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Faltings’ main p-adic comparison theorems
for non-smooth schemes
Tongmu He
Abstract. To understand the p-adic étale cohomology of a proper smooth variety over a p-adic field,
Faltings compared it to the cohomology of his ringed topos, by the so-called Faltings’ main p-adic
comparison theorem, and then deduced various comparisons with p-adic cohomologies originating
from differential forms. In this article, we generalize the former to any proper and finitely presented
morphism of coherent schemes over an absolute integral closure of Zp (without any smoothness
assumption) for torsion abelian étale sheaves (not necessarily finite locally constant). Our proof
relies on our cohomological descent for Faltings’ ringed topos, using a variant of de Jong’s alteration
theorem for morphisms of schemes due to Gabber–Illusie–Temkin to reduce to the relative case
of proper log-smooth morphisms of log-smooth schemes over a complete discrete valuation ring
proved by Abbes–Gros. A by-product of our cohomological descent is a new construction of Faltings’
comparison morphism, which does not use Achinger’s results on K(π, 1)-schemes.

1 Introduction

1.1 To understand the p-adic étale cohomology of a p-adic variety, Faltings [Fal88]
introduced a new ringed topos as a bridge linking the p-adic étale cohomology with
various p-adic cohomologies originating from differential forms. He proved that the
cohomology of his ringed topos is (almost) isomorphic to the p-adic étale cohomology
of the variety. This result is known as Faltings’ main p-adic comparison theorem.
The local nature of this ringed topos allows to compute its cohomology by Galois
cohomology and hence to relate it to differential forms.

1.2 More precisely, let OK be a complete discrete valuation ring extension of Zp , let
K be its fraction field, let K be an algebraic closure of K, let X be a proper smooth
OK-scheme, and let Y = XK be the geometric generic fiber of X. Faltings introduced a
ringed site (Eét

Y→X , B) which admits natural morphisms of sites

Yét
ψ�→ Eét

Y→X
σ�→ Xét ,(1.2.1)

where Xét denotes the étale site of X. The underlying category of Eét
Y→X is a fibered

category over Xét, whose fiber over an étale X-scheme U is the finite étale site of UK
(see 3.1 for a precise definition). The sheaves Rqσ∗(B/pnB) (q, n ∈ N) are computed
by Galois cohomology and hence can be related to differential forms of X over OK .
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2 T. He

On the other hand, Faltings proved that for any finite locally constant abelian sheaf F
on Yét and any integer q ≥ 0, there is a canonical morphism,

Hq(Yét ,F) ⊗Z OK �→ Hq(Eét
Y→X , ψ∗F⊗Z B),(1.2.2)

which is an almost isomorphism, that is, its kernel and cokernel are killed by pr

for any rational number r > 0. The right-hand side of (1.2.2) can be related to
various p-adic cohomologies of X, leading to various p-adic comparison theorems.
For instance, the Hodge–Tate decomposition theorem (i.e., the comparison with
the Hodge cohomologies) is obtained from the Cartan–Leray spectral sequence for
the composed functor RΓ(Xét ,−) ○ Rσ∗ taking for F some constant torsion sheaves,
see [AG20]. Faltings pushed further this strategy by developing a p-adic Simpson
correspondence that compares the p-adic étale cohomology of a p-adic local system
with the Dolbeault cohomology of the associated Higgs bundle [Fal05] (cf. [AGT16]).

1.3 Faltings formulated also a relative version of his main comparison theorem
relating the relative étale cohomology and the relative cohomology of his ringed topos
for a proper log-smooth morphism of log-smooth OK-schemes. He only roughly
sketched the proof in [Fal02], but a complete proof was provided recently by Abbes
and Gros [AG20]. They used this relative version in their construction of the relative
Hodge–Tate spectral sequence and more generally in their study of the functoriality
of the p-adic Simpson correspondence by higher direct images [AG22]. As we have
seen above, Faltings topos builds on an integral model of the p-adic variety, whose
(logarithmic) smoothness seems necessary for good properties of Faltings topos and
thus for the proofs of the comparison theorems. The goal of this article is to get rid of
the smoothness assumptions in Faltings’ main comparison theorems, not only on the
integral models but also on the generic fibers.

1.4 In fact, we generalize Faltings’ main comparison theorem to any proper and
finitely presented morphism of coherent schemes (i.e., quasi-compact and quasi-
separated schemes) over an absolute integral closure of Zp (without any further
assumption on smoothness or finiteness) for torsion abelian étale sheaves (not neces-
sarily finite locally constant). This generalization takes place in a variant of Faltings site
with v-topology, that we introduced and called the v-site of integrally closed schemes.
We have shown in [He23] that both the étale cohomology and the cohomology of
Faltings ringed topos can be computed by this v-site. The latter implies a cohomological
descent for Faltings ringed topos along proper hypercoverings, which allows us to
reduce the proof of our generalization to Faltings’ main comparison theorem for
proper log-smooth morphisms of log-smoothOK-schemes using a variant of de Jong’s
alteration theorem for morphisms of schemes due to Gabber–Illusie–Temkin. More-
over, it allows us to deduce generalizations of Faltings’ main comparison theorems
for the original Faltings site both in the absolute and the relative cases. We remark
that Scholze has generalized Faltings’ main comparison theorem to proper smooth
morphisms of rigid analytic varieties for finite locally constant abelian sheaves [Sch13a,
5.11], and to proper morphisms of algebraic varieties for torsion abelian sheaves
[Sch13b, 3.13]. Compared to his results, our arguments are purely scheme theoretic
and our generalization for torsion abelian sheaves holds for proper morphisms of more
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Faltings’ main p-adic comparison theorems for non-smooth schemes 3

general schemes (i.e., less restrictive on finiteness). On the other hand, it is not clear
whether our generalization and Scholze’s can be directly deduced from each other.

Firstly, we state our generalization of Faltings’ main comparison theorem in the
absolute case.

Theorem 1.5 (see 5.17) Let A be a valuation ring extension of Zp with algebraically
closed fraction field. Consider a Cartesian square of coherent schemes:

Y ��

��

X

��
Spec(A[ 1

p ]) �� Spec(A)

(1.5.1)

Assume that X is proper of finite presentation over A. Then, for any finite locally constant
abelian sheaf F on Yét, there exists a canonical morphism

RΓ(Yét ,F) ⊗L
Z A�→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(1.5.2)

which is an almost isomorphism, where ψ ∶ Yét → Eét
Y→X is the natural morphism of sites

(see 3.2).

