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Abstract In the early 1980s, Johnson defined a homomorphism I1
g →

∧3H1 (Sg,Z), where I1
g is the Torelli

group of a closed, connected, and oriented surface of genus g with a boundary component and Sg is the
corresponding surface without a boundary component. This is known as the Johnson homomorphism.

We study the map induced by the Johnson homomorphism on rational homology groups and apply
it to abelian cycles determined by disjoint bounding-pair maps, in order to compute a large quotient of
Hn

(
I1
g,Q

)
in the stable range. This also implies an analogous result for the stable rational homology

of the Torelli group Ig,1 of a surface with a marked point instead of a boundary component. Further,
we investigate how much of the image of this map is generated by images of such cycles and use this to
prove that in the pointed case, they generate a proper subrepresentation of Hn (Ig,1) for n ≥ 2 and g
large enough.
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1. Introduction

1.1. The Torelli group

Let Ss
g,r denote a connected and oriented surface of genus g, with r marked points and s

boundary components. If either of r or s is zero, we simply omit the corresponding index.
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1704 E. Lindell

Recall that the mapping-class group of Ss
g,r is the group

Γs
g,r := π0Diff+

(
Ss
g,r

)
of isotopy classes of orientation-preserving diffeomorphisms of Ss

g,r that fix the marked

points and boundary components. We define H :=H1 (Sg,Q) and HZ :=H1 (Sg,Z). Since
Diff+

(
Ss
g,r

)
acts on Sg, Γ

s
g,r acts on H, which is a symplectic vector space. The Γs

g,r-action
preserves the corresponding symplectic form

ω :=

g∑
i=1

ai∧ bi ∈
2∧
H,

where a1,b1,. . . c,ag,bg is any symplectic basis of H, and this gives us a group homomor-

phism

Γs
g,r → Sp(H),

where Sp(H) denotes the symplectic group of H. We define the Torelli group of Ss
g,r,

denoted Is
g,r, to be the kernel of this homomorphism. The Torelli group is thus the

subgroup of Γs
g,r consisting of those isotopy classes of diffeomorphisms that act trivially

on H. It is a classic result that the image of Γs
g,r → Sp(H) is precisely the arithmetic

subgroup Sp(HZ), so we get a short exact sequence

1→Is
g,r → Γs

g,r → Sp(HZ)→ 1.

The conjugation action of Γs
g,r on Is

g,r gives us an action by Sp(HZ) on Is
g,r by outer

automorphisms, which makes Hn

(
Is
g,r,Q

)
into an Sp(HZ)-representation, for all n ≥ 0.

Unless explicitly stated, all homology is taken with rational coefficients from now on.

1.2. The Johnson homomorphism

Many basic questions about the groups Hn

(
Is
g,r

)
are unanswered for n≥ 2. By contrast,

the case n= 1 is completely understood, due to work by Johnson in the early 1980s [7].

Among other things, Johnson contructed a group homomorphism

τJ : I1
g →

3∧
HZ,

which is known as the Johnson homomorphism. For g ≥ 3, he proved that the induced
Sp(HZ)-equivariant map

τ :H1

(
I1
g

)
→

3∧
H

is an isomorphism. In particular, this proves that H1

(
I1
g

)
is finite-dimensional and

algebraic as a representation of Sp(HZ) for g ≥ 3. Two important open questions about

the higher homology groups are thus as follows:

Question 1. Are the homology groups Hn

(
Is
g,r

)
finite-dimensional, for n ≥ 1 and g

sufficiently large?
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Question 2. Are the homology groups Hn

(
Is
g,r

)
algebraic Sp(HZ)-representations, for

n≥ 1 and g sufficiently large?

In low genera, we know that the answer to both questions is generally no. In genus 2,
it was proven by Mess [12] that for a certain permutation matrix e ∈ Sp(2,Z), we have

H1(I2)∼=Q[Sp(2,Z)/(〈e〉� (SL(2,Z)×SL(2,Z)))].

He also showed that H3(I3) contains a subrepresentation isomorphic to

Q[Sp(3,Z)/(Sp(1,Z)× Sp(2,Z))]. It was recently proven by Gaifullin [5] that for g ≥ 3

and 2g−3≤ n≤ 3g−6, Hn (Ig,Z) contains a free abelian subgroup of infinite rank. This
means that Hn (Ig) is neither algebraic nor finite-dimensional in either of these cases.

For n≥ 1, τJ induces a map

(τJ)∗ :Hn

(
I1
g

)
→Hn

(
3∧
H

)
∼=

n∧(
3∧
H

)
,

which we will denote by ψn. An equivalent definition of ψn is as the composition of the

comultiplication Hn

(
I1
g

)
→

∧n
H1

(
I1
g

)
with ∧nτ . For n ≥ 2, it follows from results by

Hain that the map ψn is not surjective [6], but it is natural to ask the question:

Question 3. Is ψn injective for all n≥ 1 and g sufficiently large?

It is not clear whether to expect this to be true. A positive answer would of course

imply positive answers to Questions 1 and 2 in the corresponding case. It was proven
by Kupers and Randal-Williams that the converse is also true [11]. They also gave an

explicit description of the kernel of the dual map of ψn, under these assumptions.

Remark 1.1. In the case of a surface without a boundary component, Johnson instead

defined a homomorphism Ig →
(∧3

HZ

)
/HZ, where HZ is embedded as a subspace

of
∧3

HZ by inserting the symplectic form. This is also known as the Johnson homo-

morphism. This homomorphism induces an Sp(HZ)-equivariant isomorphism H1 (Ig)→(∧3
H
)
/H.

Remark 1.2. Hain [6] has studied the dual of the map ψn in the unpointed case and
determined its image completely for n=2. For n=3, its image was determined by Sakasai,

up to one irreducible subrepresentation [14], the presence of which was settled by Kupers

and Randal-Williams [11].
The Johnson homomorphisms are closely related to homomorphisms Γg,1 → 1

2

∧3
HZ�

Sp(HZ) and Γg → 1
2

(∧3
HZ

)
/HZ�Sp(HZ) defined by Morita [13], which were used by

Kawazumi and Morita to give a description of the tautological subalgebra of H∗ (Γg,1) in

terms of trivalent graphs [10].

We will study how the image of ψn decomposes into irreducible Sp(HZ)-representations

and determine a lower bound on this image in the stable range. The representation∧n
(∧3

H
)
is algebraic, and this implies that its irreducible subrepresentations viewed as
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an Sp(H)- and an Sp(HZ)-representation agree. Therefore, we will work with the image

of ψn as an Sp(H)-representation.

1.3. Irreducible representations of symplectic groups

In order to state our results, we need to recall some basics from the representation
theory of symplectic groups. The isomorphism classes of irreducible representations of

Sp(H) are indexed by partitions. A partition is a decreasing sequence (λ1 ≥ λ2 ≥ ·· · ≥
0 ≥ 0 ≥ ·· ·) of nonnegative integers that eventually reaches zero. For example, the
standard representation H corresponds to the partition (1 ≥ 0 ≥ 0 ≥ ·· ·). We will write

(λ1 ≥ λ2 ≥ ·· · ≥ λk) for the partition, where all following entries in the sequence are zero.

