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Tractable Fields
M. Chacron, J.-P. Tignol and A. R. Wadsworth

Abstract. A field F is said to be tractable when a condition described below on the simultaneous representation
of quaternion algebras holds over F. It is shown that a global field F is tractable iff F has at most one dyadic
place. Several other examples of tractable and nontractable fields are given.

Introduction

A classical result of Albert says that every central simple algebra A of degree 4 with involu-
tion τ decomposes into a tensor product of two quaternion algebras. However, in the next
case, when A has degree 8, it is known by [ART] that A need not be a product of quaternion
algebras (though Merkurjev’s theorem shows that some size matrices over A is such a prod-
uct). It is an interesting but very difficult question when A of degree 8 is decomposable,
and even more so when A has a “stable” decomposition, i.e., A ∼== Q1 ⊗F Q2 ⊗F Q3, where
each Qi is a quaternion algebra with τ (Qi) = Qi . This is still unsettled even in the easiest
case when A has a Henselian valuation and contains a 2-Kummer Galois extension field K
of the center F of A with [K : F] = 8. In [C] and [CDD] a necessary condition for stable
decomposability of A in this case was found. This condition was shown also to be sufficient
iff F satisfies a condition called tractability, which was expressed in terms of the existence of
solutions of certain systems of quadratic equations (see Section 1 for the precise statement).
In this paper, we show that this condition can be expressed in a very suggestive way using
quaternion algebras, and we investigate which fields satisfy this condition.

Let F be a field, char(F) 6= 2. For a, b ∈ F∗ = F − {0}, let (a, b/F) denote the 4-
dimensional quaternion algebra over F with F-base 1, i, j, k, such that i2 = a, j2 = b, and
ij = − ji = k. We call F a tractable field if, for every a1, a2, a3, b1, b2, b3 ∈ F∗ = F − {0},
whenever

(ai, b j/F) is split for all j 6= i and (a1, b1/F) ∼== (a2, b2/F) ∼== (a3, b3/F),(∗)

then (ai , bi/F) is split.
Thus, tractability expresses the fact that quaternion algebras display a specific behavior,

which turns out to encapsulate significant information on arithmetical properties of the
field. For example, we show in Prop. 3.2 that fields in which −1 is a sum of four squares
but not of three squares are never tractable. In Section 2 we determine the local and the
global fields which are tractable: We show in Cor. 2.3 that a local field is tractable iff it is
not dyadic, and in Th. 2.10 that a global field is tractable iff it has at most one dyadic spot.
(It was shown in [CDD] that Q is tractable.)
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Tractable Fields 11

The tractability of function fields raises intriguing questions which are addressed in Sec-
tion 3. The problem is to relate the behavior of quaternion algebras over the function field
to their behavior over the field of constants. When quaternion algebras satisfy good spe-
cialization properties, we can show that a purely transcendental extension of degree 1 of
a tractable field is tractable. For example, every purely transcendental extension of Q is
tractable. We describe in Prop. 3.10 and Note 3.12 exactly which function fields of genus 0
over Q are tractable. But we know very little about tractability of function fields of higher
genus over Q .

We would like to thank I. Han for pointing out an error in an earlier version of this
paper. We also thank B. Fein for showing us that function fields in one variable over a
local field are tractable (see Th. 3.18), and J.-L. Colliot-Thélène for his help in filling in the
details of the proof of 3.18.

1 Other Interpretations of Tractability, History, Norm Groups

The original definition of tractability was given in [CDD, Def. 1, p. 780] as follows: A field
F (char(F) 6= 2) is tractable iff for every a1, a2, a3 ∈ F∗ with [F(

√
a1,
√

a2,
√

a3) : F] = 8
and every δ ∈ F∗ such that δ is in the image of the norm map from F(

√
a2,
√

a3) to F, if
there is a nontrivial solution in F to each of the systems of equations

X2
1 − a1X2

2 = δ(X2
3 − a1a2X2

4) = X2
5 − a3X2

6 ,(1.1)

Y 2
1 − a1Y 2

2 = δ(Y
2
3 − a1a3Y 2

4 ) = Y 2
5 − a2Y 2

6 ,(1.2)

then there is a solution in F to the equation Z2
1 − a1Z2

2 = δ. We will show below (see
Prop. 1.4) that this definition is equivalent to the one given in the Introduction.

The question of tractability arose in connection with the study of decomposability of
algebras with involution over Henselian fields in [C] and [CDD]. If A is a central simple
algebra over a field F (char(F) 6= 2), and A has an involution τ with τ |F = id we say that
A is decomposable if A is a tensor product of quaternion algebras. We say that A is stably
decomposable if A = Q1 ⊗F · · · ⊗F Qk, with each Qi a quaternion subalgebra of A with
τ (Qi) = Qi . Thus, stable decomposability is a stronger condition than decomposability.

Suppose our field F has a Henselian valuation v. Let ΓF be the value group of v (written
additively); VF the valuation ring; mF the unique maximal ideal of VF ; F = VF/mF , the
residue field; and UF = VF −mF , the group of valuation units. Assume that char(F) 6= 2.
Now, let D be a division algebra with center F and [D : F] < ∞, such that D has an
involution τ with τ |F = id. Since v is Henselian, there is a unique extension of v to a
valuation w of D (see [Schi, Th. 9, p. 53] or [W2, Th.]). (Indeed, w can be defined by w(d) =
1
n v
(
Nrd(d)

)
for d ∈ D∗, where n =

√
[D : F] and Nrd denotes the reduced norm on D.)

Let ΓD be the value group; VD the valuation ring; mD the maximal ideal; D the residue
division algebra; and UD the group of units of the valuation w on D. By Draxl’s Ostrowski-
type theorem [D, Th. 2], as char(F) 6= 2 and [D : F] is a 2-power as D has an involution,
[D : F] = |ΓD : ΓF| · [D : F]. We will assume that D is a field. Then, D is normal over F,
hence Galois as char(F) 6= 2; indeed, there is a canonical surjection ΓD/ΓF → Gal(D/F),
by [DK, p. 96] or [JW, Prop. 1.7]. Let exp(ΓD/ΓF) denote the exponent of the finite abelian
group ΓD/ΓF , and let exp(D) denote the order of the class [D] of D in the Brauer group
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Br(F). Then, exp(ΓD/ΓF) | exp(D), by [PY, (3.19)] or [JW, Cor. 6.10] and exp(D) | 2,
as D has an involution. Consequently, Gal(D/F) is an elementary abelian 2-group, so D
is a 2-Kummer extension of F. Note also that by the uniqueness of the valuation w on D
extending v, we must have τ (VD) = VD and τ (mD) = mD so τ induces a well-defined
F-automorphism of D, which is denoted τ . It is quite possible that τ is trivial, even when τ
is not.

