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Some triangle theorems by complex numbers

JOHN R. SILVESTER

1.   Introduction
The following theorems appear in [1, pp. 62-63]:

Theorem 1
If similar triangles , ,  are erected externally on the

sides of , then the circumcircles of these three triangles have a
common point,  . (See Figure 1.)
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FIGURE 1

Theorem 2
In the situation of Theorem 1, the circumcentres of the three triangles

form a triangle similar to the three triangles. (See Figure 2.)
If the three triangles are equilateral, then  is the first isogonic centre of

. If the angles of  are all less than , then  is inside
 and is then also the Fermat point of , the point such that

 is least possible. Also, the fact that the
(circum)centres of the three triangles then form another equilateral triangle
is Napoleon's theorem. For all of this, see [2, chapter 11]; see also [3,
chapter XII, §§ 352–356].

F
�A0B0C0 �A0B0C0 120° F
�A0B0C0 �A0B0C0
|FA0| + |FB0| + |FC0|
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FIGURE 2

We shall prove Theorems 1 and 2, and more, in Section 2. For example,
in the equilateral case it is known that ,  and  all pass through

, but we shall show that this is in fact true in the general case. We shall
also cover the case when the three similar triangles are erected internally on
the sides of the original triangle. This can all be done by angle-chasing, but
then the proofs are diagram dependent, so instead we shall mostly use
algebra (complex numbers), when one proof covers all cases.

A0A1 B0B1 C0C1
F

In Section 3, we shall prove a result about the areas of the various
triangles, generalising another theorem from [1, p. 64].

In Section 4, we shall erect three more similar triangles , ,
 on the sides of , then three more similar triangles ,
,  on the sides of , and so on. We shall find that the

circumcircles of the similar triangles all share the same point , and that
they fall into three coaxial systems, with one circle in common.

A2B1C1 A1B2C1
A1B1C2 �A1B1C1 A3B2C2
A2B3C2 A2B2C3 �A2B2C2

F

In the final section we shall look at the equilateral case, and in particular
at some properties of Napoleon triangles.

For synthetic proofs of much of the material in sections 2 and 3, see [4].
For an alternative generalisation of the Napoleon configuration, involving
similar triangles arranged differently around a given triangle, see [5]. For the
Kiepert configuration, involving similar isosceles triangles arranged around
a given triangle, see [2, Theorem 11.4].
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2.  Similar triangles
We work in the complex plane, and adopt the convention that complex

numbers  correspond to points labelled  .a, b, … A, B, …
Now if in  the labels go around the triangle in anticlockwise

order, we say the triangle is positively oriented; so then , for example,
is also positively oriented, but , for example, is negatively oriented.
Then  is similar to  if the angles at  and  are equal,
likewise the angles at  and , and at  and . They are directly similar if
also both are oriented the same way, and oppositely similar otherwise.

�ABC
�BCA

�BAC
�ABC �A′B′C′ A A′

B B′ C C′

So if, in  we have  (the sign of  depending on the
orientation), then

�ABC ∠BAC = α α

c − a
b − a

=
|AC|
|AB| e

iα,

from which it follows that  and  are directly similar if, and
only if,

�ABC �A′B′C′

c − a
b − a

=
c′ − a′
b′ − a′

,

or equivalently

a − b
c − b

=
a′ − b′
c′ − b′

,  or  
b − c
a − c

=
b′ − c′
a′ − c′

,

by the case side-angle-side. The reader might like to show that these
conditions are equivalent to

| | = 0.
a a′ 1
b b′ 1
c c′ 1

Then triangles  and  are oppositely similar if, and only if,ABC A′B′C′
c¯ − a¯
b¯ − a¯

=
c′ − a′
b′ − a′

,

with equivalent conditions as above.
Now, in the situation of Theorem 1, let us choose axes and scaling so

that  and . Then we can express everything in terms of  and
. For, since triangles  and  are directly similar, we have

c0 = 0 b0 = 1 a0
a1 A1B0C0 A0B1C0

b0 − c0

a1 − c0
=

b1 − c0

a0 − c0
,  that is, 

1
a1

=
b1

a0
,  or  b1 =

a0

a1
, (1)

and, since triangles  and  are directly similar, we haveA1B0C0 A0B0C1

c0 − b0

a1 − b0
=

c1 − b0

a0 − b0
,  that is, 

−1
a1 − 1

=
c1 − 1
a0 − 1

,  or  c1 =
a1 − a0

a1 − 1
. (2)
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We now prove the following, which incorporates Theorem 1:
Theorem 3

If directly similar triangles ,  and  are erected on
the sides of , then the three lines ,  and  meet at a
point , which also lies on the three circumcircles ,  and

. Further, .

