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OPTIMAL MULTIPLE STOPPING PROBLEM UNDER NONLINEAR
EXPECTATION
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Abstract

In this paper, we study the optimal multiple stopping problem under the filtration-
consistent nonlinear expectations. The reward is given by a set of random variables
satisfying some appropriate assumptions, rather than a process that is right-continuous
with left limits. We first construct the optimal stopping time for the single stopping prob-
lem, which is no longer given by the first hitting time of processes. We then prove by
induction that the value function of the multiple stopping problem can be interpreted
as the one for the single stopping problem associated with a new reward family, which
allows us to construct the optimal multiple stopping times. If the reward family satisfies
some strong regularity conditions, we show that the reward family and the value func-
tions can be aggregated by some progressive processes. Hence, the optimal stopping
times can be represented as hitting times.
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1. Introduction

The optimal single stopping problem, under both uncertainty and ambiguity (or Knightian
uncertainty, especially drift uncertainty), has attracted a great deal of attention and been
well studied; we may refer to the papers [1], [2], [6], [17]. Consider a filtered probability
space (�,F , {Ft}t∈[0,T], P) satisfying the usual conditions of right-continuity and complete-
ness. Given a nonnegative and adapted reward process {Xt}t∈[0,T] with some integrability and
regularity conditions, we then define

V0 = sup
τ∈S0

E[Xτ ],

where S0 is the collection of all stopping times taking values between 0 and T . The operator
E[·] corresponds to the classical expectation E[·] when the agent faces only risk or uncertainty
(i.e., he does not know the future state, but knows exactly the distribution of the reward pro-
cess), while it corresponds to some nonlinear expectation if ambiguity is taken into account
(i.e., the agent does not even have full confidence about the distribution). In both situations,
the main objective is to compute the value V0 as explicitly as possible and find some stopping
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time τ ∗ at which the supremum is attained, that is, V0 = E[Xτ∗ ]. For this purpose, consider the
value function

Vt = ess sup
τ∈St

Et[Xτ ],

where St is the set of stopping times greater than t. Assuming some regularity of the reward
family {Xt}t∈[0,T] and some appropriate conditions on the nonlinear conditional expectation
Et[·], we prove that the process {Vt}t∈[0,T] admits a modification that is right-continuous with
left limits (RCLL), which, for simplicity, is still denoted by {Vt}t∈[0,T]. Furthermore, the
stopping time given in terms of the first hitting time

τ = inf{t ≥ 0 : Vt = Xt}
is optimal, and {Vt}t∈[0,T] is the smallest E-supermartingale (which reduces to the classical
supermartingale when E[·] is the linear expectation) dominating the reward process {Xt}t∈[0,T].
One of the most important applications of the single optimal stopping problem is pricing for
American options.

Motivated by the pricing for financial derivatives with several exercise rights in the
energy market (swing options), one needs to solve an optimal multiple stopping problem.
Mathematically, given a reward process {Xt}t∈[0,T], if an agent has d exercise rights, the price
of this contract is defined as follows:

v0 = sup
(τ1,··· ,τd)∈S̃d

0

E

[
d∑

i=1

Xτi

]
.

To avoid triviality, we assume that there exists a constant δ > 0, which represents the length of
the refracting time interval, such that the difference of any two successive exercises is greater
than δ. Therefore, S̃d

0 is the collection of stopping times (τ1, · · · , τd) such that τ1 ≥ 0 and
τj − τj−1 ≥ δ, for any j = 2, · · · , d. There are several papers concerning this kind of problem.
To name a few, [3] and [16] mainly deal with the discrete-time case, focusing on the Monto
Carlo methods and algorithm, while [5] investigates the continuous-time case, allowing the
time horizon to be either finite or infinite. It is worth pointing out that none of the existing
literature considers the multiple stopping problem under Knightian uncertainty.

In fact, to make the value function well-defined for both the single and the multiple stopping
problem, the reward can be given by a set of random variables {X(τ ), τ ∈ S0} satisfying some
compatibility properties, which means that we do not need to assume that the reward family
can be aggregated into a progressive process. Under this weaker assumption on the reward
family, [8] and [15] establish the existence of the optimal stopping times for the single stopping
problem and multiple stopping problem, respectively. Without aggregation of the reward family
and the value function, the optimal stopping time is no longer given by the first hitting time of
processes but by the essential infimum over an appropriate set of stopping times.

In the present work, we study the multiple stopping problem under Knightian uncertainty
without the requirement of aggregation of the reward family. We will use the filtration-
consistent nonlinear expectations established in [1] to model Knightian uncertainty. First, we
focus on the single stopping problem. Similarly as in the classical case, the value function
is a kind of nonlinear supermartingale which is the smallest one dominating the reward fam-
ily. Furthermore, the value function has the same regularity as the reward family in the single
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stopping case. Applying an approximation method, we prove the existence of the optimal stop-
ping times under the assumption that the reward family is continuous along stopping times
under nonlinear expectation (see Definition 3.3). It is important to note that in proving the
existence of optimal stopping times, we need the assumption that the nonlinear expectation
is sub-additive and positive homogenous, which is to say that the nonlinear expectation is an
upper expectation. Hence, this optimal stopping problem is in fact a ‘supτ supP’ problem.

For the multiple stopping case, one important observation is that the value function of the
d-stopping problem coincides with that of the single stopping case corresponding to a new
reward family, where the new reward family is given by the maximum of a set of value func-
tions associated with the (d − 1)-stopping problem. Therefore, we may construct the optimal
stopping times by an induction method, provided that this new reward family satisfies the con-
ditions under which the optimal single stopping time exists. The main difficulty in this problem
is due to some measurability issues. To overcome this difficulty, we need to slightly modify the
reward family to a new one and to establish the regularity of the induced value functions.

Recall that in [2] and [6], for the single stopping problems under Knightian uncertainty, the
reward is given by an RCLL adapted process, and the optimal stopping time can be represented
as a first hitting time, which provides an efficient way to calculate an optimal stopping time.
In our setting, if the reward family satisfies some stronger regularity conditions than those
required in the existence result, we can prove that the reward family and the associated value
function can be aggregated into some progressively measurable processes. Therefore, in this
case, the optimal stopping times can be interpreted in terms of hitting times of processes.

The paper is organized as follows. We first recall some basic notation and results about the
F-expectation in Section 2. In Section 3, we investigate the properties of the value function and
construct the optimal stopping times for the optimal single stopping problem under nonlinear
expectations. Then we solve the optimal double stopping problem under nonlinear expectations
in Section 4. In Section 5 we study some aggregation results when the reward family satisfies
some strong regularity conditions, and then interpret the optimal stopping times as the first
hitting times of processes. The optimal d-stopping problem appears in the appendix.

2. F-expectations and their properties

In this paper, we fix a finite time horizon T > 0. Let (�,F , P) be a complete probability
space equipped with a filtration F= {Ft}t∈[0,T] satisfying the usual conditions of right-
continuity and completeness. We denote by L0(FT ) the collection of all FT -measurable random
variables. We first recall some basic notation and properties of the so-called F-expectation
introduced in [1]. Roughly speaking, the F-expectation is a nonlinear expectation defined on a
subspace of L0(FT ) which satisfies the following algebraic properties.

Definition 2.1. Let DT denote the collection of all non-empty subsets � of L0(FT ) satisfying
the following:

(D1) 0, 1 ∈ �;

(D2) for any ξ, η ∈ � and A ∈FT , both ξ + η and IAξ |ξ | belong to �;

(D3) for any ξ, η ∈ L0(FT ) with 0 ≤ ξ ≤ η, almost surely (a.s.), if η ∈ �, then ξ ∈ �.

Definition 2.2. ([1]) An F-consistent nonlinear expectation (F-expectation for short) is a
pair (E, �) in which � ∈ DT and E denotes a family of operators {Et[·] : � �→ �t := � ∩
L0(Ft)}t∈[0,T] satisfying the following hypotheses for any ξ, η ∈ � and t ∈ [0, T]:
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(A1) Monotonicity (positively strict): Et[ξ ] ≤ Et[η] a.s. if ξ ≤ η a.s. Moreover, if 0 ≤ ξ ≤ η

a.s. and E0[ξ ] = E0[η], then ξ = η a.s.

(A2) Time-consistency: Es[Et[ξ ]] = Es[ξ ], a.s., for any 0 ≤ s ≤ t ≤ T .

(A3) Zero–one law: Et[ξ IA] = Et[ξ ]IA, a.s., for any A ∈Ft.

(A4) Translation-invariance: Et[ξ + η] = Et[ξ ] + η, a.s., if η ∈ �t.

Example 2.1. The following pairs are F-expectations:

(1)
({Et[·]}t∈[0,T], L1(FT )

)
: the classical expectation E.

(2)
({Eg

t [·]}t∈[0,T], L2(FT )
)
: the g-expectation with Lipschitz generator g(t, z) which is

progressively measurable and square-integrable, and which satisfies g(t, 0) = 0 (see
[2], [7]).

(3)
({Eg

t [·]}t∈[0,T], Le(FT )
)
: the g-expectation with convex generator g(t, z) hav-

ing quadratic growth in z and satisfying g(t, 0) = 0, where Le(FT ) := {ξ ∈
L0(FT ) : E[exp (λ|ξ |)] < ∞, ∀λ > 0} (see [2]).

(4) Let P be a set of probability measures satisfying the following conditions:

(i) For any Q ∈P , Q is equivalent to P and the density process is bounded away from
zero by a constant.

(ii) Let Qi ∈P with density process
{
qi

t

}
t∈[0,T], i = 1, 2. Fix a stopping time τ . Define

a new measure Q with density process {qt}t∈[0,T], where

qt =
⎧⎨⎩q1

t , 0 ≤ t ≤ τ ;

q1
τ q2

t
q2
τ

, τ < t ≤ T .

Then we have Q ∈P .
For any ξ ∈ L2(FT ), set

Et[ξ ] = ess inf
Q∈P

E
Q
t [ξ ].

Then
({Et[·]}t∈[0,T], L2(FT )

)
is an F-expectation. Actually, this kind of nonlinear expec-

tation can be regarded as a coherent risk measure. More examples can be found
in [11].

The pair ({E t[·]}, Dom(E)) is almost an F-expectation, where

E t[ξ ] := ess inf
i∈I

E i
t [ξ ]

and {E i}i∈I is a stable class of F-expectations (for the definition of stable class, we may refer
to Definition 3.2 in [1]). By Proposition 4.1 in [2], the family of operators {E t[·]}t∈[0,T] satisfies
(A2)–(A4) in Definition 2.2 as well as

E t[ξ ] ≤ E t[η], a.s., for any ξ, η ∈ Dom(E) with ξ ≤ η a.s.