The sum
∑

n≥1λn is called the weight of the partition. If λi−1 > λi = · · ·= λi+l−1 > λi+l,

we will often write
(
λ1 ≥ ·· ·> λl

i > · · · ≥ λk

)
, for brevity, and use the convention that if

l = 0, then λi does not occur in the partition.

We will write Vλ = Vλ1,...,λk
for the irreducible representation corresponding to the

partition λ = (λ1 ≥ λ2 ≥ ·· · ≥ λk). In particular, we have V1
∼=H. We define the weight

of Vλ to be the weight of λ. For k ≥ 1, the representation H⊗k contains irreducible

subrepresentations of weight at most k, which means that the top weight irreducible

subrepresentations of
∧n

(∧3
H
)

have weight 3n. For more details on the irreducible

representations of symplectic groups, see, for example, [4, Chapter 17].

1.4. Results

Our first main result is the following:

Theorem 1.3. For n≥ 1 and g ≥ 3n, the image of ψn :Hn

(
I1
g

)
→

∧n
(∧3

H
)
contains

the Sp(H)-subrepresentation of
∧n

(∧3
H
)
spanned by all irreducible subrepresentations

of weight 3n.

Remark 1.4. The kernel of the dual map described by Kupers and Randal-Williams
contains no irreducible subrepresentations of top weight, which means that if Questions

1 and 2 have positive answers, Theorem 1.3 follows immediately.

To get a feeling for what Theorem 1.3 means in practice, let us list the irreducible

subrepresentations of
∧n

(∧3
H
)
of top weight for n ≤ 4 in a table, together with their

dimension for g = 3n. These can be computed using, for example, SAGE.

n Irreducible subrepresentations of top weight in
∧n (∧3H

)
, for g ≥ 3n Dimension for g = 3n

1 V13 14
2 V22,12 ⊕V16 19,383
3 V3,23 ⊕V32,13 ⊕V23,13 ⊕V22,15 ⊕V19 ≈ 7.5 ·107
4 V4,3,22,1⊕V42,14 ⊕V34 ⊕V32,22,12 ⊕V32,16 ⊕V3,23,13 ≈ 5.3 ·1011
⊕V26 ⊕V24,14 ⊕V23,13 ⊕V22,18 ⊕V112
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Contrary to what the table might suggest, the irreducible subrepresentations are
generally not of multiplicity 1 for higher n.

Theorem 1.3 is actually a special case of our second main theorem. This second theorem

requires a bit more work to prove, which is why we list and prove the theorems separately.
In order to state this result a bit more clearly, we will consider the irreducible Sp(H)-

representation V1k as a Z-graded vector space concentrated in degree k, and use the Koszul

sign convention. Note that in particular, H is concentrated in degree 1. From now on, we

will therefore use
∧

to denote the free graded commutative algebra functor, rather than
the exterior algebra functor of ungraded vector spaces.

Theorem 1.5. Set n≥ 1 and let λ= (λk1
1 > · · ·>λkm

m > 0) and μ= (μl1
1 > · · ·>μ

lm+2

m+2 > 0)

be partitions such that μi = λi+2 for i= 1, . . . ,m and |λ|+ |μ|= n. Let km+1 = km+2 = 0,

k=
∑m

i=1 ki, and l=
∑m+2

i=1 li, and suppose that g≥ n+2k+ l. Then the subrepresentation
of

m+2⊗
i=1

ki+li∧
V1μi

spanned by all irreducible subrepresentations of weight n+2k is contained in Im(ψn).

In particular, we see that the case m = 1, λ1 = 1, k1 = n gives us back Theorem 1.3,

since
∧3

H ∼= V13 ⊕V1.

Remark 1.6. The Johnson homomorphism τJ : I1
g →

∧3
HZ actually factors as I1

g →
Ig,1 →

∧3
HZ, where the first map is induced by sewing a disk with a marked point

into the boundary component and extending diffeomorphisms by the identity. Thus the

analogous results to Theorems 1.3 and 1.5 also hold in the pointed case.

Our strategy is to consider abelian cycles in Hn

(
I1
g

)
determined by n-tuples of pairwise

disjoint bounding-pair maps. These notions will be defined in §3. What makes this strategy
work is that the coproduct of an abelian cycle has a simple expression in terms of abelian

cycles of lower degree (Lemma 3.2), which makes the map ψn easy to evaluate.

Remark 1.7. The main inspiration for using abelian cycles is papers by Church and

Farb [1] and Sakasai [14]. In the former, these are used to study the images of certain

homomorphisms τn :Hn (Ig,1)→
∧n+2

H that generalize τ to higher degree (see [7, pp.
172–173]). Church and Farb prove, among other things, that for n ≥ 1 and g ≥ n+2,

the homomorphism τn gives a surjection Hn (Ig,1) � V1n+2 ⊕V1n . This means that the

dimension of Hn (Ig,1) has a lower bound of order ∼ gn+2 for all n≥ 1. We can note that
by Theorem 1.3 and Remark 1.6 we get a lower bound on the dimensions of Hn

(
I1
g

)
and

Hn (Ig,1) of order ∼ g3n for g ≥ 3n.

Remark 1.8. Church, Ellenberg, and Farb have used representation stability [2, §7.2] to
prove the following theorem:
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Theorem 1.9. (Church, Ellenberg, Farb). For each n≥ 0 there exists a polynomial Pn(T )

of degree at most 3n such that

dim

(
Im

(
n∧
H1

(
I1
g

)
→Hn

(
I1
g

)))
= Pn(g)

for g � n.

Since Hn
(
I1
g

) ∼= Hn

(
I1
g

)∗
as Sp(H)-representations for all n ≥ 0, it follows that the

dimension of the image in Theorem 1.9 is bounded from below by the dimension of the

image of ψn : Hn

(
I1
g

)
→

∧n
(∧3

H
)
, so the following corollary follows from Theorems

1.3 and 1.9:

Corollary 1.10. The polynomial Pn(T ) in Theorem 1.9 has degree 3n.

For the final result of the paper, we will work with a marked point instead of a boundary

component, since this gives us something a bit more general. Abusing notation, we will

use ψn to denote the map Hn (Ig,1)→
∧n

(∧3
H
)
as well. Which ψn is intended will be

clear from context. The last main result concerns the limitations of using abelian cycles
of the type we consider. More specifically:

Theorem 1.11. Set n ≥ 2 and let An (Ig,1) ⊂ Hn (Ig,1) be the subrepresentation

generated by abelian cycles determined by pairwise disjoint bounding-pair maps. Then

ψn (An (Ig,1)) is concentrated in weights n,n+ 2, . . . ,3n. However, ψn (Hn (Ig,1)) also
contains a subrepresentation of weight n− 2 for all n ≥ 2 and g � 0. In particular,

An (Ig,1)⊂Hn (Ig,1) is a proper subrepresentation for n≥ 2 and g � 0.

