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Fermat’s Last Theorem over Q(
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Abstract. We prove Fermat’s Last Theorem over Q(
√

5) and Q(
√

17) for prime exponents p ≥ 5
in certain congruence classes modulo 48 by using a combination of the modular method and
Brauer–Manin obstructions explicitly given by quadratic reciprocity constraints. The reciprocity
constraint used to treat the case of Q(

√
5) is a generalization to a real quadratic base field of the one

used by Chen and Siksek. For the case of Q(
√

17), this is insufficient, and we generalize a reciprocity
constraint of Bennett, Chen, Dahmen, and Yazdani using Hilbert symbols from the rational field to
certain real quadratic fields.

1 Introduction

The celebrated Fermat’s Last Theorem was proven in [19, 22] by Taylor-Wiles and
Wiles. Ever since then, it has been natural to attempt to use the same methods to
tackle more general forms of the Fermat equation, particularly the still unresolved
Beal conjecture [16].

Another direction has been to study the usual Fermat equation over number fields.
For instance, Freitas and Siksek considered, in [10, 11], Fermat’s Last Theorem over
real quadratic fields. In particular, it is currently known that Fermat’s Last Theorem is
asymptotically true for K = Q(

√
d) where 2 ≤ d ≤ 23 square-free and d /= 5, 17 and

also on a subset of d which has density 5/6 among square-free d > 0. For a given
number field K, asymptotically true means that Fermat’s Last Theorem is true for
sufficiently large exponents. In a different vein, [6–8] establish more general criteria
for proving the asymptotic Fermat’s Last Theorem and apply these to a number of
infinite families of number fields.

In this paper, we study Fermat’s Last Theorem over K for d = 5 and d = 17, the first
two notable cases where asymptotic results are not yet proved. These cases present
difficulties within the framework of [11] due to a large number of solutions to the
S-unit equation over K where S is the set of primes of K above 2. We circumvent these
obstructions by showing that the reciprocity constraints in [1, 4] generalize to a real
quadratic base field, allowing a complete resolution in certain congruence classes of
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prime exponents p. In addition to [1, 4], we also mention [5, 14] where reciprocity
constraints have been used to solve generalized Fermat equations.

Let K be a quadratic field, and let OK be its ring of integers. Assume that K has class
number one. We say that a solution (a, b, c) over OK , i.e., where a, b, c ∈ OK , to

x p + yp + zp = 0(1.1)

is primitive if the ideal (a, b, c) = OK and nontrivial if abc /= 0.
Under the assumption that K has class number one, we note that any nonzero

solution (a, b, c) ∈ K3 to (1.1) can be scaled to a primitive solution over OK , and
henceforth, when we refer to solutions over K, we mean that the solutions have been
scaled to a primitive solution over OK . In the more general case that K does not have
class number one, we refer the reader to [11].

Theorem 1.2 There are no nontrivial primitive solutions over Q(
√

5) to

x p + yp + zp = 0

for prime p ≥ 5 if p satisfies one of the following:
(1) p ≡ 5, 7 (mod 8), or
(2) p ≡ 19, 41 (mod 48).

The above theorem shows that Fermat’s Last Theorem over Q(
√

5) is true for a
set of prime exponents with Dirichlet density 5/8. In [15], Theorem 1.2 is proved for
5 ≤ p < 107, where we note that the small exponents in this range rely on [13]. The
method used in [15] is to fix a prime exponent p ≥ 11 and use an auxiliary prime q =
pk + 1 with k < p − 2 and q split in K, and apply the modular method together with the
local condition mod q on solutions to (1.1). In practice, it appears that most primes q of
this form succeed in giving a proof for the fixed exponent p, but there is no currently
known way to prove results of this type in general.

Theorem 1.3 There are no nontrivial primitive solutions over Q(
√

17) to

x p + yp + zp = 0

for prime p ≥ 5 if p satisfies one of the following:
(1) p ≡ 5, 7 (mod 8), or
(2) p ≡ 17 (mod 24).

Remark 1.4 In [11], Theorem 1.3 is established for p ≡ 3, 5 (mod 8) using the sym-
plectic method [12]. The above theorem and the result in [11] imply the corollary below,
which shows that Fermat’s Last Theorem over K = Q(

√
17) is true for a set of prime

exponents with Dirichlet density 7/8.

Corollary 1.5 There are no nontrivial primitive solutions over Q(
√

17) to

x p + yp + zp = 0

for prime p ≥ 5 if p /≡ 1 (mod 24).

The proofs of the above theorems are based on the modular method, which attaches
a Frey elliptic curve E0 defined over K to a putative nontrivial primitive solution.
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One then considers the representation ρE0 , p ∶ GK → GL2(Fp) on the p-torsion points
of E0, which, by virtue of being a Frey elliptic curve, has Artin conductor bounded
independently of the solution and prime exponent p.

Using modularity and level lowering, one deduces that ρE0 , p ≅ ρ f , p , where ρ f , p ∶
GK → GL2(Fp) is the residual Galois representation attached to a Hilbert newform at
the possible Artin conductors. For the cases considered in this paper, f has a coefficient
field equal to the field of rational numbers.

Unlike the original Fermat’s Last Theorem, the space of newforms with level equal
to the possible Artin conductor is typically not zero. Hence, to achieve a contradiction,
one needs additional methods. To accomplish this, we combine information from
reciprocity constraints such as in [4] to obtain a contradiction for prime exponents
in certain congruence classes. This succeeds for Q(

√
5); however, the reciprocity

constraint used in [4] is not strong enough to treat Q(
√

17).
Using the approach in [1], valid over Q, we prove a stronger reciprocity constraint,

valid over certain real quadratic base fields, in terms of Hilbert symbols. This has an
added advantage that the reciprocity law needed is simply the well-known reciprocity
law for Hilbert symbols over a number field [21].

The programs and output transcripts for the computations needed in this paper are
described and posted at [3].