A1B0C0 A0B1C0 A0B0C1
�A0B0C0 A0A1 B0B1 C0C1

F �A1B0C0 �A0B1C0

�A0B0C1 |A0A1| : |B0B1| : |C0C1| = |B0C0|
−1 : |C0A1|

−1 : |A1B0|
−1

An alternative way of saying the last part is that 

|A0A1| |B0C0| = |B0B1| |C0A1| = |C0C1| |A1B0| .
Note that, because the triangles are directly similar, they must either all be
erected externally, or all be erected internally on the sides of . Note
too that in the case where the similar triangles are equilateral, we have that
is the first or the second isogonic centre/Fermat point of , and also
we have the well-known result that, in this case, .

�A0B0C0
F

�A0B0C0
|A0A1| = |B0B1| = |C0C1|

Proof of Theorem 3
Let . Then∠B0C0A1 = α

|A1C0|
|B0C0|

eiα =
a1 − c0

b0 − c0
=

a1 − 0
1 − 0

= a1.

But also, using (1),
a0 − a1

b1 − b0
=

a0 − a1

a0 / a1 − 1
= a1.
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F

α

α
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FIGURE 3
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So , or ;
and similarly . Also, if  and  meet
at , then the line , rotated about  through the angle , becomes the
line . So  and  are concyclic, by the converse of the theorem
about angles in the same segment if  and  are on the same side of ,
as in Figure 3, for example, or by the converse of the theorem about the
internal and opposite external angles of a cyclic quadrilateral if  and  are
on opposite sides of , as in Figure 4, for example. (An alternative,
purely algebraic, proof of this result is suggested at the end of Section 3.)
Said another way, if  meets  again at , then  also lies on

; and similarly it also lies on . Putting this another way, if ,
 and  meet at , then  lies on ; and similarly it also lies

on  and on .

|A1C0| : |B0C0| = |A0A1| : |B1B0| |B0C0|
−1 : |C0A1|

−1 = |A0A1| : |B0B1|
|C0A1|

−1 : |A1B0|
−1 = |B0B1| : |C0C1| A0A1 B1B0

F B1B0 F α
A0A1 A1, B0, C0 F

C0 F A1B0

C0 F
A1B0

A0A1 �A1B0C0 F F
B0B1 C0C1 A0A1
B0B1 C0C1 F F �A1B0C0

�A0B1C0 �A0B0C1

Next we compute the circumcentres ,  and  of triangles ,
 and . Now , that is,

. Squaring,

U 0 V0 W0 A1B0C0
A0B1C0 A0B0C1 |u0 − c0| = |u0 − b0| = |u0 − a1|
|u0| = |u0 − 1| = |u0 − a1|

u0u0
⎯

= (u0 − 1) (u0
⎯

− 1) = (u0 − a1) (u0
⎯

− a1
⎯) ,

or

0 = 1 − u0 − u0
⎯

= a1a1
⎯

− u0a1
⎯

− u0
⎯

a1.

A0
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C0
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α
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FIGURE 4
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Treating these as simultaneous equations in  and , we eliminate the latter
to find

u0 u0
⎯

u0 =
a1 (1 − a1

⎯)
a1 − a1

⎯ . (3)

Now we use the fact that triangles ,  and  are directly
similar. So

U 0B0C0 V0B1C0 W0B0C1

u0 − c0

b0 − c0
=

v0 − c0

b1 − c0
,  or  u0 =

v0

b1
,  that is, v0 =

a0(1 − a1
⎯)

a1 − a1
⎯ . (4)

And
u0 − c0

b0 − c0
=

w0 − c1

b0 − c1
, or  u0 =

w0 − c1

1 − c1
, that is,  w0 = c1 + u0 − c1u0.

Using (2) and (3), we obtain

w0 =
a1 − a0a1

⎯

a1 − a1
⎯ . (5)

We now prove something a little more specific than Theorem 2:

Theorem 4
 and  are oppositely similar. (Again, see Figure 2.)�A1B0C0 �U 0V0W0

Proof: Firstly,

a1
⎯ − c0

⎯

b0
⎯ − c0

⎯ = a1
⎯

.

