, one simply cannot compute "quantum mechanical quantities as classical quan­
tities plus an expansion of corrections in powers of li." (Tabor 1989, pp. 229-230.) 
So, while the first "quantum reason" leads us to conclude that the phenomena being 
studied are not genuinely or fully quantum mechanical, this second problem relating 
to the nature of the limit suggests that they cannot be taken tobe classical either. In 
constructing a physically significant association between wavefunctions and classi­
cal surfaces, we have not established a direct correspondence or connection between 
classical and quantum mechanics. (Incidentally, 1 think that this difference in the na­
ture of the limiting relationships between on the one hand, quantum and classical me­
chanics and special relativity and classical mechanics on the other, is crucial for a 
proper understanding of a kind of intertheoretic reduction. However it is a difference 
which has, 1 believe, been insufficiently emphasized in the literature.)4 

Given all of this, it seems quite reasonable to conclude that what is being studied 
and discussed at Quantum Chaos conferences is some third domain of behavior; name­
ly, the semiclassical. To put the point rather picturesquely, semiclassical mechanics is 
the theory of the asymptotic border zone between quantum and classical mechanics. 
Many physicists and chemists appear to take semiclassical results to be more than just 
approximate solutions to quantum mechanical problems. In particular, they take the re­
sults tobe genuinely explanatory and to further our understanding of a certain class of 
physical phenomena. Consider, as just one example, the following quote. In a discus­
sion of the nature of semiclassical methods in chemical physics, W. H. Miller notes 

Semiclassical theory plays an interpretive role; that is, it provides an understand­
ing of the nature of quantum effects in chemical phenomena, such as interference 
effects in product state distributions and tunneling corrections to rate constants 
for chemical reactions . . .. The glory effect (an interference feature in the ener­
gy-dependence of total cross sections), for example, was first seen in completely 
quantum mechanical scattering calculations, but was not understood until its 
semiclassical origin was realized.( Miller 1986, p. 171. My emphasis.) 

This quote not only suggests that semiclassical mechanics should be considered tobe a 
theory in its own right separate from both classical and quantum mechanics, but it also 
suggests that there may be quite interesting correspondences between semiclassical and 
quantum mechanics. 1 would want to argue that a full understanding of the connections 
between classical and quantum mechanics requires studying the nature of the corre­
spondences between, on the one hand, classical and semiclassical mechanics and, on 
the other, semiclassical and quantum mechanics. Regarding the latter semiclassical/ 
quantum correspondence, it seems reasonable, in light of the above discussion, to argue, 
using Radder's terminology, that some kind of conceptual correspondence obtains. The 
modern semiclassical theory, unlike its predecessor, Bohr's old quantum theory, talks 
about wavefunctions, energy spectra, etc.-just the concepts that play a prominent role 
in modern quantum mechanics. While Radder appears to be correct in denying concep­
tual correspondence between classical mechanics and the new quantum mechanics as 
1i -+0 (Radder 1991, p. 209), such correspondence does exist between the semiclassical 
descendant of the old quantum theory and the new quantum theory. 

The idea is that the semiclassical/quantum correspondence is something consider­
ably more than just formal or numerical correspondence in certain domains of appli­
cation. While the semiclassical theory may be incapable of yielding all the details of 
the quantum theory, it is more than a method for yielding approximate solutions to 
quantum mechanical problems. Infocusing on an urulerlying classical structure (the 
behavior of families of trajectories or surfaces), it is apparently describing some­
thing real that tends tobe obscured by the quantum theory. Perhaps one way to un-
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derstand this is the following . In taking the 1i ~O limit we are essentially ignoring 
the dispersion typically associated with quantum evolutions; and in so doing, we are 
clearly idealizing. But, rather than obscuring the genuine mechanisms at work, this 
idealization actually brings them into focus. 

Finally, there is a hope that further study of the nature of chaotic wavefunctions 
will lead to a general semiclassical theory comparable to that which exists for the in­
tegrable case. When that happens it may not be too far-fetched to suggest that it could 
lead to an extension or partial revision of quantum mechanics making it explicitly ca­
pable of incorporating the ubiquitous chaotic behavior present in the world . 

Notes 

1 For helpful comments and discussions on earlier versions of this paper 1 would 
like to thank Roger Jones, Jim Joyce, Ron Laymon, Joe Mendola, and Mark Wilson. 
This work was supported by the National Science Foundation under Grant No. SBE-
9211983. 

2There are however, some integrable systems whose equations of motion are not 
separable, and which therefore do not easily !end themselves to integration by quadra­
tures . The Toda lattice in an important example. 

3for a more detailed and technical discussion than what follows here see Berry 
1983 and the references therein. 

4for a discussion of this see Batterman 1993. 
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