2 Proof of Theorem 1.2

Let K = Q(
√

5) and note that OK has unique factorization. Suppose (a, b, c) is a
nontrivial primitive solution over OK to (1.1) for a prime p ≥ 5. Normalize the solution
(a, b, c) as in [15].

Let E0 denote the Frey elliptic curve over K:

E0 ∶ Y 2 = X(X − ap)(X + bp).(2.1)

Let P be the unique prime of K above 2.

Proposition 2.2 Assuming p ≥ 5, the conductor of E0 over K is given by

N(E0) =P
t ∏
q∣abc ,q/=P

q,

where t ∈ {1, 2, 3}. Moreover, t = 1 if 2 ∣ abc and t ∈ {2, 3} if 2 ∤ abc.

Proof See [15, Lemme 3]. ∎

Proposition 2.3 The representation ρE0 , p ∶ GK → GL2(Fp) is irreducible if p ≥ 11.

Proof See [15, Proposition, p. 7]. ∎

Proposition 2.4 There is a Hilbert newform f of trivial character, parallel weight 2, and
level Pt such that ρE0 , p ≃ ρ f ,p.

Proof The elliptic curve E0 over K is modular by [9]. Using [10, Theorem 7], we
obtain the desired statement. ∎
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The space of Hilbert newforms of trivial character, parallel weight 2, and levelP,P2

is zero, so these cases do not occur. In particular, we may now assume that

2 ∤ abc(2.5)

and t = 3.
There is a unique Hilbert newform f of trivial character, parallel weight 2, and level

P3 which corresponds to an elliptic curve E over K. Hence, we have that

ρE0 , p ≃ ρE , p(2.6)

by Proposition 2.4.

Lemma 2.7 The elliptic curve E over K is given by

E ∶ Y 2 = X(X − (−8 + 4
√

5))(X + (9 − 4
√

5)).

Proof The conductor of E over K is P3. Since E is modular, it corresponds to the
unique Hilbert newform f of trivial character, parallel weight 2, and level P3. ∎

Remark 2.8 In the last section, we explain how to determine the full list of solutions
(a, b, c) to a + b + c = 0, up to multiplication by the square of a unit of OK , such that

Ea ,b ,c ∶ Y 2 = X(X − a)(X + b)

gives rise to an elliptic curve in the same isogeny class of E over K. We remark that the
2-adic conditions on these (a, b, c) vary; in particular, there are some triples where
2 ∤ abc. This implies that inertia arguments at 2 will fail as any solution which is
2-adically close to one of these triples (a, b, c) cannot be ruled out by inertia argu-
ments at 2.

Let L = K(ζr)where ζr is a primitive rth root of unity. Using modularity arguments
and Theorem 3.5 in the following cases involving values of r, we will prove Theorem 1.2.
(1) Case r = 1.

Let k = OK/3OK ≅ F9, noting that #k× = 8.
Let q3 = 3OK and N(q3) = 9 be the norm of q3.
If abc = 0 in k, then we obtain a bound on p by [15, p. 9]. In particular, if p /= 3,

then p divides

aq3( f ) ± (N(q3) + 1) /= 0,(2.9)

which is nonzero by the Hasse bound

∣aq3( f )∣ = ∣aq3(E)∣ ≤ 2
√

N(q3).(2.10)

If aq3(E0) /= aq3(E), then we also obtain a bound on p by [15, p. 9]. In
particular, if p /= 3, then p divides

aq3(E0) − aq3(E) /= 0.(2.11)

Thus, either we obtain a bound on p or we have that a, b, c ∈ k× and aq3(E0) =
aq3(E). The bound can be computed to be p ∈ {2, 3}.
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Assume now that a, b, c ∈ k× and aq3(E0) = aq3(E). Now, set

ε = apbpc−2p in k.(2.12)

Since p2 ≡ 1 (mod 8), we have that εR = abc−2 in k where R ≡ p (mod 8).
Hence, the condition (3.6) becomes

( εR − 1
3

)
K
/= −1,(2.13)

for all permutations of a, b, c as (2.5) holds. Using Magma, we can check the set
of triples (a, b, c) ∈ (k×)3 which satisfy

aq3(E0) = aq3(E),

and (2.13) for all permutations of a, b, c is empty if p ≡ 5, 7 (mod 8).
(2) Case r = 3.

Let k = OK/21OK ≅ F9 × F49, noting that #k× = 384. Let q3 = 3OK and
q7 = 7OK .

If abc ∉ k× or one of the following two conditions holds,

aq3(E0) /= aq3(E),
aq7(E0) /= aq7(E),

we obtain a bound on p similarly as in (2.9) and (2.11). This bound can be
computed to be p ∈ {2, 3, 5}. The case p = 5 is covered by [15].

Assume from here on that a, b, c ∈ k× and both

aq3(E0) = aq3(E) and
aq7(E0) = aq7(E)

hold. Now set

ε = apbpc−2p in k.(2.14)

Let R∗ be the least positive residue such that p ≡ R∗ (mod 384), and let R
be such that RR∗ ≡ 1 (mod 384). Then we have that εR = abc−2 in k. Hence, the
condition (3.6), taking ζ′r = ζR

r since r = 3 divides 384, becomes

( εR − ζ′r
1 − 4ζr

)
K
/= −1,(2.15)

for all permutations of a, b, c as (2.5) holds. Using Magma, we can check the set
of triples (a, b, c) ∈ (k×)3 which satisfy

aq3(E0) = aq3(E),
aq7(E0) = aq7(E),
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and (2.15) for all permutations of a, b, c is empty if

p ≡ 7, 19, 29, 41, 55, 67, 77, 89, 103, 115, 125, 137, 151, 163, 173, 185,
199, 211, 221, 233, 247, 259, 269, 281, 295, 307, 317, 329, 343, 355, 365, 377 (mod 384).

It can be verified that the set of congruence condition above is equivalent to
p ≡ 7, 19, 29, 41 (mod 48), noting that 48 divides 384.

This concludes the proof of Theorem 1.2.

