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ABSTRACT. The momentum conservation equation for glacier flow can be7

described through minimization of an action functional. Several software8

packages for glacier flow modeling use this action principle in the design9

of numerical solution procedures. We derive here an equivalent dual action10

principle for the shallow stream approximation and implement this model11

using the finite element method. The key feature of the dual action is that the12

flow law and friction law are both inverted, which changes the character of the13

nonlinearities. This altered character makes it possible to implement numerical14

solvers for the dual form that work even when the ice thickness or strain rate15

are exactly equal to zero. Solvers for the primal form typically fail on such16

input data and require regularization of the problem. This robustness makes17

it possible to implement iceberg calving in a simple way: the modeler sets the18

ice thickness to zero in the desired area. We provide several demonstrations19

and a reference implementation.20

INTRODUCTION21

On space and time scales greater than 100m and 1 day, glaciers flow like a viscous, incompressible fluid with22

a power-law rheology (Greve and Blatter, 2009). Ice flow is slow enough that the fluid inertia is negligible23

compared to viscous and gravitational forces, i.e. the flow occurs at very low Reynolds and Froude number.24
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There are multiple equivalent ways of expressing the momentum balance equations: a conservation law,25

a variational form, a partial differential equation. Each of these forms is best suited to a different type26

of numerical method. The momentum balance equation for low-Reynolds number viscous fluid flow can27

also be derived as the optimality conditions for the velocity to be the critical point of a certain action28

functional (Dukowicz and others, 2010). The action functional has units of energy per unit time and can29

be interpreted as the rate of dissipation of thermodynamic free energy (Edelen, 1972). For many problems30

– low-Reynolds number flow, heat conduction, saturated groundwater flow, steady elasticity – the action31

is a convex functional of the unknown field.32

The existence of an action principle is a special property of a very restricted class of differential equations.33

Action principles are not just of theoretical interest – we can use them to design faster, more robust34

numerical solvers. First, a convex action principle implies that the second derivative is symmetric and35

positive-definite. These properties guarantee convergence for Newton-type algorithms. They also mean36

that we can use specialized methods, such as Cholesky factorization or the conjugate gradient method,37

to solve the linear systems of equations for the search direction in each step (Nocedal and Wright, 2006).38

These methods are not applicable to more general classes of linear systems. Second, the action principle39

offers a way to measure how well an approximate solution matches the true solution and it is distinct from,40

say, the square norm of the residual. The theory of convex optimization then provides us with a way to41

measure how close we are to convergence using only the current solution guess and search direction by42

evaluating the Newton decrement. In Shapero and others (2021), we showed how to use this theory to43

design physics-based convergence criteria.44

This work follows in the footsteps of Dukowicz and others (2010) in studying action principles for glacier45

flow. Our main contribution is the derivation of an alternative dual action principle, distinct from that46

presented in Dukowicz and others (2010), from which the momentum conservation equations can be derived.47

The most important feature is that the dual action principle has favorable numerical properties48

for shear-thinning flows such as glacier dynamics. Solving the primal form of the problem requires49

regularization around zero strain rate, velocity, and thickness in order to smooth away infinite values.50

This regularization makes the momentum balance problem solvable, but it remains poorly conditioned51

and introduces other non-physical artifacts. The dual problem requires no regularization. We have52

implemented solvers for this dual form that still converge even when the thickness and strain rate are zero.53

As a consequence, we were able to simulate iceberg calving by setting the ice thickness to zero54

https://doi.org/10.1017/jog.2024.92 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.92


Shapero and de Diego: Terminus evolution via duality 3

in part of the glacier. We illustrate these advantages in the final section with a numerical implementation55

and several demonstrations.56

The main advantage of the approach we propose here is that it offers a new way to handle ice-free57

regions. Several strategies already exist in the literature on numerical ice flow modeling for handling ice-58

free regions. One can set a minimum ice thickness, which regularizes away the problem but introduces mass59

balance errors. The BISICLES model uses a finite volume discretization, special handling of the terminus in60

assembling the stiffness matrix, a regularized Picard-type linearization, and an artificial friction in ice-free61

areas (Cornford and others, 2013). The Ice Sheet and Sea-Level System Model (ISSM) uses the level set62

method (Bondzio and others, 2016; Osher and Sethian, 1988). This approach introduces an additional scalar63

field which evolves according to a certain differential equation. The zero contour of this scalar field represents64

the glacier terminus. One can then “turn off” the physics in the ice-free region where the momentum balance65

equation ceases to be well-posed. Finally, the Elmer/Ice model has used both (1) direct remeshing of the66

3D geometry (Todd and others, 2018), so ice-free areas are not included in the computational domain at all,67

and (2) coupling to a discrete element model (Benn and others, 2017). These approaches are effective but68

come with their own drawbacks and implementation challenges. For example, using the level-set method69

requires solving a challenging, nonlinear hyperbolic problem, the eikonal equation. The remeshing approach70

taken in Elmer/Ice, on the other hand, requires projecting the solution between different computational71

meshes. The dual form that we describe here has its own challenges but we claim that these are easier to72

overcome than those of existing approaches.73

In the following, we will assume familiarity with (1) the partial differential equations describing glacier74

flow, (2) variational calculus and the derivation of the Euler-Lagrange equations of a generic functional, and75

(3) convex analysis and convex duality theory. For background reading, we refer the reader to Greve and76

Blatter (2009) for glacier dynamics, Weinstock (1974) for variational calculus, and Boyd and Vandenberghe77

(2004) for convex optimization.78

THEORY79

The shallow stream equations80

Here we review the differential equations that are commonly used to describe glacier flow. In the next81

section, we will show how the momentum balance equation has a minimization principle. We will focus82

exclusively on the shallow stream approximation (SSA), which is commonly applied to model fast-flowing83
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outlet glaciers and ice streams. The SSA model is derived by (1) expanding the Stokes equations in the84

aspect ratio and taking only the lowest-order terms, and (2) depth-averaging the equations, which assumes85

that the horizontal velocity varies much more in the longitudinal directions than with depth (Greve and86

Blatter, 2009).87

Name Symbol Units Rank

Velocity u m yr−1 1

Strain rate ε̇ yr−1 2

Viscosity tensor C 4

Compliance tensor A 4

Membrane stress M MPa 2

Basal stress τ MPa 1

Ice thickness h m

Surface elevation s m

Flow law exponent n

Sliding law exponent m

Fluidity coefficient A MPa−n yr−1

Slipperiness coefficient K MPa−m m yr−1

Table 1. Variable, symbol, physical units, and tensor rank – 1 for vectors, 2 for matrices, etc.