We remark that the natural morphism of sites ψ ∶ Yét → Eét
Y→X induces an equiva-

lence of the categories of finite locally constant abelian sheaves on Yét and Eét
Y→X (5.3)

LocSys(Yét)
ψ∗ �� LocSys(Eét

Y→X).
ψ−1

��(1.5.3)

1.6 One of the key ingredients of the proof of 1.5 is our cohomological descent for
Faltings ringed topos [He23]. Roughly speaking, it allows us to descend important
results on Faltings topos associated with nice integral models to Faltings topos asso-
ciated with general integral model. More concretely, we adopt the following strategy:
(1) Firstly, we use de Jong–Gabber–Illusie–Temkin’s alteration theorem for mor-

phisms of schemes [ILO14, X.3] to obtain a proper surjective morphism of finite
presentation X′ → X such that the morphism X′ → Spec(A) is the cofiltered limit
of a system of “nice” morphisms X′λ → Tλ of “nice” models over OKλ , where Kλ is
a finite extension of Qp (see 4.11).

(2) Then, we can apply Faltings’ main comparison theorem in the relative case to the
“nice” morphisms X′λ → Tλ (formulated by Faltings [Fal02, Theorem 6, page 266]
and proved by Abbes and Gros [AG20, 5.7.4], see 5.13). By a limit argument, we
get the comparison theorem for X′.

(3) Finally, using our cohomological descent for Faltings ringed topos along a proper
hypercovering (see 3.10), we deduce the comparison theorem for X.

1.7 In fact, even the construction of Faltings’ comparison morphism (1.5.2) is not
trivial, even in the smooth case (1.2.2). It relies on the acyclicity of the morphism ψ
for any finite locally constant abelian sheaf F, i.e., ψ∗F = Rψ∗F. Faltings’ comparison
morphism is obtained from the canonical morphisms

RΓ(Yét ,F) ⊗L
Z A ∼←� RΓ(Eét

Y→X , ψ∗F) ⊗L
Z A�→ RΓ(Eét

Y→X , ψ∗F⊗Z B).(1.7.1)
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4 T. He

The acyclicity of ψ is a consequence of Achinger’s result on K(π, 1)-schemes (see 5.6
and 5.8).

We don’t know if ψ is acyclic for more general coefficients. This is also one of the
reasons why Faltings consider only local systems in his main comparison theorems.
We propose a new way to construct Faltings’ comparison morphism in the derived
category of almost modules using our cohomological descent result [He23] (see
also 3.9), that avoids the acyclicity of ψ and that holds for more general coefficients.
Indeed, there is a natural commutative diagram of sites (see 3.6):

(Schcoh
/Y )v

a ��

Ψ
��

Yét

ψ

��
IY→XY

ε �� Eét
Y→X

(1.7.2)

where (Schcoh
/Y )v is the v-site of coherent Y-schemes, IY→XY is the v-site of Y-integrally

closed coherent XY -schemes (1.4). Moreover, ε is actually a morphism of ringed sites

ε ∶ (IY→XY , O) �→ (Eét
Y→X , B).(1.7.3)

Recall the following facts:

(1) (Acyclicity of Ψ, see 3.8) The morphism Ψ is acyclic for any torsion abelian sheafF
on Yét, i.e., Ψ∗(a−1F) = RΨ∗(a−1F), which allows more general coefficients and
whose proof [He23, 3.27] is much easier than that for ψ, as we could reduce to the
case of valuation rings.

(2) (Cohomological descent for étale cohomology, see 3.4) For any torsion abelian
sheaf F on Yét, the canonical morphism F → Ra∗a−1F is an isomorphism.

(3) (Cohomological descent for Faltings ringed topos, see 3.9) For any finite
locally constant abelian sheaf L over Eét

Y→X , the canonical morphism L⊗Z B →
Rε∗(ε−1L⊗Z O) is an almost isomorphism.

From these facts, we obtain a new construction of Faltings’ comparison morphism,
which does not give a “real morphism” (1.5.2) but a canonical morphism in the derived
category of almost modules (see 6.6).

1.8 As we have seen above, the v-variant of Faltings site IY→XY computes the étale
cohomology of Y for torsion abelian sheaves (by the facts (1) and (2) in Section 1.7),
and it describes well the cohomological descent for Faltings ringed topos ((3) in
Section 1.7). These facts enable us to reformulate Faltings’ main comparison theorem
using IY→XY instead of Eét

Y→X , which then provides a relative statement for more
general coefficients.

Theorem 1.9 (see 6.12) With the same notation in 1.5, let F be a torsion abelian sheaf
on Yét and we set F = Ψ∗a−1F. Then, there is a canonical almost isomorphism

RΓ(Yét ,F) ⊗L
Z A�→ RΓ(IY→XY , F ⊗Z O).(1.9.1)
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Faltings’ main p-adic comparison theorems for non-smooth schemes 5

Indeed, the canonical morphism (1.9.1) is obtained from the canonical morphisms

RΓ(Yét ,F) ⊗L
Z A ∼←� RΓ(IY→XY , F ) ⊗L

Z A�→ RΓ(IY→XY , F ⊗Z O).(1.9.2)

Thus, 1.9 is a direct corollary of the following relative statement.

Theorem 1.10 (see 6.11) Let Zp be the integral closure of Zp in an algebraic closure Qp
of Qp. Consider a Cartesian square of coherent schemes:

Y ′ ��

��

X′

��
Y �� X

(1.10.1)

where Y → X is Cartesian over Spec(Qp) → Spec(Zp). Assume that X′ → X is proper
of finite presentation. Let F′ be a torsion abelian sheaf on Y ′ét and F ′ = Ψ′∗a′−1F′ (see
(1.7.2)). Then, the canonical morphism

(R fI∗F
′) ⊗L

Z O �→ R fI∗(F ′ ⊗Z O ′)(1.10.2)

is an almost isomorphism, where fI ∶ (IY ′→X′Y′ , O ′) �→ (IY→XY , O) is the natural
morphism of ringed sites defined by the functoriality of (1.7.2).

1.11 We remark that if F′ = Z/pnZ, then F ′ = Z/pnZ (see 6.2), and that Rq fI∗F
′

is the sheafification in v-topology of the qth étale cohomologies of Y ′ over Y with
coefficients in F′ (see 6.13). Roughly speaking, objects of IY→XY are “locally” the
spectrums of valuation rings, and the “stalks” of (1.10.2) are Faltings’ comparison
morphisms (1.5.2) when F′ is finite locally constant (see 6.5). This enables us to
prove 1.10 for such F′ by reducing to the absolute case 1.5. Then, standard techniques
in [SGA 4III , IX.2] allow us to extend the conclusion to general F′. Theorem 1.10
can be regarded as a generalization of Scholze’s comparison theorem for proper
morphisms of algebraic varieties [Sch13b, 3.13]. Finally, we generalize Faltings’ main
comparison theorem in the relative case for the original Faltings site using 1.10 and the
cohomological descent for Faltings ringed topos (3.9).