Remark 2.16 In the proof of Theorem 1.2, we argued on a hypothetical solution
(a, b, c) to ap + bp + c p = 0 and applied constraints over the residue class ring k.
However, since p is coprime to #k×, we can check the modular and reciprocity
constraints in terms of new variables (a′ , b′ , c′) = (ap , bp , c p) in k3. This remark also
applies to Theorem 1.3.

Remark 2.17 For a given r ≥ 1, let K = Q(
√

d) and L = Q(
√

d , ζr). Our method
of obtaining results for the Fermat’s Last Theorem over K requires us to check the
reciprocity constraints for all 3-tuples (a, b, c) ∈ k3

r where kr is the residue ring
given by

kr ∶= OK/Nr

and Nr ∶= (1 − 4ζr)OL ∩OK . As we increase r, the size of the rational prime factors
of Norm(1 − 4ζr) grows rapidly, which leads to computational bottlenecks as then
kr is too large (implying that the number of R∗ and triples (a, b, c) ∈ k3

r to consider
are too numerous or the Hecke eigenvalue computation for the modular constraint is
infeasible). We therefore restricted our search for results to r ≤ 10.

Remark 2.18 We describe more specifically how Remark 2.17 applies to d = 5: if r = 2,
then (1 − 4ζ2)OL = (

√
5OL)2 so that

( ab − c2ζ′r
5

)
L
= ( ab − c2ζ′r√

5
)

L
( ab − c2ζ′r√

5
)

L
= 1 ≠ −1(2.19)

for any (a, b, c) ∈ k3
r ; that is, we obtain a trivial reciprocity constraint. For r = 4, 5,

6, 10, every possible choice of R∗ had a triple (a, b, c) ∈ k3
r which passed all of the

imposed constraints, implying negative results for these r’s. For r = 8, the Hecke eigen-
value computation for the modular constraint was not feasible. For r = 7, 9, the size of
kr was unfeasible (#kr > 17 × 106). However, there were choices of R∗ such that sam-
pling many (a, b, c) ∈ k3

r at random for that R∗ did not yield a triple (a, b, c) which
passed all of the imposed constraints. It thus remains possible that the imposed con-
straints are in principle sufficient to give a positive result for some R∗’s for r = 7, 9, but
the method is infeasible computationally in its present form because #kr is too large.

3 Reciprocity constraints

In this section, we will prove the reciprocity constraint, which is used in the proof
of Theorem 1.2. For this, we will use the following form of quadratic reciprocity over
number fields and a corollary, both of which are taken from [4].
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Let L be a number field with ring of integers OL . For an element or ideal of OL , we
say that it is odd if it is coprime to 2OL .

Theorem 3.1 Suppose L is a number field with r real embeddings. We write sgni(α) for
the sign of the image of α under the ith real embedding. Let α, λ ∈ OL be integers with α
odd and α and λ coprime. Decompose λOL = LR where R is an odd ideal in OL and L

is even. Suppose that α is a quadratic residue modulo 4L. Then

( λ
α
)

L
( α
R
)

L
= (−1)σ ,

where ( a
R
)L is the Jacobi symbol in L and

σ =
r
∑
i=1

sgni(α) − 1
2

sgni(λ) − 1
2

.

For the definition of Jacobi symbol ( λ
R
)L over a number field L, see [4] or [17,

Definition 8.2]. Furthermore, for α ∈ OL , ( λ
α )L ∶= (

λ
αOL

)
L

.

Corollary 3.2 Let α, λ be algebraic integers in the number field L with α odd. Suppose
that α ≡ ε2 (mod 4λ) for some algebraic integer ε in L. In addition, suppose that α is
positive in every real embedding of L. Then

( λ
α
)

L
≠ −1.

Proof If α and λ are not coprime, the above symbol is zero. Otherwise, we are in
the case where we can apply Theorem 3.1 in the case where L = λOL and R = OL . In
this case, σ = 0 since α is positive in every real embedding, and ( α

OL
)

L
= 1, so that

( λ
α )L = 1. ∎

We also require the following lemmas.

Lemma 3.3 If x , y ∈ R satisfy xn + yn = 1 for n ∈ N, then x y < 1.

Proof For all real x, we have that x2n − xn + 1 > 0. This implies that xn(1 − xn) < 1.
If x y ≥ 1, then we would have that xn yn = xn(1 − xn) ≥ 1, a contradiction. Hence, we
conclude x y < 1. ∎

Lemma 3.4 If (a, b, c) is a primitive nontrivial solution to Fermat’s equation over K
for some odd prime p > 2, then ab − c2 is negative in every real embedding of K.

Proof Let ρ be any real embedding of K. Since (a, b, c) is a primitive solution to the
Fermat equation, (ρ(a), ρ(b), ρ(c)) is also a primitive solution. Thus, if (a, b, c) is
such a triple, then

( ρ(a)
−ρ(c))

p

+ ( ρ(b)
−ρ(c))

p

= 1.
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Now, we employ Lemma 3.3 to deduce

ρ(a)ρ(b)
ρ(c)2 < 1,

which gives ρ(ab − c2) = ρ(a)(b) − ρ(c)2 < 0. ∎

We now state and prove the reciprocity constraint.

Theorem 3.5 Let K be a number field, and let ζr be a primitive rth root of unity where
(r, p) = 1. If r = 1, assume further that K has an even number of real embeddings. Let
L = K(ζr) and write ζr = ζ′r

p where ζ′r is a primitive rth root of unity.
If (a, b, c) is a primitive solution over OK to

ap + bp + c p = 0

and c is coprime to 2OK , then

( ab − c2ζ′r
1 − 4ζr

)
L
≠ −1.(3.6)

In particular, if abc is coprime to 2OK , then (3.6) holds for all permutations of a, b, c.

Proof By assumption, c is coprime to 2OK . We employ the identity

(ap − bp)2 = −4(ab)p + c2p .

Subtracting both sides of this identity by c2p(1 − 4ζr), we get

(ap − bp)2 − c2p(1 − 4ζr) = −4 ((ab)p − ζr c2p)(3.7)
= −4(ab − c2ζ′r)h,

where

h = (ab)p−1 + ζ′r c2(ab)p−2 + ⋅⋅⋅ + ζ′(p−1)
r c2(p−1) .