Secondly, using (3), (4) and (5), and multiplying numerator and
denominator through by , we havea1 − a1

⎯

u0 − w0

v0 − w0
=

a1 (1 − a1
⎯) − (a1 − a0a1

⎯)
a0 (1 − a1

⎯) − (a1 − a0a1
⎯) = a1

⎯
.

3.   Areas
Proposition: The area of  is given by�Z1Z2Z3

i
4 | | .z1 z1

⎯ 1

z2 z2
⎯ 1

z3 z3
⎯ 1
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Proof: If , where , for , then a
standard result is that the area  of  is given by

zk = xk + iyk xk, yk ∈ � k = 1,  2,  3
� �Z1Z2Z3

� =
1
2 | | .x1 y1 1

x2 y2 1

x3 y3 1

See, for example, [6, pp. 205-206]. Note that  is positive or negative
according as  is positively or negatively oriented; also,  if,
and only if, ,  and  are collinear.

�
�Z1Z2Z3 � = 0

Z1 Z2 Z3

Then, by column operations,

� =
1
2 | | =

i
4 | | =

i
4 | | ,x1 + iy1 y1 1

x2 + iy2 y2 1

x3 + iy3 y3 1

x1 + iy1 −2iy1 1

x2 + iy2 −2iy2 1

x3 + iy3 −2iy3 1

x1 + iy1 x1 − iy1 1

x2 + iy2 x2 − iy2 1

x3 + iy3 x3 − iy3 1

as required.

Let us use this to compute the area of , This is�A0B0C0

i
4 | | =

i
4 | | =

i
4

(a0 − a0
⎯) = −

1
2
� (a0) ,

a0 a0
⎯ 1

b0 b0
⎯

1

c0 c0
⎯ 1

a0 a0
⎯ 1

1 1 1
0 0 1

that is,  the imaginary part of . This has the magnitude
, as expected, and the minus sign is explained by the fact

that, if , that is, if  is above the real axis, then  is
negatively oriented.

−1
2 × a0

(1
2 × base × height)

� (a0) > 0 A0 �A0B0C0

Next we compute the area of . Using (3), (4) and (5), this is�U 0V0W0

i
4 | | =

i
4 | |u0 u0

⎯ 1

v0 v0
⎯ 1

w0 w0
⎯ 1

a1 (1 − a1
⎯)

a1 − a1
⎯

a1
⎯ (1 − a1)

a1
⎯ − a1

1

a0 (1 − a1
⎯)

a1 − a1
⎯

a0
⎯ (1 − a1)

a1
⎯ − a1

1

a1 − a0a1
⎯

a1 − a1
⎯

a1
⎯ − a0

⎯a1

a1
⎯ − a1

1

=
i

4 (a1 − a1
⎯)2 | |a1 − a1a1

⎯ a1a1
⎯ − a1

⎯ 1

a0 − a0a1
⎯ a0

⎯a1 − a0
⎯ 1

a1 − a0a1
⎯ a0

⎯a1 − a1
⎯ 1

https://doi.org/10.1017/mag.2023.98 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.98


SOME TRIANGLE THEOREMS BY COMPLEX NUMBERS 461

=
i

4 (a1 − a1
⎯)2 | |a0a1

⎯ − a1a1
⎯ a1a1

⎯ − a0
⎯a1 0

a0 − a1 a1
⎯ − a0

⎯ 0

a1 − a0a1
⎯ a0

⎯a1 − a1
⎯ 1

=
i

4 (a1 − a1
⎯)2 | |(a0 − a1) a1

⎯ a1 (a1
⎯ − a0

⎯) 0

a0 − a1 a1
⎯ − a0

⎯ 0

0 0 1

=
(a0 − a1) (a1

⎯ − a0
⎯) i

4 (a1 − a1
⎯)2 | |a1

⎯ a1 0

1 1 0
0 0 1

=
(a0 − a1) (a0

⎯ − a1
⎯) i

4 (a1 − a1
⎯) . (6)

Now suppose the points ,  and  are the reflections of ,  and
 in the respective sides ,  and  of . Then triangles

,  and  are directly similar (being oppositely similar
to triangles , etc.) and are erected internally or externally on the sides
of  according as triangles , etc. are erected externally or
internally, respectively. Further, the circumcentres ,  and  of the new
triangles are the reflections of ,  and  in the respective sides of

. Formulæ for these new circumcentres are therefore obtained from
formulæ for the old ones by just replacing  by , throughout. So, by (6),

A1′ B1′ C1′ A1 B1
C1 B0C0 C0A0 A0BO �A0B0C0
A1′B0C0 A0B1′C0 A0B0C1′

A1B0C0
�A0B0C0 A1B0C0

U V W
U 0 V0 W0

�A0B0C0
a1 a1

⎯

area (U 0V0W0) + area (UVW) =
(a0 − a1)(a0

⎯ − a1
⎯)i

4(a1 − a1
⎯) +

(a0 − a1
⎯)(a0

⎯ − a1)i
4(a1

⎯ − a1)

=
i
4

(a0 − a0
⎯) = −

1
2
�(a0) = area (A0B0C0).