The equations of motion are solved in a two-dimensional domain Ω. The main unknown to be solved

for in the SSA is the depth-averaged ice velocity u. Some important intermediate quantities are the basal

shear stress τ and the membrane stress tensor M , a rank-2 tensor with units of stress that results from

applying the low-aspect ratio assumption to the full 3D deviatoric stress tensor. The inputs to the problem

include the thickness h, surface elevation s, and fluidity factor A in Glen’s flow law. The SSA momentum

conservation equation is

∇ · hM + τ − ρIgh∇s = 0, (1)

where ρI is the ice density, and g the gravitational acceleration. In addition to (1), we need to know a

constitutive relation between the membrane stress tensor and the depth-averaged strain rate tensor

ε̇ =
1

2

(
∇u+∇u⊤

)
. (2)
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In order to simplify the notation later, we introduce the dimensionless rank-4 tensor C defined by

C ε̇ =
ε̇+ tr(ε̇)I

2
. (3)

The tensor C plays a similar role to the elasticity tensor in linear elasticity. Moreover, we define the norm

of a rank-2 tensor with respect to C as

|ε̇|2C = ε̇ : C ε̇. (4)

Alternatively, in index notation, the square norm is |ε̇|2C = Cijklε̇ij ε̇kl. With these notational conveniences

in hand, the Glen flow law states that the membrane stress and strain rate are related by a power law:

M = 2A− 1

n |ε̇|
1

n
−1

C C ε̇ (5)

where A is the depth-averaged fluidity coefficient and n ≈ 3 is the Glen flow law exponent.88

Next, we need to provide some kind of sliding relation. We will assume a generalized power law with

some exponent m, i.e.

τ = −C|u|
1

m
−1u. (6)

Weertman sliding hasm = n, while perfectly plastic sliding hasm = ∞. Recent research suggests alternative89

forms that transition between Weertman-type sliding at low speeds and perfectly plastic sliding at higher90

speeds (Minchew and Joughin, 2020). For illustrative purposes equation (6) is sufficient, and we will describe91

how to incorporate alternatives in the discussion.92

Finally, we need to supply a set of boundary conditions for the problem to be well-posed. Along the

part of the boundary where ice is flowing into the domain, we assume that the ice velocity is known from

observations; this is a Dirichlet boundary condition. At the glacier terminus, which we will denote by Γ,

the membrane stresses at the cliff face are balanced by pressures from any proglacial water body. This is

a Neumann boundary condition:

−hM · ν =
1

2

(
ρIgh

2 − ρW gh2W
)
ν, (7)

where hW is the water depth and ν is the unit outward-pointing normal vector to the terminus.93

We can then combine equations (1)-(6) and the boundary condition (7) to arrive at a second-order,94

nonlinear elliptic system of differential equations for u.95
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For modelling a floating ice shelf, the friction term in (1) is zero. Moreover, assuming the ice is in

hydrostatic equilibrium allows us to write the surface elevation in terms of the thickness:

s = (1− ρI/ρW )h. (8)

As a result, the momentum conservation equation reduces to

∇ · hM − 1

2
ϱg∇h2 = 0. (9)

where ϱ = (1− ρI/ρW )ρI is the reduced density of ice over seawater.96

Marine ice sheets flow from the continent and into the ocean, where they go afloat. If we are to model97

a marine ice sheet with the SSA, we must distinguish between a grounded and a floating region. This98

results in a free boundary problem where ice goes afloat once the condition (8) is satisfied. The boundary99

separating grounded from floating ice is known as the grounding line xg. The possibility of a marine ice100

sheet instability that could dramatically increase the rate of discharge of ice into the ocean has led to101

a substantial amount of research into grounding line dynamics (Schoof, 2007; Durand and others, 2009;102

Favier and others, 2012).103

To complete our description of the dynamics, the thickness evolves in time according to the following

depth-averaged mass conservation equation:

∂h

∂t
+∇ · hu = ȧ− ṁ, (10)

where ȧ is the rate of ice accumulation and ṁ of melting or ablation. We assume that the ice thickness104

and velocity along the inflow boundary are known.105

Primal action principles106

The main idea behind action or minimization principles is that some partial differential equations (PDE)107

really express the fact that their solutions are extrema of a given action functional. The momentum108

balance equation of glacier flow is one such PDE. Many publications in the glacier flow modeling literature109

have explored the advantages of using action principles to describe the momentum balance (Bassis, 2010;110

Dukowicz and others, 2010; Brinkerhoff and Johnson, 2013; Shapero and others, 2021). Here we briefly111

review these concepts as they pertain to the SSA momentum balance.112

Given a particular action functional, the PDE that expresses the condition that a field is an extremum113

can be calculated mechanically in terms of the integrand. This PDE is called the Euler-Lagrange equation114
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for the functional. We will not repeat it here but see Weinstock (1974). On the other hand, if we are given115

a PDE, it may or may not have an action functional at all. In other words, being the Euler-Lagrange116

equations for some action functional is a special property of only a restricted class of PDEs. There is no117

rote procedure to determine what the action functional might be, but in attempting to construct one, the118

main mathematical hurdle to overcome is computing the anti-derivatives of certain terms in the differential119

equation.120

The constitutive relation (5) for M can be expressed as the derivative of a certain scalar quantity. In

index notation,

Mij =
∂

∂ε̇ij

(
2n

n+ 1
A− 1

n |ε̇|
1

n
+1

C

)
(11)

if we think of the strain rate tensor as an independent variable and briefly forget that it is the symmetrized

velocity gradient. Likewise, for the sliding relation (6), we can observe that

τi = − ∂

∂ui

(
m

m+ 1
C|u|

1

m
+1

)
. (12)

Using equations (11) and (12), one can show that the SSA momentum balance are the Euler-Lagrange

equations for the following action functional (Dukowicz and others, 2010):

J(u) =∫
Ω

{
2n

n+ 1
hA− 1

n |ε̇|
1

n
+1

C +
m

m+ 1
C|u|

1

m
+1

+ ρIgh∇s · u

}
dx

+
1

2

∫
Γ

(
ρIgh

2 − ρW gh2W
)
u · ν dγ (13)

Note that the action has units of energy per unit time, or power. The final summand of equation (13)121

enforces the Neumann boundary condition at the ice terminus. The Dirichlet boundary condition along122

the ice inflow, on the other hand, has to instead be enforced by eliminating coefficients from the resulting123

nonlinear system.124

A mechanical computation of the second derivative of J shows that this functional is convex. The theory125

of non-equilibrium thermodynamics tells us that J represents the rate of dissipation of thermodynamic126

free energy (Edelen, 1972). Once again, the essential point is that finding a minimizer u of the functional127

J defined above is equivalent to finding a solution of the SSA differential equation.128
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Dual action principles129

Action principles have appeared in glaciology before, but dual forms have not. The dual form of a problem130

is a distinct but equivalent expression of the same underlying physics. We will show in the following that,131

for the particular case of the SSA momentum balance, the dual form has some better numerical properties132

that make it worth investigating.133

The dual form can be understood at two levels. First, we can show what the dual action functional is134

without describing how we came up with it. A reader who knows some variational calculus can derive the135

Euler-Lagrange equations for this functional and verify that the resulting equation set is equivalent to the136

primal form of the SSA. We present an exposition at this level below. On the other hand, this approach can137

feel like pulling a rabbit out of a hat; it does not answer how we arrived at the dual form in the first place138

or how we might derive the dual forms of other problems. This level requires some knowledge of general139

convex duality theory. We assume that few glaciologists will be interested in this level of detail and refer140

instead to sections 9.7 and 9.8 of Attouch and others (2014).141

Equations (1)-(7) can be combined into a second-order differential equation for the velocity u. Solving142

this differential equation is equivalent to finding a minimizer of the functional J defined in equation (13).143