We will call the situation just described the “standard setup”, i.e., F has a Henselian
valuation v with char(F) 6= 2, D a finite-dimensional F-central division algebra with an
involution τ such that τ |F = id, and D a field.

It was shown in [C, Th. 2.1], that in the standard setup, if D decomposes stably with
respect to τ , then

there is a set of representatives T for ΓD/ΓF (T ⊆ D∗) such that, for each
t ∈ T, tτ (t) ∈ F∗(1 + mD).

(‡)

Assume now we have F, v,D, τ in the standard setup. The principal focus of [CDD] was
to determine whether if (‡) holds, then D must decompose stably (with respect to τ ). It
was shown in [CDD, Th. 1, p. 768] that if [D : F] ≤ 4 and τ 6= id, then D decomposes
stably. Also, by [CDD, Th. 2, p. 769], regardless of the value of [D : F], if τ = id and (‡)
holds, then D decomposes stably. So, the first case not fully settled was when [D : F] = 8
and τ 6= id. Here is where the condition of tractability arises, for the residue field F. It
was shown in [CDD, Th. 2, p. 780] that given a field F with Henselian valuation v with
char(F) 6= 2, condition (‡) implies stable decomposability for all D, τ in the standard
setup over F, v with [D : F] = 8 iff F is tractable. (It was also shown that this is equivalent
to the stable decomposability of a certain family of “generic” division algebras D over F in
the standard setup, with [D : F] = 64.) Examples of non-tractable fields yield examples of
indecomposable division algebras of residue dimension 8 in the standard setup for which
(‡) holds.

Henceforth, assume char(F) 6= 2. The two formulations of tractability of F at first look
rather different, but can be united by thinking in terms of norm groups. For a ∈ F∗, let

NF(a) = {c ∈ F∗ | c = r2 − as2, for some r, s ∈ F}.

Note that NF(a) is a subgroup of F∗, since it is the image of F(
√

a)∗ under the norm map
from F(

√
a) to F. Clearly also, F∗2 ⊆ NF(a). Similarly, for a1, a2 ∈ F∗, let NF(a1, a2)

denote the image in F∗ of the norm map from F(
√

a1,
√

a2) to F. The following lemma is
well-known, see, e.g., [EL2, (2.13)].

Lemma 1.1 For any a1, a2 ∈ F∗, we have NF(a1) ∩ NF(a2) = F∗2 · NF(a1, a2).

Quaternion algebras provide a convenient way of organizing facts about norm groups.
We will need the following well-known properties of quaternion algebras (see, e.g., [Sch2,
Section 11]). For a1, . . . , an ∈ F∗, let 〈a1, . . . , an〉 denote the diagonal quadratic form
a1X2

1 + · · · + anX2
n.

Lemma 1.2 For any a, b, c, d ∈ F∗,

(i) (a, b/F) is split iff b ∈ NF(a) iff a ∈ NF(b) iff the quadratic form 〈1,−a,−b〉 is isotropic.
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(ii) (a, b/F) ∼== (c, d/F) iff 〈1,−a,−b, ab〉 ∼== 〈1,−c,−d, cd〉.
(iii) (a, b/F) ∼== (b, a/F) ∼== (ac2, b/F).
(iv) (a, b/F)⊗F (a, c/F) ∼== M2

(
(a, bc/F)

)
.

(v) (a,−a/F) is split.

Lemma 1.3 If a1, . . . , b3 ∈ F∗ satisfy (∗) in the Introduction, but (ai , bi/F) is not split, then
a1, a2, a3 are Z/2Z-independent in F∗/F∗2, as are b1, b2, b3.

Proof Suppose a3 is Z/2Z-dependent on a1, a2 in F∗/F∗2. Then, modulo squares, a3 equals
1, a1, a2, or a1a2. Therefore, (a3, b3/F) is split, as (a1, b3/F) and (a2, b3/F) are split by
(∗), and (a1a2, b3/F) ∼ (a1, b3/F) ⊗F (a2, b3/F) in the Brauer group Br(F), so this is also
split. This contradicts the hypothesis. All other cases of Z/2Z-dependence lead to the same
contradiction.

Proposition 1.4 The definition of tractability of F in the Introduction is equivalent to the
definition at the beginning of Section 1.

Proof Observe first that to say the equations in (1.1) have a nontrivial solution in F is
equivalent to

NF(a1) ∩ δNF(a1a2) ∩ NF(a3) 6= ∅.(1.3)

(For this, recall that δNF(a1a2) = δ−1NF(a1a2), as F∗2 ⊆ NF(a1a2).) Likewise, having a
nontrivial solution of (1.2) in F is equivalent to

NF(a1) ∩ δNF(a1a3) ∩ NF(a2) 6= ∅.(1.4)

Now, suppose F is tractable, as defined in the Introduction. Take any δ ∈ NF(a2, a3), and
assume there are nontrivial solutions to (1.1) and (1.2) above. Then, as we just observed,
there is b2 ∈ NF(a1) ∩ δNF(a1a2) ∩ NF(a3) and b3 ∈ NF(a1) ∩ δNF(a1a3) ∩ NF(a2). Since
δ ∈ NF(a2, a3) ⊆ NF(a2) ∩ NF(a3), we have (a2, δ/F) and (a3, δ/F) are split. Further, the
conditions on b2 show that (a1, b2/F), (a3, b2/F), and (a1a2, δb2/F) are split. But, in the
Brauer group Br(F),

(a1a2, δb2/F) ∼ (a1, δ/F)⊗F (a1, b2/F)⊗F (a2, δ/F)⊗F (a2, b2/F)

∼ (a1, δ/F)⊗F (a2, b2/F).
(1.5)

Hence, (a1, δ/F) ∼== (a2, b2/F). Likewise, the conditions on b3 show that (a1, b3/F) and
(a2, b3/F) are split, and (a1, δ/F) ∼== (a3, b3/F). Thus, we have shown that a1, a2, a3, δ,
b2, b3 satisfy condition (∗) of the Introduction. Since F is assumed tractable, as in the
Introduction, it follows that (a1, δ/F) is split, hence δ ∈ NF(a1). This proves that F is
tractable in the sense of Section 1.

Conversely, suppose F is tractable in the sense of Section 1, and take a1, . . . , b3 ∈ F∗

satisfying (∗). We need to show (ai, bi/F) is split. This follows by Lemma 1.3 if a1, a2, a3

are Z/2Z-linearly dependent in F∗/F∗2. So, we may assume a1, a2, a3 are Z/2Z-linearly
independent. Hence, [F(

√
a1,
√

a2,
√

a3) : F] = 8. Since (a2, b1/F) and (a3, b1/F) are split,
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we have b1 ∈ NF(a2) ∩ NF(a3). By Lemma 1.1, there is c ∈ F∗ with b1c2 ∈ NF(a2, a3). Let
δ = b1c2. Because (a1, b2/F) is split, as is (a2, δ/F) ∼== (a2, b1/F), and because (a1, δ/F) ∼==
(a1, b1/F), a calculation as in (1.5) shows that (a1a2, δb2/F) is split. Since we also have
(a3, b2/F) is split, this yields b2 ∈ NF(a1) ∩ δNF(a1a2) ∩ NF(a3), showing (1.3) holds.
Likewise, b3 ∈ NF(a1)∩δNF(a1a3)∩NF(a2), showing that (1.4) holds. Thus, as we observed
above, there are nontrivial solutions to the equations in (1.1) and (1.2). Hence, by the
definition of tractability above in Section 1, we have δ ∈ NF(a1). Thus, as δ = b1c2,
we have (a1, b1/F) ∼== (a1, δ/F), which is split. Hence, F is tractable as defined in the
Introduction.