But each triangle in the list , , ,  has the
opposite orientation to the adjacent ones; hence  has the opposite
orientation to . (See Figure 5.) So what we have proved, above, is:

U 0V0W0 A1B0C0 A1′B0C0 UVW
�UVW

�U 0V0W0

Theorem 5

||area (U 0V0W0)| − |area (UVW)|| = |area (A0B0C0)| .

This generalises [1, Theorem 3.38 (p. 64)], which just deals with the case of
Napoleon triangles.
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B1
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A1′ W
W0
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FIGURE 5

We finish this section by using determinants to compute , the complex
number representing . Now  is collinear with  and , and also with
and , so, by (1),

f
F F A0 A1 B0

B1

| | = 0 = | | .f f⎯ 1

a0 a0
⎯ 1

a1 a1
⎯ 1

f f⎯ 1

1 1 1

a0
a1

a0
⎯

a1
⎯ 1

We need to eliminate . So, by row and column operations,f⎯

| | = 0 = | | .a1
⎯f a1

⎯f⎯ a1
⎯

a0 a0
⎯ 1

a1 a1
⎯ 1

a1f a1
⎯f⎯ 1

a0 a0
⎯ 1

a1 a1
⎯ 1
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Subtracting the one determinant from the other,

| | = 0,
(a1 − a1

⎯) f 0 1 − a1
⎯

a0 a0
⎯ 1

a1 a1
⎯ 1

whence

f =
(a0a1

⎯ − a0
⎯a1) (a1

⎯ − 1)
(a0
⎯ − a1

⎯) (a1 − a1
⎯) . (7)

The reader might like to use this to show that , thus giving an
alternative proof that  lies on .

|f − u0| = |u0|
F �A1B0C0

4.  Repetition of the construction
In this section we are going to use a well-known result about equal

fractions:

If , then ω =
x1

y1
=

x2

y2
=  …  =

xn

yn
ω =

∑k λkxk

∑k λkyk

for any  with .λ1, λ2,  … , λn ∑k λkyk ≠ 0
(I speculated about whether this really is well-known in the introduction of [7].)

In fact, what we need is the following corollary of the above result:

If ,  if, and only if, .ω ≠ 0 ∑
k

λkxk = 0 ∑
k

λkyk = 0

Proofs are immediate, on noting that , for all , so that
.

xk = ωyk k
∑k λkxk = ω ∑k λkyk

So now suppose we repeat our previous construction: start with
 and erect directly similar triangles , , ,

, , , ,  .
�A0B0C0 A1B0C0 A0B1C0 A0B0C1
A2B1C1 A1B2C1 A1B1C2, … , Ak + 1BkCk AkBk + 1Ck AkBkCk + 1, …

Lemma
For all , ,  and  are the midpoints of ,  and

, respectively. (See Figure 6, where we have drawn the case
.) 

k Ak Bk Ck Ak + 1Ak + 2 Bk + 1Bk + 2
Ck + 1Ck + 2
k = 0

Proof:
Since triangles , ,  and  are

directly similar, we have
Ak + 1BkCk AkBk + 1Ck AkBkCk + 1 Ak + 2Bk + 1Ck + 1

ak + 1 − bk

ck − bk
=

ak − bk + 1

ck − bk + 1
=

ak − bk

ck + 1 − bk
=

ak + 2 − bk + 1

ck + 1 − bk + 1
.

Now , so we must also
have

(ck − bk) − (ck − bk + 1) − (ck + 1 − bk) + (ck + 1 − bk + 1) = 0

(ak + 1 − bk) − (ak − bk + 1) − (ak − bk) + (ak + 2 − bk + 1) = 0,
or , as required; and similarly for the other cases.ak = 1

2 (ak + 1 + ak + 2)
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F
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C0 B0
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FIGURE 6

This last result provides a solution to the following construction
problem: given  and points ,  and , find points ,  and  so
that triangles ,  and  are directly similar to . The
solution is to construct  and  so that triangles ,  and

 are directly similar to , and then ,  and  are the mid-
points of ,  and , respectively.