In deriving the differential equation, we used the constitutive relation and the sliding law (equations (5)144

and (6)) to eliminate the membrane stress M and basal stress τ .145

We could instead keep these additional equations and unknowns. Instead of solving a second-order146

equation for u, we would then have an equivalent first-order system of equations for u, M , and τ . One way147

to motivate the dual problem is to ask: is there an optimization problem that is equivalent to this148

first-order system? As we will show below, there is, but it has some different characteristics from the149

primal problem. One of the key features of dual forms in general is that they invert constitutive relations.150

Conventionally, we write the membrane stress tensor as a function of the strain rate tensor, and the basal151

shear stress as a function of the sliding velocity. The dual form inverts these relations: the strain rate tensor152

becomes a function of the membrane stress tensor, and the sliding velocity a function of the basal shear153

stress.154

In equation (3), we defined the rank-4 tensor C as a convenience for writing down how the membrane

stress is a function of the strain rate. We can show explicitly that the inverse A of this tensor C is:

A M =
M − 1

d+1tr(M)I

2
(14)
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where d = 2 is the space dimension. The tensor A plays an analogous role to the compliance tensor in linear155

elasticity. With this definition in hand, we can invert equation (5) to get ε̇ = 2A|M |n−1
A A M . The sliding156

law is much easier to invert: u = −C−m|τ |m−1τ . We can then define a slipperiness coefficient K = C−m.157

With these preparations in place, the dual form is:

L(u,M, τ) =∫
Ω

{
2

n+ 1
hA|M |n+1

A +
1

m+ 1
K|τ |m+1

− hM : ε̇(u) + τ · u− ρIgh∇s · u

}
dx

− 1

2

∫
Γ

(
ρIgh

2 − ρW gh2W
)
u · ν dγ (15)

We can then evaluate the variational derivatives of L with respect to u, M , and τ , require that these

derivatives are all zero, and show that the resulting equations are equivalent to the primal form of the

problem. First, if we require that the variational derivative of L with respect to M along any perturbation

N is zero, we find that

〈
∂L

∂M
,N

〉
=

∫
Ω

{
2hA|M |n−1

A A M − hε̇(u)
}
: N dx = 0. (16)

This equation is the variational form of the inverse of the constitutive relation (equation (5)). Next, taking

the variational derivative of L with respect to τ along some perturbation σ, we get

〈
∂L

∂τ
, σ

〉
=

∫
Ω

{
K|τ |m−1τ + u

}
· σ dx = 0 (17)

which is the inverse of the sliding law of equation (6). Finally, let v be any perturbation to the velocity

field such that v = 0 along the inflow boundary. Taking the variational derivative of L with respect to u

along v gives

〈
∂L

∂u
, v

〉
=

∫
Ω
{−hM : ε̇(v) + τ · v − ρIgh∇s · v} dx

− 1

2

∫
Γ

(
ρIgh

2 − ρW gh2W
)
v · ν dγ (18)
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which is not exactly what we want. We can use integration by parts to push the symmetric gradient of v

over onto hM in the first term however:

. . . =

∫
Ω
{∇ · hM + τ − ρIgh∇s} · v dx

+

∫
Γ

(
hM · ν − 1

2

(
ρIgh

2 − ρW gh2W
)
ν

)
· v dx. (19)

If we require that this is equal to 0 for all perturbation fields v, we recover both conservation of membrane158

stress (equation (1)) and the boundary condition (equation (7)). As with the primal form, we have to159

enforce the inflow boundary condition by eliminating degrees of freedom. In effect, finding a critical point160

of the dual action functional is a constrained optimization problem; the velocity field acts like a Lagrange161

multiplier that enforces the constraint of stress conservation.162

Strain rate 
a

Primal form
P( )
d2P( )

Stress 
b

Dual form
P( )
d2P( )

Fig. 1. The viscous part P of the action is shown in blue and its second derivative in orange, in (a) for the primal

problem as a function of the strain rate ε̇ and in (b) for the dual problem as a function of the stress τ . The second

derivative of the viscous dissipation goes to infinity near zero strain rate for the primal problem, but to zero near

zero stress for the dual problem.

The important feature of the dual formulation is that the nature of the nonlinearity has changed.163

In the primal action shown in equation (13), the nonlinearity consists of the strain rate raised to the power164

1
n + 1. Since n > 1, the nonlinearity in the primal form has an infinite singularity in its second derivative165

around any velocity field with zero strain rate. In the dual form, however, the nonlinearity consists of the166

stress tensor raised to the power n+1. Around zero stress, the second derivative of the action with respect167

to the stress is zero instead of infinity; see figure 1.168
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DEMONSTRATIONS169

Here we will describe several computational experiments for evaluating the dual form of SSA and our170

implementation of it. First, we will conduct a verification exercise in order to make sure that we correctly171

implemented the dual form of SSA. This demonstration is to give some assurance that we are solving172

the equations right. Next, we will conduct two numerical exercises to compare how well the dual form173

works compared to the primal form on problems in simple geometries. Finally, we will conduct two more174

experiments to show off the use of the dual form on realistic glacier geometries.175

Verification on solvable test cases176

The verification exercises we use are taken from those used to test the implementation of the primal form177

of SSA in the icepack package(Shapero and others, 2021). We compare numerical results on a sequence178

of grids to exactly solvable instances of SSA and check that the results converge with the expected order179

of accuracy. Finite element theory predicts that the L2-norm difference between the exact solution and180

the solutions obtained using CG(k) finite elements is O(δxk+1) where δx is the mesh spacing. If the slope181

in a log-log fit of error against mesh spacing deviates significantly from k + 1, this would indicate some182

mis-specification of the problem or bug in the solver.183

The first test is to use the exact solution for the velocity of a floating ice shelf with thickness

h = h0 − δh · x/Lx (20)

in a domain of length Lx = 20 km. With a constant value of the fluidity coefficient A, the velocity in the

x direction is

ux = u0 + LxA

(
ϱgh0
4

)n
(
1−

(
1− δh · x

h0 · Lx

)n+1
)

(21)

where ϱ = ρI(1− ρI/ρW ). We use a 2D domain in order to make sure that the numerical solution, like the184

exact solution, has no variation in the y direction.185

The second test case uses the same geometry but adds basal friction and assumes the ice thickness is186

above flotation. Solving the resulting boundary value problem analytically in the presence of friction is now187

much more difficult. Instead, we used the method of manufactured solutions – we picked the ice velocity,188

thickness, and surface elevation, and generated a friction coefficient that would make this velocity an exact189

solution. To generate this friction coefficient we used the computer algebra system sympy (Meurer and190

others, 2017).191
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Comparison with primal form on slab glacier192

0 25 50 75 100 125 150 175 200
Length (km)

500

0

500

1000

1500

2000
De

pt
h 

(m
)

Fig. 2. Setup for modelling a slab of ice on an inclined bed flowing into the ocean. At x = 0 we enforce a thickness

h = 500m in order to approach a parallel slab of ice far upstream of the grounding line. The dotted line is sea level.