That is to say, the nonlinear operator E t[·] preserves all of the properties (A1)–(A4) except the
strict comparison property.
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For notational simplicity, we will substitute E[·] for E0[·]. We denote the domain � by
Dom(E) and introduce the following subsets of Dom(E):

Domτ (E) := Dom(E) ∩ L0(Fτ ), ∀τ ∈ S0,

Dom+(E) := {ξ ∈ Dom(E) : ξ ≥ 0, a.s.},
Domc(E) := {ξ ∈ Dom(E) : ξ ≥ c, a.s., for some c ∈R}.

Definition 2.3. ([1].)

(1) An F-adapted process X = {Xt}t∈[0,T] is called an E-process if Xt ∈Dom(E), for any t ∈
[0, T].

(2) An E-process is said to be an E-supermartingale (resp. E-martingale, E-submartingale)
if for any 0 ≤ s ≤ t ≤ T , Es[Xt] ≤ (resp. =, ≥) Xs, a.s.

For any F-adapted process X, its right-limit process is defined as follows:

X+
t := lim inf

n→∞ Xq+
n (t), for any t ∈ [0, T],

where q+
n (t) = [2nt]

2n T . Let X be an E-process. For any stopping time τ ∈ SF
0 , where SF

0 is the
collection of all stopping times taking values in a finite set, by Condition (D2) in Definition 2.1,
it is easy to check that Xτ ∈Domτ (E). For any ξ ∈Dom(E),

{
Xξ

t
}

t∈[0,T] is an E-process,

where Xξ
t = Et[ξ ]. Therefore, for any τ ∈ SF

0 , we may define an operator Eτ [·] : Dom(E) �→
Domτ (E) by

Eτ [ξ ] := Xξ
τ , for any ξ ∈ Dom(E).

In order to make the operator Eτ [·] well-defined for any stopping time τ , we need to put the
following hypotheses on the F-expectation and the associated domain Dom(E):

(H0) For any A ∈FT with P(A) > 0, we have limn→∞ E[nIA] = ∞.

(H1) For any ξ ∈ Dom+(E) and any {An}n∈N ⊂FT with limn→∞ ↑ IAn = 1, a.s., we have
limn→∞ ↑ E[ξ IAn] = E[ξ ].

(H2) For any ξ, η ∈ Dom+(E) and any {An}n∈N ⊂FT with limn→∞ ↓ IAn = 0, a.s., we have
limn→∞ ↓ E[ξ + ηIAn] = E[ξ ].

(H3) For any ξ ∈ Dom+(E) and τ ∈ S0, Xξ,+
τ ∈ Dom+(E).

(H4) Dom(E) ∈ D̃T := {� ∈ DT : R⊂ �}.
Example 2.2. The F-expectations (1)–(3) listed in Example 2.1 satisfy (H0)–(H4).

Under the above assumptions, [1] shows that the process
{
Xξ,+

t
}

t∈[0,T] is an RCLL modifi-

cation of
{
Xξ

t
}

t∈[0,T] for any ξ ∈ Dom+(E). Then for any stopping time τ ∈ S0, the conditional

F-expectation of ξ ∈ Dom+(E) at τ is given by

Ẽτ [ξ ] := Xξ,+
τ .

It is easy to check that Ẽτ [·] is an operator from Dom+(E) to Dom+(E)τ := Dom+(E) ∩
L0(Fτ ). Furthermore,

{Ẽt[·]
}

t∈[0,T] defines an F-expectation and for any ξ ∈ Dom+(E),
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{Ẽt[ξ ]
}

t∈[0,T] is an RCLL modification of {Et[ξ ]}t∈[0,T]. For simplicity, we still denote Ẽt[·]
by Et[·], and it satisfies the following properties.

Proposition 2.1 ([1].) For any ξ, η ∈ Dom+(E) and τ ∈ S0, the following hold:

(1) Monotonicity (positively strict): Eτ [ξ ] ≤ Eτ [η] a.s. if ξ ≤ η a.s. Moreover, if Eσ [ξ ] =
Eσ [η] a.s. for some σ ∈ S0, then ξ = η a.s.

(2) Time-consistency: Eσ [Eτ [ξ ]] = Eσ [ξ ], a.s., for any τ, σ ∈ S0 with σ ≤ τ .

(3) Zero–one law: Eτ [ξ IA] = Eτ [ξ ]IA, a.s., for any A ∈Fτ .

(4) Translation-invariance: Eτ [ξ + η] = Eτ [ξ ] + η, a.s., if η ∈ Dom+
τ (E).

(5) Local property: Eτ [ξ IA + ηIAc] = Eτ [ξ ]IA + Eτ [η]IAc , a.s., for any A ∈Fτ .

(6) Constant-preserving: Eτ [ξ ] = ξ , a.s., if ξ ∈ Dom+
τ (E).

Proposition 2.2 ([1].) Let X be a nonnegative E-supermartingale. Then we have the following:

(1) Assume either that ess supt∈IXt ∈ Dom+(E) (where I is the set of all dyadic rational
numbers less than T) or that for any sequence {ξn}n∈N ⊂ Dom+(E) that converges a.s.
to some ξ ∈ L0(FT ),

lim inf
n→∞ E[ξn] < ∞ implies ξ ∈ Dom+(E).

Then for any τ ∈ S0, X+
τ ∈ Dom+(E).

(2) If X+
t ∈ Dom+(E) for any t ∈ [0, T], then X+ is an RCLL E-supermartingale such that

for any t ∈ [0, T], X+
t ≤ Xt, a.s.

(3) Moreover, if the function t �→ E[Xt] from [0, T] to R is right-continuous, then X+ is an
RCLL modification of X. Conversely, if X has a right-continuous modification, then the
function t �→ E[Xt] is right-continuous.

Fatou’s lemma and the dominated convergence theorem still hold for the conditional
F-expectation Eτ [·].
Proposition 2.3 ([1].) Let {ξn}n∈N ⊂ Dom+(E) converge a.s. to some ξ ∈ Dom+(E). Then for
any τ ∈ S0, we have

Eτ [ξ ] ≤ lim inf
n→∞ Eτ [ξn].

Furthermore, if there exists an η ∈ Dom+(E) such that ξn ≤ η a.s. for any n ∈N, then the limit
ξ ∈ Dom+(E), and for any τ ∈ S0 we have

Eτ [ξ ] = lim
n→∞ Eτ [ξn].

Throughout this paper, we assume that the F-expectation satisfies the hypotheses (H0)–(H4)
and the following condition:

(H5) If the sequence {ξn}n∈N ⊂ Dom+(E) converges to ξ ∈ L0(FT ) a.s. and satisfies
lim infn→∞ E[ξn] < ∞, then we have ξ ∈ Dom+(E).
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This assumption is mainly used to prove the following lemma.

Lemma 2.1. Let 
 be a subset of Dom+(E). Suppose that supξ∈
 E[ξ ] < ∞. Set η =
ess supξ∈
ξ . Then we have η ∈ Dom+(E).

Proof. By the definition of essential supremum, there exists a sequence {ξn}n∈N ⊂ 
 such
that ξn → η a.s. Since lim infn→∞ E[ξn] ≤ supξ∈
 E[ξ ] < ∞, Assumption (H5) implies that
η ∈ Dom+(E). �
Remark 2.1. The classical expectation naturally satisfies Assumption (H5), by Fatou’s lemma.
Consider the g-expectation introduced in Example 2.1(2). If we additionally assume that the
function g is convex in its second component, we may check that Fatou’s lemma still holds
for the g-expectation (see Proposition A.1 in [10]). Hence, in this case, Assumption (H5) is
fulfilled. However, for some other g-expectations, Assumption (H5) may not hold. We refer to
Example 5.1 in [2] as a counterexample.

Remark 2.2. By Corollary 2.2 and Propositions 2.7–2.9 in [1], all the properties in this section
still hold for the random variables in Domc(E).

3. The optimal single stopping problem under nonlinear expectation

In this section, we study the optimal single stopping problem under the F-expectation.
Throughout this paper, for each fixed stopping time τ , Sτ represents the collection of all stop-
ping times taking values between τ and T . We now introduce the definition of an admissible
family, which can be interpreted as the payoff process in the classical case.

Definition 3.1. A family of random variables {X(τ ), τ ∈ S0} is said to be admissible if the
following conditions are satisfied:

(1) For all τ ∈ S0, X(τ ) ∈ Dom+
τ (E).

(2) For all τ, σ ∈ S0, we have X(τ ) = X(σ ) a.s. on the set {τ = σ }.
Remark 3.1. Since the F-expectation is translation-invariant, all the results in this paper still
hold if the family of random variables {X(τ ), τ ∈ S0} is bounded from below.

Now consider the reward given by the admissible family {X(τ ), τ ∈ S0}. For each S ∈ S0,
the value function at time S takes the following form:

v(S) = ess sup
τ∈SS

ES[X(τ )]. (3.1)

Definition 3.2. For each fixed S ∈ S0, an admissible family {X(τ ), τ ∈ SS} is said to be an
E-supermartingale system (resp. an E-martingale system) if, for any τ, σ ∈ SS with τ ≤ σ a.s.,
we have

Eτ [X(σ )] ≤ X(τ ), a.s. (resp., Eτ [X(σ )] = X(τ ), a.s.).

Proposition 3.1. If {X(τ ), τ ∈ S0} is an admissible family with supτ∈S0
E[X(τ )] < ∞, then the

value function {v(S), S ∈ S0} defined by (3.1) has the following properties:

(i) {v(S), S ∈ S0} is an admissible family;

(ii) {v(S), S ∈ S0} is the smallest E-supermartingale system which is greater than
{X(S), S ∈ S0};
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(iii) for any S ∈ S0, we have
E[v(S)] = sup

τ∈SS

E[X(τ )]. (3.2)

Proof. The proof of this proposition is similar to the one in [13] (see Section 8) and to the
proof of Propositions 1.1–1.3 in [15], so we omit it. �
Remark 3.2. (1) For the cases when the admissible family {v(τ ), τ ∈ S0} can be aggregated,
we may refer to Proposition 5.1 in Section 5.

(2) It follows from Equation (3.2) that

sup
S∈S0

E[v(S)] ≤ sup
τ∈S0

E[X(τ )] < ∞.

Consequently, we obtain that v(S) < ∞, a.s., for any S ∈ S0.
(3) Assumption (H5) is mainly used to make sure that the value function v(S) at any

stopping time S belongs to Dom+(E). We can drop this assumption by requiring that the
admissible family satisfy η := ess supτ∈S0

X(τ ) ∈ Dom(E). Under this new condition, since
0 ≤ v(S) ≤ ES[η], it follows that v(S) ∈ Dom+(E).

The following proposition gives the characterization of the optimal stopping time for the
value function (3.1).

Proposition 3.2. For each fixed S ∈ S0, let τ ∗ ∈ SS be such that E[X(τ ∗)] < ∞. The following
statements are equivalent:

(a) τ ∗ is S-optimal for v(S), i.e.,
v(S) = ES[X(τ ∗)]; (3.3)

(b) v(τ ∗) = X(τ ∗) and E[v(S)] = E[v(τ ∗)];

(c) E[v(S)] = E[X(τ ∗)].