Remark 1.12. We will see that the map induced on homology by I1
g → Ig,1 maps

An

(
I1
g

)
→ An (Ig,1). From this it follows that the first claim of Theorem 1.11 holds

for ψn

(
An

(
I1
g

))
as well. To prove the second claim, however, we construct a homology

class that requires a marked point rather than a boundary component, and it is not clear

how to construct something analogous using a boundary component. However, it follows
from results by Kupers and Randal-Williams [11] that H3

(
I1
g

)
contains an irreducible

subrepresentation of weight 1, so it seems reasonable to expect Theorem 1.11 to hold in its

entirety for An

(
I1
g

)
as well. If we also believe that Questions 1–3 have positive answers, it

follows from the results by Kupers and Randal-Williams that for large n there are many

classes in Hn

(
I1
g

)
that are of lower weight than n and thus cannot lie in An

(
I1
g

)
.

1.5. Structure of the paper

In §2 we give a brief description of Schur–Weyl duality for symplectic groups, which is a

fundamental result in the representation theory of symplectic groups. We then describe

some simple but useful consequences of this theorem.
In §3 we recall some basics from the theory of mapping-class groups in order to define

bounding-pair maps. We then introduce abelian cycles and show how ψn can be easily

evaluated on these. This allows us to give a simple proof of Theorem 1.3.
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In §4 we prove Theorem 1.5. Here we see how considering surfaces with a boundary
component allows us to define a ‘multiplication’ of abelian cycles and thereby prove the

theorem in a systematic way.

Finally, in §5, we prove Theorem 1.11.

2. Schur–Weyl duality for symplectic groups

We want to investigate how the image of ψn : Hn

(
I1
g

)
→

∧n
(∧3

H
)

decomposes into

irreducible representations of Sp(H), and to this end we first need to understand howH⊗k

decomposes into irreducible subrepresentations for any k ≥ 1. This decomposition is well
understood, by so-called Schur–Weyl duality for symplectic groups. The representation

H⊗k contains irreducible subrepresentation of weight at most k (see §1.3), and the

irreducibles of top weight form a subrepresentation which we denote by H〈k〉. We call the
tensors in H〈k〉 traceless, since these are precisely those tensors in H⊗k that are mapped

to zero by all of the contraction maps Ck
i,j : H

⊗k → H⊗k−2, given by contracting with

the ith and j th factors with the symplectic form. The space H〈k〉 has both a left action

by Sp(H) and a commuting right action by the symmetric group Σk, by permuting the

tensor factors. Schur–Weyl duality1 describes how H〈k〉 decomposes as a representation

of Sp(H)×Σk. The irreducible representations of Σk are classified by partitions of weight
k, as described in [4, Chapter 4], and for such a partition λ we denote the corresponding

irreducible representation of Σk by σλ. Schur–Weyl duality for symplectic groups, which

is described for example in [4, Chapter 17.3], then states that

H〈k〉 ∼=
⊕
|λ|=k

Vλ⊗σλ.

Up to isomorphism, each Vλ can be constructed as the image of a certain Young

symmetrizer cλ : H〈k〉 → H〈k〉, which is an element of Q[Σk]. For a proof of this fact,
once again see [4, Chapters 6 and 17.3]. Young symmetrizers are defined using Young

diagrams, which are diagrams that represent partitions, as illustrated in Figure 1. A

Young tableau is a Young diagram with a choice of numbering of the boxes.

To define cλ, for |λ| = k, we first need to pick a Young tableau with an underlying
Young diagram representing λ. We denote this tableau by T and let Pλ = {σ ∈ Σk |
σ preserves each row of T} and Qλ = {σ ∈ Σk | σ preserves each column of T}. We now

Figure 1. The Young diagram representing the partition (5≥ 3≥ 1) and a corresponding Young tableau.

1There is also a more general version that describes the decomposition of all of H⊗k, but this
requires more background to describe and is not required for our purposes.
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define cλ := aλbλ ∈Q[Σk], where

aλ :=
∑
σ∈Pλ

σ, bλ :=
∑
σ∈Qλ

sgn(σ)σ.

If we take the Young tableau of λ that is numbered analogously to the tableau in Figure 1

and let μ=(μ1 ≥ ·· · ≥μl) denote the partition we get by transposing the rows and columns
of the Young diagram representing λ, it follows that the image of the corresponding Young

symmetrizer cλ :H〈k〉 →H〈k〉 is the subrepresentation of

μ1∧
H⊗·· ·⊗

μl∧
H

generated by the tensor

(a1∧·· ·∧aμ1
)⊗·· ·⊗ (a1∧·· ·∧aμl

),

for any choice of symplectic basis {a1,b1, . . . ,ag,bg} of H. From this, it follows that as an
Sp(H)-representation, Vλ⊗σλ is generated by tensors of the form

((a1∧·· ·∧aμ1
)⊗·· ·⊗ (a1∧·· ·∧aμl

)) ·σ

for σ ∈ Σk. Here the action is defined by viewing
∧μ1 H ⊗ ·· ·⊗

∧μl H as a subspace of

H⊗k – that is, as the composite map

μ1∧
H⊗·· ·⊗

μl∧
H ↪→H⊗k ·σ−→H⊗k,

where the first map is the standard inclusion. This allows us to prove the following lemma:

Lemma 2.1. For all g ≥ k ≥ 1, the Sp(H)-representation H〈k〉 is generated by the

tensor

a1⊗·· ·⊗ak, (1)

for any fixed symplectic basis {a1,b1, . . . ,ag,bg} of H.

Proof. By the foregoing discussion, it suffices to prove that every tensor A of the form

ai1 ⊗·· ·⊗aik,

for i1, . . . ,ij ∈ {1, . . . ,g}, lies in the Q[Sp(H)]-span of the tensor a1 ⊗ ·· · ⊗ ak. We may

reorder the symplectic basis in such a way that for each 1≤ j ≤ k, we have aij = aj , unless
aij = ail for some l < j. In other words, we may assume that A agrees with a1⊗·· ·⊗ak
in every tensor factor except for in those where A has a repeating element.

For p,q ∈ {1, . . . ,g} such that p �= q, let Sp,q ∈ Sp(H) denote the linear map defined by
mapping ap �→ ap+aq and bq �→ bq−bp and mapping all other basis vectors to themselves.

If aij = al for some l < j, we can act on a1⊗·· ·⊗ak with Sj,l−1 and get

a1⊗·· ·⊗aj−1⊗al⊗aj+1⊗·· ·⊗ak.

We can do this for every repeated tensor factor of A and thus see that A does indeed lie

in the Q[Sp(H)]-span of a1⊗·· ·⊗ak.
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This has the following immediate corollary:

Corollary 2.2. Let V be a direct summand of H⊗k for g ≥ k ≥ 1, as a representation of

Sp(H). Let p :H⊗k → V be the projection map and fix a symplectic basis {a1,b1, . . . ,ag,bg}
of H. Then the subspace of V spanned by irreducible subrepresentations of weight k lies

in the Q[Sp(H)]-span of the tensor

p(a1⊗·· ·⊗ak).