2 Local and Global Fields

Throughout this section, all fields F are assumed to have characteristic different from 2.
We begin with some elementary observations about tractable fields, which are sufficient

to show which local fields are tractable. This will then be used as we characterize which
global fields are tractable. Observe first an immediate corollary of Lemma 1.3:

Corollary 2.1 If F is a field with |F∗/F∗2| ≤ 4, then F is tractable.

Recall that F is called a Hilbert field if F∗ 6= F∗2 and for every a ∈ F∗−F∗2, we have |F∗ :
NF(a)| = 2. This terminology was introduced by Fröhlich in [F], where he showed (see
[F, Th.]) that a Hilbert field has a unique nonsplit quaternion algebra. The condition that
|F∗ : NF(a)| = 2 for a /∈ F∗2 implies that if (a, b/F) and (a, c/F) are nonsplit, then they are
isomorphic, so (a, bc/F) must be split. It follows that the map B : F∗/F∗2×F∗/F∗2 → Br(F)
given by (aF∗2, bF∗2) 7→ [(a, b/F)] is bimultiplicative and nondegenerate, with image a
group of order 2.

Proposition 2.2 If F is a Hilbert field, then F is tractable iff |F∗/F∗2| ≤ 4.

Proof If |F∗/F∗2| ≤ 4, Cor. 2.1 shows that F is tractable.
Before proving the converse, we note a consequence of the nondegeneracy of the pair-

ing. Let S = F∗/F∗2, a Z/2Z-vector space, and view the pairing into Br(F) as a non-
degenerate symmetric Z/2Z-bilinear map B : S × S → Z/2Z. This B induces a Z/2Z-
linear map α : S → S∗ = HomZ/2Z(S,Z/2Z) given by α(s)(t) = B(s, t); the nonde-
generacy of B is equivalent to the injectivity of α. For any Z/2Z-subspace W of S, let
βW : S → W ∗ be the composition of α followed by the canonical map S∗ → W ∗ =
HomZ/2Z(W,Z/2Z), i.e., βW (s)(w) = B(s,w). Observe that if dimZ/2Z(W ) < ∞, then
βW is surjective. For, if im(βW ) $ W ∗ then there is a Z/2Z-subspace Y of W such that
im(βW ) = {w∗ ∈W ∗ | w∗(Y ) = 0} and dimZ/2Z(Y ) = dimZ/2Z(W ∗)−dimZ/2Z

(
im(βW )

)
.

But then, Y ⊆ ker(α), contradicting the injectivity of α. So, βW must be surjective, yielding
|S : ker(βW )| = |W ∗| = |W |. Thus, for any Z/2Z-linearly independent c1, . . . , cn ∈ S,
the homomorphism S → (Z/2Z)n given by e 7→

(
B(c1, e), . . . ,B(cn, e)

)
must be sur-

jective, since its kernel, which is ker(βZ/2Z−span(c1,...,cn)), has index 2n. Hence, there are
d1, . . . , dn ∈ S with B(ci, d j) = δi j (Kronecker delta).

Now, suppose |F∗/F∗2| ≥ 8. Let a1, a2, a3 ∈ F∗ map to Z/2Z-linearly independent
elements of F∗/F∗2. By the preceding paragraph, there exist b1, b2, b3 ∈ F∗ with (ai , b j/F)
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split iff j 6= i. In particular, each (ai , bi/F) is the unique nonsplit quaternion algebra of F.
Since (∗) thus holds for a1, . . . , b3 with (ai , bi/F) nonsplit, F is not tractable.

Corollary 2.3 A local field F is tractable iff F is nondyadic.

Proof By definition, a local field F is a field with a complete discrete valuation with finite
residue field F. Such an F is dyadic if char(F) = 2. As is well-known, if F is nondyadic,
then |F∗/F∗2| = 4. But, if F is dyadic, then (since we are assuming char(F) 6= 2) the 2-adic
completion Q 2 of Q embeds in F as a subfield of finite degree, and |F∗/F∗2| = 22+[F:Q 2] ≥ 8
(see [L, Cor. 2.30, p. 166]). Since a local field is a Hilbert field (see [OM, 63:15(ii)]), the
corollary follows from Prop. 2.2.

Remark 2.4 In [K], Kaplansky defined a “generalized Hilbert field” F as one in which
F∗ 6= F∗2 and for each c ∈ F∗, we have |F∗ : NF(c)| ≤ 2. Let RF =

⋂
c∈F∗ NF(c) = {d ∈

F∗ | NF(d) = F∗}, Kaplansky’s radical of the generalized Hilbert field F. Clearly, RF is a
subgroup of F∗, with F∗2 ⊆ RF ⊆ F∗. Kaplansky showed that a generalized Hilbert field
has a unique nonsplit quaternion algebra. Knowing this, the arguments given for Prop. 2.2
show that a generalized Hilbert field F is tractable iff |F∗/RF| ≤ 4.

Before proceeding to global fields, we observe another “local” result.

Proposition 2.5 Let F be a field with Henselian valuation v, with residue field F, such that
char(F) 6= 2. Then F is tractable iff F is tractable.

Proof Let V be the valuation ring of v, let m be the maximal ideal of V , and let U = V−m,
the group of valuation units; so F = V/m. Let Γ be the value group of v (with group
operation written additively), so v maps F∗ onto Γ, with kernel U . For c ∈ U , we write c
for the image of c in F

∗
. Because v is Henselian and char(F) 6= 2, an easy application of

Hensel’s Lemma gives us the crucial property that 1 + m ⊆ F∗2. Hence, for c ∈ U , we have

c ∈ F∗2 iff c ∈ F
∗2

. It follows quickly from this, just as in the proof of Springer’s Theorem
for a complete discretely valued field, that for c1, . . . , cn, d1, . . . , dn ∈ U , 〈c1, . . . , cn〉 ∼==
〈d1, . . . , dn〉 as quadratic forms over F, iff 〈c1, . . . , cn〉 ∼== 〈d1, . . . , dn〉 as forms over F;
also, 〈c1, . . . , cn〉 is isotropic iff 〈c1, . . . , cn〉 is isotropic. Hence, (c1, c2/F) ∼== (d1, d2/F) iff(
c1, c2

/
F
)
∼==
(
d1, d2

/
F
)
.