Let α = 1 − 4ζr and λ = ab − c2ζ′r . We first show that c is invertible modulo
4λ = 4(ab − c2ζ′r). To this end, let P be a prime in OL dividing c. We show that P
does not divide 4λ. Indeed, suppose this were the case. Then P divides 4λ and so
either divides 4OL or divides λ. Note that P cannot divide 4OL , for then P divides
2OL and thus c ∈P ∩OK , contradicting that c is coprime to 2OK . Hence, P ∣ λ. Then
we have that

ab = λ + c2ζ′r ∈P

and so either a or b is in P. However,

ap + bp + c p = 0,

so P divides a, b, and c. We have assumed that a, b, c are coprime in OK . Let r1 , r2 , r3
be such that

r1a + r2b + r3c = 1.

Then we get the contradiction that 1 ∈P.
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In light of this, let ε ∈ OL be such that the image of ε in OL/(4(ab − c2ζ′r)) is

c−p(ap − bp) (mod 4(ab − c2ζ′r)).

We see that α is odd, for if P divides both α and 2OL , then P divides 1, a
contradiction. Then, from (3.7),

α ≡ ε2 (mod 4λ).

Since L has no real embeddings if r > 2, Corollary 3.2 gives the result in this case.
If r = 2, we have that α = 5 is positive in every real embedding of L = K because Q

is fixed. Corollary 3.2 then gives the result in this case.
From Theorem 3.1, we have that

( ab − c2

−3
)

K
= (−1)σ .

We are under the assumption that K has an even number of real embeddings 2t
so that

σ =
2t
∑
i=1

sgni(−3) − 1
2

sgni(ab − c2) − 1
2

.

We see that sgni(−3) = −1 for all i. Lemma 3.4 gives that ab − c2 is totally negative
and so sgni(ab − c2) = −1 for all i and hence we conclude σ = 2t is even. This gives
the result for r = 1. ∎

4 Proof of Theorem 1.3

Let K = Q(
√

17), and let OK be its ring of integer, which has unique factorization. The
prime 2 splits in K as 2OK =P1P2 for prime ideals P1 and P2 of K. Suppose (a, b, c)
is a nontrivial primitive solution over OK to (1.1), and let E0 denote the Frey elliptic
curve over K:

E0 ∶ Y 2 = X(X − ap)(X + bp).(4.1)

Proposition 4.2 Assume p ≥ 5. Up to scaling (a, b, c) by a unit in OK , the conductor
of E0 over K is given by

N(E0) =P1P2 ∏
q∣abc ,q∤P1P2

q.

Proof See [11, Corollary 5.1]. We note the fact that OK has unique factorization
means that there is no need to consider the extraneous prime r in [11]. ∎

We may assume that

2 ∣ abc,(4.3)

since ap + bp + c p = 0 implies that one of ap , bp , c p is 0 in the residue fields of
P1 and P2.

By the arguments in [11, p. 2], we need only prove Theorem 1.3 for p ≥ 17, which we
now assume.
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Proposition 4.4 The Galois representation ρE0 , p ∶ GK → GL2(Fp) is irreducible if
p ≥ 17.

Proof See [11, Lemma 6.1, p. 9]. ∎

Proposition 4.5 There is a Hilbert newform f of trivial character, parallel weight 2, and
level P1P2 such that ρE0 , p ≃ ρ f ,p.

Proof The elliptic curve E0 over K is modular by [9]. Using [10, Theorem 7],
we obtain the desired statement. ∎

There is a unique Hilbert newform f of trivial character, parallel weight 2, and level
P1P2, and this corresponds to an elliptic curve E over K.

Lemma 4.6 The elliptic curve E over K is given by

E ∶ Y 2 = X(X − (4 −
√

17))(X + −13 + 5
√

17
2

) .

Proof See [11, p. 13]. The conductor of E over K is 2OK . Since E is modular, it
corresponds to the unique Hilbert newform f of trivial character, parallel weight 2,
and level 2OK . ∎

Hence, we have that

ρE0 , p ≃ ρE , p(4.7)

by Proposition 4.5.

Proof of Theorem 1.3 Let L = K(ζr)where ζr is a primitive rth root of unity. We give
two proofs in the cases r = 1, r = 2, and r = 3.
(1) Case r = 1.

Let k = OK/3OK ≅ F9, noting that #k× = 8. Let q3 = 3OK .
If abc ∉ k× or aq3(E0) /= aq3(E), then we obtain a bound on p similarly as in

(2.9) and (2.11). This bound can be computed to be p ∈ {2, 3}.
Assume from here on that a, b, c ∈ k× and aq3(E0) = aq3(E) holds. For a, b,

c ∈ k×, we set

ε = apbpc−2p in k.(4.8)

Since p2 ≡ 1 (mod 8), we have that εR = abc−2 in k where R ≡ p (mod 8).
Hence, the condition (5.22) becomes

( εR − 1
3

)
K
/= −1,(4.9)

for all permutations of a, b, c as (4.3) holds. We note that (5.20) holds as if not, by
the left-hand side of (5.10), we would have that

√
−3 ∈ K.

Using Magma, we can check the set of triples (a, b, c) ∈ (k×)3 which satisfy

aq3(E0) = aq3(E),

and (4.11) for all permutations of a, b, c is empty if p ≡ 5, 7 (mod 8).

https://doi.org/10.4153/S0008414X22000633 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000633


28 I. Chen, A. Efemwonkieke, and D. Sun

(2) Case r = 2.
Let k = OK/5OK ≅ F25, noting that #k× = 24. Let q5 = 5OK .
If abc ∉ k× or aq5(E0) /= aq5(E), then we obtain a bound on p similarly as in

(2.9) and (2.11). This bound can be computed to be p ∈ {2, 3, 5, 7}.
Assume from here on that a, b, c ∈ k× and aq5(E0) = aq5(E) holds. For a, b,

c ∈ k×, we set

ε = apbpc−2p in k.(4.10)

Since p2 ≡ 1 (mod 24), we have that εR = abc−2 in k where R ≡ p (mod 24).
Hence, the condition (5.22) becomes

( εR − 1
5

)
K
/= −1,(4.11)

for all permutations of a, b, c as (4.3) holds. We note that (5.20) holds as if not, by
the left-hand side of (5.10), we would have that

√
5 ∈ K.