3. Abelian cycles and bounding-pair maps

Computing the n-fold coproduct of a general class α ∈ Hn

(
I1
g

)
is difficult, but we will

restrict our interest to a simple class of homology classes, called abelian cycles, for which

we can give an explicit expression. For a group G, abelian cycles in Hn(G) are constructed
from commuting elements in the group itself, so in order to construct such classes for I1

g

in particular, we will first recall some basic notions from the theory of mapping-class

groups.

3.1. Dehn twists and bounding-pair maps

First, recall that if α is a simple, closed curve in Ss
g,r, then a Dehn twist along α is a

diffeomorphism of Ss
g,r that is obtained as follows: start with some tubular neighborhood

N around α, with a diffeomorphism N ∼= S1× I. The corresponding Dehn twist is then
given by the identity outside of N, and on N ∼= S1× I by (s,t) �→

(
sei2πt,t

)
. Pictorially,

we can illustrate this as in Figure 2.

Up to isotopy, the choice of tubular neighborhood does not matter, and if α and α′

are homotopic, the corresponding Dehn twists are isotopic. Given a homotopy class α of
simple, closed curves in Ss

g,r, it is thus well defined to talk about the Dehn twist along α

as an element of Γs
g,r. We will denote this element by Tα. It is a classic result by Dehn,

and later independently by Lickorish, that Γs
g,r is generated by Dehn twists.

Dehn twists themselves are generally not elements of Is
g,r, but it is easy to find

compositions of Dehn twists which are. A bounding pair in Ss
g,r is a pair of simple,

closed, nonseparating, and homologous curves. If (α,β) is a bounding pair, we call the
composition TαTβ−1 the bounding-pair map corresponding to this bounding pair. The

typical form of a bounding pair is illustrated in Figure 3.

Figure 2. A Dehn twist.
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Figure 3. A typical bounding pair.

Bounding-pair maps are elements of Is
g,r, and in fact, Johnson [9] proved that Ig is

generated by a finite number of bounding-pair maps for g ≥ 3. This was also used to

prove that τ :H1

(
I1
g

)
→

∧3
H is an isomorphism in this range.

Any bounding pair (α,β) separates S1
g into two connected components. Let S′

denote the connected component not containing the original boundary component
and let {a1,b1, . . . ,ag,bg} be a symplectic basis of H such that for some 1 ≤ k ≤ g,

{a1,b1, . . . ,ak,bk,[α]} descends to a basis for H1(S
′), where [α] denotes the homology class

of α.

Proposition 3.1. ([8, Lemma 4B]). Let (α,β) be a bounding pair and let {a1,b1, . . . ,ag,bg}
be a symplectic basis of H as in the previous paragraph. If f denotes the bounding-pair

map corresponding to (α,β), we have

τ(f) =

k∑
i=1

(ai∧ bi)∧ [α] ∈
3∧
H.

Note that since α and β belong to the same homology class, this formula is well defined.

3.2. Abelian cycles

If two bounding pairs are disjoint, the corresponding bounding-pair maps commute. This

gives us a good way to construct elements in Hn

(
I1
g

)
. If G is a group and (f1, . . . ,fn) is

an n-tuple of pairwise commuting elements in G, this determines a map Zn →G, which

induces a map Hn(Z
n)→Hn(G). We have Hn(Z

n)∼=Hn(T
n), where Tn denotes the n-

torus, and hence Hn(Z
n) is generated by its fundamental class. We call the image of this

class under the map to Hn(G) the abelian cycle determined by (f1, . . . ,fn) and denote it

by A(f1, . . . ,fn).

Lemma 3.2. If Δn−1 :Hn(G)→
∧n

H1(G) is the comultiplication map, then

Δn−1A(f1, . . . ,fn) = [f1]∧·· ·∧ [fn],

where [f ] ∈H1(G) denotes the homology class of f ∈G.
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Proof. The homology H∗(Z
n) is a bialgebra, and if {a1, . . . ,an} is a basis for H1(Z

n), the

fundamental class of Hn(Z
n) is a1 · · ·an. Thus

Δn−1(a1 · · ·an) = a1∧·· ·∧an.

Furthermore, the map H1(Z
n)→H1(G) maps ai �→ [fi], for 1≤ i≤ n. By functoriality of

homology, we have a commutative diagram

Hn(Z
n) Hn(G)

∧n
H1(Z

n)
∧n

H1(G),

which means that

Δn−1A(f1, . . . ,fn) = [f1]∧·· ·∧ [fn].

If (f1, . . . ,fn) is an n-tuple of bounding pairs corresponding to pairwise disjoint

bounding pairs, we will simply call this an n-tuple of disjoint bounding-pair maps. We

will consider abelian cycles in Hn

(
Is
g,r

)
that are determined by such n-tuples and denote

by An

(
Is
g,r

)
the subrepresentation of Hn

(
Is
g,r

)
generated by these.

Remark 3.3. It is clear from the definition of a bounding-pair map that the map I1
g →

Ig,1 induces a map An

(
I1
g

)
→An (Ig,1).

If A(f1, . . . ,fn) ∈Hn

(
I1
g

)
is an abelian cycle, it follows by Lemma 3.2 that

ψn(A(f1, . . . ,fn)) = τ([f1])∧·· ·∧ τ([fn]).

To evaluate ψn on an abelian cycle, this means that we only need Johnson’s original result

on the image of τ .

Example 3.4. Consider the abelian cycle A determined by the bounding pairs in

Figure 4. With an appropriate choice of symplectic basis of H, we see that the image

of this abelian cycle is

ψn(A) = (a1∧ b1∧a3)∧·· ·∧ (a3n−2∧ b3n−2∧a3n).

We can now use this to prove Theorem 1.3:

Proof of Theorem 1.3. Since
∧n

(∧3
H
)
is a direct summand of H⊗3n, it follows by

Corollary 2.2 that it suffices to show that the tensor

(a1∧a2∧a3)∧·· ·∧ (a3n−2∧a3n−1∧a3n)

lies in the image of ψn. To this end, we consider the abelian cycle from Example 3.4. For

i �= j ∈ {1, . . . ,g} let Ti,j :H →H denote the linear map defined by mapping bi �→ bi+aj
and bj �→ bj +ai and mapping all other basis vectors to themselves. Each such map lies
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Figure 4. Bounding pairs determining an abelian cycle in Hn
(
I1
g

)
, for g ≥ 3n.

in Sp(H), and we see that if we act with
∏n

i=1 (T3i−2,3i−1−1) ∈Q[Sp(H)] on

(a1∧ b1∧a3)∧·· ·∧ (a3n−2∧ b3n−2∧a3n),

we get

(a1∧a2∧a3)∧·· ·∧ (a3n−2∧a3n−1∧a3n).

�

4. Proof of Theorem 1.5

Let us start by restating Theorem 1.5:

Theorem 1.5. Set n≥ 1 and let λ= (λk1
1 > · · ·>λkm

m > 0) and μ= (μl1
1 > · · ·>μ

lm+2

m+2 > 0)

be partitions such that μi = λi+2 for i= 1, . . . ,m and |λ|+ |μ|= n. Let km+1 = km+2 = 0,

k=
∑m

i=1 ki, and l=
∑m+2

i=1 li, and suppose that g≥ n+2k+ l. Then the subrepresentation

of

m+2⊗
i=1

ki+li∧
V1μi

spanned by all irreducible subrepresentations of weight n+2k is contained in Im(ψn).