Proof. The proof is the same as that of Proposition 4.1 in [12], so we omit it. �
Remark 3.3. It is worth mentioning that most of the results in Propositions 3.1 and 3.2 still
hold if the reward family is not ‘adapted’, which means that X(τ ) is FT -measurable rather than
Fτ -measurable for any τ ∈ S0. In fact, the first difference is that {v(S), S ∈ S0} is the smallest
E-supermartingale system which is greater than {ES[X(S)], S ∈ S0}. The second is that we need
to replace X(τ ∗) by Eτ∗ [X(τ ∗)] in the assertion (b) of Proposition 3.2. Furthermore, the results
do not depend on the regularity of the reward family.

We now study the regularity of the value functions {v(τ ), τ ∈ S0}, after introducing the
following definition of continuity.

Definition 3.3. An admissible family {X(τ ), τ ∈ S0} is said to be right-continuous (resp., left-
continuous) along stopping times in E-expectation [RCE (resp., LCE)] if for any τ ∈ S0 and
{τn}n∈N ⊂ S0 such that τn ↓ τ a.s. (resp., τn ↑ τ a.s.), we have E[X(τ )] = limn→∞ E[X(τn)].
The family {X(τ ), τ ∈ S0} is called continuous along stopping times in E-expectation (CE) if
it is both RCE and LCE .

Proposition 3.3. Suppose that the admissible family {X(τ ), τ ∈ S0} is RCE with
supτ∈S0

E[X(τ )] < ∞. Then the family {v(τ ), τ ∈ S0} is RCE .

Proof. The proof is the same as that of Proposition 1.5 in [15], with linear expectation E

replaced by F-expectation E . �
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Remark 3.4. (i) By Remark 3.3, the above result does not rely on the ‘adapted’ property of the
reward family.

(ii) For any fixed σ ∈ S0, suppose that the admissible family {X(τ ), τ ∈ S0} is right-
continuous in E-expectation along all stopping times greater than σ , which means that if
S ∈ Sσ and {Sn}n∈N ⊂ Sσ satisfy Sn ↓ S, then we have limn→∞ E[X(Sn)] = E[X(S)]. Then we
can prove that the family {v(τ ), τ ∈ S0} is right-continuous in E-expectation along all stopping
times greater than σ .

(iii) Furthermore, if the RCE admissible family {X(τ ), τ ∈ Sσ } is only well-defined for the
stopping times greater than σ , then by a similar analysis as in the proof of Proposition 3.1,
{v(S), S ∈ S0} is still an E-supermartingale system, but without the dominance property that
v(S) ≥ X(S) for S ≤ σ . We can then prove that the family {v(τ ), τ ∈ S0} is right-continuous in
E-expectation along all stopping times greater than σ .

In order to show the existence of the optimal stopping time for the value function v(S),
we need furthermore to assume that the F-expectation (E, Dom(E)) satisfies the following
conditions:

(H6) Sub-additivity: for any τ ∈ S0 and ξ, η ∈ Dom+(E), Eτ [ξ + η] ≤ Eτ [ξ ] + Eτ [η].

(H7) Positive homogeneity: for any τ ∈ S0, λ ≥ 0, and ξ ∈ Dom+(E), Eτ [λξ ] = λEτ [ξ ].

The main idea in proving the existence is to apply an approximation method. More precisely,
for λ ∈ (0, 1), we define an FS-measurable random variable τλ(S) by

τλ(S) = ess inf{τ ∈ SS : λv(τ ) ≤ X(τ ), a.s.}. (3.4)

Remark 3.5. It is important to note that this stopping time τλ(S) is defined as an essential
infimum of a set of stopping times, instead of being defined trajectorially. It was introduced for
the first time in [15] (see Equation (1.6) in [15]).

We will show that the sequence
{
τλ(S)

}
λ∈(0,1) admits a limit as λ goes to 1 and that the

limit is the optimal stopping time. Our first observation is that the stopping time τλ(S) is
(1 − λ)-optimal for the problem (3.2).

Lemma 3.1. Let the F-expectation (E, Dom(E)) satisfy all the assumptions (H0)–(H7), and
suppose that {X(τ ), τ ∈ S0} is a CE admissible family with supτ∈S0

E[X(τ )] < ∞. For each
S ∈ S0 and λ ∈ (0, 1), the stopping time τλ(S) satisfies

λE[v(S)] ≤ E[
X
(
τλ(S)

)]
. (3.5)

This lemma is analogous to Lemma 1.1 in [15], with linear expectation E replaced by
F-expectation E . For reader’s convenience, we give a short proof here.

Proof. Fix S ∈ S0 and λ ∈ (0, 1). For any τ i ∈ SS such that λv
(
τ i

) ≤ X
(
τ i

)
, i = 1, 2, it is

easy to check that the stopping time τ defined by τ = τ 1 ∧ τ 2 preserves the same property as
τ i. Hence, there exists a sequence of stopping times {τn}n∈N ⊂ SS with λv(τn) ≤ X(τn), such
that τn ↓ τλ(S). By the monotonicity and positive homogeneity, we have λE[v(τn)] ≤ E[X(τn)]
for any n ∈N. Letting n go to infinity and applying the RCE property of v and X, we obtain

λE[
v
(
τλ(S)

)] ≤ E[
X
(
τλ(S)

)]
. (3.6)
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We claim that, for each S ∈ S0 and λ ∈ (0, 1), the stopping time τλ(S) satisfies

v(S) = ES
[
v
(
τλ(S)

)]
. (3.7)

Now, combining Equations (3.6) and (3.7), we obtain

λE[v(S)] = λE[
v
(
τλ(S)

)] ≤ E[
X
(
τλ(S)

)]
.

The proof is complete. �
Proof of Equation (3.7). Note that Equation (3.7) is the same as Equation (1.11) in [15]

with the classical conditional expectation E[·|FS] replaced by the F-expectation ES. Therefore,
the proof is similar. For the convenience of the reader, we give a short proof here.

For simplicity, we denote ES
[
v
(
τλ(S)

)]
by Jλ(S). Recalling that {v(τ ), τ ∈ S0} is an

E-supermartingale system, we have Jλ(S) ≤ v(S). It remains to prove the reverse inequality.
We first claim that

{
Jλ(τ ), τ ∈ S0

}
is an E-supermartingale system. Indeed, let S, S′ ∈ S0 be

such that S ≤ S′. Noting that {v(τ ), τ ∈ S0} is an E-supermartingale system, it is easy to check
that S ≤ τλ(S) ≤ τλ(S′) and

ES
[
Jλ

(
S′)] = ES

[
v
(
τλ

(
S′))] = ES

[Eτλ(S)
[
v
(
τλ

(
S′))]] ≤ ES

[
v
(
τλ(S)

)] = Jλ(S),

where we have used the time-consistency in the first two equalities. Hence, the claim holds.
We then show that for any S ∈ S0 and λ ∈ (0, 1), we have Lλ(S) ≥ X(S), where Lλ(S) =

λv(S) + (1 − λ)Jλ(S). Indeed, by a simple calculation, we obtain that

Lλ(S) = λv(S) + (1 − λ)Jλ(S)I{τλ(S)=S} + (1 − λ)Jλ(S)I{τλ(S)>S}
= λv(S) + (1 − λ)ES

[
v
(
τλ(S)

)]
I{τλ(S)=S} + (1 − λ)Jλ(S)I{τλ(S)>S}

= λv(S) + (1 − λ)v(S)I{τλ(S)=S} + (1 − λ)Jλ(S)I{τλ(S)>S}
≥ v(S)I{τλ(S)=S} + λv(S)I{τλ(S)>S}
≥ X(S)I{τλ(S)=S} + X(S)I{τλ(S)>S} = X(S),

where the third equality is obtained from the zero–one law, in the first inequality we used that
Jλ(S) ≥ 0, and the last inequality follows from v(S) ≥ X(S) and the definition of τλ(S).

Since the F-expectation (E, Dom(E)) satisfies (H6) and (H7), it is easy to check that{
Lλ(τ ), τ ∈ S0

}
is an E-supermartingale system. By Proposition 3.1, we have Lλ(S) ≥ v(S),

which, together with v(S) < ∞ obtained in Remark 3.2, implies that Jλ(S) ≥ v(S). The above
analysis completes the proof. �
Remark 3.6. Clearly, an F-expectation that satisfies (H6)–(H7) is a ‘positively convex’
F-expectation (see Definition 3.1 in [1]). In [2], the optimal single stopping problem induced
by some positively convex F-expectation can be solved. Note that our assumptions (H6)–(H7)
are stronger than the property of positive convexity. This is mainly because our optimal stop-
ping time is not defined trajectorially and we need to ensure that the crucial inequality (3.6)
holds.

Now we state the main result of this section, which is analogous to the results in
Theorem 1.1 of [15], shown in the case of a classical expectation.
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Theorem 3.1. Under the same assumptions as those of Lemma 3.1, for each S ∈ S0, there exists
an optimal stopping time for v(S) defined by (3.1). Furthermore, the stopping time

τ ∗(S) = ess inf{τ ∈ SS : v(τ ) = X(τ ) a.s.} (3.8)

is the minimal optimal stopping time for v(S).

Proof. The proof is the same as the proof of Theorem 1.1 in [15] with E replaced by E , so
we omit it. �
Remark 3.7. Compared with the usual case, in which the optimal stopping time is defined
trajectorially, our optimal stopping time is interpreted as the essential infimum, which makes
it possible to relax the condition on the regularity of the reward family. For example, in [6],
the reward {Xt}t∈[0,T] is assumed to be RCLL and LCE . The price for the weak condition
of regularity is that the F-expectation (E, Dom(E)) should be positive homogenous and sub-
additive. These two assumptions on the F-expectation are mainly used to prove the existence
of the optimal stopping time. For the properties which do not depend on the existence of
the optimal stopping time, we may drop the positive homogeneity and sub-additivity of the
F-expectation.

With the help of the existence of the optimal stopping time, we may establish the LCE prop-
erty of the value function when the reward family is LCE , which is analogous to Proposition 1.6
in [15].

Proposition 3.4. Under the same assumptions as those of Theorem 3.1, the value function
{v(τ ), τ ∈ S0} is LCE .

Proof. The proof is similar to the proof of Proposition 1.6 in [15] with E replaced by E , so
we omit it. �
Remark 3.8. (i) Let {Sn}n∈N ⊂ S0 be such that Sn ↑ S, where S is a stopping time. By an
analysis similar to that of Remark 1.6 in [15], we have

τ ∗(S) = lim
n→∞ τ ∗(Sn);

that is, the mapping S �→ τ ∗(S) is left-continuous along stopping times.
(ii) Suppose that the family {X(τ ), τ ∈ S0} in Proposition 3.4 is only left-continuous in

E-expectation along stopping times greater than σ (i.e., if {τn}n∈N ⊂ Sσ and τn ↑ τ , then we
have E[X(τ )] = limn→∞ E[X(τn)]). If, for any S ∈ S0, the optimal stopping time τ ∗(S) defined
by (3.8) is no less than σ , then the value function {v(S), S ∈ S0} is still LCE .