Theorem 1.12 (see 6.14 and 6.15) With the same notation in 1.10, assume that Y ′ → Y
is smooth and that X′ → X is proper of finite presentation. Then, for any finite locally
constant abelian sheaf F′ on Y ′ét, there exists a canonical morphism

(Rψ∗R fét∗F
′) ⊗L

Z
B �→ R fE∗(ψ′∗F′ ⊗Z B

′),(1.12.1)

which is an almost isomorphism, and where fét ∶ Y ′ét → Yét and fE ∶ Eét
Y ′→X′ → Eét

Y→X are
the natural morphisms of sites. In particular, there exists a canonical morphism

(ψ∗Rq fét∗F
′) ⊗Z B �→ Rq fE∗(ψ′∗F′ ⊗Z B

′),(1.12.2)

which is an almost isomorphism, for any integer q.
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6 T. He

1.13 The article is structured as follows. In Section 3, we summarize the main
results of [He23] including the cohomological descent for Faltings ringed topos. In
Section 4, we review de Jong–Gabber–Illusie–Temkin’s alteration theorem and apply
it to schemes over a valuation ring of height 1. Section 5 is devoted to proving our
generalization of Faltings’ main comparison theorem in the absolute case. Finally, we
give a new construction of Faltings’ comparison morphism and our generalization of
Faltings’ main comparison theorem in the relative case in Section 6.

2 Notation and conventions

2.1 We fix a prime number p throughout this paper. For a ring R, we denote by R×
the group of units of R. A ring R is called absolutely integrally closed if any monic
polynomial f ∈ R[T] has a root in R [Sta23, 0DCK]. We remark that quotients,
localizations, and products of absolutely integrally closed rings are still absolutely
integrally closed.

Recall that a valuation ring is a domain V such that for any element x in its fraction
field, if x ∉ V , then x−1 ∈ V . The family of ideals of V is totally ordered by the inclusion
relation [Bou06, VI.§1.2, Theorem 1]. In particular, a radical ideal of V is a prime
ideal. Moreover, any quotient of V by a prime ideal and any localization of V are still
valuations rings [Sta23, 088Y]. We remark that V is normal, and that V is absolutely
integrally closed if and only if its fraction field is algebraically closed. An extension of
valuation rings is an injective and local homomorphism of valuation rings.

2.2 Following [SGA 4II , VI.1.22], a coherent scheme (resp. morphism of schemes)
stands for a quasi-compact and quasi-separated scheme (resp. morphism of schemes).
For a coherent morphism Y → X of schemes, we denote by XY the integral closure
of X in Y [Sta23, 0BAK]. For an X-scheme Z, we say that Z is Y-integrally closed if
Z = ZY×X Z .

2.3 Throughout this paper, we fix two universes U and V such that the set of natural
numbers N is an element of U and that U is an element of V [SGA 4I , I.0]. In most
cases, we won’t emphasize this set theoretical issue. Unless stated otherwise, we only
consider U-small schemes and we denote by Sch the category of U-small schemes,
which is a V-small category.

2.4 Let C be a category. We denote by Ĉ the category of presheaves of V-small sets
on C. If C is a V-site [SGA 4I , II.3.0.2], we denote by C̃ the topos of sheaves of V-small
sets on C. We denote by hC ∶ C → Ĉ, x ↦ hC

x the Yoneda embedding [SGA 4I , I.1.3],
and by Ĉ → C̃, F ↦ Fa the sheafification functor [SGA 4I , II.3.4].

2.5 Let u+ ∶ C → D be a functor of categories. We denote by up ∶ D̂ → Ĉ the functor
that associates to a presheaf G of V-small sets on D the presheaf upG = G ○ u+. If C
is V-small and D is a V-category, then up admits a left adjoint up [Sta23, 00VC] and
a right adjoint pu [Sta23, 00XF] (cf. [SGA 4I , I.5]). So we have a sequence of adjoint
functors

up , up , pu.(2.5.1)
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Faltings’ main p-adic comparison theorems for non-smooth schemes 7

If, moreover, C and D areV-sites, then we denote by us , us , su the functors of the topoi
C̃ and D̃ of sheaves of V-small sets induced by composing the sheafification functor
with the functors up , up , pu, respectively. If finite limits are representable in C and D
and if u+ is left exact and continuous, then u+ gives a morphism of sites u ∶ D → C
[SGA 4I , IV.4.9.2] and we also denote by

u = (u−1 , u∗) ∶ D̃ → C̃(2.5.2)

the associated morphism of topoi, where u−1 = us and u∗ = us = up∣D̃ . If, moreover,
u is a morphism of ringed sites u ∶ (D,OD) → (C ,OC), then we denote by u∗ = OD
⊗u−1OC u−1 the pullback functor of modules. We remark that the notation here,
adopted by [Sta23], is slightly different from that in [SGA 4I] (see [Sta23, 0CMZ]).

3 Brief review on cohomological descent for faltings ringed topos

For the convenience of readers and preparation of new notation used later, we briefly
summarize some main notions and results in [He23].

3.1 Firstly, we recall the definition of the Faltings site associated with a morphism of
coherent schemes Y → X (see [He23, 7.7]). Let Eét

Y→X be the category of morphisms of
coherent schemes V → U over Y → X, i.e., commutative diagrams

V ��

��

U

��
Y �� X

(3.1.1)

such that U is étale over X and that V is finite étale over Y ×X U . We endow Eét
Y→X

with the topology generated by the following types of families of morphisms:

(v) {(Vm → U) → (V → U)}m∈M , where M is a finite set and ∐m∈M Vm → V is
surjective;

(c) {(V ×U Un → Un) → (V → U)}n∈N , where N is a finite set and∐n∈N Un → U is
surjective.

Consider the presheaf B on Eét
Y→X defined by

B(V → U) = Γ(U V ,OU V ),(3.1.2)

where U V is the integral closure of U in V. It is indeed a sheaf of rings, called the
structural sheaf of Eét

Y→X (see [He23, 7.6]).

3.2 Let Y → X be a morphism of coherent schemes. The natural left exact and
continuous functors

ψ+ ∶ Eét
Y→X �→ Yét , (V → U) �→ V ,(3.2.1)

β+ ∶ Yf ét �→ Eét
Y→X , V �→ (V → X),(3.2.2)
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8 T. He

induce a natural commutative diagram of sites (2.5),

Yét

ρ
��

ψ
�� Eét

Y→X β
�� Yf ét,(3.2.3)

where ρ ∶ Yét → Yf ét is defined by the inclusion functor (see [He23, 7.8]).

3.3 Recall that a morphism of coherent schemes T → S is called a v-covering if
for any morphism Spec(A) → S with A a valuation ring, there exists an extension
of valuation rings A→ B and a lifting Spec(B) → T [He23, 3.1(1)]. Let Schcoh be
the category of coherent schemes. We endow it with the topology generated by the
pretopology formed by families of morphisms {S i → S}i∈I with I finite such that
∐i∈I S i → S is a v-covering, and we denote the corresponding site by Schcoh

v [He23,
3.3]. For any object S of Schcoh

v , we denote by (Schcoh
/S )v the localization of the v-site

Schcoh
v at S. The cohomological descent for étale cohomology can be stated as follows:

Theorem 3.4 ([He23, 3.9]) Let S be a coherent scheme, let F be a torsion abelian sheaf
on the site Sét formed by coherent étale S-schemes endowed with the étale topology, and
let a ∶ (Schcoh

/S )v → Sét be the morphism of sites defined by the inclusion functor. Then,
the canonical morphism F → Ra∗a−1F is an isomorphism.