Using Magma, we can check the set of triples (a, b, c) ∈ (k×)3 which satisfy

aq5(E0) = aq5(E),

and (4.11) for all permutations of a, b, c is empty if p ≡ 13, 17, 19, 23 (mod 24).
(3) Case r = 3.

Let k = OK/21OK ≅ F9 × F49, noting that #k× = 384. Let q3 = 3OK and
q7 = 7OK .

If abc ∉ k× or one of the following two conditions holds,

aq3(E0) /= aq3(E),
aq7(E0) /= aq7(E),

we obtain a bound on p similarly as in (2.9) and (2.11). This bound can be
computed to be p ∈ {2, 3, 5, 7}.

Assume from here on that a, b, c ∈ k× and both

aq3(E0) = aq3(E) and
aq7(E0) = aq7(E)

hold. For a, b, c ∈ k×, we set

ε = apbpc−2p in k.(4.12)

Let R∗ be the least positive residue such that p ≡ R∗ (mod 384), and let R
be such that RR∗ ≡ 1 (mod 384). Then we have that εR = abc−2 in k. Hence, the
condition (5.22), taking ζ′r = ζR

r since r = 3 divides 384, becomes

( εR − ζ′r
1 − 4ζr

)
K
/= −1,(4.13)

for all permutations of a, b, c as (4.3) holds. We note that the hypothesis (5.20)
holds as K is totally real.

https://doi.org/10.4153/S0008414X22000633 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000633


Fermat’s Last Theorem over Q(
√

5) and Q(
√

17) 29

Using Magma, we can check the set of triples (a, b, c) ∈ (k×)3 which satisfy

aq3(E0) = aq3(E),
aq7(E0) = aq7(E),

and (4.13) for all permutations of a, b, c is empty if

p ≡ 5, 7, 13, 23, 29, 31, 37, 47, 53, 55, 61, 71, 77, 79, 85, 95, 101, 103,
109, 119, 125, 127, 133, 143, 149, 151, 157, 167, 173, 175, 181, 191, 197, 199, 205,
215, 221, 223, 229, 239, 245, 247, 253, 263, 269, 271, 277, 287, 293, 295, 301,
311, 317, 319, 325, 335, 341, 343, 349, 359, 365, 367, 373, 383 (mod 384).

It can be verified that the congruence condition above is equivalent to
p ≡ 5, 7, 13, 23 (mod 24), noting that 24 divides 384. Finally, the congruence
p ≡ 5, 7, 13, 23 (mod 24) is equivalent to p ≡ 5, 7 (mod 8) for prime p ≥ 5. ∎

Remark 4.14 We describe more specifically how Remark 2.17 applies to d = 17: if
r = 4, we have that (1 − ζ4)OL = (

√
17OL)2, so in a similar way as in (2.19), we obtain

a trivial reciprocity constraint. For r = 6, 8, every possible choice of R∗ had a triple
(a, b, c) ∈ k3

r which passed all of the imposed constraints, implying a negative result.
For r = 5, 7, 9, 10, the sizes of the kr ’s were too large (#kr > 4 × 104). For r = 5, 7, 9, 10,
there were choices of R∗ such that sampling many (a, b, c) ∈ k3

r at random for that
R∗ did not yield a triple (a, b, c) which passed all of the imposed constraints. It
thus remains possible that the imposed constraints are in principle sufficient to
give a positive result for some R∗’s for r = 5, 7, 9, 10, but the method is infeasible
computationally in its present form because #kr is too large.

5 Reciprocity constraints using the Hilbert symbol

In this section, we use Hilbert symbols to prove a strengthened reciprocity constraint
which does not have a condition on c.

Definition 5.1 For a global field L, we define the Hilbert symbol (⋅, ⋅)L ∶ L× × L× →
{−1, 1} as

(a, b)L ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if z2 = ax2 + by2 has a nontrivial solution in L,
−1, otherwise.

(5.2)

Let SL denote the set of normalized places of L and partition them into

S∞L = {v ∈ SL ∶ v ∣ ∞} ,
Seven

L = {v ∈ SL ∶ v ∣ 2} ,

Sodd
L = {v ∈ SL ∶ v ∤ 2} .

For a place v ∈ SL of L, we denote (α, β)v ∶= (α, β)Lv , where Lv is the completion
of L at v. Let πv be a uniformizer for Lv , let Ov be the ring of integers of Lv , and let Fv
be the residue field of Lv .

We will state a few useful properties of the Hilbert symbol for later use.
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Lemma 5.3 The Hilbert symbol defines a nondegenerate symmetric bimultiplicative
pairing.

Proof See [21, Lemma 12.4.6]. ∎

Lemma 5.4 Let a, b ∈ L×. Then the following hold:
(1) (ac2 , bd2)L = (a, b)L for all c, d ∈ L×.
(2) (b, a)L = (a, b)L .
(3) (a, b)L = (a,−ab)L = (b,−ab)L .
(4) (1, a)L = (a,−a)L = 1.
(5) If a /= 1, then (a, 1 − a) = 1.
(6) If σ ∈ Aut(L), then (a, b)L = (σ(a), σ(b))L .

Proof See [21, Lemma 12.4.3]. ∎

Lemma 5.5 (Reciprocity law) Let L be a number field, and let SL be the set of places
of L. Then, for any α, β ∈ L∗, we have that

∏
v∈SL

(α, β)v = 1.(5.6)

Proof See [21, Corollary 14.6.2]. ∎

Lemma 5.7 With notation as above, let q = #Fv be odd. Write a = a0πv(a)
v and

b = b0πv(b)
v . Then we have that

(a, b)v = (−1)v(a)v(b)(q−1)/2(a0

πv
)

v(b)
(b0

πv
)

v(a)
.(5.8)

Proof See [21, equation (12.4.10)]. ∎

We now move on to the theorem that enables us to tackle the reciprocity con-
straint on the primitive solutions over Q(

√
17). The following is a generalization of

[1, Proposition 17].