The idea for proving this is essentially to consider two simple kinds of abelian cycles in
Hn (Ig,1), whose respective images have components in V1n+2 and V1n , and then taking

products of such cycles, for a range of ns corresponding to the partitions. The special case

of Theorem 1.3 is given by taking the nth power of a bounding pair in H1

(
I1
3

)
whose

image has a component in V13 (see Example 4.2).

4.1. Products of abelian cycles

Given mapping classes f1 ∈ I1
g1 and f2 ∈ I1

g2 , we may glue the surfaces S1
g1 and S1

g2

along the dashed segments illustrated in Figure 5, and since both mapping classes fix
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Figure 5. Gluing the surfaces along the dashed segments induces the map Hi(I1
g1

)×Hj(I1
g1

) →
Hi+j(I1

g1+g2
).

the boundaries, this naturally gives us a mapping class in I1
g1+g2 . Thus we get a map

I1
g1 ×I1

g2 →I1
g1+g2 , which induces a multiplication

Hi

(
I1
g1

)
⊗Hj

(
I1
g2

)
→Hi+j

(
I1
g1+g2

)
by precomposing with the Künneth map. This makes the space

⊕
g,n≥0Hn

(
I1
g

)
into a

bigraded associative and commutative algebra.
In Hi+j

(
Zi+j

)∼=Hi

(
Zi

)
⊗Hj

(
Zj

)
, the fundamental class is the tensor product of the

fundamental classes in Hi

(
Zi
)
and Hj

(
Zj

)
. This proves the following proposition:

Proposition 4.1. If A(f1, . . . ,fi) and A(fi+1, . . . ,fi+j) are abelian cycles in Hi

(
I1
g1

)
and

Hj

(
I1
g2

)
, respectively, their product is the abelian cycle A(f1, . . . ,fi+j) ∈Hi+j

(
I1
g1+g2

)
.

Example 4.2. With this in mind, we see that the abelian cycle depicted in Figure 4

is simply the product σn
1 · 1g−3n, where σ1 is the class in H1

(
I1
3

)
determined by the

bounding pair in Figure 6, and 1g−3n ∈H0

(
I1
g−3n

)
is the generator.

4.2. Families of truly nested bounding pairs

With Example 4.2 in mind, we will consider abelian cycles determined by families of

bounding pairs of the form depicted in Figure 7 and then their products. We call these

families of bounding pairs truly nested, a terminology that we borrow from [1].

Definition 4.3. A family (α1,β1), . . . ,(αn,βn) of bounding pairs is truly nested if

(1) the curves αi are pairwise nonhomologous and
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Figure 6. The cycle σ1.

Figure 7. Truly nested families of bounding pairs defining the abelian cycles σn ∈Hn
(
I1
n+2

)
and ρn ∈

Hn
(
I1
n+1

)
considered in Example 4.5.

(2) after possibly reordering the bounding pairs, cutting the surface along (αj,βj) sep-

arates the bounding pair (αi,βi) from the original boundary component whenever

i < j.

We will always assume that the bounding pairs in such a family are numbered so that

Definition 4.3(2) is met. By induction it can be seen that a truly nested family of bounding
pairs is always of the form depicted in Figure 7, but possibly with holes between each

adjacent couple of bounding pairs.

If we are given a truly nested family of bounding pairs (α1,β1), . . . ,(αn,βn) and we cut
the surface along a bounding pair, we can talk about the resulting connected component

that is ‘furthest’ from the original boundary component. If the surface is cut along (α1,β1),

consider that component and let ω0 denote the symplectic form of a maximal subsurface
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with only one boundary component. In order to prove Theorem 1.5, we will need the
following lemma:

Lemma 4.4. Let A(f1, . . . ,fn) be an abelian cycle determined by a truly nested family

of bounding-pair maps. Then there exists an Sp(H)-equivariant map Φn :
∧n

(∧3
H
)
→∧n+2

H, defined by a sequence of n−1 contractions, such that

(Φn ◦ψn)(A(f1, . . . ,fn)) = λnω0∧ c1∧·· ·∧ cn, (2)

for some nonzero integer λn, where ci is the homology class of the bounding pair

corresponding to fi and ω0 is as already defined.

We construct the map Φn as follows: for n= 1 we set Φ1 = id∧3H . For n≥ 2, we have

a map φn
1 :

∧n
(∧3

H
)
→

∧4
H ⊗

∧n−2
(∧3

H
)
, given by contracting ‘diagonally’ with

the symplectic form and composing with the multiplication map
∧2

(∧2
H
)
→

∧4
H. For

any 2≤ k ≤ n−1, we similarly have a composite map

k+2∧
H⊗

n−k∧ (
3∧
H

)
→

k+1∧
H⊗

2∧
H⊗

n−k−1∧ (
3∧
H

)
→

k+3∧
H⊗

n−k−1∧ (
3∧
H

)
,

which we denote by φn
k . We define Φn :

∧n
(∧3

H
)
→

∧n+2
H as the composition φn

n−1 ◦
· · · ◦φn

1 .

The calculations needed to prove the formula in Lemma 4.4 are simple but tedious

and not very enlightening, and we will therefore leave them until the end of this section.
Before proving the theorem, let us consider the following example, which illustrates the

idea of the proof:

Example 4.5. Let σn ∈Hn

(
I1
n+2

)
denote the abelian cycle determined by the bounding

pairs in Figure 7(a). With an appropriate choice of symplectic basis, it follows from

Lemma 4.4 that

(Φn ◦ψn)(σn) = λna1∧ b1∧a3∧·· ·∧an+2,

for some nonzero integer λn. As in the proof of Theorem 1.3, we can now act by T1,2−1,

which gives us

λna1∧a2∧·· ·∧an+2.

From Corollary 2.2, we can now draw the conclusion that V1n+2 lies in the image, since

this is the top weight representation of
∧n+2

H.

Similarly, let ρn ∈ Hn

(
I1
n+1

)
denote the cycle determined by bounding pairs as in

Figure 7(b). Let Ψn denote the composition of Φn with the contraction map
∧n+2

H →∧n
H. If we once again order the basis appropriately, we see that

(Ψn ◦ψn)(ρn) = λna1∧a2∧·· ·∧an,
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and hence V1n lies in the image. We can thus draw the conclusion that if g ≥ n+2, then
V1n+2 ⊕V1n are contained in the image of ψn, whereas if g ≥ n, V1n is contained in the

image.

With λ and μ as in Theorem 1.5, we see that for i= 1, . . . ,m, each of σλi
and ρμi

gives
us a copy of V1λi+2 = V1μi in ψλi

(
Hλi

(
I1
λi+2

))
and ψμi

(
Hμi

(
I1
μi+1

))
, respectively. The

weight of these irreducibles is at least 3. Meanwhile, ρμm+1
and ρμm+2

give us copies

of V1μm+1 and V1μm+2 in ψμm+1

(
Hμm+1

(
I1
μm+1+1

))
and ψμm+2

(
Hμm+2

(
I1
μm+2+1

))
,

respectively, and here the weight may be lower.