Definition 3.5 ([He23, 3.23]) Let S○ → S be an open immersion of coherent schemes
such that S is integrally closed in S○. We define a site IS○→S as follows:
(1) The underlying category is formed by coherent S-schemes T which are integrally

closed in S○ ×S T .
(2) The topology is generated by covering families {Ti → T}i∈I in the v-topology.
We call IS○→S the v-site of S○-integrally closed coherent S-schemes, and we call the sheaf
O on IS○→S associated with the presheaf T ↦ Γ(T ,OT) the structural sheaf of IS○→S .

3.6 Let Y → X be a morphism of coherent schemes such that Y → XY is an open
immersion, where XY denotes the integral closure of X in Y (2.2). The natural left
exact and continuous functors

Ψ+ ∶ IY→XY �→ (Schcoh
/Y )v , Z �→ Y ×XY Z ,(3.6.1)

ε+ ∶ Eét
Y→X �→ IY→XY , (V → U) �→ U V ,(3.6.2)

induce natural morphisms of sites (see [He23, 3.26, 8.6])

(Schcoh
/Y )v

Ψ �� IY→XY
ε �� Eét

Y→X .(3.6.3)

Combining with the morphisms of sites defined in 3.2 and 3.4, we obtain the following
natural commutative diagram of sites:

(Schcoh
/Y )v

a ��

Ψ
��

Yét

ψ

��

ρ

���
��

��
��

��

IY→XY
ε �� Eét

Y→X
β �� Yf ét

(3.6.4)
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Faltings’ main p-adic comparison theorems for non-smooth schemes 9

Moreover, ε+ actually defines a morphism of ringed sites (see [He23, 8.6])

ε ∶ (IY→XY , O) �→ (Eét
Y→X , B).(3.6.5)

Lemma 3.7 (cf. [He23, 7.9]) Let X be the spectrum of an absolutely integrally closed
valuation ring, and let Y be a quasi-compact open subscheme of X. Then, for any presheaf
F on Eét

Y→X (resp. IY→XY ), we haveFa(Y → X) = F(Y → X) (resp.Fa(XY) = F(XY)).
In particular, the associated topos of Eét

Y→X (resp. IY→XY ) is local [SGA 4II , VI.8.4.6].

Proof The statement for Eét
Y→XY is proved in [He23, 7.9]. The same arguments work

for IY→XY . ∎

Proposition 3.8 ([He23, 3.27]) We keep the notation in 3.6.
(1) For any torsion abelian sheaf F on Yét, the canonical morphism Ψ∗(a−1F) →

RΨ∗(a−1F) is an isomorphism.
(2) For any locally constant torsion abelian sheaf L on IY→XY , the canonical morphism

L→ RΨ∗Ψ−1L is an isomorphism.

Combining 3.8(1) with 3.4, we see that the cohomology of IY→XY computes the
étale cohomology of Y. Moreover, it also computes the cohomology of Faltings ringed
topos in the following sense.

Theorem 3.9 ([He23, 8.14]) Let K be a pre-perfectoid field of mixed characteristic
(0, p) (i.e., a valuation field whose valuation ring OK is non-discrete, extension of Zp
and of height 1 such that the Frobenius map on OK/pOK is surjective, see [He23, 5.1]),
η = Spec(K), S = Spec(OK), Y → X a morphism of coherent schemes such that XY is
an S-scheme with generic fiber (XY)η = Y (in particular, XY is an object of Iη→S). Then,
for any finite locally constant abelian sheaf L on Eét

Y→X , the canonical morphism (3.6)

L⊗Z B �→ Rε∗(ε−1L⊗Z O)(3.9.1)

is an almost isomorphism [He23, 5.7].

The cohomological descent for Faltings ringed topos along a proper hypercovering
is stated as follows:

Corollary 3.10 ([He23, 8.18]) Under the assumptions in 3.9 and with the same
notation, let X● → X be an augmentation of simplicial coherent scheme, and let Y● =
Y ×X X●, b ∶ Eét

Y●→X● → Eét
Y→X be the augmentation of simplicial site [He23, 8.17]. If

XY●
● → XY is a hypercovering in Iη→S , then the canonical morphism

L⊗Z B → Rb∗(b−1L⊗Z B●)(3.10.1)

is an almost isomorphism [He23, 5.7].

4 Complements on logarithmic geometry

We briefly recall some notions and facts of logarithmic geometry which will be used
in the rest of the paper. We refer to [GR04, Kat89, Kat94, Ogu18] for a systematic
development of logarithmic geometry, and to [AGT16, II.5] for a brief summary of
the theory.
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4.1 We only consider logarithmic structures in étale topology. More precisely, let
X be a scheme, let Xét be the étale site of X, let OX ét be the structure sheaf on
Xét, and let O×X ét

be the subsheaf of units of OX ét . A logarithmic structure on X is
a homomorphism of sheaves of monoids α ∶M → OX ét on Xét which induces an
isomorphism α−1(O×X ét

) ∼�→ O×X ét
. We denote by (X , M ) the associated logarithmic

scheme (cf. [AGT16, II.5.11]).

4.2 Let (X , M ) be a coherent log scheme (cf. [AGT16, II.5.15]). Then, there is
a maximal open subscheme X tr of X on which M is trivial, and moreover it
is functorial in (X , M ) [Ogu18, III.1.2.8]. Let (X , M ) → (S , L ) ← (Y , N ) be a
diagram of fine and saturated log schemes (cf. [AGT16, II.5.15]). Then, the fibered
product is representable in the category of fine and saturated log schemes by (Z , P) =
(X , M ) ×fs

(S ,L ) (Y , N ). We remark that Z tr = X tr ×S tr Y tr, that Z → X ×S Y is finite,
and that Z tr → Z is Cartesian over X tr ×S tr Y tr → X ×S Y [Ogu18, III 2.1.2, 2.1.6].
Moreover, if X tr = X, then Z = X ×S Y [Ogu18, III.2.1.3].

4.3 For an open immersion j ∶ Y → X, we denote by jét ∶ Yét → Xét the morphism
of their étale sites defined by the base change by j. Let MY→X be the preimage of
jét∗O

×
Yét

under the natural map OX ét → jét∗OYét , and we endow X with the logarithmic
structure MY→X → OX ét , which is called the compactifying log structure associated
with the open immersion j [Ogu18, III.1.6.1]. Sometimes we write MY→X as MX if Y
is clear in the context.