Now, suppose F is not tractable. Then there exist ã1, . . . , b̃3 ∈ F
∗

satisfying (∗) over

F, but with
(

ãi, b̃i

/
F
)

nonsplit. Choose inverse images a1, . . . , b3 in U of ã1, . . . , b̃3. The

observations in the previous paragraph show a1, . . . , b3 satisfy (∗) but (ai , bi/F) is not split.
Thus, F is not tractable.

Before proving the converse, recall that if c ∈ F∗ satisfies v(c) /∈ 2Γ, then NF(c) =
F∗2 ∪ −cF∗2. For, if d = r2 − cs2, then v(r2) 6= v(cs2). If v(r2) < v(cs2), then

d = r2(1− cs2/r2) ∈ F∗2 · (1 + m) = F∗2.

On the other hand, if v(r2) > v(cs2), then

d = −cs2(1− r2/cs2) ∈ −cF∗2 · (1 + m) = −cF∗2.
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Now, suppose F is not tractable, and choose a1, . . . , b3 ∈ F∗ satisfying (∗) with (ai , bi/F)
nonsplit. Suppose v(a1) /∈ 2Γ. Since (a1, b2/F) is split, b2 ∈ NF(a1). Because b2 /∈ F∗2, as
(a2, b2/F) is not split, the preceding paragraph shows b2 ∈ −a1F∗2. Likewise, b3 ∈ −a1F∗2.
This contradicts the Z/2Z-independence of b2 and b3 in F∗/F∗2 (see Lemma 1.3). Hence,
we must have v(a1) ∈ 2Γ. Likewise, v(a2), v(a3), v(b1), v(b2), v(b3) ∈ 2Γ. Therefore, we
can change a1, . . . , b3 by multiplying each by a suitable square without changing the quater-
nion algebras (ai, b j/F), but so that now a1, . . . , b3 ∈ U . Then, by the first paragraph of
the proof, a1, . . . , b3 satisfy (∗) over F, but

(
ai, bi

/
F
)

is nonsplit, showing that F is not
tractable.

Remark 2.6 The only properties of the valuation used in proving Prop. 2.5 were that
char(F) 6= 2 and 1 + m ⊆ F∗2. A valuation v satisfying just these properties is said to
be 2-Henselian (with char(F) 6= 2), because v has a unique extension to each Galois ex-
tension of F of degree a 2-power (see, e.g., [W1, Prop. 1.2]). So, Prop. 2.5 still holds if we
replace “Henselian” by the weaker assumption “2-Henselian”.

If F is a global field, let ΩF denote the set of prime spots of F, and for p ∈ ΩF , let Fp

denote the corresponding complete field. So, either Fp is a local field, in which case p is said
to be finite; or Fp

∼== R and p is called real infinite; or Fp
∼== C, and p is complex infinite. If

Fp is a dyadic local field, we say that p is dyadic. If A is any central simple algebra over F and
p ∈ ΩF , then we write Ap for A⊗F Fp. The following known results are key to our analysis
of tractability for global fields. The first two are classical (see [OM, 66:4, 71:18, 71:19] for
the number field case), the third a special case of a lemma given by Tate in [T], which he
describes as “more-or-less well-known”.

2.7 Hasse-Minkowski Theorem (special case) Let F be a global field. For a, b, c, d ∈ F∗,
(a, b/F) ∼== (c, d/F) iff

(
a, b
/

Fp

)
∼==
(

c, d
/

Fp

)
for all p ∈ ΩF. In particular (taking c = 1),

(a, b/F) is split iff
(
a, b
/

Fp

)
is split for all p ∈ ΩF.

2.8 Hilbert’s Reciprocity Law Let F be a global field. For any a, b ∈ F∗,
(
a, b
/

Fp

)
is split

for all but a finite even number of p ∈ ΩF. Further, given any finite subset S of ΩF with |S|
even, there is a unique quaternion algebra Q over F with Qp nonsplit iff p ∈ S.

Lemma 2.9 [T, Lemma 5.2] For any global field F, let c1, . . . , ck ∈ F∗, and let Q1, . . . ,Qk be
quaternion algebras over F. Suppose that for each j, 1 ≤ j ≤ k, and for each p ∈ ΩF, there is
d j,p ∈ F∗p such that (Q j)p

∼==
(
c j , d j,p

/
Fp

)
. Then there exists d ∈ F∗ with Q j

∼== (c j , d/F),
for each j.

Theorem 2.10 Let F be a global field. Then F is tractable iff F has at most one dyadic place.

Proof Suppose F has at most one dyadic place. Take any a1, . . . , b3 ∈ F∗ satisfying (∗) over
F. For any p ∈ ΩF , a1, . . . , b3 satisfy (∗) over Fp, as well. If p is nondyadic, then (ai , bi

/
Fp)

must be split, as Fp is tractable, by Cor. 2.3 if p is finite and Cor. 2.1 if p is infinite. Since
(ai , bi

/
Fp) is thus split for all but at most one p, Hilbert reciprocity shows that (ai , bi

/
Fp)

is actually split for each p ∈ ΩF . Then, Hasse-Minkowski shows (ai , bi/F) is split. Thus, F
is tractable.
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Now, suppose F has two dyadic places q1, q2. (It may have other dyadic places, as well.)
For j = 1, 2, let Q j be the nonsplit quaternion algebra over Fq j , and let a1, j , . . . , b3, j ∈ F∗q j

with (ai, j , bi, j

/
Fq j ) ∼== Q j and (ai, j , bk, j

/
Fq j ) split for k 6= i. The ai, j , bi, j exist by Cor. 2.3.

By Hilbert Reciprocity there is a quaternion algebra Q over F with Qq j
∼== Q j and Qp split

for all p ∈ ΩF − {q1, q2}. By the (Weak) Approximation Theorem [We, p. 8], there are
a1, a2, a3 ∈ F∗ with ai ≡ ai, j(modF∗2

q j
) in F∗q j

, for j = 1, 2.

This assures that Qq j
∼== Q j

∼==
(
a1, b1, j

/
Fq j

)
for j = 1, 2. Also, for p ∈ ΩF − {q1, q2},

clearly Qp
∼== M2(Fp) ∼==

(
a1, 1
/

Fp

)
. Furthermore, for all p ∈ ΩF , we have M2(F)p

∼==(
a2, 1
/

Fp

)
∼==
(
a3, 1
/

Fp

)
. It follows by Tate’s Lemma 2.9 that there is b1 ∈ F∗ with

(a1, b1/F) ∼== Q while (a2, b1/F) and (a3, b1/F) are each split. Two more analogous ap-
plications of Tate’s Lemma 2.9 yield b2, b3 ∈ F∗ with (a2, b2/F) ∼== Q while (a1, b2/F) and
(a3, b2/F) are split; and (a3, b3/F) ∼== Q while (a1, b3/F) and (a2, b3/F) are split. Thus,
a1, . . . , b3 satisfy (∗) over F, while each (ai, bi/F) ∼== Q, which is nonsplit. Hence, F is not
tractable.