As a more challenging test in a flowline setting, we consider a slab of ice of constant thickness flowing

down an inclined slope into the ocean, where it goes afloat at the grounding line (figure 2). We compute

steady states under this configuration using the primal and dual forms described above. We set the ice

thickness at x = 0 to h = 500m and the bedrock angle to α = 1◦. The bed is given by the expression

b(x) = 1500m− x tanα. (22)

For the material parameters, we set n = 3, A = 10−24 Pa−3 s−1, C = 10−6 Pam−1/3s1/3. Instead of setting

inflow boundary conditions at x = 0, we enforce a zero extensional stress condition M = 0. This condition

allows the ice sheet to tend to the uniform thickness slab solution far upstream of the grounding line. For

the uniform slab, the extensional stresses are equal to zero and the frictional stresses at the base of the ice

sheet balance the gravitational forces. As a result, the horizontal velocity for the uniform thickness slab is

given by

u =

(
ρIgh tan(α)

C

)n

. (23)

A consequence of enforcing the slab solution at the left boundary is that, as we move upstream away from193

the grounding line, the strain rate tends to zero and one must regularise the primal formulation of the194

momentum balance equation.195
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For this problem, we not only solve for the velocity u or the velocity-stress pair (u,M), but also for the196

thickness h and the grounding line position xg. We therefore complement the momentum balance equations197

with the mass balance equation (10) and the flotation condition (8), effectively yielding a free boundary198

problem.199

Comparison against primal form on gibbous ice shelf200

The next comparison exercise uses the synthetic “gibbous” ice shelf test case from §5.3 of Shapero and201

others (2021) The domain consists of the intersection of two circles of different radii chosen to roughly202

mimic the overall size of Larsen C.203

We first run a spin-up of the system to steady state using the coupled mass and momentum balance204

equations with both the primal and dual forms. We check that the velocity obtained by solving the dual205

form is within discretization error of the velocity obtained with the primal form, which offers an additional206

degree of verification that we are solving the equations right. We additionally evaluate the total wall clock207

time to run this experiment using both the primal and dual form. The primal problem using CG(1) elements208

for the velocity has two unknowns for each vertex of the mesh. The dual problem using CG(1) ×DG(0)209

elements for the velocity and stress has an additional three unknowns per triangle. The Euler formula210

(#vertices - #edges + #triangles ≈ 2) implies that there are approximately twice as many triangles as211

there are vertices. Consequently there are about 4× as many degrees of freedom when solving the dual212

problem as there are for the primal problem. Assuming naively that the time to solution scales linearly213

with the number of unknowns, we would then expect that solving the dual problem is 4× as expensive as214

solving the primal problem.215

As a third and final phase of this experiment, we run the same simulation, but every 24 years we set216

the ice thickness to 0 in a prescribed region near the terminus. This forcing mimics the effect of a large217

iceberg calving event. Our prescribed evolution of the terminus is not a realistic representation of how218

calving works. Instead, we aim only to stress test the solver in order to see if it can handle regions of zero219

thickness.220

Demonstration on calving of Larsen C Ice Shelf221

To test the dual form of SSA on a realistic problem, we will simulate the evolution of the Larsen C Ice Shelf222

from a nominal start date of 2015 for 40 years, including the calving of Iceberg A-68 in 2017 (Larour and223

others, 2021). This experiment uses the observed calving front positions from satellite imagery to set the224
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terminus positions at the start of the simulating and after the calving event. The goal is not to implement225

a calving law as such. In all, the experiment proceeds in several steps:226

1. Estimate the fluidity field A from remote sensing measurements of the thickness and velocity. This step227

uses the primal form of the momentum balance equation from icepack.228

2. Extrapolate the ice thickness and velocity onto a larger spatial domain, making the ice thickness 0 in229

ice-free areas.230

3. Run the simulation using the mass and dual momentum balance from the start date of 2015 until the231

calving event in 2017.232

4. Digitize the terminus position immediately after the calving event by hand and use the digitized terminus233

position to define an ice mask.234

5. Using this mask, set the ice thickness to zero over the spatial extent of the calved area.235

6. Run the simulation for 40 years after the calving event to see how the terminus advances again.236

Demonstration on Kangerlussuaq Glacier237

Our final test case is simulating Kangerlussuaq Glacier, a grounded outlet glacier on the east coast of238

Greenland. Kangerlussuaq is one of the top three contributors to the total discharge from Greenland239

(Enderlin and others, 2014; Mouginot and others, 2019). The purpose of this exercise is to demonstrate240

that we can simulate the evolution of a marine-terminating glacier, including the seasonal advance and241

retreat of the terminus in response to ocean-induced frontal ablation in summer, using the dual form. We242

do not aim to reproduce the exact calving history.243

The exercise proceeds in several steps, similar to our approach for Larsen C:244

1. Estimate the slipperiness (the coefficient K in the sliding law u|z=b = −K|τb|n−1τ) from remote sensing245

measurements of the ice thickness, surface elevation, and velocity. This step uses the primal form of the246

momentum balance equation from icepack.247

2. Extrapolate the thickness, surface elevation, velocity, and friction coefficient onto a large spatial domain248

that extends further down Kangerlussuaq Fjord.249
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3. Run the simulation using the mass and dual momentum balance equations for one year in order to250

propagate out any initial transients. This stage uses only surface mass balance and thus permits the251

glacier to advance down the fjord.252

4. Turn on a time-periodic ablation field near the terminus in order to represent the effects of summer melt253

and calving and ran the simulation for a further four years. This ablation field forces the terminus to254

advance and retreat.255

To initialize the simulation, we use version 3 of the BedMachine Greenland data set for ice thickness and256

surface elevation (Morlighem and others, 2017) and the MEaSUREs annual velocity mosaic from 2015-2016257

(Joughin and others, 2010) to infer the basal friction. To force the mass conservation equation (10), we258

need to provide a surface mass balance (SMB) field ȧ and a melt rate ṁ.259

We use a surface mass balance field that varies linearly with elevation:

ȧ ≈ a0 +
δa

δs
· s (24)

where a0 is the SMB at sea level and δa/δs is the SMB lapse rate. To fit the parameters a0 and δa/δs,260

we used output from 2006-2021 of version 3.12 of the Modèle Atmosphérique Régional (MAR) (Fettweis261

and others, 2020). This regional climate model has been tested extensively for the polar regions and for262

Greenland. The fit had r2 = 0.91, so a substantial fraction of the variance is explainable by surface elevation263

alone.264

To set the melt rate ṁ, we first create a smoothed ice mask µ. The smoothed mask is required to be

equal to 1 on the inflow boundary, 0 on the outflow boundary, and have 0 normal derivative along the side

walls. We then compute µ as the minimizer of

J(µ) =
1

2

∫
Ω

(
(µ− 1{h>0})

2 + α2|∇µ|2
)
dx (25)

where α is some smoothing length, and 1{h>0}(x) is equal to 1 if h(x) > 0 and 0 if h(x) = 0. Here we choose

α to be 1km, so the mask field rapidly approaches 1 within roughly one ice thickness of the terminus. The

mask field µ is recalculated in every timestep. Finally, we set the melt rate at time t as

