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Thermoelectric (TE) materials, which convert waste heat to useful electricity, have had their widespread 
deployment limited by low energy conversion efficiencies. Recent collaborative work has introduced an 
innovative all-scale hierarchical architecturing approach[1]. In this approach, structural features across 
multiple length scales are introduced, ranging from point defects to nanoscale precipitates to microscale 
grain boundaries, which effectively scatter phonons across these disparate length-scales to achieve low 
thermal conductivity without significantly increasing charge carrier scattering. However, predictive 
control over synthesis and processing is required to control the microstructural constituents, especially the 
size, number and distribution of nanoscale precipitates, to achieve the targeted TE performance. 
 
We present ongoing work that is focused on studying the correlation between materials processing and 
TE performance of lead chalcogenides (PbQ, Q=Te, Se, S), which have been proven to serve as efficient 
mid-temperature (500-900K) thermoelectrics. Among these, p-type Pb1-xNaxTe-SrTe system achieves the 
record ZT performance of ~2.2 at 915 K via hierarchical architecturing of microstructure. HREM and 
STEM-HAADF techniques are the most direct and reliable approach to determine the nature of nanoscale 
precipitates in order to reveal the processing-performance correlation in this system, and to provide a 
comprehensive blueprint for all lead chalcogenide systems. 
 
Pb0.98Na0.02Te-8%SrTe was synthesized by mixing elemental precursors in the desired stoichiometric 
ratios, slowly heated to 1150 °C, soaked for 6 hours and then quenched to room temperature to ‘lock-in’ 
the solid solution structure. These samples were then annealed at 600 °C for 5, 10, 15, 20, and 25 days, 
separately, then crushed into fine powders and densified by the spark plasma sintering (SPS) method. The 
Sr-rich nanoscale precipitates were observed to grow with increasing annealing time, as expected.  Figure 
1 shows HREM images of Pb0.98Na0.02Te-8%SrTe that were (a) not annealed and (b) annealed for 25 days. 
Nanoscale precipitates are indicated by the dashed circles and arrows. Only one set of Bragg reflections 
were observed in the SAD patterns, suggesting a coherent interface of the matrix and precipitates due to 
the small (0.12%) lattice mismatch. Statistical analysis was also employed to obtain size distribution of 
these two samples based on HREM images taken along [110] directions. For the not annealed sample, 
most nanoscale precipitates range from 3-5 nm in size and the size distribution is narrow, while the 
majority of precipitates in the sample annealed for 25 days have sizes ranging from 8 to 16 nm with a 
wider size distribution relative to the sample without annealing (Figure 1(c)). Significant reduction in 
average lattice thermal conductivity as well as improvement in ZT were observed with increasing 
annealing time, indicating that the annealing process contributes to improved TE performance in this 
system. The presentation will also cover ongoing strain analysis, spatial distribution of dopant, and the 
determination of activation energy of the coarsening process based on the Lifshitz-Slyozov-Wagner theory. 
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Figure 1 (a) and (b) are HREM images of Pb0.98Na0.02Te-8%SrTe annealed for 0 days and 25 days, 
respectively. Nanoscale precipitates are indicated by arrows and circles. The inset in the lower left corner of 
(a) and (b) are the SAD patterns taken along the [110] direction. (c) is the histogram of precipitate size for 
as-received (red) and 25 annealed (yellow) Pb0.98Na0.02Te-8%SrTe, respectively. 

Figure 2 Thermoelectric properties as a function of temperature for as-received Pb0.98Na0.02Te-8%SrTe, 5 days 
annealed, and 10 days annealed: (a) power factor, (b) lattice thermal conductivity and (c) ZT. 
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