�ABC A1 B1 C1 A0 B0 C0
A1B0C0 A0B1C0 A0B0C1 �ABC

A2, B2 C2 A2B1C1 A1B2C1
A1B1C2 �ABC A0 B0 C0

A1A2 B1B2 C1C2

Theorem 6
The points  all lie on one line, the points  lie on another, and the

points  lie on a third. These three lines meet in the point , which also lies
on the circumcircles ,  and , for all .
(Again, see Figure 6.)

Ak Bk
Ck F

�Ak + 1BkCk �AkBk + 1Ck �AkBkCk + 1 k

Proof: By the lemma, ,  and  are collinear, for all , whence the
points  all lie on one line; and we know  passes through . Similarly
for the  and the . Then apply Theorem 3 to the triangle  with its
similar triangles ,  and  to see that ,

 and  all pass through .

Ak Ak + 1 Ak + 2 k
Ak A0A1 F
Bk Ck AkBkCk

Ak + 1BkCk AkBk + 1Ck AkBkCk + 1 �Ak + 1BkCk
�AkBk + 1Ck �AkBkCk + 1 F

Now let ,  and  be the circumcentres of triangles ,
 and , respectively.

U k Vk Wk Ak + 1BkCk
AkBk + 1Ck AkBkCk + 1
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Theorem 7
For all ,  is the medial triangle of . (See

Figure 7, where we have drawn the case .)
k �U kVkWk �U k + 1Vk + 1Wk + 1

k = 0

F

U 1

W0

W1

V0

V1

C2

B2

A1

B0
C0

B1

A0

C1

A2

U0

FIGURE 7

Proof:
Since triangles ,  and  are directly

similar,we have
U kBkCk Vk + 1Bk + 2Ck + 1 Wk + 1Bk + 1Ck + 2

uk − bk

ck − bk
=

vk + 1 − bk + 2

ck + 1 − bk + 2
=

wk + 1 − bk + 1

ck + 2 − bk + 1
.

Now

2(ck − bk) − (ck +1 − bk +2) − (ck +2 − bk +1)
= (2ck − ck +1 − ck +2) − (2bk − bk +1 − bk +2) = 0 − 0 = 0,

so we must also have , that is,2(uk − bk) − (vk + 1 − bk + 2) − (wk + 1 − bk + 1) = 0

(2uk − vk +1 − wk +1) − (2bk − bk +1 − bk +2) = (2uk − vk +1 − wk +1) = 0

So , as required; and similarly for  and for .uk = 1
2 (vk + 1 + wk + 1) vk wk

Now a triangle and its medial triangle share the same medians and the
same centroid. So, by Theorem 7, the triangles  have the same
medians and the same centroid, for all . (The reader might like to apply the

U kVkWk
k
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technique of Theorem 7 to the directly similar triangles ,
 and  to give a direct proof that  is the

midpoint of .)

U kBkCk
U k + 1Bk + 1Ck + 1 U k + 2Bk + 2Ck + 2 U k

U k + 1U k + 2

Let the medians through all the , all the  and all the  be ,  and
, respectively, and let the centroid, where ,  and  meet, be . So

, all . Let ,  and  be the reflections of  in ,
and , respectively. Then we get:

U k Vk Wk 
 m
n 
 m n G
g = 1

3 (uk + vk + wk) k L M N F 
 m
n

Theorem 8
For all ,  belongs to the coaxial system of circles through

and :  belongs to the coaxial system of circles through  and ;
and  belongs to the system of coaxial circles through  and .
Further, there is a circle Σ, centre , through , ,  and , which belongs
to all three systems of coaxial circles. (See Figure 8, where we have just
drawn the circles for  and 1.)

k �Ak + 1BkCk F
L �AkBk + 1Ck F M
�AkBkCk + 1 F N

G F L M N

k = 0

U 1

W0
W1

V0

V1

FG
L

M

N

A2

B1

C1
A0

B0C0

C2

U0

A1

B2

l

m

n

FIGURE 8

Proof:  has its centre  on , which is the perpendicular bisector
of , so since the circle passes through , it must pass through  as well.
Similarly the circles with centres on  and passing through  are circles
which must pass through , and the circles with centres on  and passing
through  are circles which must pass through . Likewise, since  lies on
,  and , the circle centre  through  must also pass through ,  and .