ṁ = m0(1− µ)min{0, cos(2πt)} (26)

where m0 is a maximum melt rate that we have to choose. Although we do not employ the level set method265

here directly, the approach outlined above is similar to using a level set method.266
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The purpose of this exercise is to demonstrate that our solver for the dual form can simulate advance267

and retreat of a grounded tidewater glacier in response to melt forcing at the terminus. Again, our goal is268

not to validate a particular calving law.269

RESULTS270

We implemented a solver for the dual form of the SSA using the Firedrake package (Ham and others,271

2023). For more information on discretizing the dual form using finite elements and for strategies to solve272

the resulting finite-dimensional optimization problem, see the appendix.273

Verification on solvable test cases274
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Mesh spacing (m)
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degree-2, error ~ x3.0
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Ice stream test case
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degree-2, error ~ x3.0

Fig. 3. Relative L2-norm errors for approximate solutions to the analytical ice shelf (a) and ice stream (b) test cases

using our newly-developed solver for the dual form of SSA. The points show the error values from each experiment,

the lines show a log-log fit of the errors against mesh size. The convergence rates were obtained from this log-log fit.

We tested meshes with between 16 and 256 cells to a side and we used both CG(1) × DG(0) and275

CG(2) × DG(1) finite element pairs for the velocity and membrane stress, where CG and DG denote276

respectively continuous and discontinuous Galerkin elements. The relative errors in the L2 norm have the277
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expected asymptotic convergence rates of O(δx2) for linear velocity elements and O(δx3) for quadratic in278

both the ice shelf and ice stream test cases; see figure 3.279

While finite element theory can predict the asymptotic convergence rates, it does not immediately give280

estimates of what the constant prefactor should be except in the most trivial of linear problems. The281

constants can only be evaluated empirically. In particular, the theory predicts that quadratic elements282

converge faster asymptotically than linear elements, but it cannot tell us how many cells per side are283

necessary for each to achieve the same accuracy. Figure 3 shows that a numerical solution obtained with284

only 16 cells per side and quadratic elements is roughly as accurate as a solution with 256 cells per side285

and linear elements.286

Comparison with primal form on slab glacier287

We solved the free boundary problem with a primal method that seeks the velocity and thickness in

CG(2) × CG(2), and with a dual method that computes the velocity, membrane stress and thickness in

the space CG(2)×DG(1)×CG(2). For the primal method, we need to include a regularization parameter

ϵ in order to prevent singularities in the constitutive relation. For this exercise we solve a 1D form of the

equation, so the relevant term in the variational form of the momentum balance equation is

⟨F (u), v⟩ =∫
Ω

{
2hA−1/n|∂xu2 + ϵ2|(n−2)/2∂xu · ∂xv + . . .

}
dx (27)

We consider a sequence of regularization parameters ϵ between 1 yr−1 and 10−12 yr−1. The results for the288

grounding line position are displayed in Table 2. The discrete problem is solved with Newton’s method, and289

the initial guess for the values of the ice velocity, the ice thickness, and the extensional stress are set equal290

to the slab solution, such that h = 500m, u is equal to (23), and M = 0. The initial guess for the grounding291

line position is set to the point where the flotation condition (8) holds for the constant thickness slab. We292

plot the values of the relative Newton residual in figure 4. The solution obtained with the dual form is as293

accurate as the primal solution using the lowest value of regularization. Moreover, the rate of convergence294

of the Newton solver for the primal formulation quickly decreases for low values of ϵ. For values of ϵ equal295

to or lower than 10−14 yr−1, the relative Newton residual no longer reaches the minimum tolerance of 10−8296

that we set for this problem.297

Figure 4 shows that using a larger value of the regularization parameter reduces the number of iterations298

needed to achieve convergence. However, using more regularization also increases the misfit between the299
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computed velocity and the true velocity. The dual form makes no such compromise in accuracy but the300

solver still retains a high degree of efficiency.301

Table 2. Results for the slab of ice flowing into the ocean. Values of the steady state grounding line position xg and

thickness at the grounding line for computations with the primal formulation with varying regularization parameters

ϵ and with the dual formulation. We also present the number of Newton iterations required to converge.

Solver ϵ (yr−1) xg (km) h(xg) (m) Iterations

Primal

1 90.98 95.99 6

10−2 95.69 185.70 5

10−4 103.37 331.86 4

10−6 110.07 459.40 4

10−8 111.34 483.59 6

10−10 111.35 483.80 7

10−12 111.35 483.80 9

Dual - 111.35 483.80 4

0 4 8 12 16
Iterations

10 10

10 8

10 6

10 4

10 2

100

Re
la

tiv
e 

re
sid

ua
l n

or
m

= 100

= 10 2

= 10 4

= 10 6

= 10 8

= 10 10

= 10 12

dual

Fig. 4. Results for the slab of ice flowing into the ocean. Norm of the relative Newton residual for computations

with the primal formulation with varying regularization parameters ϵ and with the dual formulation.
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Fig. 5. The thickness (a), velocity (b), and magnitude of the membrane stress tensor (c) in steady state, and the

thickness (d), magnitude of the velocity change (e), and magnitude of the stress change (f) immediately after the

calving event. We remove a semi-circular segment from the end of the shelf with a prescribed center and radius.

Gibbous ice shelf302

For the spin-up phase of the experiment, we did an initial run for 400 years on a mesh with a 5km resolution,303

at which point the system is close to steady state. We then projected these fields to a finer mesh with a304

resolution of 2km and use them as the initial state for a further 400 years of spin-up. The results are shown305

in figure 5a-c and are identical to those obtained from the primal form of the problem up to discretization306

error.307

When we used the spin-up phase of the experiment as a benchmark to measure the performance of the308

dual and primal solvers, we found that the dual problem required between 2.5× and 2.7× as much time.309

These results were consistent across different mesh resolutions and when run several times on multiple310

machines. Since the dual problem has 4× as many unknowns, the added cost that we found experimentally311

is less than what we would expect if we naively assumed that cost is proportional to the number of degrees312

of freedom.313

In the calving phase of the experiment, our solver for the dual problem still worked in ice-free areas.314

This feature offers the possibility of implementing physically-based calving models in a simple way. Figure315
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Fig. 6. Total volume of ice in the shelf over time. The different spin-up and experimental phases are labelled. Note

how the finer spin-up equilibrates to a smaller ice volume than the coarser spin-up.