Examples 2.11 (a) If F is a global function field (i.e., F is a global field with char(F) 6= 0),
then F is tractable, since it has no dyadic places.

(b) Q is tractable. This was originally proved in [CDD, Th. 7] by a direct (and also
longer) argument.

(c) For d ∈ Z with d square-free, d 6= 1, we have Q(
√

d) is tractable iff d 6≡ 1 (mod 8).
(d) If F = Q(c) with c algebraic over Q , then F is tractable iff the minimal polynomial

f of c over Q remains irreducible over the dyadic completion Q 2 of Q . For, the number of
dyadic places of F equals the number of irreducible factors of f in Q 2[x].

3 Tractable and Nontractable Function Fields

We give here further examples of tractable and nontractable fields. In particular, we prove
that for a global field F, the rational function field F(x) is tractable iff F is tractable. We
continue to assume that all fields have characteristic not 2.

Recall that the level s(F) of a field F is n if −1 is expressible as a sum of n squares in
F, but not as a sum of n − 1 squares. If there is no such n, then we set s(F) = ∞. It
is known (see [L, p. 303]) that s(F) = ∞ iff F has an ordering. Also (see [L, Th. 2.2,
p. 303]), if s(F) = n < ∞, then n is a power of 2 (a theorem of Pfister). For example,
s(Q) = s(R) = ∞, s

(
Q(
√
−3)
)
= s
(
Q(
√
−5)
)
= 2, s

(
Q(
√
−7)
)
= 4, and if F is a global

field, either s(F) =∞ or s(F) ≤ 4.

Remark 3.1 Note that for any field F, we have s(F) = 4 iff −1 is a sum of four squares in
F and (−1,−1/F) is nonsplit. For, (−1,−1/F) is split iff −1 ∈ NF(−1) iff −1 is a sum of
two squares in F.

Proposition 3.2 Let F be a field of level 4. Then, F is not tractable.

Proof Say −1 = r2 + s2 + t2 + u2, where r, s, t, u ∈ F. Let c = r2 + s2 and d = t2 + u2.
Since s(F) ≥ 4, we have r, s, t, u, c, d ∈ F∗. Now, (−1,−1/F) is nonsplit (see Remark 3.1),
but as c, d ∈ NF(−1), the quaternion algebras (−1, c/F), (−1, d/F), and (−1, cd/F) are
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split. Hence, as (c, c/F) ∼== (−1, c/F) and (d, d/F) ∼== (−1, d/F) we also have (c, c/F) and
(d, d/F) are split. The quadratic form isometry 〈c, d〉 ∼== 〈c + d, cd(c + d)〉 shows

(c, d/F) ∼==
(
c + d,−cd

/
F
)
=
(
−1,−cd

/
F
)
∼== (−1,−1/F).

Thus, by taking a1 = b1 = −1, a2 = b3 = c, a3 = b2 = d, we see that F is not
tractable.

Examples 3.3 (a) Q(
√
−7) is not tractable, as we already saw in Ex. 2.11(c).

(b) Let x be transcendental over Q . Then, Q(x,
√
−3− x2) is not tractable.

Corollary 3.4 Let F be a field such that (−1,−1/F) is not split, but there exist a, b ∈ F∗, each
a sum of two squares, such that (−a,−b/F) is split. Then F has level 4, so F is not tractable.

Proof Since (−a,−b/F) is split, the quadratic form 〈1, a, b〉 is isotropic (see Lemma 1.2(i)).
Hence,−1 = ar2 + bs2 for some r, s ∈ F. Since a and b are sums of two squares, this shows
−1 is a sum of four squares. Hence, s(F) = 4, by Remark 3.1, so F is not tractable, by
Prop. 3.2.

Example 3.5 Any field F (char(F) 6= 2, char(F) 6= 5) for which (−1,−1/F) is nonsplit but
(−2,−5/F) is split is not tractable. In particular, any subfield F of Q 2 such that (−2,−5/F)
is split is not tractable.

Some of our further results will use specialization arguments. Let R be a local integral
domain with maximal ideal m and quotient field K. Let R = R/m. Let Br(R) denote the
Brauer group of equivalence classes of Azumaya algebras over R, cf. [OS] or [DI]. There is a
“specialization map” ρR : Br(R) → Br(R), which is just scalar extension, [A] 7→ [A ⊗R R].
We also have the scalar extension homomorphism Br(R) → Br(K), [A] 7→ [A ⊗R K].
The latter map is known to be injective if R is a valuation ring (see [JW, Prop. 2.5] or [S1,
Lemma 1.2]) or if R is a regular local ring (see [OS, Th. 6.19, p. 67]). When this occurs, we
view the specialization map as defined on a subgroup of Br(K). Namely, if [B] ∈ Br(K), we
say that B is specializable with respect to R if [B] ∈ im

(
Br(R) → Br(K)

)
, and in that case,

define ρR([B]) = ρR([A]) for the unique [A] ∈ Br(R) with [B] = [A ⊗R K]. For example,
suppose char(R) 6= 2, and let Q = (c, d/K) be a quaternion algebra over K. If c, d ∈ R−m,
then Q is specializable re R, since Q ∼== (c, d/R)⊗R K, where (c, d/R) denotes the R-algebra
which is free as an R-module, with base {1, i, j, k} and multiplication defined by i2 = c,
j2 = d, and i j = − ji = k. Since char(R) 6= 2, (c, d/R) is an Azumaya algebra over R. We
have ρR(Q) =

(
c, d
/

R
)
, where c, d are the images of c, d in R. Note also that if F is a field

which is a subring of R, then for [D] ∈ Br(F), we have D ⊗F K is specializable re R, and
ρR([D⊗F K]) = [D⊗F R].

Proposition 3.6 Suppose F is not a tractable field. Let K be a field containing F such that K
is the quotient field of a ring R which is a valuation ring or a regular local ring with residue
field F. Then K is not tractable.

Proof Take a1, . . . , b3 ∈ F∗ satisfying (∗) over F, with (ai , bi/F) nonsplit. Of course,
a1, . . . , b3 also satisfy (∗) over K. Let R = R/m, where m is the unique maximal ideal of R.
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Because the composition F ↪→ R→ R is assumed to be an isomorphism, (ai, bi/R) is non-
trivial, since ρR

(
(ai , bi/R)

)
∼== (ai , bi/F), which is nonsplit. Since the map Br(R)→ Br(K)

is injective, (ai , bi/K) must be nonsplit. Thus, K is not tractable.