The idea for Theorem 1.5 is therefore to consider the product
σk1

λ1
ρl1μ1

· · ·σkm

λm
ρlmμm

ρ
lm+1
μm+1ρ

lm+1
μm+2 ·1g−n−2k−l. This is what gives us the condition that

g ≥
m+2∑
i=1

(ki(λi+2)+ li(μi+1)) = |λ|+ |μ|+2k+ l = n+2k+ l.

4.3. Proof of the theorem

Using the foregoing, we may now prove the theorem:

Proof of Theorem 1.5, assuming Lemma 4.4. As stated previously, we will use the

abelian cycle

σ := σk1

λ1
ρl1μ1

· · ·σkm

λm
ρlmμm

ρlm+1
μm+1

ρlm+1
μm+2

·1g−n−2k−l,

where σλi
and ρμi

are defined as in Example 4.5. For 1 ≤ i ≤m+2 and 1 ≤ p ≤ ki, we

let H
(p)
σλi

denote the first homology of the subsurface corresponding to the pth σλi
-factor,

with H
(p)
σλm+1

and H
(p)
σλm+2

defined as 0 for all p. We define H
(q)
ρμi

similarly, so that

H =

m+2⊕
i=1

((
ki⊕
p=1

H(p)
σλi

)
⊕
(

li⊕
q=1

H(q)
ρμi

))
⊕H1 (Sg−n−2k−l) .

By Proposition 3.1 we have

ψn(σ) ∈
m+2⊗
i=1

((
ki⊗
p=1

λi∧ 3∧
H(p)

σλi

)
⊗
(

li⊗
q=1

μi∧ 3∧
H(q)

ρμi

))
⊆

n∧ 3∧
H.

Define F :=Φ∧k1

λ1
∧Ψ∧l1

μ1
∧·· ·∧Φ∧km

λm
∧Ψ∧lm

μm
∧Ψ

∧lm+1
μm+1 ∧Ψ

∧lm+2
μm+2 . Since the direct summands

H
(p)
σλi

and H
(q)
ρμi

of H are pairwise orthogonal with respect to the symplectic form ω, it
follows from the definitions of Φλi

and Ψλi
that

F (ψn(σ)) ∈
m+2⊗
i=1

((
ki⊗
p=1

μi∧
H(p)

σλi

)
⊗
(

li⊗
q=1

μi∧
H(q)

ρμi

))
⊆

m+2⊗
i=1

ki+li∧ (
μi∧

H

)
.

Since the top weight irreducibles of
⊗m+2

i=1

∧ki+li (
∧μi H) are precisely the top weight

irreducibles of
⊗m+2

i=1

∧ki+li V1μi , we now want to apply Corollary 2.2. The representation⊗m+2
i=1

∧ki+li (
∧μi H) is a direct summand of H⊗(n+2k). Let us denote the projection map
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by π. If we choose a symplectic basis for each H
(p)
σλi

and each H
(q)
σμi

, extend the union of

these to a symplectic basis {a1,b1, . . . ,ag,bg} for H, and order this basis appropriately, we
have

π(a1⊗·· ·⊗an+2k) ∈
m+2⊗
i=1

((
ki⊗
p=1

μi∧
H(p)

σλi

)
⊗
(

li⊗
q=1

μi∧
H(q)

ρμi

))
⊆

m+2⊗
i=1

ki+li∧ (
μi∧

H

)
.

From what we saw in Example 4.5, there is an element

T ∈Q

[(
m+2∏
i=1

(
ki∏
p=1

Sp
(
H(p)

σλi

))
×
(

li∏
q=1

Sp
(
H(q)

ρμi

)))
×Sp(H1 (Sg−n−2k−l))

]
⊆Q[Sp(H)]

such that

T · (F (ψn(σ))) = π(a1⊗·· ·⊗an+2k).

�

4.4. Proof of Lemma 4.4

Now let us prove the lemma.

Proof of Lemma 4.4. We prove equation (2) by induction on n. For n = 1 we have
ψ1 = τ and Φ1 = Id∧3H , so the identity holds with λ1 = 1, by Proposition 3.1.

Now suppose n ≥ 2 and that f1, . . . ,fn are bounding-pair maps that correspond

to truly nested bounding pairs (α1,β1), . . . ,(αn,βn). We may pick a symplectic basis

{a1,b1, . . . ,ag,bg} such that [αk] = aik for 1 ≤ k ≤ n, where i1 ≤ ·· · ≤ in and such that
a1∧ b1+ · · ·+aik−1∧ bik−1 descends to a symplectic form of the homology of the surface

not containing the original boundary component that we get by cutting along (αk,βk).

For n= 2, a simple calculation shows that

Φ2 ◦ψ2(A(f1,f2))

= φ2
1

((
(a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1

)
∧
(
(a1∧ b1+ · · ·+ai2−1∧ bi2−1)∧ai2

))
=−3(a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1 ∧ai2 .

Now we let n≥ 3 and assume that

Φn−1 ◦ψn−1

(
A
(
f1, . . . ,f̂i, . . . ,fn

))
= λn−1 (a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1 ∧·· ·∧ âik ∧·· ·∧ain

and

Φn−1 ◦ψn−1(A(f2, . . . ,fn)) = λn−1 (a1∧ b1+ · · ·+ai2−1∧ bi2−1)∧ai2 ∧·· ·∧ain,

for some nonzero λn−1 ∈ Z. Since

Φn = φn
n−1 ◦

(
Φn−1∧ Id∧3H

)
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and

ψn(A(f1, . . . ,fn)) = (−1)n−kψn−1

(
A
(
f1, . . . ,f̂k, . . . ,fn

)
∧ τ([fk])

for each k = 1, . . . ,n, it follows that

Φn ◦ψn(A(f1, . . . ,fn)) = λn−1 ·φn
n−1

×
(
(−1)n−1 (a1∧ b1+ · · ·+ai2−1∧ bi2−1)∧ai2 ∧·· ·∧ain

⊗ (a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1

+
n∑

k=2

(−1)n−k (a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1 ∧·· ·∧ âik ∧·· ·∧ain

⊗ (a1∧ b1+ · · ·+aik−1∧ bik−1)∧aik

)
.

A simple calculation shows that

φn
n−1 ((a1∧ b1+ · · ·+ai2−1∧ bi2−1)∧ai2 ∧·· ·∧ain ⊗ (a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1)

= 3(−1)n (a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1 ∧·· ·∧ain,

and similarly

φn
n−1((a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1 ∧·· ·∧ âik ∧·· ·∧ain

⊗ (a1∧ b1+ · · ·+aik−1∧ bik−1)∧aik)

= (−1)n−k−1(k+1)(a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1 ∧·· ·∧ain .