�Ak + 1BkCk U k 

FL F L

m F
M n

F N G

 m n G F L M N
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Next, the six lines through F yield three harmonic pencils:
Theorem 9

.F {B0C0; A0L} = F {C0A0; B0M} = F {A0B0; C0N} = −1

Proof:
It is only necessary to prove ; the other cases are

similar. Let  meet  (the real axis) in , and let .
We show first that . For , so by (3), (4) and (5),

F{B0C0; A0L} = −1
A0A1 B0C0 P {B0C0; PQ} = −1

U 0G⊥FQ g = 1
3 (u0 + v0 + w0)

u0 − g =
2u0 − v0 − w0

3
=

2a1(1 − a1
⎯) − a0(1 − a1

⎯) − (a1 − a0a1
⎯)

3(a1 − a1
⎯)

=
(a0 − a1)(2a1

⎯ − 1)
3(a1 − a1

⎯) .

Then, remembering that ,p = p⎯

| | = 0,  whence  p =
a0a1

⎯ − a0
⎯a1

a0 − a0
⎯ − a1 + a1

⎯ .

p p 1

a0 a0
⎯ 1

a1 a1
⎯ 1

Then , so that
p

1 − p
= −

q
1 − q

q =
p

2p − 1
=

a0a1
⎯ − a0

⎯a1

2a0a1
⎯ − 2a0

⎯a1 − a0 + a0
⎯ + a1 − a1

⎯ .

Thus, using (7),

f − q =
(a0a1

⎯ − a0
⎯a1)(a1

⎯ − 1)
(a0
⎯ − a1

⎯)(a1 − a1
⎯) −

a0a1
⎯ − a0

⎯a1

2a0a1
⎯ − 2a0

⎯a1 − a0 + a0
⎯ + a1 − a1

⎯

=
(a0a1

⎯ − a0
⎯a1)(2a1

⎯ − 1)(a0a1
⎯ − a0

⎯a1 − a0 + a0
⎯ + a1 − a1

⎯)
(a0
⎯ − a1

⎯)(a1 − a1
⎯)(2a0a1

⎯ − 2a0
⎯a1 − a0 + a0

⎯ + a1 − a1
⎯) .

So

f − q
u0 − g

=
3 (a0a1

⎯ − a0
⎯a1) (a0a1

⎯ − a0
⎯a1 − a0 + a0

⎯ + a1 − a1
⎯)

(a0 − a1) (a0
⎯ − a1

⎯) (2a0a1
⎯ − 2a0

⎯a1 − a0 + a0
⎯ + a1 − a1

⎯).

The product of the first two brackets in the denominator, being of the form
, is real, and the other three brackets, each being of the form

, are pure imaginary, so the whole expression is pure
imaginary, whence , as claimed.

zz¯ = |z2|
z − z¯ = 2i� (z)

U 0G⊥FQ
Now , so it follows that ,  and  are collinear. ThenU 0G⊥FQ L F Q

F {B0C0; A0L} = F {B0C0; PQ} = {B0C0; PQ} = −1.

https://doi.org/10.1017/mag.2023.98 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.98


468 THE MATHEMATICAL GAZETTE

We finish this section with a brief look at a limiting or degenerate case
of the above, when we allow . So here the lines ,  and
are parallel, and the circles ,  and , which
all pass through  and (respectively) ,  or , become lines through
(respectively) ,  or . Further,  becomes a line through ,  and . See
Figure 9. Another way of stating Theorem 9 is that  on

, and when  this just becomes , this time
on a line rather than on a circle.

F → ∞ A0A1 B0B1 C0C1
�Ak + 1BkCk �AkBk + 1Ck �AkBkCk + 1

F L M N
L M N Σ L M N

{B0C0; A1L} = −1
�A1B0C0 F → ∞ {B0C0; A1L} = −1

A1C0 B0
L

M N

C1

B1

A2

A0

C2

B2

FIGURE 9

5.  Napoleon triangles
We now restrict to the case where the similar triangles , ,

 are equilateral. In this case Napoleon's theorem says that the
(circum)centre triangle  is also equilateral. If the similar triangles
are erected outwardly (respectively, inwardly) on the sides of , then

 is the outer (respectively, inner) Napoleon triangle of .
As before, let , ,  be the reflections of  in , , ,
respectively. Then if one of the triangles ,  is the outer
Napoleon triangle, the other is the inner: we shall say that they are opposite
Napoleon triangles of .