In the remainder of this section, suppose that the F-expectation (E, Dom(E)) satis-
fies all the assumptions (H0)–(H7). Now, given an admissible family {X(τ ), τ ∈ S0} with
supτ∈S0

E[X(τ )] < ∞, for each fixed θ ∈ S0 we define the following random variable:

X′(τ ) = X(τ )I{τ≥θ} − I{τ<θ}.

Then, for each τ ∈ S0, X′(τ ) is Fτ -measurable and bounded from below, and

sup
τ∈S0

E[|X′(τ )|] < ∞.

In addition, X′(τ ) = X′(σ ) on the set {τ = σ }. Let us define

v′(S) = ess sup
τ∈SS

ES[X′(τ )].
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Note that all the properties of E hold for random variables which are bounded from below
(see Remark 2.2). Then all the results in Proposition 3.1, Proposition 3.2, and Remark 3.2 still
hold if we replace X and v by X′ and v′, respectively. Furthermore, if the original admissible
family {X(τ ), τ ∈ S0} is RCE , by Remark 3.4, the family {v′(S), S ∈ S0} is right-continuous in
E-expectation along stopping times greater than θ . The following theorem indicates that there
exists an optimal stopping time for v′(S), and that the family {v′(τ ), τ ∈ S0} is LCE (not only
left-continuous in E-expectation along stopping times greater than θ ), provided that the family
{X(τ ), τ ∈ S0} is CE .

Theorem 3.2. Let the F-expectation (E, Dom(E)) satisfy all the assumptions (H0)–(H7), and
let {X(τ ), τ ∈ S0} be a CE admissible family with supτ∈S0

E[X(τ )] < ∞. For each S ∈ S0, there
exists an optimal stopping time for v′(S). Furthermore, the stopping time

τ ′(S) = ess inf{τ ∈ SS : v′(τ ) = X′(τ ) a.s.}
is the minimal optimal stopping time for v′(S), and the value function {v′(S), S ∈ S0} is LCE .

Proof. For any λ ∈ (0, 1), we define a random variable τ ′,λ(S) by

τ ′,λ(S) = ess inf
{
τ ∈ SS : λv′(τ ) ≤ X′(τ ), a.s.

}
.

Since, for any S ∈ S0, we have v′(S) ≥ ES[X(T)] ≥ 0, this implies that τ ≥ θ , where τ ∈ {
τ ∈

SS : λv′(τ ) ≤ X′(τ ), a.s.
}
. Therefore, we obtain that τ ′,λ(S) ≥ θ . It follows that for any fixed

S ∈ S0 and any τ ≥ τ ′,λ(S), we have X′(τ ) = X(τ ). Modifying the proofs of Lemma 3.1,
Theorem 3.1, and Proposition 3.4, we finally get the desired result. �

4. The optimal double stopping problem under nonlinear expectation

In this section, we consider the optimal double stopping problem under the F-expectation
satisfying Assumptions (H0)–(H5). We first introduce the definition of the appropriate reward
family.

Definition 4.1. The family {X(τ, σ ), τ, σ ∈ S0} is said to be biadmissible if it has the following
properties:

(1) for all τ, σ ∈ S0, X(τ, σ ) ∈ Dom+
τ∨σ (E);

(2) for all τ, σ, τ ′, σ ′ ∈ S0, X(τ, σ ) = X(τ ′, σ ′) on the set {τ = τ ′} ∩ {σ = σ ′}.
Now, suppose we are given a biadmissible reward family {X(τ, σ ), τ, σ ∈ S0} such that

supτ,σ∈S0
E[X(τ, σ )] < ∞. Then the corresponding value function is defined as follows:

v(S) = ess sup
τ1,τ2∈SS

ES[X(τ1, τ2)]. (4.1)

Similarly to the case of the single optimal stopping problem, we have the following
properties.

Proposition 4.1. Suppose that {X(τ, σ ), τ, σ ∈ S0} is a biadmissible family such that
supτ1,τ2∈S0

E[X(τ1, τ2)] < ∞; then the value function {v(S), S ∈ S0} defined by (4.1) satisfies
the following properties:
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(i) for each S ∈ S0, there exists a sequence of pairs of stopping times
{(

τ n
1 , τ n

2

)}
n∈N ⊂ SS ×

SS such that ES
[
X
(
τ n

1 , τ n
2

)]
converges monotonically up to v(S);

(ii) {v(S), S ∈ S0} is an admissible family;

(iii) {v(S), S ∈ S0} is an E-supermartingale system;

(iv) for each S ∈ S0, we have

E[v(S)] = sup
τ,σ∈SS

E[X(τ, σ )].

Proof. The proof is similar to the proof of Proposition 2.1 in [15]. The main difference is
in the method of proving that v(S) ∈ Dom+(E). In fact, the measurability and nonnegativity
follow from the definition of v(S). By (i), we have v(S) = limn→∞ ES

[
X
(
τ n

1 , τ n
2

)]
. Because

lim inf
n→∞ E[ES

[
X
(
τ n

1 , τ n
2

)]] ≤ sup
τ1,τ2∈S0

E[X(τ1, τ2)] < ∞,

Assumption (H5) implies that v(S) ∈ Dom+(E). �
Remark 4.1. (i) Under the integrability condition supτ,σ∈S0

E[X(τ, σ )] < ∞ and (iv) in
Proposition 4.1, we conclude that v(S) < ∞, a.s.

(ii) If Assumption (H5) does not hold, we need to assume furthermore that η :=
ess supτ,σ∈S0

X(τ, σ ) ∈ Dom(E) in order to ensure that Proposition 4.1 still holds.

In the following, we will show that the value function defined by (4.1) coincides with the
value function of the single stopping problem corresponding to a new reward family. Motivated
by the results in [15] (cf. (2.2) and (2.3) in [15] for the definitions of u1, u2 and the new reward),
for each τ ∈ S0 we define

u1(τ ) = ess sup
τ1∈Sτ

Eτ [X(τ1, τ )], u2(τ ) = ess sup
τ2∈Sτ

Eτ [X(τ, τ2)], (4.2)

and
X̃(τ ) = max{u1(τ ), u2(τ )}. (4.3)

The first observation is that the family
{
X̃(τ ), τ ∈ S0

}
is admissible.

Lemma 4.1. Suppose that {X(τ, σ ), τ, σ ∈ S0} is a biadmissible family such that
supτ,σ E[X(τ, σ )] < ∞. Then the family defined by (4.3) is admissible and we have
supτ∈S0

E[
X̃(τ )

]
< ∞.

Proof. It is sufficient to prove that {u1(τ ), τ ∈ S0} is admissible. Similarly as in the proof
of Proposition 4.1, u1(τ ) is Fτ -measurable and u1(τ ) ∈ Dom+(E). For each fixed τ, σ ∈ S0,
set A = {τ = σ } and θA = θ IA + TIAc , where θ ∈ Sτ . It is easy to check that A ∈Fτ∧σ , θA ∈ Sσ

and

Eτ [X(θ, τ )]IA = Eτ [X(θ, τ )IA] = Eτ

[
X
(
θA, σ

)
IA

]
= Eτ

[
X
(
θA, σ

)]
IA = Eσ

[
X
(
θA, σ

)]
IA ≤ u1(σ )IA.

Taking the supremum over all θ ∈ Sτ implies that u1(τ ) ≤ u1(σ ) on A. By symmetry, we have
u1(σ ) ≤ u1(τ ) on A. Therefore, u1(τ )IA = u1(σ )IA.
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It is easy to verify that 0 ≤ X̃(τ ) ≤ v(τ ). By Proposition 4.1, we have

sup
τ∈S0

E[
X̃(τ )

] ≤ sup
τ∈S0

E[v(τ )] ≤ sup
τ,σ∈S0

E[X(τ, σ )] < ∞. �

The next theorem states that {v(S), S ∈ S0} is the smallest E-supermartingale system such
that v(S) ≥ X̃(S), for any S ∈ S0. In other words, v(S) corresponds to the value function u(S)
associated with the reward family {X̃(S), S ∈ S0}, where

u(S) = ess sup
τ∈SS

ES
[
X̃(τ )

]
. (4.4)

Theorem 4.1. Suppose that {X(τ, σ ), τ, σ ∈ S0} is a biadmissible family such that
supτ1,τ2∈S0

E[X(τ1, τ2)] < ∞. Then, for each stopping time S ∈ S0, we have v(S) = u(S).

Proof. The proof is similar to the proof of Theorem 2.1 in [15], with the classical
expectation E replaced by E , so we omit it. �

With the help of the characterization of the value function v stated in Theorem 4.1, we may
construct the optimal stopping times for either the multiple problem (4.1) or the single problem
(4.2), (4.4) if we obtain the optimal stopping times for one of the problems.

Proposition 4.2. Fix S ∈ S0. Suppose that
(
τ ∗

1 , τ ∗
2

) ∈ SS × SS is optimal for v(S). Then we have
the following:

(1) τ ∗
1 ∧ τ ∗

2 is optimal for u(S);

(2) τ ∗
1 is optimal for u2

(
τ ∗

1

)
on the set A;

(3) τ ∗
2 is optimal for u1

(
τ ∗

2

)
on the set Ac,

where A = {
τ ∗

1 ≤ τ ∗
2

}
. On the other hand, suppose that the stopping times θ∗, θ∗

i , i = 1, 2,
satisfy the following conditions:

(i) θ∗ is optimal for u(S);

(ii) θ∗
1 is optimal for u2(θ∗);

(iii) θ∗
2 is optimal for u1(θ∗).

Set
σ ∗

1 = θ∗IB + θ∗
1 IBc , σ ∗

2 = θ∗
2 IB + θ∗IBc , (4.5)

where B = {u1(θ∗) ≤ u2(θ∗)}. Then the pair
(
σ ∗

1 , σ ∗
2

)
is optimal for v(S).

Proof. The proof is similar to the proof of Proposition 2.4 in [15], so we omit it. �
By Proposition 4.2, in order to obtain the multiple optimal stopping times for v(S) defined

by (4.1), it is sufficient to derive the optimal stopping times for the auxiliary single stopping
problems (4.2) and (4.4). For this purpose, according to Theorem 3.1, we need to study some
regularity results for

{
X̃(τ ), τ ∈ S0

}
. Before establishing this property, we first introduce the

definition of continuity for a biadmissible family.

Definition 4.2. A biadmissible family {X(τ, σ ), τ, σ ∈ S0} is said to be right-continuous (resp.,
left-continuous) along stopping times in E-expectation [RCE (resp., LCE)] if, for any τ, σ ∈ S0
and any sequences {τn}n∈N, {σn}n∈N ⊂ S0 such that τn ↓ τ , σn ↓ σ (resp., τn ↑ τ , σn ↑ σ ), one
has E[X(τ, σ )] = limn→∞ E[X(τn, σn)].
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By a proof similar to that of Proposition 3.3, we have the following regularity result.