Example 3.7 If F is not tractable and K is the function field F(X) of an integral variety X
over F such that X has a smooth rational point, then K is not tractable. For, the ring OX,x of
rational functions on X defined near x is a regular local ring with quotient field F(X) and
residue field F. For example, if K is a purely transcendental extension of the nontractable
field F, then K is not tractable.

Proposition 3.8 Suppose F is a nontractable global field, and let Q1, . . . ,Qn be the nonsplit
quaternion algebras over F which are split by every Fp for p nondyadic. If K ⊇ F is a field such
that some Q j is not split by K, then K is not tractable.

Proof The proof of Th. 2.10 shows that there are a1, . . . , b3 ∈ F∗ satisfying (∗) with
(ai, bi/F) ∼== Q j . Then a1, . . . , b3 satisfy (∗) over K, and since (ai , bi/K) ∼== Q j ⊗F K
is nonsplit, K is not tractable. (Note that these Q j are the only quaternion algebras that
appear as (ai , bi/F) in a counterexample to tractability of F. For, if any other nonsplit
quaternion algebra Q over F were to appear, there would be a nondyadic place p such that
Qp is nonsplit, showing Fp is not tractable, contradicting Cor. 2.3.)

Example 3.9 (a) If F is a nontractable global field, with m ≥ 3 dyadic places and K
is an algebraic function field in one variable over F of genus 0, then K is not tractable.
For, it is known (see [A, Th. 6, p. 302]) that K has genus 0 over F iff K has the form
K = F(x,

√
c + dx2), where c, d ∈ F∗ and x is transcendental over F; further, for this K, the

map Br(F) → Br(K) has kernel {[F], [(c, d/F)]}, see [Wi1, Satz, p. 465] or [Sch1, Kor. 2.3,
Bem. p. 5]. Hilbert reciprocity shows that there are 2m−1 − 1 nonsplit quaternion algebras
Qi over F which are split for every Fp with p nondyadic. So, at least one Q j is not split by
K, and Prop. 3.8 shows that K is not tractable.

(b) If a global field F has exactly two dyadic places q1, q2 and (a, b/F) is nonsplit at the
Fq j and at no other Fp, then I. Han at UCSD shows in [H] that F(x,

√
a + bx2) is tractable

even though F is not. However, every other function field K of genus 0 over this F is not
tractable, by Prop. 3.8, because (a, b/K) is not split.

For F a global field, and Q a quaternion algebra over F, define

supp(Q) = {p ∈ ΩF | Qp is nonsplit}.

If, further, char(F) = 0 let R denote the set of real infinite prime spots of F, and let D

denote the set of dyadic prime spots of F.

Proposition 3.10 Suppose F is a tractable global field. Let Q = (c, d/F) be a nonsplit quater-
nion algebra over F, and let K = F(x,

√
c + dx2), where x is transcendental over F. In the

following cases, K is not tractable:

(i) char(F) 6= 0 and |supp(Q)| ≥ 4.
(ii) char(F) = 0 and there is a nonsplit quaternion algebra P over F with P 6 ∼== Q and either

(a) supp(P) ⊆ supp(Q) ∪D− R; or
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(b) supp(Q) ∩ R ⊆ supp(P) ⊆ supp(Q) ∪D.

Proof This is another variation on the proof of Th. 2.10 above. We will construct a1, . . . , b3

over F which are close to being a counterexample to tractability over F, which yield an ac-
tual counterexample over K. In case (i), let P be a quaternion algebra over F with supp(P) $
supp(Q) and |supp(P)| = 2. Assume now we are in case (i) or (ii)(a). We want to find
a1, . . . , b3 ∈ F∗ such that (ai , b j/F) is split for i 6= j and (a1, b1/F) ∼== (a3, b3/F) ∼== P,
while (a2, b2/F) ∼ P ⊗F Q in Br(F). (Recall that, as F is a global field, there is a quater-
nion algebra R over F with R ∼ P ⊗F Q in Br(F). Indeed, R is the quaternion algebra with
supp(R) =

(
supp(P) ∪ supp(Q)

)
−
(
supp(P) ∩ supp(Q)

)
.)

We first choose a1, a2, a3 ∈ F∗ using the Weak Approximation Theorem so that for
p ∈ ΩF ,

(I) if p ∈ supp(Q)− supp(P), then a1, a3 ∈ F∗2
p , while a2 /∈ F∗2

p ;
(II) if p ∈ supp(P) ∩ supp(Q) (so p /∈ R), then a1, a3 are Z/2Z-independent in F∗p/F

∗2
p

and a2 ∈ F∗2
p ;

(III) if p ∈ supp(P)−supp(Q) (so p must be dyadic), then a1, a2, a3 are Z/2Z-independent
in F∗p/F

∗2
p .

Now, choose b1,p ∈ F∗p so that for p in case (I) b1,p = 1; for p in case (II) or in case (III),
(a1, b1,p

/
Fp) is nonsplit, while (a2, b1,p

/
Fp) and (a3, b1,p

/
Fp) are split; and for all other p,

b1,p = 1. By Tate’s Lemma 2.9, there is b1 ∈ F∗ with (a1, b1

/
Fp) ∼== (a1, b1,p

/
Fp) ∼== Pp and

(a2, b1

/
Fp) and (a3, b1

/
Fp) split for all p ∈ ΩF . Hence, (a1, b1/F) ∼== P, while (a2, b1/F)

and (a3, b1/F) are split. Likewise, we can find b2 ∈ F∗ with (a2, b2/F) ∼== P ⊗F Q while
(a1, b2/F) and (a3, b2/F) are split; likewise, we obtain b3 ∈ F∗ with (a3, b3/F) ∼== P while
(a1, b3/F) and (a2, b3/F) are split. Since K splits Q, a1, . . . , b3 satisfy (∗) over K (even
though not over F), with (ai , bi/K) ∼== P⊗F K. But, P⊗F K is nonsplit, since ker

(
Br(F)→

Br(K)
)
= {[F], [Q]}. Hence, K is not tractable.

There remains case (ii)(b). In this case, we want to find a1, . . . , b3 ∈ F∗ such that
(ai , b j/F) is split for i 6= j and (a1, b1/F) ∼== P, while (a2, b2/F) ∼ (a3, b3/F) ∼ P ⊗F Q
in Br(F). We find the a1, a2, a3 as before, with the only changes that for p in case (I) (so
now p /∈ R), a1 ∈ F∗2

p , while a2, a3 are Z/2Z-linearly independent in F∗p/F
∗2
p ; and, for p in

case (II), (so this time possibly p ∈ R), a1 /∈ F∗2
p while a2, a3 ∈ F∗2

p . The argument then
proceeds as before, with the obvious modifications in the choices of the bi,p.

Example 3.11 If F is a tractable algebraic number field, and Q = (c, d/F) is nonsplit
at two or more finite nondyadic prime spots, then (ii)(a) shows the corresponding field
K = F(x,

√
c + dx2) is not tractable.