6 shows the evolution of the volume of ice in the shelf over the two spin-up phases and the calving phase.316

The 24-year recurrence interval is not enough time for the ice to advance back to the original edge of the317

computational domain. Using a longer interval would allow the calving terminus to advance back to its318

original position. Figure 5d-f show the thickness of the ice shelf immediately after the calving event, the319

magnitude of the change in speed, and the magnitude of the change in stress. In particular, the stress field320

shows a discontinuity at the new calving front as expected.321

We repeated this phase of the experiment using a comparable solver for the primal problem. When we322

use no minimum thickness at all, the solver for the primal form diverges as soon as there are any ice-free323

areas. To remedy this problem, we clamped the thickness from below at 1 mm. Figure 7 shows the number324

of Newton iterations necessary to obtain the desired level of convergence through two calving events using325

both the primal and dual forms. In each case, the number of iterations goes up after a calving event. As326

the system relaxes back, the number of iterations decreases again. The number of iterations required for327

the dual form is in general slightly greater.328

Larsen C Ice Shelf329

Our solver for the dual form of SSA was successfully able to compute velocity and stress fields on this330

realistic test case even in ice-free areas, enabling effective simulation of calving events. The simulated331
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Fig. 7. The number of Newton iterations to compute the ice velocity at each step of the calving phase of the

experiment using the primal form with the thickness clamped from below and using the dual form. Calving occurs

every 24 years.

terminus positions of Larsen C at the start of the simulation, immediately after the calving event, and332

at the end are shown in figure 8. The model can effectively handle the shock of a calving event and the333

subsequent readvance of the terminus. We find that after 40 years, the terminus has readvanced beyond334

its original position at some points and only half-way at others.335

We used the CG(1)/DG(0) pair for the velocity and stress as in the previous examples. To simulate336

the evolution of the glacier thickness, we used DG(1) elements together with the upwind numerical flux.337

We found that using a DG discretization was necessary to get a reasonable-looking thickness. When using338

continuous elements for the thickness, we found that the thickness field would develop spurious oscillations339

generated at the calving terminus. This finding is to be expected because continuous elements usually fare340

poorly at advecting sharp features like an advancing ice cliff.341

Kangerlussuaq Glacier342

Our solver for the dual form was able to simulate the advance and retreat and of the terminus of a real343

grounded glacier. We ran several instances of the experiment outlined above with different values of the344

maximum melt rate m0. In general, the total volume of ice in the simulated domain oscillates from summer345

lows to winter highs over a wide range of m0 values. With too low or too high a maximum melt rate, there346

is an additional secular trend in the volume time series as the glacier advances or retreats down the fjord.347
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2055

Fig. 8. Calving terminus locations for Larsen C Ice Shelf prognostic simulation. The contours shown are at the start

of the run, immediately after the simulated calving event, and several decades later when the ice shelf has readvanced

closer to its original position.

We found that taking m0 on the order of 30 km yr−1 makes the yearly-averaged volume roughly constant;348

see figure 9. Spread over an inland distance of roughly 1 km in a 5 km-wide fjord for only the summer349

season, this gives a total discharge roughly of the same order as the observed value of 24 km3 yr−1 (King350

and others, 2018).351

Figure 10 shows the evolution of the calving terminus from a minimum to the following maximum352

extent. The simulated terminus position oscillates by roughly 2.5-4 km seasonally, which is close to the353

observed variation (Schild and Hamilton, 2013). The true calving terminus of the glacier is upstream of the354

simulated calving terminus, which is likely a consequence of our initialization or other under-parameterized355

quantities. Additionally, the centerline of the true calving terminus is slightly more retreated than the356

margins. The centerline of the simulated terminus, on the other hand, is more advanced than the margins.357

This discrepancy shows that the ad hoc rule we used to remove ice mass near the terminus is imperfect.358
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Fig. 9. Total volume in km3 of ice in the computational domain, exhibiting summer troughs and winter peaks. The

summer maximum melt rate m0 is tuned to give a roughly constant yearly average volume, although this simulation

shows a small secular trend.

Several processes govern the terminus dynamics of Greenland outlet glaciers, including frontal ablation from359

ocean melt, stress-induced crevassing and calving, and back-pressure from sea ice or ice melange in the360

fjord. We did not attempt to include a real calving law in this exercise. We are nonetheless able to simulate361

ice-free areas and the advance and retreat of the glacier terminus using the dual form of the momentum362

balance equations. Closing the gap between the simple demonstrative parameterizations used here and363

reality is the subject of future work. For example, one could add calving by setting the ice thickness to364

zero in areas near the glacier terminus where surface crevasses would penetrate to the water line according365

to the Nye criterion.366

DISCUSSION367

The momentum balance equation for glacier flow has an alternative, dual expression of the same underlying368

physics but with different properties and several advantages. The most significant advantage is that the dual369

form remains solvable in the limit of zero ice thickness. Existing strategies for handling ice-free areas include370

alteration of the equations or solvers, level set methods, and re-meshing. The dual form accomplishes the371

same goal and we claim that the challenges of implementating it, while not trivial, are favorable compared372

to other strategies.373
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Fig. 10. Simulated terminus position of Kangerlussuaq Glacier over one half-period, from approximately August at

its most retreated to April at its most advanced. The colors of the contours show the time.

Our comparison of the primal and dual forms shows that using the dual form is more computationally374

expensive than the primal form because of the greater number of unknowns. On an experiment including375

calving, the dual form required only slightly more Newton iterations than the primal form with the thickness376

clamped from below. Whether using the dual form is preferable in general depends on what the simulation377

aims to achieve. If speed is the main concern then the primal form with clamping is faster. But it introduces378

a mass balance error, even moreso if the velocity computed in the fictitious ice layer develops a non-zero379

divergence. If this mass balance error is not acceptable then the additional cost of using the dual form may380

be worth it.381

Another key feature is that the dual form reverses the behavior of all the nonlinearities around the zero-382

disturbance state. The primal formulation of the problem has a singularity (i.e. terms in the momentum383

balance equation go to ∞) in the limit as the strain rate goes to zero. Infinite singularities can only be384

dealt with by fudging the problem itself. In the dual form, however, this singularity becomes instead a385

degeneracy (terms that go to zero where the usual theory requires positivity). These degeneracies are still386
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a challenge. But the problem, with no modifications, is amenable to solution by approximate Newton387

methods, as described in the appendix. Trust region methods (Nocedal and Wright, 2006) might work as388

well and this remains to be explored.389

The story becomes more complicated when we consider the interaction between the dependence on390

thickness and membrane stress or strain rate. The dual form possess only degeneracies in the limit as the391

thickness or membrane stress go to zero. The primal form has a singularity when the strain rate goes392

to zero, but a degeneracy in the limit as the thickness goes to zero. Moreover, when the thickness goes393

to zero, the strain rate tends to also go to zero. We hypothesize that this mixture of singularity and394

degeneracy makes the primal form of the problem impossible to solve in the limit as the thickness goes to395

zero. We additionally hypothesize that the dual form remains solvable as the thickness goes to zero because396

it contains only degeneracies. But we have no proof either way and at this stage these hypotheses are at397

best educated guesses.398

The dual formulation does come with several disadvantages. The number of unknowns in the dual399

formulation is greater than in the primal form, thus putting more pressure on computer memory. The400

resulting linear systems are indefinite rather than positive-definite. Finally, since the dual form is a mixed401

problem, it is possible to make bad choices of finite element basis, whereas almost any basis will work402

for the primal form. We did find, however, that the increased cost of solving the dual problem was not403

as high as one might expect just based on counting the number of degrees of freedom. We used a fairly404

naive solution approach (direct factorization) for the linear system in each step of Newton’s method in the405

benchmark for both the primal and dual forms. There may be significant room for improvement on these406

benchmarks through the use of more sophisticated techniques such as Schur complement preconditioners407

that use static condensation of the stress degrees of freedom (Boffi and others, 2013).408