4.4 Let (X , M ) be a fine and saturated log scheme which is regular ([Kat94, 2.1],
[Niz06, 2.3]). Then, X is locally Noetherian and normal, and X tr is regular and
dense in X [Kat94, 4.1]. Moreover, there is a natural isomorphism M

∼�→MX tr→X
([Kat94, 11.6], [Niz06, 2.6]). We remark that if X is a regular scheme with a strict
normal crossings divisor D, then (X , MX/D→X) is fine, saturated, and regular [Ogu18,
III.1.11.9].

Let f ∶ (X , M ) → (S , L ) be a smooth (resp. saturated) morphism of fine and
saturated log schemes (cf. [AGT16, II 5.25, 5.18]). Then, f remains smooth (resp.
saturated) under the base change in the category of fine and saturated log schemes
([Ogu18, IV.3.1.2, IV.3.1.11], resp. [Ogu18, III.2.5.3]). We remark that if f is smooth, then
f tr ∶ X tr → Str is a smooth morphism of schemes. If, moreover, (S , L ) is regular,
then (X , M ) is also regular [Ogu18, IV.3.5.3]. We also remark that if f is saturated,
then for any fibered product in the category of fine and saturated log schemes
(Z , P) = (X , M ) ×fs

(S ,L ) (Y , N ), we have Z = X ×S Y [Tsu19, II.2.13].

4.5 Let K be a complete discrete valuation field with valuation ring OK , let k be
the residue field of OK , and let π be a uniformizer of OK . We set η = Spec(K),
S = Spec(OK) and s = Spec(k). Then, (S , Mη→S) is fine, saturated, and regular, since
N→ Γ(S , Mη→S) sending 1 to π forms a chart of (S , Mη→S) (cf. [AGT16, II.5.13,
II.6.1]). Recall that an open immersion Y → X of quasi-compact and separated
schemes over η → S is strictly semi-stable [dJ96, 6.3] if and only if the following
conditions are satisfied ([dJ96, 6.4], [EGA IV4, 17.5.3]):
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(i) For each point x of the generic fiber Xη , there is an open neighborhood U ⊆ Xη
of x and a smooth K-morphism

f ∶ U �→ Spec(K[s1 , . . . , sm])(4.5.1)

such that f maps x to the point associated with the maximal ideal (s1 , . . . , sm) and
that U/Y is the inverse image of the closed subset defined by s1 . . . sm = 0.

(ii) For each point x of the special fiber Xs , there is an open neighborhood U ⊆ X of
x and a smooth OK-morphism

f ∶ U �→ Spec(OK[t1 , . . . , tn , s1 , . . . , sm]/(π − t1 . . . tn))(4.5.2)

such that f maps x to the point associated with the maximal ideal
(t1 , . . . , tn , s1 , . . . , sm) and that U/Y is the inverse image of the closed subset
defined by t1 . . . tn ⋅ s1 . . . sm = 0.

We say that an open immersion Y → X of quasi-compact and separated schemes over
η → S is semi-stable if for any point x of X there is an étale neighborhood U of x such
that Y ×X U → U is strictly semi-stable. In this case, (X , MY→X) is a fine, saturated,
and regular log scheme smooth and saturated over (S , Mη→S), since for any point x of
X there is an étale neighborhood U of x such that there exists a chart for the morphism
(U , MY×X U→U) → (S , Mη→S) subordinate to the morphism N→ Nn ⊕Nm sending
1 to (1, . . . , 1, 0, . . . , 0) such that the induced morphism U → S ×AN

ANn⊕Nm is smooth
(cf. [Ogu18, II.2.4.1, IV.3.1.18]).

4.6 Recall that a morphism of schemes f ∶ X → S is called generically finite if there
exists a dense open subscheme U of S such that f −1(U) → U is finite. We remark that
for a morphism f ∶ X → S of finite type between Noetherian schemes which maps
generic points to generic points, f is generically finite if and only if the residue field of
any generic point η of X is a finite field extension of the residue field of f (η) [ILO14,
II.1.1.7].

4.7 Let K be a complete discrete valuation field with valuation ring OK , let L be an
algebraically closed valuation field of height 1 extension of K with valuation ring OL ,
and let K be the algebraic closure of K in L.

Consider the category C of open immersions between integral affine schemes
U → T over Spec(K) → Spec(OK) under Spec(L) → Spec(OL) such that T is of finite
type over OK and that Spec(L) → U is dominant. Let Ccar be the full subcategory of
C formed by those objects U → T Cartesian over Spec(K) → Spec(OK).

Spec(L) ��

��

Spec(OL)
��

U = Spec(B) ��

��

T = Spec(A)
��

Spec(K) �� Spec(OK)

(4.7.1)

We note that the objects of C are of the form (U = Spec(B) → T = Spec(A)), where
A (resp. B) is a finitely generated OK-subalgebra of OL (resp. K-subalgebra of L) with
A ⊆ B such that Spec(B) → Spec(A) is an open immersion.
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Lemma 4.8 With the notation in 4.7, we have:

(1) The category C is cofiltered, and the subcategory Ccar is initial in C .
(2) The morphism Spec(L) → Spec(OL) represents the cofiltered limit of morphisms

U → T indexed by C in the category of morphisms of schemes (see [He23, 7.1]).
(3) There exists a directed inverse system (Uλ → Tλ)λ∈Λ of objects of Ccar over a directed

inverse system (Spec(Kλ) → Spec(OKλ))λ∈Λ of objects of Ccar such that Kλ is a
finite field extension of K in L, that K = ⋃λ∈Λ Kλ , that Uλ → Tλ is strictly semi-
stable over Spec(Kλ) → Spec(OKλ) (4.5), and that (Uλ → Tλ)λ∈Λ forms an initial
full subcategory of Ccar.

Proof (1) For a diagram (U1 → T1) → (U0 → T0) ← (U2 → T2) in C , let T be the
scheme theoretic image of Spec(L) → T1 ×T0 T2, and let U be the intersection of
U1 ×U0 U2 with T. It is clear that T is of finite type over OK as OK is Noetherian,
that U and T are integral and affine, that Spec(L) → U is dominant, and that
Spec(L) → T factors through Spec(OL). Thus, U → T is an object of C , which
shows that C is cofiltered. For an object (U = Spec(B) → T = Spec(A)) of C , we
write OL as a filtered union of finitely generated A-subalgebras A i . Let π be a uni-
formizer of K. Notice that L = OL[1/π] = colim A i[1/π] and that HomK-Alg(B, L) =
colim HomK-Alg(B, A i[1/π]) by [EGA IV3, 8.14.2.2]. Thus, there exists an index i such
that Spec(A i[1/π]) → Spec(A i) is an object of Ccar over U → T .