Note 3.12 For fields K = Q(x,
√

c + dx2) with c, d ∈ Q∗, the cases not covered by
Prop. 3.10 are (for Q = (c, d/Q)),

(i) supp(Q) = ∅;
(ii) supp(Q) = {p,∞}, p an odd prime and∞ the real infinite prime spot;
(iii) supp(Q) = {2, p}, p an odd prime;
(iv) supp(Q) = {2,∞}, (i.e., Q = (−1,−1/Q)).
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In case (i), K ∼== Q(x), and we will show in Th. 3.13 below that K is tractable. In case (ii), K
has level 4, so is not tractable, by Prop. 3.2. Since this paper was written, I. Han has shown
that in cases (iii) (where s(K) = ∞) and (iv) (where s(K) = 2) K is tractable. He has
shown that analogous results hold for function fields of genus 0 over any tractable global
field with at most one ordering. His proof will appear in [H].

Fein, Saltman, and Schacher introduced in [FSS] the notion of a Brauer-Hilbertian
field to provide a division algebra analogue to the idea of a Hilbertian field, which is one
over which Hilbert’s Irreducibility Theorem holds. For background on Hilbertian fields,
see [FJ]. (Hilbertian fields must not be confused with the Hilbert fields of Section 2 above!)
For any field F and any c ∈ F, there is an associated discrete valuation ring Rc of the rational
function field F(x) defined by Rc = F[x](x−c) = { f /g | f , g ∈ F[x], g(c) 6= 0} with residue
field Rc = F. The associated specialization map Br(Rc) → Br(F) is denoted ρc. So, for
f1, g1, f2, g2 ∈ F[x] with f1(c)g1(c) f2(c)g2(c) 6= 0,

(
f1/g1, f2/g2

/
F(x)
)

is specializable at c
(i.e., with respect to Rc), and ρc(

(
f1/g1, f2/g2

/
F(x)
)

) =
(

f1(c)/g1(c), f2(c)/g2(c)
/

F
)

. For
a central simple algebra A over F, let exp(A) denote the exponent of A, which is the order
of [A] as an element of Br(F). Let Br′(F) denote the subgroup of Br(F) consisting to those
[A] with exp(A) relatively prime to char(F). (So, if char(F) = 0, then Br′(F) = Br(F).)
As defined in [FSS], a field F is Brauer-Hilbertian if for every [A] ∈ Br′

(
F(x)
)

there are
infinitely many c ∈ F at which A is specializable and exp

(
ρc(A)

)
= exp(A). It is shown in

[FSS, Th. 2.5, Th. 2.6] that every global field is Brauer-Hilbertian, and if F is any Hilbertian
field, then every finitely and separably generated extension of F of transcendence degree
≥ 1 is also Brauer-Hilbertian.

Theorem 3.13 If F is a tractable Brauer-Hilbertian field, then the rational function field
F(x) is tractable. If, in addition, F(x) is Brauer-Hilbertian, then every purely transcendental
extension of F is tractable.

Proof If the rational function field F(x) is not tractable, there exist a1, . . . , b3 ∈ F(x) sat-
isfying (∗) over F(x), but with (ai , bi

/
F(x)) nonsplit. For any e ∈ F(x)∗, there are only

finitely many d ∈ F such that e is not a unit of the discrete valuation ring Rd. Consequently,
as F is Brauer-Hilbertian, we can find c ∈ F such that all a1, . . . , b3 are units of Rc and
ρc

(
(ai , bi

/
F(x))

)
is nonsplit. Let ai, b j denote the images of ai , b j in the map Rc → Rc = F

(the map is evaluation at c). Then, a1, . . . , b3 satisfy (∗) over F, as ρc is a group homomor-
phism, while

(
ai , bi

/
F
)
= ρc

(
(ai , bi

/
F(x))

)
is nonsplit. This contradicts the tractability

of F.
When F and F(x) are both Brauer-Hilbertian, then by [FSS, Th. 2.6], F(x1, . . . , xn) is

Brauer-Hilbertian for every x1, . . . , xn algebraically independent over F. It then follows by
induction on n that when F is also tractable, so is F(x1, . . . , xn), for every n. The argument
of the previous paragraph provides the induction step. Then, since a direct limit of tractable
fields is clearly tractable, every purely transcendental extension of F is also tractable.

Example 3.14 If F is a tractable global field, then every purely transcendental extension of
F is also tractable. (For, by [FSS, Th. 2.5, Th. 2.6], F and F(x) are Brauer-Hilbertian.)

Note 3.15 Since this paper was written, I. Han has proved that every purely transcenden-
tal extension of a tractable field F is tractable (without any Brauer-Hilbertian restrictions
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on F). His proof will appear in [H].
The next easy lemma gives a way of obtaining further examples of tractable fields. For a

field F, let Quat(F) denote the set of isomorphism classes of quaternion algebras over F, let
Br2(F) be the 2-torsion in the Brauer group of F, and let W F be the Witt ring of anisotropic
quadratic forms over F.

Lemma 3.16 Let {Ki}i∈I be a family of fields each containing a field F. If each Ki is tractable
and the canonical map α : Quat(F) →

∏
i∈I Quat(Ki) is injective, then F is tractable. If the

map Br2(F)→
∏

i∈I Br2(Ki) or the map W F →
∏

i∈I W Ki is injective, then α is injective.

Proof Suppose there were a1, . . . , b3 satisfying (∗) with (a1, b1/F) not split. Then the in-
jectivity of α shows that (a1, b1/Ki) is not split for some i, contradicting the tractability
of Ki . Hence, F must be tractable. The last sentence of the lemma is clear, since Quat(F)
maps injectively into Br2(F) and into W F (by mapping a quaternion algebra to its norm
form).

Theorem 3.17 If R is a real closed field, then any field F of transcendence degree 1 over R is
tractable.

Proof We may assume that F is a finitely generated field extension of R. For, our original
F is clearly tractable if every subfield of F finitely generated over R is tractable. Also, we
may assume F is formally real (i.e., has at least one ordering). For, since F(

√
−1) is of

transcendence degree 1 over the algebraically closed field R(
√
−1), Tsen’s theorem (see [G,

Th. 3.6, p. 22]) says that every quadratic form over F(
√
−1) of dimension 3 is isotropic.

That is, the u-invariant u
(
F(
√
−1)
)
≤ 2. Hence, by [EL1, Th. 4.11(2)], u(F) ≤ 2 for the

Elman-Lam generalized u-invariant of F. When F is not formally real, this means that every
three-dimensional quadratic form over F is isotropic. Hence, every quaternion algebra over
F is split, and tractability of F follows vacuously.