Proposition 4.3. If the biadmissible family {X(τ, σ ), τ, σ ∈ S0} is RCE , then the family
{v(S), S ∈ S0} defined by (4.1) is RCE .

The regularity of the new reward family
{
X̃(τ ), τ ∈ S0

}
requires some strong continuity of

the biadmissible family. Because of the nonlinearity of the expectation, the definition is slightly
different from Definition 2.3 in [15].

Definition 4.3. A biadmissible family {X(τ, σ ), τ, σ ∈ S0} is said to be uniformly right-
continuous (resp., left-continuous) along stopping times in E-expectation [URCE (resp.,
ULCE)] if, for any σ ∈ S0 and any sequence {σn}n∈N ⊂ S0 such that σn ↓ σ (resp., σn ↑ σ ),
one has

lim
n→∞ sup

τ∈S0

E[|X(τ, σ ) − X(τ, σn)|] = 0,

lim
n→∞ sup

τ∈S0

E[|X(σ, τ ) − X(σn, τ )|] = 0.

Furthermore, the biadmissible family is said to be uniformly continuous along stopping times
in E-expectation (UCE) if it is both URCE and ULCE .

Definition 4.4. An F-expectation (E, Dom(E)) is said to be dominated by another
F-expectation

(Ẽ, Dom
(Ẽ))

if Dom(E) ⊂ Dom
(Ẽ)

and for any τ ∈ S0 and ξ, η ∈ Dom(E),
one has

Eτ [ξ + η] − Eτ [η] ≤ Ẽτ [ξ ].

Remark 4.2. From the requirements on the domain of E (see Definition 2.1 and Assumptions
(H3)–(H5)), we may not conclude that ξ − η ∈ Dom(E) for any ξ, η ∈ Dom(E). Therefore, the
above definition of dominance cannot be written as

Eτ [ξ ] − Eτ [η] ≤ Ẽτ [ξ − η].

However, if (E, Dom(E)) is dominated by
(Ẽ, Dom

(Ẽ))
, then for any τ ∈ S0 and ξ, η ∈

Domc(E) we have
|Eτ [ξ ] − Eτ [η]| ≤ Ẽτ [|ξ − η|]. (4.6)

First, if ξ ∈ Domc(E), by (D2) in Definition 2.1 and Assumption (H4), we have ξ − c ∈
Dom+(E). Since 0 ≤ |ξ − η| = |(ξ − c) − (η − c)| ≤ ξ + η − 2c, by (D2) and (D3), it follows
that |ξ − η| ∈ Dom(E). It is easy to check that

Eτ [ξ ] − Eτ [η] ≤ Eτ [η + |ξ − η|] − Eτ [η] ≤ Ẽτ [|ξ − η|].
By the symmetry of ξ and η, we obtain Equation (4.6).

Example 4.1.

(1) If for any τ ∈ S0 and ξ, η ∈ Dom(E), Eτ [ξ + η] ≤ Eτ [ξ ] + Eτ [η], the F-expectation
(E, Dom(E)) is dominated by itself. In particular,

({Et[·]}t∈[0,T], L1(FT )
)

is dominated
by itself.

(2) For a generator g with Lipschitz constant κ , the g-expectation
({Eg

t [·]}t∈[0,T], L2(FT )
)

is dominated by
({E g̃

t [·]}t∈[0,T], L2(FT )
)
, where g̃(t, z) = κ|z|.
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Theorem 4.2. Let
(Ẽ, Dom

(Ẽ))
be an F-expectation satisfying Assumptions (H0)–(H5).

Suppose that the F-expectation (E, Dom(E)) is dominated by
(Ẽ, Dom

(Ẽ))
and the biadmis-

sible family {X(τ, σ ), τ, σ ∈ S0} is URCẼ with supτ,σ∈S0
E[X(τ, σ )] < ∞. Then the family{

X̃(τ ), τ ∈ S0
}

defined by (4.3) is RCE .

Proof. By the definition of X̃, we only need to prove that the family {u1(τ ), τ ∈ S0} is RCE .
Let {θn}n∈N be a sequence of stopping times such that θn ↓ θ . Since {X(τ, σ ), τ, σ ∈ S0} is
URCẼ , by Equation (4.6), we have

lim
n→∞ |E[X(τn, σ )] − E[X(τ, σ )]| ≤ lim

n→∞ Ẽ[|X(τn, σ ) − X(τ, σ )|] = 0.

It follows that for each fixed σ ∈ S0, the family {X(τ, σ ), τ ∈ Sσ } is admissible and right-
continuous in E-expectation along stopping times greater than σ . (It is important to note that
the whole family {X(τ, σ ), τ ∈ S0} may not be admissible, since X(τ, σ ) is Fσ -measurable
rather than Fτ -measurable if τ ≤ σ .) By Proposition 3.3 and Remark 3.4, we obtain that the
family {U1(S, θ ), S ∈ S0} is right-continuous in E-expectation along stopping times greater
than θ , where

U1(S, θ ) = ess sup
τ1∈SS

ES[X(τ1, θ )]. (4.7)

That is, limn→∞ E[U1(θn, θ )] = E[U1(θ, θ )].
Now we state the following lemma, whose proof appears after the conclusion of the current

argument. �
Lemma 4.2. For any stopping times τ, σ1, σ2, we have

|E[U1(τ, σ1)] − E[U1(τ, σ2)]| ≤ sup
S∈S0

Ẽ[|X(S, σ1) − X(S, σ2)|].

Using this lemma, by the URCẼ property of {X(τ, σ ), τ, σ ∈ S0}, as n goes to infinity, we
obtain that

|E[U1(θn, θ )] − E[U1(θn, θn)]| ≤ sup
S∈S0

Ẽ[|X(S, θ ) − X(S, θn)|] → 0.

The above analysis indicates that

lim
n→∞ |E[u1(θ )] − E[u1(θn)]| = lim

n→∞ |E[U1(θ, θ )] − E[U1(θn, θn)]|
≤ lim

n→∞ |E[U1(θ, θ )] − E[U1(θn, θ )]| + lim
n→∞ |E[U1(θn, θ )] − E[U1(θn, θn)]| = 0.

The proof is complete.

Proof of Lemma 4.2. By an analysis similar to the one in the proof of Proposition 3.1, for
each fixed τ ∈ S0 there exists a sequence of stopping times {Sm}m∈N ⊂ Sτ such that

Ẽτ [|X(Sm, σ1) − X(Sm, σ2)|] ↑ ess sup
τ1∈Sτ

Ẽτ [|X(τ1, σ1) − X(τ1, σ2)|].
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By a simple calculation, we have

|E[U1(τ, σ1)] − E[U1(τ, σ2)]| ≤ Ẽ
[∣∣∣ ess sup

τ1∈Sτ

Eτ [X(τ1, σ1)] − ess sup
τ1∈Sτ

Eτ [X(τ1, σ2)]
∣∣∣]

≤ Ẽ
[

ess sup
τ1∈Sτ

∣∣∣Eτ [X(τ1, σ1) − X(τ1, σ2)]
∣∣∣]

≤ Ẽ
[

ess sup
τ1∈Sτ

Ẽτ

[∣∣X(τ1, σ1) − X(τ1, σ2)
∣∣]]

≤ lim inf
m→∞ Ẽ[|X(Sm, σ1) − X(Sm, σ2)|]

≤ sup
S∈S0

Ẽ[|X(S, σ1) − X(S, σ2)|].

The proof is complete. �
The main difficulty is to prove the LCE property of the reward family

{
X̃(τ ), τ ∈ S0

}
,

because of some measurability issues. More precisely, let {θn}n∈N be a sequence of stop-
ping times such that θn ↑ θ . We need to prove that limn→∞ E[u1(θn)] = E[u1(θ )]. However,
we cannot follow the proof of the RCE property in Theorem 4.2. The problem is that the rela-
tion limn→∞ E[U1(θn, θ )] = E[U1(θ, θ )] = E[u1(θ )] may not hold, where U1 is given by (4.7).
Although {U1(S, θ ), S ∈ S0} can be interpreted as the value function associated with the family
{X(τ1, θ ), τ1 ∈ S0}, we cannot apply Proposition 3.4 since the reward {X(τ1, θ ), τ1 ∈ S0} is not
admissible. The main idea is to modify this reward slightly and then apply the LCE property
of the modified reward family stated in Theorem 3.2.

Theorem 4.3. Suppose that the F-expectation (E, Dom(E)) satisfies (H0)–(H7) and the biad-
missible family {X(τ, σ ), τ, σ ∈ S0} is UCE with supτ,σ∈S0

E[X(τ, σ )] < ∞. Then the family{
X̃(τ ), τ ∈ S0

}
defined by (4.3) is LCE .

Proof. By the definition of X̃, it suffices to prove that {u1(τ ), τ ∈ S0} is LCE . Let {θn}n∈N
be a sequence of stopping times such that θn ↑ θ . Now we define

X′(τ, θ ) = X(τ, θ )I{τ≥θ} − I{τ<θ}.

It is easy to check that for any τ ∈ S0, X′(τ, θ ) is Fτ -measurable and bounded from below,
with supτ∈S0

E[|X′(τ, θ )|] < ∞. Therefore, by Theorem 3.2, the value function {v′(S), S ∈ S0}
defined by

v′(S) = ess sup
τ∈SS

ES[X′(τ, θ )]

is LCE . It follows that limn→∞ E[v′(θn)] = E[v′(θ )]. By the definition of X′, it is easy to check
that

v′(θ ) = ess sup
τ∈Sθ

Eθ [X′(τ, θ )] = ess sup
τ∈Sθ

Eθ [X(τ, θ )] = u1(θ ),

which implies that limn→∞ E[v′(θn)] = E[u1(θ )]. Note that for any τ ∈ Sθn , we have

|X′(τ, θ ) − X(τ, θn)| = |X(τ, θ )I{τ≥θ} − I{θn≤τ<θ} − X(τ, θn)|
= |X(τ, θ ) − X(τ, θn)|I{τ≥θ} + |1 + X(τ, θn)|I{θn≤τ<θ}
≤ |X(τ, θ ) − X(τ, θn)| + |1 + ess sup

τ,σ∈S0

X(τ, σ )|I{θn<θ}.
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Set η = 1 + ess supτ,σ∈S0
X(τ, σ ). By Lemma 2.1, we have η ∈ Dom+(E). By a similar analysis

as in Lemma 4.2, we obtain that

|E[v′(θn)] − E[u1(θn)]| ≤ E
[

ess sup
τ∈Sθn

|X′(τ, θ ) − X(τ, θn)|
]

≤ E
[

ess sup
τ∈Sθn

|X(τ, θ ) − X(τ, θn)|
]
+ E[ηIAn],

where An = {θn < θ}. For the first part of the right-hand side, it is easy to check that

E
[

ess sup
τ∈Sθn

|X(τ, θ ) − X(τ, θn)|
]
≤ sup

τ∈S0

E[|X(τ, θ ) − X(τ, θn)|] → 0, as n → ∞.