(2) It follows immediately from the arguments above.
(3) Consider the category D of morphisms of Ccar,

U ′ ��

��

T ′

��
Spec(K′) �� Spec(OK′)

(4.8.1)

such that K′ is a finite field extension of K. Similarly, this category is also cofiltered with
limit of diagrams of schemes (Spec(L) → Spec(OL)) → (Spec(K) → Spec(OK)). It
suffices to show that the full subcategory of D formed by strictly semi-stable objects is
initial. For any object U → T of Ccar, by de Jong’s alteration theorem [dJ96, 6.5], there
exists a proper surjective and generically finite morphism T ′ → T of integral schemes
such that U ′ = U ×T T ′ → T ′ is strictly semi-stable over Spec(K′) → Spec(OK′) for
a finite field extension K → K′. Since L is algebraically closed, the dominant mor-
phism Spec(L) → U lifts to a dominant morphism Spec(L) → U ′ (4.6), which further
extends to a lifting Spec(OL) → T ′ of Spec(OL) → T by the valuative criterion. After
replacing T ′ by an affine open neighborhood of the image of the closed point of
Spec(OL), we obtain a strictly semi-stable object of D over (U → T) → (Spec(K) →
Spec(OK)), which completes the proof. ∎

Theorem 4.9 ([ILO14, X 3.5, 3.7]) Let K be a complete discrete valuation field with
valuation ring OK , and let (Y → X) → (U → T) be a morphism of dominant open
immersions over Spec(K) → Spec(OK) between irreducible OK-schemes of finite type
such that X → T is proper surjective. Then, there exists a commutative diagram of
dominant open immersions between irreducible OK-schemes of finite type
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(Y ′ → X′)
(β○ ,β) ��

( f ′○ , f ′)
��

(Y → X)

( f ○ , f )
��

(U ′ → T ′)
(α○ ,α)

�� (U → T)

(4.9.1)

satisfying the following conditions:

(i) We have Y ′ = β−1(Y) ∩ f ′−1(U ′), i.e., Y ′ → X′ is Cartesian over U ′ ×U Y →
T ′ ×T X (see [He23, 7.1]).

(ii) The morphism (X′ , MY ′→X′) → (T ′ , MU ′→T′) induced by ( f ′○, f ′) is a smooth
and saturated morphism of fine, saturated, and regular log schemes.

(iii) The morphisms α and β are proper surjective and generically finite, and f ′ is
projective surjective.

Proof We may assume that T is nonempty. Recall that Spec(OK) is universally
Q-resolvable [ILO14, X.3.3] by de Jong’s alteration theorem [dJ96, 6.5]. Thus, T is also
universally Q-resolvable by [ILO14, X 3.5, 3.5.2] so that we can apply [ILO14, X.3.5]
to the proper surjective morphism f and the nowhere dense closed subset X/Y . Then,
we obtain a commutative diagram of schemes

X′
β ��

f ′

��

X
f
��

T ′ α
�� T

(4.9.2)

and dense open subsets U ′ ⊆T ′, Y ′ = β−1(Y)∩ f ′−1(U ′)⊆X′ such that (X′ , MY ′→X′)
and (T ′ , MU ′→T′) are fine, saturated, and regular, that (X′ , MY ′→X′) →
(T ′ , MU ′→T′) is smooth, that α, β are proper surjective and generically finite
morphisms which map generic points to generic points, and that f ′ is projective
(since f is proper, cf. [ILO14, X 3.1.6, 3.1.7]). Since X (resp. T) is irreducible and X′
(resp. T ′) is a disjoint union of normal integral schemes (4.4), after firstly replacing
X′ by an irreducible component and then replacing T ′ by the irreducible component
under X′, we may assume that X′ and T ′ are irreducible. Then, Y ′ → U ′ is dominant
(so that f ′ is projective surjective), since it is smooth and Y ′ is nonempty [EGA IV2,
2.3.4]. We claim that α maps U ′ into U. Indeed, if there exists a point u ∈ U ′ with
α(u) ∉ U , then f ′−1(u) ∩ Y ′ = ∅. However, endowing u with the trivial log structure,
the log scheme (u,O×u ét

) is fine, saturated, and regular, and the fibered product in the
category of fine and saturated log schemes

(u,O×u ét
) ×fs
(T′ ,MU′→T′) (X

′ , MY ′→X′)(4.9.3)

is regular with underlying scheme f ′−1(u) (4.4, 4.2). Thus, f ′−1(u) ∩ Y ′ is dense in
f ′−1(u), which contradicts the assumption that f ′−1(u) ∩ Y ′ = ∅ since f ′ is surjective.
Thus, we obtain a diagram (4.9.1) satisfying all the conditions except the saturatedness
of (X′, MY ′→X′) → (T ′ , MU ′→T′).
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To make (X′, MY ′→X′) → (T ′ , MU ′→T′) saturated, we apply [ILO14, X.3.7] to
the morphism ( f ′○ , f ′). We obtain a Cartesian morphism (γ○, γ) ∶ (U ′′ → T ′′) →
(U ′ → T ′) of dominant open immersions such that (T ′′ , MU ′′→T′′) is a fine, sat-
urated, and regular log scheme, that γ is a proper surjective and generically finite
morphism which maps generic points of T ′′ to the generic point of T ′, and that the
fibered product in the category of fine and saturated log schemes

(T ′′ , MU ′′→T′′) ×fs
(T′ ,MU′→T′) (X

′ , MY ′→X′)(4.9.4)

is saturated over (T ′′ , MU ′′→T′′). The fibered product (4.9.4) is still smooth over
(T ′′ , MU ′′→T′′), and thus it is regular (4.4). Let X′′ be the underlying scheme of it, and
let Y ′′ = (X′′)tr. Then, the fibered product (4.9.4) is isomorphic to (X′′ , MY ′′→X′′)
(4.4). Thus, we obtain a commutative diagram of dominant open immersions of
schemes:

(Y ′′ → X′′) (δ
○ ,δ) ��

( f ′′○ , f ′′)
��

(Y ′ → X′)

( f ′○ , f ′)
��

(U ′′ → T ′′)
(γ○ ,γ)

�� (U ′ → T ′)

(4.9.5)

Notice that Y ′′ = U ′′ ×U ′ Y ′ and X′′ → T ′′ ×T′ X′ is finite, and that Y ′′ → X′′ is
Cartesian over U ′′ ×U ′ Y ′ → T ′′ ×T′ X′ (4.2). Thus, we see that Y ′′ → X′′ is Cartesian
over U ′′ ×U Y → T ′′ ×T X and that f ′′ is projective. Since T ′ (resp. X′) is irreducible
and T ′′ (resp. X′′) is a disjoint union of normal integral schemes (4.4), after firstly
replacing T ′′ by an irreducible component and then replacing X′′ by an irreducible
component on which the restriction of δ○ is dominant, we may assume that T ′′ and
X′′ are irreducible. In particular, δ is generically finite and so is β ○ δ (4.6), and again
Y ′′ → U ′′ is dominant so that f ′′ is projective surjective. ∎

Lemma 4.10 Let X be a scheme of finite type over a valuation ring A of height 1. Then,
the underlying topological space of X is Noetherian.