Thus we have

Φn ◦ψn(A(f1, . . . ,fn)) =−λn−1

n∑
k=0

(k+1)(a1∧ b1+ · · ·+ai1−1∧ bi1−1)∧ai1 ∧·· ·∧ain

=−λn−1
(n+1)(n+2)

2
τn(A(f1, . . . ,fn)),

which proves the formula. �

Remark 4.6. The idea to consider truly nested families of bounding pairs is taken from

[1]. There the authors consider a family of Sp(HZ)-equivariant maps τn : Hn (Ig,1) →∧n+2
H that generalize the map τ :H1 (Ig,1)→

∧3
H to higher degree. We can note that

τn and Φn ◦ψn have the same codomain. In [1, §3], the image of τn on abelian cycles

determined by truly nested families of bounding-pair maps is proven to satisfy

τn(A(f1, . . . ,fn)) = ω0∧ c1∧·· ·∧ cn,

with the notation being the same as in our Lemma 4.4. We can thus see that on such

abelian cycles, the two maps agree, up to multiplication by a nonzero scalar. An interesting
question is whether these maps agree on all of Hn (Ig,1), so that the image of τn is simply

a subrepresentation of the image of ψn, or whether there is some other way to explicitly

relate ψn and τn.
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5. Proof of Theorem 1.11

As we have seen, abelian cycles determined by disjoint bounding-pair maps are a useful
and simple tool for computing big parts of the image of ψn. In this section we will give

an explicit limitation on the images of such cycles. More specifically, we will prove the

following theorem:

Theorem 1.11. Set n ≥ 2 and let An (Ig,1) ⊂ Hn (Ig,1) be the subrepresentation
generated by abelian cycles determined by pairwise disjoint bounding-pair maps. Then

ψn (An (Ig,1)) is concentrated in weights n,n+ 2, . . . ,3n. However, ψn (Hn (Ig,1)) also

contains a subrepresentation of weight n− 2 for all n ≥ 2 and g � 0. In particular,

An (Ig,1)⊂Hn (Ig,1) is a proper subrepresentation for n≥ 2 and g � 0.

We will prove the following two claims of the theorem separately:

Claim 5.1. The image ψn (An (Ig,1)) is concentrated in weights n,n+2, . . . ,3n.

Claim 5.2. For n ≥ 2 and g � 0, the image of ψn (Hn (Ig,1)) contains an irreducible

subrepresentation of weight n−2.

To prove Claim 5.1, we will need to find a description of the tensor ψn(A(f1, . . . ,fn))
that we can work with, for any A(f1, . . . ,fn) ∈ An (Ig,1). This will be done using the

following lemma:

Lemma 5.3. Set A(f1, . . . ,fn) ∈An (Ig,1). Then there exists a Lagrangian subspace L⊂
H, such that for k = 1, . . . ,n, we have

τ([fk]) ∈ Im

(
2∧
L⊗H →

3∧
H

)
.

Proof. Let us denote the bounding pair corresponding to fk by (αk,βk), for k = 1, . . . ,n.
Note that since the bounding pairs are pairwise disjoint, the span of {[α1], . . . ,[αn]} is an

isotropic subspace of H, which we may denote by I. Recalling Proposition 3.1, we want

to extend this to a Lagrangian subspace L in such a way that after the surface is cut by
(αk,βk), for any k, L restricts to a Langrangian subspace of the first homologies of both

of the closed surfaces obtained by filling in the boundary components with open disks.

Now let us cut the surface along all the bounding pairs and sew in open disks in all

resulting boundary components, in order to get n+1 closed surfaces. For each such closed
surface we may pick curves whose homology classes span a Lagrangian subspace of its

first homology. These curves can be chosen so that they do not intersect the sewn-in

disks or their boundaries and thus, viewed as curves in Sg they do not intersect any of
our bounding pairs. This means that taking the span of the homology classes of these

curves and all bounding pairs will still be an isotropic subspace of H. Let us denote this

subspace by L. To see that L is Lagrangian, it suffices to note that the total genus of
the subsurfaces we get by cutting along all bounding pairs is g−dimI, which means that

this is also the dimension of the subspace of H spanned by the chosen curves. Since their

classes are linearly independent of the classes in I, it follows that dimL= g.
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By the construction of L through a selection of pairwise nonintersecting curves, it is
clear that if the surface is cut along one bounding pair, the remaining curves all end

up in only one of the connected components and are still pairwise nonintersecting. Since

the genera of the resulting two subsurfaces add to g− 1, it follows that the span of
the homology classes of the curves in either boundary component still form Lagrangian

subspaces in their respective components, and hence L has the sought-after property.

This means that when the surface is cut along the bounding pair (αk,βk), for

any k = 1, . . . ,n, we can find a symplectic basis for the first homology of the closed
surface corresponding to the connected component not containing the original boundary

component, such that its symplectic forms can be written

ω1 =

g1∑
i=1

ai∧ bi,

with ai ∈ L. It follows by Proposition 3.1 that

τ([fk]) = ω1∧ [αk],

which lies in Im
(∧2

L⊗H →
∧3

H
)
, since [αk] ∈ L.

Using this we may now prove the claim:

Proof of Claim 5.1. By Lemma 5.3, we can find a Lagrangian L ∈H such that

ψn(A(f1, . . . ,fn)) ∈ Im

(
n∧(

2∧
L⊗H

)
→

n∧(
3∧
H

))
.

This means that if we apply the standard inclusion ι :
∧n

(∧3
H
)
↪→H⊗3n, each term of

ψn(A(f1, . . . ,fn)) lies in the subspace

L⊗2n⊗H⊗n

up to a permutation of the factors. From this it follows that ι(ψn(A(f1, . . . ,fn))) must be

mapped to zero by any composition of more than n contractions, and thus it cannot have

a component in an irreducible subrepresentation of weight less than n. �

Remark 5.4. We have stated Claim 5.1 in the pointed case, but it holds in the unpointed

case as well. To see this, define U :=
(∧3

H
)
/H, let An (Ig)⊆Hn (Ig) be defined similarly

as An (Ig,1), and let ψ′
n :Hn (Ig)→

∧n
U be defined similarly as ψn. We then have the

commutative diagram

An (Ig,1) Hn (Ig,1)
∧n∧3

H

An (Ig) Hn (Ig)
∧n

U,

ψn

ψ′
n

which proves that ψ′
n (An (Ig)) cannot contain any irreducibles of weight less than n. In

[14], Sakasai uses elements of A3 (Ig) to determine the stable image of (the dual map of)
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ψ′
3, but his result leaves open whether or not the image contains a copy of V1.

2 Claim 5.1
illustrates why this could not be determined using Sakasai’s method.

Now it only remains to prove Claim 5.2. Before proving this, we need some additional
background. Let Tg denote the Torelli space, the moduli space of Riemann surfaces of

genus g endowed with a homology marking – that is, a choice of basis for the first homology

group. This is the quotient of the Teichmüller space Teichg by the free action of Ig, which
means that H∗ (Ig)∼=H∗ (Tg). In a similar way, we can construct the Torelli space Tg,1 of

pointed Riemann surfaces. The map given by forgetting the marked point, which we will

denote by π, makes

Sg →Tg,1 π→Tg
into a universal Sg-bundle over Tg. We will use this to prove the claim.