There are several promising avenues of future work on this problem. Including the stress tensor as409

an unknown and the constitutive relation as an equation to be solved opens up several possibilities for410

modifying the physics. Since we do not need to explicitly solve for the stress tensor in terms of the strain411

rate tensor, we can easily implement composite flow laws like the Goldsby-Kohlstedt law (Goldsby and412

Kohlstedt, 2001). We could also add a term containing the time derivative of the stress tensor to the413

constitutive relation to implement Maxwell viscoelasticity. Both of these extensions have historically been414

difficult to achieve with conventional approaches to glacier flow modeling. Second, the solvability of the415

dual problem in the limit of zero ice thickness can expand the scope of glaciological data assimilation.416
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For example, it may become possible to assimilate the entire time series of altimetry measurements from417

ICESat-2 into flow models in a way that constraints not just the elevation of grounded ice, but what areas418

are free of ice. Finally, more work remains to be done from the applied math side on optimal solution419

algorithms for these types of problems.420

CONCLUSION421

In this paper, we derived the dual form of the glacier momentum balance equation, implemented a numerical422

solver for it, and demonstrated its use on synthetic and real problems. The key advantage of the dual form423

is that the problem does not need to be regularized when the strain rate or thickness are equal to 0. The424

disadvantages are that (1) the dual form has more unknowns and (2) solvers for the resulting nonlinear425

optimization problem require special tuning. Despite these additional costs, we argue that the dual form is426

worth considering as an alternative to the conventional primal form because of how easy it is to simulate427

terminus advance and retreat. We did not aim to study directly the holy grail problem of calving laws here.428

But making it easier to simulate terminus evolution is a virtual requirement for testing these calving laws429

with computer models.430

CODE AND DATA AVAILABILITY431

The complete source code used for the simulations described in this paper is available at:432

https://github.com/icepack/dual-problems.git.433
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Benn DI, Åström J, Zwinger T, Todd J, Nick FM, Cook S, Hulton NR and Luckman A (2017) Melt-under-cutting448

and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model449

simulations. Journal of Glaciology, 63(240), 691–702 (doi: 10.1017/jog.2017.41)450

Boffi D, Brezzi F and Fortin M (2013) Mixed finite element methods and applications, volume 44. Springer, ISBN451

9783642365195452

Bondzio JH, Seroussi H, Morlighem M, Kleiner T, Rückamp M, Humbert A and Larour EY (2016) Modelling calving453

front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland. The Cryosphere, 10(2),454

497–510 (doi: 10.5194/tc-10-497-2016)455

Boyd S and Vandenberghe L (2004) Convex optimization. Cambridge University Press, ISBN 9780521833783456

Brezzi F, Fortin M and Marini LD (1993) Mixed finite element methods with continuous stresses. Mathematical457

Models and Methods in Applied Sciences, 3(02), 275–287 (doi: 10.1142/S0218202593000151)458

Brinkerhoff DJ and Johnson JV (2013) Data assimilation and prognostic whole ice sheet modelling with the459

variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS. The Cryosphere,460

7(4), 1161–1184 (doi: 10.5194/tc-7-1161-2013)461

Cornford SL, Martin DF, Graves DT, Ranken DF, Le Brocq AM, Gladstone RM, Payne AJ, Ng EG and Lipscomb462

WH (2013) Adaptive mesh, finite volume modeling of marine ice sheets. Journal of Computational Physics, 232(1),463

529–549 (doi: 10.1016/j.jcp.2012.08.037)464

Dukowicz JK, Price SF and Lipscomb WH (2010) Consistent approximations and boundary conditions465

for ice-sheet dynamics from a principle of least action. Journal of Glaciology, 56(197), 480–496 (doi:466

10.3189/002214310792447851)467

Durand G, Gagliardini O, de Fleurian B, Zwinger T and Le Meur E (2009) Marine ice sheet dynamics:468

Hysteresis and neutral equilibrium. Journal of Geophysical Research: Earth Surface, 114(F3), F03009 (doi:469

10.1029/2008JF001170)470

Edelen DG (1972) A nonlinear Onsager theory of irreversibility. International Journal of Engineering Science, 10(6),471

481–490 (doi: 10.1016/0020-7225(72)90091-2)472

Enderlin EM, Howat IM, Jeong S, Noh MJ, Van Angelen JH and Van Den Broeke MR (2014) An improved mass473

budget for the Greenland ice sheet. Geophysical Research Letters, 41(3), 866–872 (doi: 10.1002/2013GL059010)474

https://doi.org/10.1017/jog.2024.92 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.92


Shapero and de Diego: Terminus evolution via duality 28

Favier L, Gagliardini O, Durand G and Zwinger T (2012) A three-dimensional full Stokes model of the grounding475

line dynamics: effect of a pinning point beneath the ice shelf. The Cryosphere, 6(1), 101–112 (doi: 10.5194/tc-6-476

101-2012)477

Fettweis X, Hofer S, Krebs-Kanzow U, Amory C, Aoki T, Berends CJ, Born A, Box JE, Delhasse A, Fujita K and478

others (2020) GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland479

Ice Sheet. The Cryosphere, 14(11), 3935–3958 (doi: 10.5194/tc-14-3935-2020)480

Goldsby D and Kohlstedt DL (2001) Superplastic deformation of ice: Experimental observations. Journal of481

Geophysical Research: Solid Earth, 106(B6), 11017–11030 (doi: 10.1029/2000JB900336)482

Greve R and Blatter H (2009) Dynamics of ice sheets and glaciers. Springer Science & Business Media, ISBN483

9783642034152484

Ham DA, Kelly PHJ, Mitchell L, Cotter CJ, Kirby RC, Sagiyama K, Bouziani N, Vorderwuelbecke S, Gregory TJ,485

Betteridge J, Shapero DR, Nixon-Hill RW, Ward CJ, Farrell PE, Brubeck PD, Marsden I, Gibson TH, Homolya486

M, Sun T, McRae ATT, Luporini F, Gregory A, Lange M, Funke SW, Rathgeber F, Bercea GT and Markall487

GR (2023) Firedrake User Manual. Imperial College London and University of Oxford and Baylor University and488

University of Washington, first edition (doi: 10.25561/104839)489

Joughin I, Smith BE, Howat IM, Scambos T and Moon T (2010) Greenland flow variability from ice-sheet-wide490

velocity mapping. Journal of Glaciology, 56(197), 415–430 (doi: 10.3189/002214310792447734)491
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B and others (2017) BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from505

multibeam echo sounding combined with mass conservation. Geophysical Research Letters, 44(21), 11051–11061506

(doi: 10.1002/2017GL074954)507

https://doi.org/10.1017/jog.2024.92 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.92


Shapero and de Diego: Terminus evolution via duality 29

Mouginot J, Rignot E, Bjørk AA, Van den Broeke M, Millan R, Morlighem M, Noël B, Scheuchl B and Wood M508
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APPENDIX525

We have largely focused on the dual form of the SSA momentum balance as an alternative to the primal526

form with certain favorable numerical properties, such as solvability at zero thickness. We do not have527

conclusive answers about the best way to discretize and solve the dual form of SSA. In the following, we528

detail some of the techniques that we used. A further publication will explore these issues in greater detail.529