Proof Let η and s be the generic point and closed point of Spec(A), respectively.
Then, the generic fiber Xη and the special fiber Xs are both Noetherian. As a union of
Xη and Xs , the underlying topological space of X is also Noetherian [Sta23, 0053]. ∎

Proposition 4.11 With the notation in 4.7 and 4.8, let Y → X be a quasi-compact
dominant open immersion over Spec(L) → Spec(OL) such that X → Spec(OL) is
proper of finite presentation. Then, there exists a proper surjective OL-morphism of finite
presentation X′ → X, an index λ1 ∈ Λ, and a directed inverse system of open immersions
(Y ′λ → X′λ)λ≥λ1 over (Uλ → Tλ)λ≥λ1 satisfying the following conditions for each λ ≥ λ1:

(i) We have Y ′ = Y ×X X′ = limλ≥λ1 Y ′λ and X′ = limλ≥λ1 X′λ .
(ii) The log scheme (X′λ , MY ′λ→X′λ) is fine, saturated, and regular.
(iii) The morphism (X′λ , MY ′λ→X′λ) → (Tλ , MUλ→Tλ) is smooth and saturated, and

X′λ → Tλ is projective.
(iv) If, moreover, Y = Spec(L) ×Spec(OL) X, then we can require that Y ′λ = Uλ ×Tλ X′λ .
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Proof We follow closely the proof of [ALPT19, 5.2.19]. Since the underlying topo-
logical space of X is Noetherian by 4.10, each irreducible component Z of X admits
a closed subscheme structure such that Z → X is of finite presentation [Sta23, 01PH].
After replacing X by the disjoint union of its irreducible components, we may assume
that X is irreducible. Then, the generic fiber of X → Spec(OL) is also irreducible as
an open subset of X. Using [EGA IV3, 8.8.2, 8.10.5], there exists an index λ0 ∈ Λ, a
proper Tλ0 -scheme Xλ0 , and an open subscheme Yλ0 of Uλ0 ×Tλ0

Xλ0 , such that X =
Spec(OL) ×Tλ0

Xλ0 and that Y = Spec(L) ×Uλ0
Yλ0 . Let η denote the generic point of

X, ηλ0 the image of η under the morphism X → Xλ0 , Zλ0 the scheme theoretic closure
of ηλ0 in Xλ0 . Notice that Spec(OL) ×Tλ0

Zλ0 → X is a surjective finitely presented
closed immersion. After replacing X by Spec(OL) ×Tλ0

Zλ0 and replacing Xλ0 by Zλ0 ,
we may assume that X → Xλ0 is a dominant morphism of irreducible schemes. Since
Tλ0 is irreducible and L is algebraically closed, the generic fiber of f ∶ Xλ0 → Tλ0 is
geometrically irreducible. In particular, if ξλ0 (resp. ηλ0 ) denotes the generic point of
Tλ0 (resp. Xλ0 ), then η = Spec(L) ×ξλ0

ηλ0 [EGA IV2, 4.5.9]. In the situation of (iv),
we can moreover assume that Yλ0 = Uλ0 ×Tλ0

Xλ0 .
By 4.9, there exists a commutative diagram of dominant open immersions of

irreducible schemes,

(Y ′λ0
→ X′λ0

)
(β○ ,β) ��

( f ′○ , f ′)
��

(Yλ0 → Xλ0)

( f ○ , f )
��

(U ′λ0
→ T ′λ0

)
(α○ ,α)

�� (Uλ0 → Tλ0)

(4.11.1)

where Y ′λ0
→ X′λ0

is Cartesian over U ′λ0
×Uλ0

Yλ0 → T ′λ0
×Tλ0

Xλ0 , and where
(X′λ0

, MY ′λ0
→X′λ0
) → (T ′λ0

, MU ′λ0
→T′λ0
) is a smooth and saturated morphism of fine,

saturated, and regular log schemes, and where α and β are proper surjective and
generically finite, and where f ′ is projective surjective. We take a dominant morphism
γ○ ∶ Spec(L) → U ′λ0

which lifts Spec(L) → Uλ0 since L is algebraically closed and α
is generically finite, the morphism Spec(OL) → Tλ0 lifts to γ ∶ Spec(OL) → T ′λ0

by
the valuative criterion. We set Y ′ = Spec(L) ×U ′λ0

Y ′λ0
and X′ = Spec(OL) ×T′λ0

X′λ0
.

It is clear that Y ′ → X′ is Cartesian over Y → X by base change. Let ξ′λ0
(resp. η′λ0

)
be the generic point of T ′λ0

(resp. X′λ0
). Since the generic fiber of f is geometrically

irreducible, ξ′λ0
×ξλ0

ηλ0 is a single point and η′λ0
maps to it [EGA IV2, 4.5.9]. Since

Spec(L) ×ξλ0
ηλ0 is the generic point of X, we see that X′ → X is proper surjective

and of finite presentation. It remains to construct (Y ′λ → X′λ)λ≥λ1 .
After replacing T ′λ0

by an affine open neighborhood of the image of the closed
point of Spec(OL), Lemma 4.8 implies that there exists an index λ1 ≥ λ0 such that the
transition morphism (Uλ1 → Tλ1) → (Uλ0 → Tλ0) factors through (U ′λ0

→ T ′λ0
). For

each index λ ≥ λ1, consider the fibered product in the category of fine and saturated
log schemes

(X′λ , MY ′λ→X′λ) = (Tλ , MUλ→Tλ) ×fs
(T′λ0

,MU′λ0
→T′λ0

) (X′λ0
, MY ′λ0

→X′λ0
),(4.11.2)
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which is a fine, saturated, and regular log scheme smooth and saturated over
(Tλ , MUλ→Tλ) (4.2, 4.4). Moreover, we have Y ′λ = Uλ ×U ′λ0

Y ′λ0
, X′λ = Tλ ×T′λ0

X′λ0
, and

in the situation of (iv), Y ′λ = Uλ ×Tλ X′λ by base change. Therefore, (Y ′λ → X′λ)λ≥λ1

meets our requirements. ∎

5 Faltings’ main p-adic comparison theorem: the absolute case

Lemma 5.1 Let Y be a coherent scheme, and let V be a finite étale Y-scheme. Then,
there exists a finite étale surjective morphism Y ′ → Y such that Y ′ ×Y V is isomorphic
to a finite disjoint union of Y ′.

Proof If Y is connected, let y be a geometric point of Y, π1(Y , y) the fundamental
group of Y with base point y. Then, Yf ét is equivalent to the category of finite π1(Y , y)-
sets so that the lemma holds [Sta23, 0BND].

In general, for any connected component Z of Y, let (Yλ)λ∈ΛZ be the directed
inverse system of all open and closed subschemes of Y which contain Z and whose
transition morphisms are inclusions. Notice that limλ∈ΛZ Yλ is a closed subscheme of Y
with underlying topological space Z by [Sta23, 04PL] and [EGA IV3, 8.2.9]. We endow
Z with the closed subscheme structure of limλ∈ΛZ Yλ . The first paragraph shows that
there exists a finite étale surjective morphism Z′ → Z such that Z′ ×Y V = ∐r

i=1 Z′.
Using [EGA IV3, 8.8.2, 8.10.5] and [EGA IV4, 17.7.8], there exists an index λ0 ∈ ΛZ , a
finite étale surjective morphism Y ′λ0

→ Yλ0 and an isomorphism Y ′λ0
×Y V = ∐r

i=1 Y ′λ0
.