Noting that IAn ↓ 0 and {An}n∈N ⊂FT , by Assumption (H2), we obtain that limn→∞ [ηIAn] = 0.
Finally, we get that

lim
n→∞ |E[u1(θ )] − E[u1(θn)]| ≤ lim

n→∞ |E[u1(θ )] − E[v′(θn)]| + lim
n→∞ |E[v′(θn)] − E[u1(θn)]| = 0.

The proof is complete. �
Now we can establish the existence of optimal stopping times for the value function defined

by (4.1).

Theorem 4.4. Suppose that the F-expectation (E, Dom(E)) satisfies (H0)–(H7) and the biad-
missible family {X(τ, σ ), τ, σ ∈ S0} is UCE . Then there exists a pair of optimal stopping times(
τ ∗

1 , τ ∗
2

)
for the value function v(S) defined by (4.1).

Proof. The proof is similar to the proof of Theorem 2.3 in [15], so we omit it. �
Since v defined by (4.1) coincides with the value function of the optimal single stopping

problem with the reward family
{
X̃(τ ), τ ∈ S0

}
, by Propositions 3.3 and 3.4, {v(τ ), τ ∈ S0} is

CE if
{
X̃(τ ), τ ∈ S0

}
is CE .

Corollary 4.1. Under the same hypotheses as those of Theorem 4.4, the family {v(τ ), τ ∈ S0}
defined by (4.1) is CE .

Remark 4.3. By Proposition 3.3, the RCE property of {v(τ ), τ ∈ S0} does not depend on
the existence of optimal stopping times. Thus, the conditions can be weakened to those of
Theorem 4.2 to guarantee the RCE property of {v(τ ), τ ∈ S0}.
Remark 4.4. The optimal d-stopping time problem under nonlinear expectation is similar to
the optimal d-stopping problem under classical expectation (cf. Section 3 in [15]). We only list
the results in the appendix.

Example 4.2. Application to swing options. Suppose that T = ∞ and the F-expectation sat-
isfies all the assumptions (H0)–(H7). Recall that a swing option is a contract which gives its
holder the right to exercise it more than once, with the exercise times separated by a fixed
amount of time δ > 0, called the refracting time. Now, consider the swing option with two
exercise times. If the holder exercises it at a stopping time τ , then she will get the payoff Y(τ ).
The objective of the holder is try to obtain the maximum expected payoff, i.e., at each stopping
time S,

v(S) = ess sup
τ1,τ2∈SS,τ1+δ≤τ2

ES[Y(τ1) + Y(τ2)].
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It is easy to check that the value does not change if we interchange the roles of τ1 and τ2;
mathematically,

v(S) = ess sup
τ1,τ2∈SS,τ2+δ≤τ1

ES[Y(τ1) + Y(τ2)].

By Equations (4.2) and (4.3), we have

X̃(τ ) = u1(τ ) = u2(τ ) = ess sup
σ∈Sτ+δ

Eτ [Y(τ ) + Y(σ )] = Y(τ ) + Z(τ ),

where Z(τ ) = ess supσ∈Sτ+δ
Eτ [Y(σ )]. If {Y(τ ), τ ∈ S0} is an admissible family with

supτ∈S0
E[Y(τ )] < ∞, then by Theorem 4.1, we have v(S) = u(S), where

u(S) = ess sup
τ∈SS

ES
[
X̃(τ )

] = ess sup
τ∈SS

ES[Y(τ ) + Z(τ )].

This result is similar to Proposition 3.2 in [4].
If we additionally assume that the admissible family {Y(τ ), τ ∈ S0} is continuous along

stopping times (cf. Definition 5.1), by Proposition 2.3 and noting that η := ess supτ∈S0
Y(τ ) ∈

Dom(E), we have that the biadmissible family {X(τ, σ ), τ, σ ∈ S0} is UCE , where X(τ, σ ) =
Y(τ ) + Y(σ ). Let τ ∗

1 be the minimal optimal stopping time for the value function u(S), and let
τ ∗

2 be the minimal optimal stopping time for the value function Z
(
τ ∗

1

)
. By Theorem 4.4, the

pair
(
τ ∗

1 , τ ∗
2

)
is the optimal stopping time for v(S), which is similar to Proposition 5.4 in [4].

5. Aggregation of the optimal multiple stopping problem

We first recall some basic results from [9]. Let
({Eg

t [·]}t∈[0,T], L2(FT )
)

be the g-expectation
satisfying the assumptions in Example 2.2. Now, given an adapted, nonnegative process
{Xt}t∈[0,T] which has continuous sample path with E

[
supt∈[0,T] X2

t

]
< ∞, the value function

is defined by

vg
t = ess sup

τ∈St

Eg
t [Xτ ].

By Proposition 5.5 in [9], the first hitting time

τ ∗ = inf
{
t ≥ 0 : vg

t = Xt
}

is an optimal stopping time (a similar result can be found in [6]). This formulation makes it
efficient to compute an optimal stopping time.

In this section, we aim to express the optimal stopping times studied in the previous parts
in terms of the hitting times of processes. According to Theorem A.1, the multiple optimal
stopping times can be constructed by induction. Therefore, it is sufficient to study the double
stopping case, for which it remains to aggregate the value function and the reward family. For
this purpose, we need to make some stronger regularity conditions.

In the next part of this section, assume that the F-expectation (E, Dom(E)) satisfies (H0)–
(H5) (a typical example is the g-expectation given in Remark 2.1). The following proposition
can be used to aggregate the value function of both the single and the multiple stopping
problem.

Proposition 5.1. Let {h(τ ), τ ∈ S0} be a nonnegative, RCE E-supermartingale system with
h(0) < ∞. Then there exists an adapted process {ht}t∈[0,T] which is RCLL such that it
aggregates the family {h(τ ), τ ∈ S0}, i.e., hτ = h(τ ) for any τ ∈ S0.
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Proof. Consider the process {h(t)}t∈[0,T]. Since this process is an E-supermartingale and
the function t → E[h(t)] is right-continuous, by Proposition 2.2, there is an E-supermartingale
{ht}t∈[0,T] which is RCLL such that for each t ∈ [0, T], ht = h(t) a.s. For each n ∈N, set In ={
0, 1

2n ∧ T, 2
2n ∧ T, · · · , T

}
and I = ∪∞

n=1In. Then, for any stopping time τ taking values in
I, we have hτ = h(τ ), a.s., which implies that

E[h(τ )] = E[hτ ]. (5.1)

For any stopping time τ ∈ S0, we may construct a sequence of stopping times {τn}n∈N which
takes values in I, such that τn ↓ τ . Noting that {ht}t∈[0,T] is RCLL, hτn converges to hτ . It is
obvious that hτn ≤ ess supτ∈S0

h(τ ) =: η. Since {h(τ ), τ ∈ S0} is an E-supermartingale system,
we have

sup
τ∈S0

E[h(τ )] ≤ h(0) < ∞.

Then by Lemma 2.1, we obtain that η ∈ Dom+(E). Noting that {h(τ ), τ ∈ S0} is RCE and
applying the dominated convergence theorem 2.3, we may check that

E[h(τ )] = lim
n→∞ E[h(τn)] = lim

n→∞ E[hτn ] = E[hτ ]. (5.2)

Assume that P
(
hτ �= h(τ )

)
> 0. Without loss of generality, we may assume that P(A) > 0,

where A = {hτ > h(τ )}. Set τA = τ IA + TIAc . It is easy to check that τA is a stopping time
and hτA ≥ h(τA) with P

(
hτA > h(τA)

) = P(A) > 0. It follows that E[h(τA)] < E[
hτA

]
, which

contradicts Equation (5.2). Therefore, we obtain that hτ = h(τ ) for any τ ∈ S0. �
Remark 5.1. Consider the nonlinear operator Ẽg induced by a backward stochastic differ-
ential equation (BSDE) with default, which is a nontrivial extension of the g-expectation
generated by a BSDE (more details can be found in [14]). Let {X(τ ), τ ∈ S0} be an
Ẽg-supermartingale family. By Lemma A.1 in [14], there exists a right upper semicontin-
uous optional process {Xt}t∈[0,T] which aggregates the family {X(τ ), τ ∈ S0}. The case of
a smallest Ẽg-supermartingale family supposed to be right-continuous is addressed in [14,
Proposition A.6].

With the help of Proposition 5.1, the value function {v(τ ), τ ∈ S0} can be aggregated as an
RCLL E-supermartingale.

Proposition 5.2. Suppose that {X(τ ), τ ∈ S0} is an RCE admissible family with
supτ∈S0

E[X(τ )] < ∞. Then there exists an RCLL E-supermartingale {vt}t∈[0,T] which
aggregates the family {v(S), S ∈ S0} defined in (3.1); i.e., for each stopping time
S, v(S) = vS a.s.

Proof. By Propositions 3.1 and 3.3, {v(S), S ∈ S0} is a nonnegative, RCE E-supermartingale
system. Recalling (3.2), we have

v(0) = E[v(0)] = sup
τ∈S0

E[X(τ )] < ∞.

The result follows from Proposition 5.1. �
For the reward family {X(τ ), τ ∈ S0}, since it is not an E-supermartingale system, we cannot

apply Proposition 5.1 to conclude that it can be aggregated. In order to do this, we need to
require the following continuity property of the reward family.
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Definition 5.1. ([15].) An admissible family {X(τ ), τ ∈ S0} is said to be right-continuous along
stopping times (RC) if for any τ ∈ S0 and any sequence {τn}n∈N ⊂ S0 such that τn ↓ τ , one has
X(τ ) = limn→∞ X(τn).

Remark 5.2. If the admissible family {X(τ ), τ ∈ S0} is RC with supτ∈S0
E[X(τ )] < ∞, then

it is RCE . Indeed, let {τn}n∈N ⊂ S0 be a sequence of stopping times such that τn ↓ τ , a.s. By
Lemma 2.1, the random variable η := ess supτ∈S0

X(τ ) belongs to Dom+(E). Since X(τn) ≤ η,
applying the dominated convergence theorem 2.3 implies that

E[X(τ )] = lim
n→∞ E[X(τn)].

The following theorem, obtained in [15], is used to aggregate the reward family.

Theorem 5.1. ([15].) Suppose that the admissible family {X(τ ), τ ∈ S0} is right-continuous
along stopping times. Then there exists a progressive process {Xt}t∈[0,T] such that for each
τ ∈ S0, X(τ ) = Xτ , a.s., and such that there exists a nonincreasing sequence of right-continuous
processes {Xn

t }t∈[0,T] such that for each (t, ω) ∈ [0, T] × �, limn→∞ Xn
t (ω) = Xt(ω).

Now we can prove that the optimal stopping time for the single stopping problem obtained
in Section 2 can be represented as a first hitting time.