Theorem 5.9 Let L be a number field containing a primitive rth root of unity ζr
such that (r, n) = 1 where n ∈ N. Assume s, t ∈ OL , v(t) = 0 for all v ∈ SL such that
v(n) > 0, and v(s) > 0 only for places v ∈ Seven

L . Furthermore, suppose we have the
following identity:

A2 − tB2n = s(Cn − ζr B2n) /= 0(5.10)

for coprime A, B, C ∈ OL and write ζr = ζ′r
n where ζ′r is a primitive rth root of unity.

Then we have that

∏
v∈S∞L

(t, s(C − ζ′r B2))v ∏
v∈Seven

L

(t, s(C − ζ′r B2))v ∏
v∈Sodd

L ,v(t) odd
(t, s(C − ζ′r B2))v = 1.

(5.11)

Proof The hypotheses imply that s, t, (Cn − ζr B2n) are nonzero, and hence also
(C − ζ′r B2) /= 0, so the Hilbert symbols used below are well defined. Note that

(t, s(Cn − ζr B2n))v = 1
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for all v ∈ SL because

A2 = tB2n + s(Cn − ζr B2n) ⋅ 12 .

Using the fact that ζr = ζ′r
n and the factorization

Cn − ζr B2n = Cn − (ζ′r B2)n(5.12)
= (C − ζ′r B2)(Cn−1 + Cn−2ζ′r B2 + ⋅⋅⋅ + (ζ′r B2)n−1),

we see that

(t, s(C − ζ′r B2))v = (t, Cn−1 + Cn−2ζ′r B2 + ⋅⋅⋅ + (ζ′r B2)n−1)v ,(5.13)

using Lemma 5.3.
Let β = s(C − ζ′r B2). By (5.6), we have that

∏
v∈S∞L

(t, β)v ∏
v∈Seven

L

(t, β)v ∏
v∈Sodd

L ,v(t) odd
(t, β)v = ∏

v∈Sodd
L ,v(t) even

(t, β)v .(5.14)

Thus, it suffices to show that (t, β)v = 1 when v ∈ Sodd
L and v(t) is even.

Suppose v ∈ Sodd
L and v(t) is even. By (5.8), (t, β)v = 1 when v(β) is even. So

suppose that v(β) is odd.
If v(n) > 0, then we have that v(t) = 0 by assumption. As v(β) is odd, we deduce

from (5.10) and (5.12) that

v(A2 − tB2n) = v(s(Cn − ζr B2n)) ≥ v(β) > 0,

so that

A2 ≡ tB2n (mod πv).(5.15)

Since A, B, C are coprime, by (5.10), we deduce that A and B are coprime, as
v(A), v(B) > 0 implies v(sCn) > 0. Since v(s) = 0, we see that v(C) > 0, contradicting
A, B, C being coprime. Hence, if v(B) > 0, then by (5.15) we obtain that v(A) > 0,
contradicting A, B being coprime. Thus, v(B) = 0 and B is a v-adic unit. From (5.15),
we deduce that

(AB−n)2 ≡ t (mod πv),

and hence

( t
πv
) = 1,

using also that v(t) = 0. Using Lemma 5.7, this leads to (t, β) = 1.
If v(n) = 0, then since v(β) is odd and v(s) = 0, we firstly have that

v(C − ζ′r B2) = v(β) > 0.(5.16)

We have that v(C) = 0 for if v(C) > 0, then by (5.16) v(B) > 0 and hence by (5.10)
v(A) > 0, contradicting that A, B, C are coprime. It follows that

Cn−1 + ⋅⋅⋅ + (ζ′r B2)n−1 ≡ nCn−1 (mod πv),
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which from the conditions v(n) = v(C) = 0 imply that

v(Cn−1 + ⋅⋅⋅ + (ζ′r B2)n−1) = 0.

Since v(t) is even, using Lemma 5.7, it follows that (t, Cn−1 + ⋅⋅⋅ + (ζ′r B2)n−1)v = 1.
Hence, by (5.13), we obtain

(t, β)v = (t, Cn−1 + ⋅⋅⋅ + (ζ′r B2)n−1)v = 1,

as desired. ∎
Remark 5.17 In our application, L = K(ζr), n = p, t = 1 − 4ζr , s = 4, C = ab,
B = c, A = ap − bp , and we have the identity (5.10) because of (3.7). Here, v(s) > 0 only
for places v ∈ Seven

L and A, B, C are coprime. Finally, we require (p) to be coprime to
(t) = (1 − 4ζr) to ensure the hypothesis v(t) = 0 for all v ∈ SL such that v(n) > 0.

We need a few more lemmas to aid the proof of our reciprocity constraint.

Lemma 5.18 Let L be a number field containing a primitive rth root of unity ζr , and L
is unramified at 2. Let v be a place of L above 2. Then (1 − 4ζr , b)v = 1 for any b ∈ L with
v(b) = 0.

Proof The proof in [18, Theorem 1, Chapter III, Section 1.2] for the case L = Q and
α = β = 0 can be adapted to prove this lemma.

If u and b are elements in L×v with u ≡ 1 (mod 8), then we first show that

(u, b)v = 1,

where the Hilbert symbol is taken in Lv . Indeed, if u ≡ 1 (mod 8), then since

v(12 − u) ⩾ 3 > 2 = 2v(2(1)),

applying Hensel’s lemma to f (x) = x2 − u, we see that u is a square in Lv , say u = a2.
Hence,

a2 = u(1)2 + b(0)2 ,

so (u, b)v = 1.
Now, let kv be the residue field of Lv , and let u = 1 − 4ζr . Since k×v is odd, we can

solve the equation bx2 = ζr in k×v for x ∈ k×v . Then u(1)2 + b(2x)2 ≡ 1 (mod 8) and
hence u(1)2 + b(2x)2 = a2 for some a ∈ Lv by the argument above. It follows then
that (u, b)v = (1 − 4ζr , b) = 1. ∎

The following is a strengthened version of Theorem 3.5, now with no condition on
c being coprime to 2OK .