Proof of Claim 5.2. First we consider the case n = 2. Let [∗] ∈ H0 (Tg) be the class
given by choosing a point ∗ ↪→Tg. Pulling this map back along the universal bundle, we

get the trivial bundle

Sg Tg,1

∗ Tg,
π

which by integration over the fibers gives us a class π!([∗]) in H2 (Sg), which is just the

fundamental class [Sg]. By abuse of notation, we will use [Sg] to denote the corresponding

class π!([∗]) ∈H2 (Tg,1)∼=H2 (Ig,1) as well.
To compute ψ2 ([Sg]), we may compute its coproduct in H2 (Sg) and then use

functoriality. The coproduct can be computed using the diagram

H2 (Sg) H2(Z)

∧2
H1 (Sg)

∧2
H1(Z),

where Z is the wedge of tori in Figure 8, that we get from Sg by collapsing a subsurface

of genus 0 with g boundary components to a point.

The horizontal arrow on the second row of the diagram is an isomorphism, so we only
need to compute the coproduct of the fundamental class [Z], which is equal to the sum

[Z1]+ · · ·+[Zg] ∈H2(Z)∼=H2(Z1)⊕·· ·⊕H2 (Zg) of the fundamental classes of the g tori.

Since the homology of each torus is a bialgebra, we get Δ([Zk]) = ak ∧ bk, where {ak,bk}
is a symplectic basis for H1(Zk). The union of these bases corresponds in a natural way

to a symplectic basis {a1,b1, . . . ,ag,bg} of H1 (Sg), so we get that Δ([Sg]) = ω, where ω is

the symplectic form of H1 (Sg).

2He also uses one abelian cycle of a different kind, but whose image under ψ′
3 can easily be

generated using elements of A3 (Ig), as it is concentrated in top weight.
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Figure 8. The quotient surface obtained from Sg by collapsing a subsurface of genus 0 with g boundary

components to a point.

The map Sg →Tg,1 induces the so called ‘point-pushing’ map π1 (Sg)→Ig,1 [3, Chapters
4.2 and 6.4.2], and using this it follows that if c ∈ H1 (Sg) and we denote its image by

[c] ∈H1 (Ig,1), then τ([c]) = ω∧ c ∈
∧3

H. Thus it follows by functoriality that ψ2 ([Sg])

is the image of ω by the map
∧2

H →
∧2

(∧3
H
)
, given by inserting the symplectic form

in each factor. The class ω ∈
∧2

H generates the trivial representation, which means that

ψ2 ([Sg]) has weight 0. This proves the claim in the case n= 2.
The case n = 3 has already been treated by Kupers and Randal-Williams [11, §8],

who proved that for g � 0, the image of the dual of the map ψ3 :H3

(
I1
g

)
→

∧3
(∧3

H
)

contains V1, which implies that V1 is also contained in the image of ψ3 :H3 (Ig,1), by the

factorization I1
g →Ig,1 →

∧3
HZ.

To prove the result for n≥ 4, we will use the result for n= 2. Let us suppose that n≥ 4

and g ≥ 2n−4. If we once again define U :=
(∧3

H
)
/H, we have a commutative diagram

Hn (Tg,1)
∧n−2H1 (Tg,1)⊗H2 (Tg,1)

∧nH1 (Tg,1)
∧n∧3H

∧n−2H1 (Tg)⊗H2 (Tg,1)
∧n−2H1 (Tg)⊗

∧2H1 (Tg,1)
∧n−2U ⊗

∧2∧3H

Hn−2 (Tg)
∧n−2H1 (Tg)⊗H0 (Tg),

π∗⊗id

∼=

∼=
π!

id⊗π!

where the leftmost square commutes by the projection formula and the middle square

commutes by functoriality of homology.
The composition of the arrows in the upper row is ψn. Since the rightmost vertical

arrow is surjective, and since we now know that the image of the composition ψ2 ◦π! :

H0 (Tg) →
∧2∧3

H lies in weight 0, it now suffices to find a class in Hn−2 (Tg) whose
image in

∧n−2
U has a nonzero component in weight n−2. Note that this is impossible

for n= 3, since H1 (Tg)∼= U ∼= V13 , which is why this case had to be treated separately.

For m = n− 2 ≥ 2, let us consider the image of the cycle ρm1 , with ρ1 defined as in
Example 4.5, under the map Hm

(
I1
g

)
→Hm (Ig,1). We also get a corresponding abelian

cycle in Hm (Ig) by forgetting the marked point. Abusing notation, we will use ρm1 to

denote this class in either of these homology groups. Let ψ′
m :Hm (Ig)→

∧3
U be defined
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as in Remark 5.4. Then we have a commutative diagram

Hm (Ig,1)
∧m∧3

H

Hm (Ig)
∧m

U,

ψm

ψ′
m

which means that we may work with the image of ψm (ρm1 ) in
∧m

U . The map
∧3

H →U

can be described explicitly, by identifying U with the image of the map p :
∧3

H →
∧3

H

defined by

p(x∧y∧ z) = x∧y∧ z− 1

g−1
C3(x∧y∧ z)∧ω,

where C3 :
∧3

H → H is the contraction map. Note that this image is precisely the
subrepresentation of traceless tensors in

∧3
H. With a suitable choice of basis of H,

we get

(p∧m ◦ψm)(ρm1 )

=

(
a1∧ b1∧am+1−

1

g−1
ω∧am+1

)
∧·· ·∧

(
am∧ bm∧a2m− 1

g−1
ω∧a2m

)
.

We want to show that this has a nonzero component in an irreducible subrepresentation

of weight m, so we apply the map
∧m

(∧3
H
)
→

∧3m
H and then contract m times. If

we let [m] = {1, . . . ,n}, the image in
∧3m

H can be written as⎛
⎝ m∑

k=0

(−1)k

(g−1)k

∑
{i1,...,ik}⊂[m]

ω∧k ∧a1∧ b1∧·· ·∧ ̂ai1 ∧ bi1 ∧·· ·∧ ̂aik ∧ bik ∧·· ·∧am∧ bm

⎞
⎠

∧am+1∧·· ·∧a2m.

By contracting each term m times, we get

1

(g−1)m

m∑
k=0

(−1)k
(
m

k

)
(g−1)m−k(g−2m+1)kam+1∧·· ·∧a2m

=
(2m−2)m

(g−1)m
am+1∧·· ·∧a2m,

which is nonzero, since m = n− 2 ≥ 2, and which contracts to zero and thus lies in

V1m ⊂
∧m

H. This proves the claim for n≥ 4. �

Remark 5.5. The proof of Claim 5.2 is heavily inspired by [1, §4], where the authors

compute the image of τn ◦ π! for truly nested families of bounding-pair maps. In our

situation, it would be reasonable to expect the formula

ψn

(
π!π∗A(f1, . . . ,fn−2)

)
= τ([f1])∧·· ·∧ τ([fn−2])∧ψ2 ([Sg])
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to hold for any abelian cycle A(f1, . . . ,fn−2) ∈Hn−2 (Ig,1), which would prove Claim 5.2

for n ≥ 3 directly from the case n = 2. We have not, however, been able to verify or

disprove this.
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