Theorem 5.2. Suppose that the F-expectation satisfies all the assumptions (H0)–(H7). Let
{X(τ ), τ ∈ S0} be an RC and LCE admissible family with supτ∈S0

E[X(τ )] < ∞. Then for any
S ∈ S0, the optimal stopping time of v(S) defined by (3.8) can be given by a first hitting time.
More precisely, let {Xt}t∈[0,T] be the progressive process given by Theorem 5.1 that aggregates
{X(τ ), τ ∈ S0}, and let {vt}t∈[0,T] be the RCLL E-supermartingale that aggregates the family
{v(τ ), τ ∈ S0}. Then the random variable defined by

τ (S) = inf{t ≥ S : vt = Xt} (5.3)

is the minimal optimal stopping time for v(S).

Proof. For λ ∈ (0, 1), set

τ̄ λ(S) := inf{t ≥ S : λvt ≤ Xt} ∧ T . (5.4)

It is easy to check that the mapping λ �→ τ̄ λ(S) is nondecreasing. Then the stopping time

τ̄ (S) = lim
λ↑1

τ̄ λ(S)

is well-defined. The proof remains almost the same as the proofs of Lemma 3.1 and
Theorem 3.1 if τλ(S), τ̂ (S), and τ ∗(S) are replaced by τ̄ λ(S), τ̄ (S), and τ (S), respectively,
except the proof for Equation (3.6). In order to prove (3.6) in the present setting, that is, to
prove the inequality

λE[
v
(
τ̄ λ(S)

)] ≤ E[
X
(
τ̄ λ(S)

)]
,

it is sufficient to verify that for each S ∈ S0 and λ ∈ (0, 1),

λvτ̄ λ(S) ≤ Xτ̄ λ(S), a.s.

For the proof of this assertion, we may refer to Lemma 4.1 in [15]. The proof is complete. �
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In the following, we will show that the optimal stopping times for the multiple stopping
problem can be given in terms of hitting times. For simplicity, we only consider the double
stopping time problem. Let us first aggregate the value function.

Proposition 5.3. Let {X(τ, σ ), τ, σ ∈ S0} be an RCE biadmissible family such that
supτ,σ∈S0

E[X(τ, σ )] < ∞. Then there exists an E-supermartingale {vt}t∈[0,T] with RCLL sam-
ple paths that aggregates the family {v(S), S ∈ S0} defined by (4.1); i.e., for each S ∈ S0,
vS = v(S), a.s.

Proof. By Propositions 4.1 and 4.3, the family {v(S), S ∈ S0} is an E-supermartingale sys-
tem which is RCE . Remark 4.1 implies that v(0) < ∞. Therefore, the result follows from
Proposition 5.1. �

In order to aggregate the reward family obtained by (4.3), by Theorem 5.1, it suffices to
show that it is RC. Since this new reward is defined by the value function of the single stopping
problem corresponding to the biadmissible family, we need to assume the following regularity
condition on the biadmissible family.

Definition 5.2. ([15].) A biadmissible family {X(τ, σ ), τ, σ ∈ S0} is said to be uniformly
right-continuous along stopping times (URC) if supτ,σ∈S0

E[X(τ, σ )] < ∞ and if for each non-
increasing sequence of stopping times {Sn}n∈N ⊂ SS which converges a.s. to a stopping time
S ∈ S0, one has

lim
n→∞

[
ess sup

τ∈S0

|X(τ, Sn) − X(τ, S)|
]
= 0,

lim
n→∞

[
ess sup
σ∈S0

|X(Sn, σ ) − X(S, σ )|
]
= 0.

Theorem 5.3. Suppose that there exists an F-expectation
(Ẽ, Dom

(Ẽ))
satisfying (H0)–(H5)

that dominates (E, Dom(E)). Let {X(τ, σ ), τ, σ ∈ S0} be a biadmissible family which is URC.
Then the family {X̃(S), S ∈ S0} defined by (4.3) is RC.

Proof. By the expression for X̃, it is sufficient to prove that the family {u1(τ ), τ ∈ S0} is
RC. For any τ, σ ∈ S0, we define

U1(τ, σ ) = ess sup
τ1∈Sτ

Eτ [X(τ1, σ )]. (5.5)

Since u1(τ ) = U1(τ, τ ), it remains to prove that {U1(τ, σ ), τ, σ ∈ S0} is RC.
Now let {τn}n∈N, {σn}n∈N be two nonincreasing sequences of stopping times that converge

to τ and σ respectively. It is easy to check that

|U1(τ, σ ) − U1(τn, σn)| ≤ |U1(τ, σ ) − U1(τn, σ )| + |U1(τn, σ ) − U1(τn, σn)|. (5.6)

It is obvious that for each fixed σ ∈ S0, the family {X(τ, σ ), τ ∈ S0} is RC. By Remark 5.2,
this family is also RCE . Note that {U1(τ, σ ), τ ∈ S0} can be regarded as the value function of
the single optimal stopping problem associated with the reward {X(τ, σ ), τ ∈ S0}. Although
the reward family {X(τ, σ ), τ ∈ S0} may not be admissible owing to the lack of adaptedness,
i.e., X(τ, σ ) is not Fτ -measurable if τ < σ , Remarks 3.3 and 3.4 imply that {U1(τ, σ ), τ ∈ S0}
is an E-supermartingale which is RCE . By Proposition 5.2, we obtain that there exists an RCLL
adapted process {U1,σ

t }t∈[0,T] such that for each stopping time τ ∈ S0,

U1,σ
τ = U1(τ, σ ). (5.7)
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Hence, the first part of the right-hand side of (5.6) can be written as
∣∣U1,σ

τ − U1,σ
τn

∣∣. By the

right-continuity of
{
U1,σ

t
}

t∈[0,T], it converges to 0 as n goes to infinity.
For any m ∈N, set Zm = supr≥m{ess supτ∈S0

|X(τ, σ ) − X(τ, σr)|}. It is easy to check that

0 ≤ Zm ≤ 2 ess sup
τ,σ∈S0

X(τ, σ ) =: η.

An analysis similar to the one in the proof of Lemma 2.1 shows that η ∈ Dom+(E). Therefore,
Zm ∈ Dom+(E) for any m ∈N. By a simple calculation, for any n ≥ m, we have

|U1(τn, σ ) − U1(τn, σn)| ≤ ess sup
τ1∈Sτn

|Eτn [X(τ1, σ )] − Eτn [X(τ1, σn)]|

≤ ess sup
τ1∈Sτn

Ẽτn [|X(τ1, σ ) − X(τ1, σn)|]

≤ Ẽτn [Zm].

Since, for any ξ ∈ Dom+(E), the family
{Ẽt[ξ ]

}
t∈[0,T] is right-continuous, it follows that for

any m ∈N,
lim sup

n→∞
|U1(τn, σ ) − U1(τn, σn)| ≤ Ẽτ [Zm]. (5.8)

Note that Zm converges to 0 as m goes to infinity. By the dominated convergence theorem 2.3,
letting m go to infinity in (5.8), we obtain that the second term of the right-hand side of (5.6)
converges to 0. The proof is complete. �

Combining Theorems 5.1 and 5.3, we get the following aggregation result.

Corollary 5.1. Under the same hypotheses as those of Theorem 5.3, there exists some progres-
sive right-continuous adapted process

{
X̃t

}
t∈[0,T] which aggregates the family

{
X̃(τ ), τ ∈ S0

}
,

i.e., for any τ ∈ S0, X̃τ = X̃(τ ), a.s., and such that there exists a nonincreasing sequence of
right-continuous processes {X̃n

t }t∈[0,T] that converges to
{
X̃t

}
t∈[0,T].

Theorem 5.4. Suppose that the F-expectation (E, Dom(E)) satisfies all the assumptions (H0)–
(H7) and that the biadmissible family {X(τ, σ ), τ, σ ∈ S0} is URC and ULCE . Then the optimal
stopping time for the value function defined by (4.1) can be given in terms of some first hitting
times.

Proof. Let
{
X̃(τ ), τ ∈ S0

}
be the new reward family given by (4.3). By Theorems 4.3 and

5.3, it is LCE and RC. Applying Theorem 5.1, there exists a progressively measurable process{
X̃t

}
t∈[0,T] which aggregates this family. Let {ut}t∈[0,T] be an RCLL process that aggregates

the value function defined as (4.4), which corresponds to the reward family
{
X̃(τ ), τ ∈ S0

}
by

Proposition 5.2. Then Theorem 5.2 implies that, for any S ∈ S0, the stopping time

θ∗ = inf{t ≥ S : ut = X̃t}
is optimal for u(S).

For each θ ∈ Sθ∗ , set X(1)(θ ) = X(θ, θ∗) and X(2)(θ ) = X(θ∗, θ ). For i = 1, 2, it is obvious
that the family {X(i)(θ ), θ ∈ Sθ∗} is admissible, RC, and LCE . In order to aggregate this family
using Theorem 5.1, we need to extend its definition to all stopping times θ ∈ S0. One of the
candidates is

X̃(i)(θ ) = X(i)(θ )I{θ≥θ∗} − I{θ<θ∗}.
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It is easy to check that the family
{
X̃(i)(θ ), θ ∈ S0

}
is admissible, RC, and left-continuous in

expectation along stopping times greater than θ∗. By Theorem 5.1, there exists a progressive
process {X̃(i)

t }t∈[0,T] that aggregates
{
X̃(i)(θ ), θ ∈ S0

}
. Consider the following value function:

ṽ(i)(S) = ess sup
τ∈SS

ES
[
X̃(i)(τ )

]
.

Applying Theorem 3.2, we obtain that the family
{̃
v(i)(S), S ∈ S0

}
is an RCE E-supermartingale

system. Furthermore, for any S ≥ θ∗, we have ṽ(i)(S) = ui(S), where ui is defined by (4.2). By
Proposition 5.2, there exists an RCLL process

{̃
vi

t

}
t∈[0,T] that aggregates the family {̃v(i)(S), S ∈

S0}. Now, we define

θ∗
i = inf

{
t ≥ θ∗ : ṽi

t = X̃(i)
t

}
.

By an analysis similar to the one in the proof of Theorem 3.2, Theorem 5.2 still holds for the
reward family given by

{
X̃(i)(θ ), θ ∈ S0

}
, which implies that the stopping time θ∗

i is optimal for
ṽi(θ∗), and then optimal for ui(θ∗). Now, set B = {u1(θ∗) ≤ u2(θ∗)} = {̃

v(1)(θ∗) ≤ ṽ(2)(θ∗)
} ={̃

v1
θ∗ ≤ ṽ2

θ∗
}
. By Proposition 4.2, the pair of stopping times

(
τ ∗

1 , τ ∗
2

)
given by

τ ∗
1 = θ∗IB + θ∗

1 IBc , τ ∗
2 = θ∗

2 IB + θ∗IBc

is optimal for v(S). The proof is complete. �

Appendix A

As in Section 4, we assume that the F-expectation (E, Dom(E)) satisfies Assumptions (H0)–
(H5). Now we introduce the optimal d-stopping time problem. The reward family should
satisfy the following conditions.