Theorem 5.19 Let K be a number field, and let L = K(ζr) where ζr be a primitive rth
root of unity such that (r, p) = 1. If r = 1, assume further that K has an even number of
real embeddings.

Suppose L is unramified at 2, K is totally split at 2, (p) is coprime to (1 − 4ζr), and
write ζr = ζ′pr where ζ′r is a primitive rth root of unity.

If (a, b, c) is a primitive solution over OK to

ap + bp + c p = 0
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such that

(ab)p − ζr c2p /= 0,(5.20)

then one has

( ab − c2ζ′r
1 − 4ζr

)
L
≠ −1,(5.21)

for all permutations of a, b, c.

Proof We may assume that ab − c2ζ′r and 1 − 4ζr are coprime, or else we are already
done as we would have

( ab − c2ζ′r
1 − 4ζr

)
L
= 0.

Since 1 − 4ζr is coprime to 2OL , we have from the definition of Jacobi (see, for
instance, [17, Definition 8.2]) symbol that

( ab − c2ζ′r
1 − 4ζr

)
L
= ∏

v∈Sodd
L ,v(1−4ζr) odd

( ab − c2ζ′r
πv

)
v(1−4ζr)

.(5.22)

We note that the product is by definition over the v ∈ Sodd
L , but only the terms with

v(1 − 4ζr) odd can be −1. Using Lemma 5.7, we see that

( ab − c2ζ′r
πv

)
v(1−4ζr)

= (1 − 4ζr , ab − c2ζ′r)v

if v ∈ Sodd
L , v(1 − 4ζr) is odd, and v(ab − c2ζ′r) = 0. Hence, we obtain that

( ab − c2ζ′r
1 − 4ζr

)
L
= ∏

v∈Sodd
L ,v(1−4ζr) odd

(1 − 4ζr , ab − c2ζ′r)v .(5.23)

As (a, b, c) is primitive, for any v ∈ Seven
L , two of the elements a, b, c are units in

OL ,v and the remaining element has positive valuation, since a, b, c ∈ OK and K is
totally split at 2. This implies that

ab − c2ζ′r

is coprime to 2OL . By Lemma 5.18, it follows that

(1 − 4ζr , ab − c2ζ′r)v = 1

for all v ∈ Seven
L as we are assuming L is unramified at 2.
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If r ≥ 3, then L is totally complex and we have that (1 − 4ζr , ab − c2ζ′r)v = 1 for all
v ∈ S∞L .

If r = 2, then L = K and 1 − 4ζr = 5 is positive in every real embedding of L. Thus,
(1 − 4ζr , ab − c2ζ′r)v = 1 for all v ∈ S∞L .

If r = 1, then L = K is a number field with an even number of real embeddings by
hypothesis. Thus, using Lemma 3.4, we obtain that

∏
v∈S∞K

(−3, ab − c2)v = 1

as the Hilbert symbols which are −1 occur in total an even number of times in the
above product.

Thus, in all cases for r, using Theorem 5.9, we see that the third product in (5.11)
is 1, which implies that

( ab − c2ζ′r
1 − 4ζr

)
L
= 1.

The hypothesis (5.20) ensures that the quantity in (5.10) is nonzero. ∎

Remark 5.24 The constraint in (5.11) of Theorem 5.9 is an example of a Brauer–
Manin obstruction. Let A be the Azumaya algebra given by the Hilbert symbol
(t, s(C − ζ′r B2)) on the variety defined by (5.10), subject to A, B, C coprime and
Cn − ζr B2n /= 0. Then (5.14), which is used in the proof of (5.11), corresponds to the
condition

∑
v

invvA(xv) = 0

of the first formula in the introduction of [2].

6 Essential obstructive S-unit solutions

Let K = Q(
√

5) or K = Q(
√

17), and let S be the set of places of K above 2.
Suppose (a, b, c) ∈ O3

K is a nontrivial primitive solution to (1.1) with p = 1, that is,

a + b + c = 0.(6.1)

If the Frey curve

Ea ,b ,c ∶ y2 = x(x − a)(x + b)

is an elliptic curve over K with conductor N = 8OK for K = Q(
√

5) and conductor
N = 2OK for K = Q(

√
17), then the triple (a, b, c) poses an obstruction to solving

(1.1) over K using the modular method. We call such a triple (a, b, c) an (essential)
obstructive solution to (1.1). Given such a triple (a, b, c), multiplication by the square
of a unit in OK produces another such triple with Ea ,b ,c in the same isomorphism
class over K, and thus it is natural to consider obstructive solutions (a, b, c) up to
multiplication by the square of a unit in OK .
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If (a, b, c) is an obstructive solution to (1.1), it can be seen that division by any one
of −a,−b,−c in (6.1) gives a solution to the S-unit equation

U + V = 1,(6.2)

where U , V are S-units in K. Conversely, given a solution (U , V) to the S-unit
equation, we can form a triple from the six orderings of U , V ,−1 and scale by an
element of K∗ to produce a primitive solution (a, b, c) ∈ O3

K to (6.1). However, the
possible triples (a, b, c) which arise need not be obstructive solutions, so not all
solutions to the S-unit equation (6.2) are relevant as obstructions to the modular
method.

In this section, we give methods to list the obstructive solutions (a, b, c) to (1.1).
This serves two purposes: first, it gives a more detailed description of the obstructions
to solving Fermat’s Last Theorem over these quadratic fields, and second it gives a
double check on the computations used to prove the main results of this paper.

One method to list the obstructive solutions (a, b, c) to (1.1) would be to compute
the solutions to the S-unit equation (6.2) for K. This can be done in a few minutes
in SageMath. However, a direct computation of solutions to the S-unit equation for
Q(
√

17) using SageMath is slow and does not appear to terminate in any reasonable
amount of time.