A1B0C0 A0B1C0
A0B0C1

U 0V0W0
�A0B0C0

�U 0V0W0 �A0B0C0
U V W U 0, V0, W0 B0C0 C0A0 A0B0

UVW U 0V0W0

�A0B0C0

So, taking  and  as before, let us also take  and
, a primitive sixth root of 1. So , ,

c0 = 0 b0 = 1 a0 = a
a1 = ε ε = 1

2 (1 ± i 3) ε2 − ε + 1 = 0
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 and . Then by (1) and (2),εε¯ = 1 (ε − ε¯ )2 = −3

b1 =
a
ε

= a(1 − ε), and  c1 =
ε − a
ε − 1

= aε − ε2 = aε − ε + 1. (8)

Also, by (3),

u0 =
ε(1 − ε¯ )

ε − ε¯
=

1
3

ε2(ε¯ − ε) =
1
3

(ε + 1), so  u = u0
⎯

=
1
3

(2 − ε). (9)

And by (7),

f =
(aε¯ − a¯ ε) (ε¯ − 1)
(a¯ − ε¯ ) (ε − ε¯ ) =

(aε¯ − a¯ ε) (ε − 2)
3 (a¯ − ε¯ ) . (10)

Next, triangles ,  and  are similar, soB0C0U 0 C0A0V0 A0B0W0

u0 − c0

b0 − c0
=

v0 − a0

c0 − a0
=

w0 − b0

a0 − b0
.

Here, the denominators sum to zero, hence so do the numerators, that is,
. Dividing by 3, we see that the centroid

of  is equal to the centroid of , that is, .
Similarly, the centroid of  is also .

u0 + v0 + w0 = a0 + b0 + c0 G
�U 0V0W0 �A0B0C0 g = 1

3 (a + 1)
�UVW G

Theorem 10
 and  lie on the circle  of Theorem 8.U , V W Σ

Proof: It is only necessary to prove that  lies on . Since  is the circle
centre  through , we need to show that . We have, on
the one hand, by (10),

U Σ Σ
G F |g − u| = |g − f |

3 (a¯ − ε¯ ) (g − f ) = (a¯ − ε¯ ) (a + 1) − (aε¯ − a¯ ε) (ε − 2)

= (aa¯ + a¯ − aε¯ + ε2) − a (ε − ε¯ ) − a¯ (ε + 1)

= aa¯ − aε − a¯ ε + ε2

= (a − ε) (a¯ − ε) .
And on the other hand, by (9),

3 (a − ε) (g¯ − ū) = (a − ε) ((a¯ + 1) − (ε + 1)) = (a − ε) (a¯ − ε) ,
whence

3 (a − ε) (g¯ − ū) = 3 (a¯ − ε¯ ) (g − f ) .
The result follows on comparing the moduli of either side.

The last result says that the first (respectively, second) isogonic centre
of  lies on the circumcircle of its inner (respectively, outer)
Napoleon triangle, which is perhaps not quite the way round one might have
expected.

�A0B0C0
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We now show that, for all ,  is one of the Napoleon triangles
of . Explicitly:

k �UVW
�AkBkCk

Theorem 11
For all ,  and  are opposite Napoleon triangles of

.
k �UVW �U kVkWk

�AkBkCk

Proof: The result is true by definition when . For , we need to
show that  is the reflection of  in . This follows if we show that

 is directly congruent to ; since the latter is directly similar

to , it will be sufficient to show that , or, using

(8) and (9),

k = 0 k = 1
U U 1 B1C1

�UB1C1 �U 1C1B1

�U 0C0B0
u − b1

c1 − b1
=

u0 − c0

b0 − c0

1
3 (2 − ε) − a (1 − ε)

aε − ε + 1 − a (1 − ε)
=

ε + 1
3

,

that is,

2 − ε − 3a + 3aε
2aε − ε + 1 − a

= ε + 1.

But

(ε + 1)(2aε − ε + 1 − a) = 2aε2 − ε2 + ε − aε + 2aε − ε + 1 − a

= 2a(ε − 1) − (ε − 1) + ε + aε − ε + 1 − a

= 2 − ε − 3a + 3aε,
as required. Likewise,  and  are the reflections of  and  in  and

, respectively, which completes the case . Finally, the progression
from  to  is exactly the same as the progression
from  to , and we have finished.

V W V1 W1 C1A1
A1B1 k = 1

�U kVkWk �U k + 1Vk + 1Wk + 1
�U 0V0WO �U 1V1W1

Note that it is by no means certain that  is the outer, or the inner,
Napoleon triangle of  for all . Indeed, it is perfectly possible for it
to be the outer one for some  and the inner one for . See Figure 10,
where we have erected triangles ,  and  inwardly on the
sides of , but in order to have triangles ,  and

 directly similar for all , it is necessary to erect the triangles
,  and  outwardly on the sides of . The next

result will enable us to gain some control over this situation.