Definition A.1. A family of random variables
{
X(τ ), τ ∈ Sd

0

}
is said to be d-admissible if it

satisfies the following conditions:

(1) for all τ = (τ1, · · · , τd) ∈ Sd
0 , X(τ ) ∈ Dom+

τ1∨···∨τd
(E);

(2) for all τ, σ ∈ Sd
0 , X(τ ) = X(σ ) a.s. on {τ = σ }.

For each fixed stopping time S ∈ S0, the value function of the optimal d-stopping time
problem associated with the reward family

{
X(τ ), τ ∈ Sd

0

}
is given by

v(S) = ess sup
τ∈Sd

S

ES[X(τ )] = ess sup{ES[X(τ1, · · · , τd)], τ1, · · · , τd ∈ SS}. (A.1)

Similarly to the optimal double stopping time case, the family {v(S), S ∈ S0} is admissible and
is an E-supermartingale system, as the following proposition shows.

Proposition A.1. Let
{
X(τ ), τ ∈ Sd

0

}
be a d-admissible family of random variables with

supτ∈Sd
0

[X(τ )] < ∞. Then the value function {v(S), S ∈ S0} defined by (A.1) satisfies the

following properties:

(i) {v(S), S ∈ S0} is an admissible family;

(ii) for each S ∈ S0, there exists a sequence of stopping times {τ n}n∈N ⊂ Sd
S such that

ES[X(τ n)] converges monotonically up to v(S);
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(iii) {v(S), S ∈ S0} is an E-supermartingale system;

(iv) for each S ∈ S0, we have E[v(S)] = supτ∈Sd
S
E[X(τ )].

In the following, we will interpret the value function v(S) defined in (A.1) as the value
function of an optimal single stopping problem associated with a new reward family. For this
purpose, for each i = 1, · · · , d and θ ∈ S0, consider the following random variable:

u(i)(θ ) = ess sup
τ∈Sd−1

θ

Eθ

[
X(i)(τ, θ )

]
, (A.2)

where
X(i)(τ1, · · · , τd−1, θ ) = X(τ1, · · · , τi−1, θ, τi+1, · · · , τd−1). (A.3)

It is easy to see that u(i)(θ ) is the value function of the optimal (d − 1)-stopping problem
corresponding to the reward

{
X(i)(τ, θ ), τ ∈ Sd−1

θ

}
. Now we define

X̂(θ ) = max
{
u(1)(θ ), · · · , u(d)(θ )

}
(A.4)

and
u(S) = ess sup

τ∈SS

ES
[
X̂(τ )

]
. (A.5)

The following theorem indicates that the value function v defined by (A.1) coincides with u.

Theorem A.1. Let
{
X(τ ), τ ∈ Sd

0

}
be a d-admissible family with supτ∈Sd

0
E[X(τ )] < ∞. Then,

for any S ∈ S0, we have v(S) = u(S).

With the above characterization of the value function, we may propose a possible construc-
tion of the optimal multiple stopping times by induction.

Proposition A.2. For any fixed S ∈ S0, suppose the following:

(1) there exists θ∗ ∈ SS such that u(S) = ES
[
X̂(θ∗)

]
;

(2) for any i = 1, · · · , d, there exists θ (i)∗ =
(
θ

(i)∗
1 , · · · , θ

(i)∗
i−1, θ

(i)∗
i+1, · · · , θ

(i)∗
d

)
∈ Sd−1

θ∗

such that u(i)(θ∗) = Eθ∗ [X(i)(θ (i)∗, θ∗)].

Let {Bi}d
i=1 be an Fθ∗-measurable and disjoint partition of � such that X̂(θ∗) = u(i)(θ∗) on

the set Bi, i = 1, · · · , d. Set

τ ∗
j = θ∗IBj +

d∑
i �=j,i=1

θ
(i)∗
j IBi . (A.6)

Then τ ∗ = (
τ ∗

1 , · · · , τ ∗
d

)
is optimal for v(S), and τ ∗

1 ∧ · · · ∧ τ ∗
d = θ∗.

Proposition A.3. For any fixed S ∈ S0, suppose that τ ∗ = (
τ ∗

1 , · · · , τ ∗
d

)
is optimal for v(S).

Then we have the following:

(1) τ ∗
1 ∧ · · · ∧ τ ∗

d is optimal for u(S);

(2) for any i = 1, · · · , d,
(
τ ∗

1 , · · · , τ ∗
i−1, τ ∗

i+1, · · · , τ ∗
d

)
is optimal for u(i)

(
τ ∗

i

)
on the set{

τ ∗
1 ∧ · · · ∧ τ ∗

d = τ ∗
i

}
.
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Remark A.1. None of the above results in this section need any regularity assumption on the
reward family

{
X(τ ), τ ∈ Sd

0

}
.

The definition of continuity for the reward with d parameters is similar to the one for the
double stopping case.

Definition A.2. A d-admissible family
{
X(τ ), τ ∈ Sd

0

}
is said to be right-continuous (resp.,

left-continuous) along stopping times in E-expectation [RCE (resp., LCE)] if, for any τ ∈
Sd

0 and any sequence {τn}n∈N ⊂ Sd
0 such that τn ↓ τ (resp., τn ↑ τ ), one has E[X(τ )] =

limn→∞ E[X(τn)]. If the family
{
X(τ ), τ ∈ Sd

0

}
is both RCE and LCE , it is said to be

continuous along stopping times in E-expectation (CE).

Proposition A.4. Suppose that
{
X(τ ), τ ∈ Sd

0

}
is an RCE d-admissible family with

supτ∈Sd
0
E[X(τ )] < ∞. Then the family {v(S), S ∈ S0} is RCE .

Remark A.2. As in the analysis of Remark 3.4, suppose that
{
X(τ ), τ ∈ Sd

0

}
is a d-admissible

family with supτ∈Sd
0
E[X(τ )] < ∞ and is right-continuous in E-expectation along stopping

times greater than σ (i.e., if a sequence of stopping times {τn}n∈N ⊂ Sd
σ satisfies τn ↓ τ , then

one has E[X(τ )] = limn→∞ E[X(τn)]). Then the family of value functions {v(S), S ∈ S0} is
right-continuous in E-expectation along stopping times greater than σ .

By Theorem A.1 and Proposition A.2, the value function and the optimal multiple stopping
times of the optimal d-stopping problem can be constructed from those of the optimal (d − 1)-
stopping problem. Therefore, by induction, the multiple stopping problem can be reduced to
nested single stopping problems. In addition, the existence of the optimal stopping time for the
single stopping problem associated with the new reward

{
X̂(S), S ∈ S0

}
is the building block

for constructing the optimal stopping time for the original d-stopping problem. According to
Theorem 3.1, it remains to investigate the regularity of this new reward family.

Definition A.3. A d-admissible family
{
X(τ ), τ ∈ Sd

0

}
is said to be uniformly right-continuous

(resp., left-continuous) along stopping times in E-expectation [URCE (resp., ULCE)] if for
each i = 1, · · · , d, S ∈ S0, and sequence of stopping times {Sn}n∈N such that Sn ↓ S (resp.,
Sn ↑ S), one has

lim
n→∞ sup

θ∈Sd−1
0

E[|X(i)(θ, Sn) − X(i)(θ, S)|] = 0.

Proposition A.5. Let
(Ẽ, Dom

(Ẽ))
be an F-expectation satisfying Assumptions (H0)–(H5).

Suppose that the F-expectation (E, Dom(E)) is dominated by
(Ẽ, Dom

(Ẽ))
and

{
X(τ ), τ ∈ Sd

0

}
is a URCẼ d-admissible family with supτ∈Sd

0
E[X(τ )] < ∞. Then the family

{
X̂(τ ), τ ∈ S0

}
defined by (A.4) is RCE .

Since the left-continuity along stopping times in E-expectation relies on the existence of
optimal stopping times, the conditions under which the LCE holds is more restrictive than the
RCE case, and the proof of LCE is more complicated, as explained before the statement of
Theorem 4.3 in Section 4.

Proposition A.6. Suppose that the F-expectation (E, Dom(E)) satisfies (H0)–(H7) and{
X(τ ), τ ∈ Sd

0

}
is a UCE d-admissible family (i.e., both URCE and ULCE) with

supτ∈Sd
0
E[X(τ )] < ∞. Then the family

{
X̂(τ ), τ ∈ S0

}
defined by (A.4) is LCE .
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With the help of Propositions A.2, A.5, and A.6, we can now establish the existence result
for the optimal stopping times for the multiple stopping problem.

Theorem A.2. Suppose that the F-expectation (E, Dom(E)) satisfies all the assumptions (H0)–
(H7) and

{
X(τ ), τ ∈ Sd

0

}
is a UCE d-admissible family with supτ∈Sd

0
E[X(τ )] < ∞. Then there

exists an optimal stopping time τ ∗ ∈ Sd
S for v(S), that is,

v(S) = ess sup
τ∈Sd

S

ES[X(τ )] = ES[X(τ ∗)].

In order to characterize the optimal multiple stopping times in a minimal way, we should
first define a partial order relation ≺d on Rd. This relation can be found in [15]; for the reader’s
convenience, we also state it here. For d = 1 and any a, b ∈R, a ≺1 b if and only if a ≤ b, and
for d > 1 and any (a1, · · · , ad), (b1, · · · , bd) ∈Rd, (a1, · · · , ad) ≺d (b1, · · · , bd) if and only
if either a1 ∧ · · · ∧ ad < b1 ∧ · · · ∧ bd, or⎧⎪⎨⎪⎩

a1 ∧ · · · ∧ ad = b1 ∧ · · · ∧ bd, and, for i = 1, 2, · · · , d,

ai = a1 ∧ · · · ∧ ad ⇒
{

bi = b1 ∧ · · · ∧ bd and(
a1, · · · , ai−1, ai+1 · · · , ad

) ≺d−1
(
b1, · · · , bi−1, bi+1 · · · , bd

)
.

Definition A.4. For each fixed S ∈ S0, a d-stopping time (τ1, · · · , τd) ∈ Sd
S is said to be

d-minimal optimal for the value function v(S) defined by (A.1) if it is minimal for the order ≺d

in the set
{
τ ∈ Sd

S : v(S) = ES[X(τ )]
}
, which is the collection of all optimal stopping times.

Proposition A.7. For each fixed S ∈ S0, a d-stopping time (τ1, · · · , τd) ∈ Sd
S is d-minimal

optimal for the value function v(S) defined by (A.1) if and only if the following hold:

(1) θ∗ = τ1 ∧ · · · ∧ τd is the minimal optimal stopping time for u(S) defined by (A.5);

(2) for i = 1, · · · , d, θ∗(i) = τi ∈ Sd−1
S is the (d − 1)-minimal optimal stopping time for

u(i)(θ∗) defined by (A.2) on the set
{
u(i)(θ∗) ≥ ∨k �=iu(k)(θ∗)

}
.
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