Now, for F formally real and finitely generated of transcendence degree 1 over R, let
XF denote the set of orderings of F. For P ∈ XF (with the corresponding order relation
on F denoted <P), let FP denote the real closure of F with respect to P. So (cf. [J, Sec-
tion 5.1] or [P, Section 3]), FP has a unique ordering, in which every positive element is
a square; also, the ordering on FP extends P on F; also, FP(

√
−1) is algebraically closed.

Consequently,
(
−1,−1

/
FP

)
is the unique quaternion division algebra over FP. (In fact,

Br(FP) = {[FP],
[(
−1,−1

/
FP

)]
}.) So, for a quaternion algebra Q = (c, d/F), we have

Q ⊗F FP is nonsplit iff c <P 0 and d <P 0. Moreover, there is a local-global principle for
F (see [Wi2, Satz 22] when R = R or [ELP, Th. I] for any real closed R), which says that Q
is nonsplit iff Q ⊗F FP is nonsplit for some P ∈ XF . Hence, by Lemma 3.16 F is tractable,
since by Cor. 2.1 each FP is tractable.

Th. 3.17 has an analogue for nondyadic local fields. We thank B. Fein for pointing this
out to us, and for sketching the proof given below.

Theorem 3.18 Let k be any nondyadic local field, and let F be a field of transcendence degree
1 over k. Then F is tractable.
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Proof We may assume that F is finitely generated over k, and that k is algebraically closed
in F. Let {VP}P∈PF/k

be the set of discrete valuation rings of F over k (i.e., k ⊆ VP ⊆ F and

F is the quotient field of VP). Let F̂P denote the quotient field of the completion V̂P of VP,
and let V P be the residue field of VP and of V̂P. Since VP is a finite degree extension of k, it
is tractable by Cor. 2.3. Then, Prop. 2.5 shows that F̂P is tractable. But further, since k is a
local field, it is known that the map

β : Br′(F)→
∏

P∈PF/k

Br′(F̂P)(3.1)

is injective (see below). Hence, Lemma 3.16 shows that F is tractable.
When the local field k has characteristic 0, the injectivity of the map β of (3.1) is a special

case of results of Pop, [Po, Th. 4.1, Th. 3.7, Th. E.1]; but since k is local with char(k) = 0,
the argument appears already implicitly in Lichtenbaum’s paper [Li]. For, let X be the
unique regular integral curve projective over k with function field F, and let Br(X) denote
its cohomological Brauer group, Br(X) = H2

ét(X,Gm) (cf. [M, Ch. IV] or [Gr]). Then, the
local rings OX,x of the closed points x of X are the same as the VP for P ∈ PF/k, and it is
known that Br(X) is the subgroup of Br(F) consisting of elements unramified with respect
to each of the VP, i.e., Br(X) =

⋂
P∈PF/k

Br(VP) ⊆ Br(F) (see [Li, Section 1]). Now, the divi-

sor group Div(X) is the free abelian group on PF/k, and Pic(X) = Div(X)/ Prin(X), where
Prin(X) is the group of principal divisors. For each P ∈ PF/k there is a homomorphism
Br(X) → Br(k) given by composing the canonical map γP : Br(X) → Br(VP) → Br(VP)
with the corestriction cor : Br(VP) → Br(k). (Here, Br(VP) ∼== Q/Z ∼== Br(k), and the
corestriction map is an isomorphism [Se, Prop. 6, p. 193; Th. 1, p. 195; Prop. 1(ii), p. 167].)
These maps combine to yield a pairing Br(X) × Div(X) → Br(k) ∼== Q/Z which factors
through Pic(X), hence inducing a map ΦF : Br(X) → Hom

(
Pic(X),Q/Z

)
. Lichtenbaum

proves in [Li, Th. 4] that ΦF is an isomorphism. (His description of ΦF is somewhat dif-
ferent from the one given here (we have used the one in [CTS]), but one can show that
this ΦF is the same as his.) Note that for any element of Br(F) which ramifies at some VP,
its image in Br(F̂P) has the same ramification with respect to V̂P, so is nonzero. Hence,
for the β of (3.1), any element of ker(β) must be unramified with respect to each VP; so,
ker(β) ⊆

⋂
P∈PF/k

Br(VP) = Br(X). The maps γP : Br(X) → Br(VP) defined above com-

bine to provide a homomorphism λ : Br(X)→
∏

P∈PF/k
Br(VP), and ker(β) ⊆ ker(λ) since

the map Br(VP)→ Br(F̂P) is injective for each P. However, clearly ker(λ) ⊆ ker(ΦF) = (0),
so β is injective. (Lichtenbaum has to argue a bit in [Li, proof of Th. 5] to see that λ is in-
jective, because of his different definition ofΦF , and Pop gives the argument in more detail
in [Po, proof of Th. 4.1].)

The injectivity of β in (3.1) when char(k) = p 6= 0 is deducible from [CTS], as fol-
lows: There is still a unique regular integral curve X projective over k with function field
F. Moreover, there is a regular integral scheme X proper and flat over the valuation ring V
of k, such that X ×V k ∼== X. This can be seen by first lifting X to a scheme X′ projective
and flat over V with X′ ×V k ∼== X, and then resolving the singularities of X′, obtain-
ing the desired smooth variety X over V with a proper birational morphism f X → X′.
This is possible by Lipman’s argument for resolution of singularities of 2-dimensional ex-
cellent schemes, see [Ar]. Let Xs = X ×V V , the special fibre of X. As V is Henselian and
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Japanese and X has dimension 2, Br(X) ∼== Br(Xs) by [Gr, Th. 3.1, p. 98]. Furthermore,
since X is projective over the finite field V , we have Br(Xs) = 0 by [Gr, Rem. 2.5(b), p. 96].
(This holds even if Xs is not regular, as pointed out in [Gr, comments preceding 2.5(c),
p. 97]. For an alternate approach of reducing to the nonsingular case, see [S2, Lemma 3.2].)
Hence, Br(X) = 0. It is shown in [CTS, Cor. 2.4; comments on p. 153] that the map(
Br′(X)/Br′(X)

)
× Pic(X) → Br(k) = Q/Z is nondegenerate in the left factor. Because

Br(X) = 0, this shows that we again have an injective map Br′(X) → Hom
(
Pic(X),Q/Z

)
.

(This is also part of [Sa, Th. 9.2], at least when X is smooth.) So, the argument of the
preceding paragraph applies here, showing that the map β of (3.1) is injective.

Remark 3.19 In the terminology of [Po], a field k of characteristic 0 is p-adically closed if
k is the quotient field of a Henselian valuation ring V with finite residue field of cardinality
a power of p and with value group Γ containing a least positive element γ such that Γ/nΓ
is cyclic and generated by the image of γ for each natural number n. The proof of Th. 3.18
adapts to show that each field F of transcendence degree 1 over a p-adically closed field k
(p 6= 2) is tractable. For, any finite degree extension of k is tractable by Prop. 2.5, and the
map β of (3.1) is injective, by [Po, Th. 4.1, Th. 3.7].
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