�UVW
�AkBkCk k

k k + 1
A1B0C0 A0B1C0 A0B0C1

�A0B0C0 Ak + 1BkCk AkBk + 1Ck
AkBkCk + 1 k
A2B1C1 A1B2C1 A1B1C2 A1B1C1

Theorem 12

area (AkBkCk) − area (Ak − 1Bk − 1Ck − 1) =
i
4

(1 − 2ε) |AkAk − 1|
2 .
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C1

B2

A1

A0

B1

C0 B0

C2

A2

FIGURE 10

Proof: It is enough to prove the result when . Nowk = 1

4
i

(area (A1B1C1) − area (A0B0C0))

= | | − | |ε ε¯ 1
aε¯ a¯ ε 1

 aε + ε¯   a¯ ε¯ + ε 1

a a¯ 1
1 1 1
0 0 1

= a¯ ε2 + (a + ε¯ 2) + (aa¯ ε¯ 2 + a) − (a¯ + ε2) − aε¯ 2 − (aa¯ ε2 + a¯ ) − (a − a¯ )
= (aa¯ − a + 1) ε¯ 2 − (aa¯ − a¯ + 1) ε2 + a − a¯

= − (aa¯ − a + 1) ε − (aa¯ − a¯ + 1) (ε − 1) + a − a¯

= (1 − 2ε) aa¯ + (ε + 1) a + (ε − 2) a¯ + 1 − 2ε

= (1 − 2ε) (aa¯ − ε¯ a − εa¯ + εε¯ )
= (1 − 2ε) (a − ε) (a¯ − ε¯ )

= (1 − 2ε) | A0A1 |
2 ,

and the result follows.

Note that Theorem 12, indirectly provides another proof that
.|A0A1| = |B0B1| = |C0C1|

Now ; let us take . Then

, so , whence  is negatively

ε = 1
2 (1 ± i 3) ε = 1

2 (1 + i 3)
a1 − c0

b0 − c0
= ε ∠B0C0A1 = +60° �A1B0C0
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oriented. Further, , soi (1 − 2ε) = + 3

area (AkBkCk) − area (Ak + 1Bk + 1Ck + 1) =
3

4
|AkAk − 1|

2 .

As we saw earlier,  is the mid-point of , so
, whence
Ak − 2 AkAk − 1

| AkAk − 1 | = 2 | Ak − 1Ak − 2 |
area (AkBkCk) − area (Ak − 1Bk − 1Ck − 1) = 4k − 2 3 | A1A0 |

2 ,
and, summing the geometric progression,

area (AkBkCk) − area (A0B0C0) =
(4k − 1) 3

12
| A1A0 |

2 .

Thus

area (A0B0C0) < area (A1B1C1) <  … < area (AkBkCk) <  … ,
and  as , from which one of three things
happens:

area (AkBkCk) → ∞ k → ∞

(i)  for all ; orarea (AkBkCk) > 0 k
(ii) for some ,  is negative or positive according as

 or , respectively; or
k′ > 0 area (AkBkCk)

k < k′ k ≥ k′
(iii) same as (ii), except that this time .area (Ak′Bk′Ck′) = 0
In case (i),  is the outer and  is the inner Napoleon triangle
of , for all . Case (ii) is the same as case (i) for , but the
other way around for . Case (iii) is the same as case (ii), except that
here  is a straight line, not a triangle. See Figure 11, where
is negatively oriented,  is a straight line, and  is positively

�U kVkWk �UVW
�AkBkCk k k ≥ k′

k < k′
Ak′Bk′Ck′ �A0B0C0

A1B1C1 �A2B2C2

A3 B3

A2

B1

C1

B0

A0

C0

A1

B2

C2

C3

FIGURE 11
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oriented; and the equilateral triangles ,  and  are
all negatively oriented.

Ak + 1BkCk AkBk + 1Ck AkBkCk + 1

As a final remark, if we fix  and , then
can be regarded as a function of , and as such, by Theorem 12, its level
curves are concentric circles, centre . Its minimum value is zero, achieved
at , when also  and , so that triangles  and

 are the same triangle.

B0 C0 area (A1B1C1) − area (A0B0C0)
A0

A1
A0 = A1 B0 = B1 C0 = C1 A0B0C0

A1B1C1
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