We explain now an alternate method of determining obstructive solutions (a, b, c)
to (1.1) using known lists of elliptic curves over K with conductor N [20].

First, recall that if we have two elliptic curves E1 and E2 over K, given in the
following form,

E1 ∶ y2
1 = f1(x1),

E2 ∶ y2
2 = f2(x2),

where f i ∈ OK[x] are monic of degree 3, then E1 is isomorphic to E2 over K if and only
if there exist u, β ∈ OK and a change of variables

y2 = u3 y2 ,(6.3)

x2 = u2x1 + β,(6.4)

Δ(E2) = u12Δ(E1).(6.5)

Suppose (a, b, c) is an obstructive solution to (1.1). Then the elliptic curve

E0 = Ea ,b ,c ∶ y2 = x(x − a)(x + b)(6.6)

satisfies

E0 ≅K E

for some elliptic curve E defined over K of conductor equal to N. Due to primitivity
of (a, b, c), (6.6) is semistable at primes q of K coprime to 2OK , and hence already a
local minimal Weierstrass model at such q. Since E0 ≅K E and E0 has full 2-torsion
over K, it follows that E also has full 2-torsion over K.
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Put E into global minimal Weierstrass form

E ∶ y2 + a1x y + a3 y = x3 + a2x2 + x4x + a6 .(6.7)

By completing the square, we may transform to a model for E of the form

E ∶ y2 = f (x) = (x − e1)(x − e2)(x − e3),(6.8)

where f ∈ OK[x] is monic of degree 3, and this model is a local minimal Weierstrass
model at all primes q of K coprime to 2OK .

Using (6.5), we deduce that u is an S-unit in OK by definition of local minimal
Weierstrass model (i.e., a Weierstrass model over OKq

whose discriminant has min-
imal valuation). Furthermore, by E0 ≅K E and (6.4), there is some permutation of
e1 , e2 , e3 such that

u2e1 + β = 0,

u2e2 + β = a,

u2e3 + β = −b,

or equivalently

a = u2(e2 − e1),(6.9)

b = −u2(e3 − e1).(6.10)

Conversely, given an elliptic curve E over K of conductor N and full 2-torsion
over K, we can produce an obstructive solution (a, b, c) ∶= (a, b,−a − b) if and only
if there is an S-unit u of K such that a and b are coprime in (6.9) and (6.10). A triple
(a, b, c) produced from E is unique up to multiplication by the square of a unit in OK
(and up to a choice of labeling of e1 , e2 , e3 ∈ K).

We have determined the list of obstructive solutions for both Q(
√

5) and Q(
√

17),
which can be found in the electronic resources for this paper [3]. For those congruence
classes of exponents p where we obtain a result, all obstructive solutions are eliminated
by the reciprocity constraints. For those congruence classes of exponents p where we
do not obtain a result, there is some obstructive solution that is not eliminated by the
reciprocity constraints.

We end by illustrating the two methods for listing the obstructive solutions (a, b, c)
to (1.1) for K = Q(

√
5). The first method starts with the solutions (U , V) to the S-unit

equation (6.2):

(2,−1) ,(−
√

5 + 1
4

,
√

5 + 3
4

) ,(−
√

5 − 1
2

,
√

5 + 3
2

) ,(
√

5 + 2
4

, −
√

5 + 2
4

) ,(6.11)

(4
√

5 − 8,−4
√

5 + 9) ,(−
√

5 + 1
2

,
√

5 + 1
2

) , (−4
√

5 − 8, 4
√

5 + 9) ,
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(−
√

5 + 3
2

,
√

5 − 1
2

) , (−
√

5 − 2,
√

5 + 3) , (−
√

5 − 1,
√

5 + 2) ,(
√

5 + 1
4

, −
√

5 + 3
4

) ,

(−
√

5 + 2,
√

5 − 1) , (−
√

5 + 3,
√

5 − 2) , ( 1
2

, 1
2
) ,

as computed by SageMath and listed up to permutation of U , V .
For triples (a, b, c), (u, v , w) ∈ K3, we write (a, b, c) ∼ (u, v , w) if (a, b, c) is a

nonzero scalar multiple of a permutation of (u, v , w). Consider the set

S = {(a, b, c) ∈ O3
K ∶ (a, b, c) ∼ (U , V ,−1), (U , V) is an S-unit solution,

and (a, b, c) is primitive}.

The obstructive solutions to (1.1) are the triples (a, b, c) ∈S such that the con-
ductor of Ea ,b ,c is 8OK . As we consider obstructive solutions up to equivalence by
multiplication by the square of a unit in OK , the set S is finite up to this equivalence
and representatives can be computed from (11).

In the second method, we consider each of the elliptic curves E over K with
conductor 8OK and produce if possible an obstructive solution (a, b, c) from it using
the process described in the previous paragraphs.

Both methods give the same list up to equivalence by multiplication by the square
of a unit in OK . In all, there are 12 obstructive solutions to (1.1) over K = Q(

√
5), up

to equivalence by multiplication by the square of a unit in OK :

(−1,−4
√

5 − 8, 4
√

5 + 9) , (4
√

5 + 8, 1,−4
√

5 − 9) ,(6.12)

(−1,
√

5 + 3
2

, −
√

5 − 1
2

) ,(1, −
√

5 + 1
2

,
√

5 − 3
2

) ,

(−3
√

5 − 7
2

, 2
√

5 + 2, −
√

5 + 3
2

) ,(−
√

5 − 1
2

,−1,
√

5 + 3
2

) ,

(
√

5 + 1
2

, −
√

5 − 3
2

, 1) , (4
√

5 + 9,−1,−4
√

5 − 8) ,

(−4
√

5 + 8, 1, 4
√

5 − 9) , (1,−4
√

5 − 9, 4
√

5 + 8) ,

(−
√

5 + 3
2

,
√

5 − 1
2

,−1) ,(−
√

5 − 3
2

, 1,
√

5 + 1
2

) .
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