Discretization by finite elements530

Roughly any conforming finite element basis is stable for the primal form of symmetric, positive-definite531

elliptic equations, such as the diffusion and elasticity equations, as long as the mesh is regular. The most532

common choice is to use piecewise-continuous polynomials of a given degree k on triangles, or the tensor533

product of polynomials on quads. We will refer to this basis as CG(k). While dual formulations have many534

advantages, the main challenge to overcome is that most choices of basis are unstable – the resulting linear535

systems are either singular or their inverses have unbounded norm in the limit as the mesh is refined. For536

example, using CG(k) elements for the temperature and the product CG(k)2 for the flux is an unstable537

discretization of the dual form of the diffusion equation. Making matters even harder, the SSA and other538

problems for a pair of vector and tensor fields have an additional invariant to enforce – the symmetry of539

the stress tensor – which can be difficult to achieve in practice.540

The question of how to choose basis functions that give a stable discretization of dual problems is the541

subject of mixed finite element methods. This subject is covered in great detail in Boffi and others (2013).542

There is, however, a wide chasm between the motivation for using dual formulations in most of the finite543

element literature and our reasons for applying them to glacier momentum balance. The big motivating544

problem for dual formulations in the finite element literature is linear elasticity. In that setting, the goal545

is to compute the stress tensor with high accuracy in order to make sure that it does not exceed some546

failure threshold for the material. Using the dual form of the elasticity equations offers the promise of547

approximating the stress tensor with a higher order of accuracy than the primal form. Finding stable finite548

element bases for the dual form of the elasticity equations is a holy grail problem because of its potential549

impact on engineering practice.550

It might seem at first blush as if the heavy focus on finding stable discretizations of the dual form of551

the elasticity equations is beneficial to us because the SSA is formally similar to 2D elasticity, even though552

these equations have different provenance. Our purpose for using the dual form, however, is not to obtain553

a more accurate resolution of the membrane stress tensor – we are only interested in the dual form because554
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of how it changes the character of the nonlinearities in the SSA. With this goal in mind, there are several555

choices that we make differently from how they are done in the finite element literature. These are of a556

technical nature and not of special interest to most glaciologists, but we include them here for the sake of557

completeness. A typical dual formulation of elasticity would assume that:558

1. the displacements live in the function space L2(Ω,Rd), i.e. the space of square-integrable vector fields,559

and560

2. the stresses live in the space Hdiv(Ω,Rd×d
sym) of square-integrable symmetric tensor fields whose561

divergences are also square-integrable.562

This L2 × Hdiv formulation offers the best possible asymptotic accuracy for the stress tensor. The dual563

form of the problem with these assumptions is different from what we wrote down in equation (15) – the564

gradient of u is instead pushed over as a stress divergence. Moreover, with the L2 ×Hdiv form, Dirichlet565

boundary conditions become natural and Neumann conditions become essential. Finding stable bases for566

the L2×Hdiv form requires very sophisticated finite element bases. At the simplest end of the spectrum, one567

can enrich the stress space by cubic bubbles (Brezzi and others, 1993). A host of more complex approaches568

are possible (Arnold and others, 1984; Arnold and Winther, 2002).569

Although it is almost completely unheard of in the literature on mixed finite elements, we make a different570

but equally valid set of assumptions. We instead assume that571

1. the velocities live in the function space H1(Ω,Rd) of vector fields that are square-integrable and have572

square-integrable derivatives, and573

2. the membrane stress tensor lives in the space L2(Ω,Rd×d
sym) of square-integrable symmetric tensor fields.574

With this H1 × L2 dual form, Dirichlet conditions remain essential and Neumann conditions natural.575

Finding a stable finite element basis is much more straightforward for the H1 × L2 form of the problem.576

We use the space CG(k)d of continuous piecewise-polynomial vector fields for the velocities, and DG(k)d×d
sym577

of discontinuous piecewise-polynomial symmetric tensor fields for the membrane stress.578
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Solution by Newton-type methods579

The finite element method reduces the infinite-dimensional optimization problems that we have described580

into finite-dimensional ones. All that remains is to decide how to solve the resulting finite-dimensional581

optimization problems.582

We can approximate a minimizer for the primal form of the action functional using standard Newton line583

search algorithms (Shapero and others, 2021). But the primal form of the momentum balance equation584

has singularities in the limit as the strain rate tensor approaches 0. When we calculate the derivative of585

the action, these singularities are multiplied by 0 in such a way that they become removable, i.e. they have586

a finite limit. In floating-point arithmetic, however, evaluating an expression with a removable singularity587

does not always produce the right limit. Moreover, the second derivative of the action does have genuine588

infinite singularities, and we need to be able to calculate the second derivative or some approximation to589

it in order to use Newton-type methods. The usual remedy is to introduce a smoothing factor δ into the590

action that rounds off the behavior around ε̇ = 0. Regularizing the action functional makes the minimization591

problem solvable but very ill-conditioned. Additionally, for some simulations the ice thickness can go to592

zero, which makes the minimization problem difficult or impossible to solve numerically. The usual remedy593

for this is to clamp the thickness from below at some fixed value, say 1m or 10m. Where the ice thickness594

approaches zero, usually the strain rate does as well. In these scenarios, we are certain to encounter the595

worst behavior possible associated with the singularity at zero strain rate.596

The dual form, on the other hand, does not have infinite singularities around zero strain rate. Instead,

the action functional has degeneracies – terms that go to zero where, in a nicer problem, they would stay

strictly positive. (See again figure 1.) Degeneracies are not good news either. In order to use a Newton-type

algorithm to find a critical point of the dual action L, we compute a search direction by solving the linear

system

d2L ·


v

N

σ

 = −dL. (A1)

We know that the second derivative of L has the structure of a saddle-point matrix. Usually one assumes597

that certain blocks of this matrix are symmetric and strictly positive-definite in order to guarantee the598

existence of a solution (Boffi and others, 2013). When the problem is degenerate, we no longer have these599

guarantees. We still know that L has a unique saddle point because it is strictly convex with respect to M600
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and τ , the problem is that it fails to be strongly or uniformly convex. There are workable remedies for this601

issue that do not degrade the conditioning of the problem to the same extent as regularization does for the602

primal problem.603

Newton’s method with line search guarantees second-order convergence for nice problems. In the event

that the second derivative has degeneracies, we can instead try to compute a search direction b solving the

perturbed system

(
d2L+ λ · d2G

)


v

N

σ

 = −dL (A2)

where G is some strongly convex function of M and τ and λ is a small parameter. For example, one

reasonable choice is to take

G =
1

2

∫
Ω

(
max{h, hmin}A′|M |2A +K ′|τ |2

)
dx (A3)

for some constants A′, K ′ having the right units and for some minimum thickness hmin on the order of 1-604

10m. The addition of d2G regularizes the search directions. It does not regularize or perturb what solution605

we are looking for, only how we look for it.606

Regularizing the search directions sacrifices the second-order convergence rate of Newton’s method.607

It does, however, achieve faster convergence than typical first-order quasi-Newton methods like BFGS608

(Nocedal and Wright, 2006).609
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