Notice that Y ′λ0
is also finite étale over Y. Since Z is an arbitrary connected component

of Y, the conclusion follows from the quasi-compactness of Y. ∎

Lemma 5.2 Let Y be a coherent scheme, and let ρ ∶ Yét → Yf ét be the morphism of
sites defined by the inclusion functor. Then, the functor ρ−1 ∶ Ỹfét → Ỹét of the associated
topoi induces an equivalence ρ−1 ∶ LocSys(Yf ét) → LocSys(Yét) between the categories
of finite locally constant abelian sheaves with quasi-inverse ρ∗.

Proof Since any finite locally constant sheaf on Yét (resp. Yf ét) is representable
by a finite étale Y-scheme by faithfully flat descent (cf. [Sta23, 03RV]), the Yoneda
embeddings induce a commutative diagram:

LocSys(Yf ét)

ρ−1

��

�� Yf ét
hf ét

��

��

Ỹfét

��
LocSys(Yét) �� Yét

h ét
�� Ỹét

(5.2.1)

where the horizontal arrows are fully faithful. In particular, ρ−1 is fully faithful. For
a finite locally constant abelian sheaf F on Yét, let V be a finite étale Y-scheme
representing F, and let hét

V (resp. hf ét
V ) be the representable sheaf associated with V

on Yét (resp. Yf ét) (see 2.4). We have F = hét
V = ρ−1hf ét

V [Sta23, 04D3]. By 5.1, hf ét
V is

finite locally constant. It is clear that the adjunction morphism hf ét
V → ρ∗hét

V is an
isomorphism, which shows that hf ét

V is an abelian sheaf. Thus, ρ−1 is essentially surjec-
tive. Moreover, the argument also shows that ρ∗ induces a functor ρ∗ ∶ LocSys(Yét) →
LocSys(Yf ét) which is a quasi-inverse of ρ−1. ∎
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Proposition 5.3 Let Y → X be a morphism of coherent schemes. With the notation
in 3.2, the functors between the categories of finite locally constant abelian sheaves

LocSys(Yf ét)
β−1

�→ LocSys(Eét
Y→X)

ψ−1

�→ LocSys(Yét)(5.3.1)

are equivalences with quasi-inverses β∗ and ψ∗, respectively.

Proof Notice that for any finite locally constant abelian sheafG on Yf ét, the canonical
morphism β−1G→ ψ∗ρ−1G, which is induced by the adjunction id → ψ∗ψ−1 and
by the identity ψ−1β−1 = ρ−1, is an isomorphism by 5.2 and the proof of [AGT16,
VI.6.3(iii)]. For a finite locally constant abelian sheaf F over Yét, we write F = ρ−1G

by 5.2. Then, F = ψ−1β−1G
∼�→ ψ−1ψ∗ρ−1G = ψ−1ψ∗F, whose inverse is the adjunc-

tion map ψ−1ψ∗F→ F since the composition of ψ−1(β−1G) → ψ−1(ψ∗ψ−1)(β−1G) =
(ψ−1ψ∗)ψ−1(β−1G) → ψ−1(β−1G) is the identity. On the other hand, for a finite
locally constant abelian sheaf L over Eét

Y→X , we claim that L→ ψ∗ψ−1L is an iso-
morphism. The problem is local on Eét

Y→X . Thus, we may assume that L is the
constant sheaf with value L, where L is a finite abelian group. Let L be the constant
sheaf with value L on Yf ét. Then, L = β−1L, and the isomorphism L = β−1L ∼�→
ψ∗ρ−1L = ψ∗ψ−1L coincides with the adjunction map L→ ψ∗ψ−1L. Therefore, ψ−1 ∶
LocSys(Eét

Y→X) → LocSys(Yét) is an equivalence with quasi-inverse ψ∗. The conclu-
sion follows from 5.2. ∎

5.4 Let f ∶ (Y ′ → X′) → (Y → X) be a morphism of morphisms between coherent
schemes over Spec(Qp) → Spec(Zp). The base change by f induces a commutative
diagram of sites (see 3.2):

Y ′ét

f ét

��

ψ′ �� Eét
Y ′→X′

fE

��
Yét

ψ �� Eét
Y→X

(5.4.1)

Let F′ be a finite locally constant abelian sheaf on Y ′ét. Remark that the sheaf B
on Eét

Y→X is flat over Z. Consider the natural morphisms in the derived category
D(B-ModEét

Y→X
),

(Rψ∗R fét∗F
′) ⊗L

Z
B (R fE∗ψ′∗F′) ⊗L

Z
B

α1�� α2 �� R fE∗(ψ′∗F′ ⊗Z B
′),(5.4.2)

where α1 is induced by the canonical morphism ψ′∗F′ → Rψ′∗F′, and α2 is the canon-
ical morphism.

5.5 We keep the notation in 5.4 and assume that X is the spectrum of an absolutely
integrally closed valuation ring A and that Y is a quasi-compact open subscheme
of X. Then, the associated topos of Eét

Y→X is local (3.7). By applying the functor
RΓ(Y → X ,−) on (5.4.2), we obtain the natural morphisms in the derived category
D(A-Mod),

RΓ(Y ′ét ,F′) ⊗L
Z

A RΓ(Eét
Y ′→X′ , ψ′∗F′) ⊗L

Z
Aα1�� α2 �� RΓ(Eét

Y ′→X′ , ψ′∗F′ ⊗Z B
′).

(5.5.1)
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Definition 5.6 ([AG20, 4.8.13, 5.7.4]) Under the assumptions in 5.4 (resp. 5.5) and
with the same notation, if α1 is an isomorphism (for instance, if the canonical
morphism ψ′∗F′ → Rψ′∗F′ is an isomorphism), then we call the canonical morphism

α2 ○ α−1
1 ∶ (Rψ∗R fét∗F

′) ⊗L
Z B �→ R fE∗(ψ′∗F′ ⊗Z B

′)(5.6.1)

(resp. α2 ○ α−1
1 ∶ RΓ(Y ′ét ,F

′) ⊗L
Z A�→ RΓ(Eét

Y ′→X′ , ψ′∗F′ ⊗Z B
′))(5.6.2)

the relative (resp. absolute) Faltings’ comparison morphism associated with
f ∶ (Y ′ → X′) → (Y → X) and F′. In this case, we say that the relative (resp.
absolute) Faltings’ comparison morphism exists.

Theorem 5.7 [Ach17, Corollary 6.9], cf. [AG20, 4.4.2] Let OK be a strictly Henselian
discrete valuation ring with fraction field K of characteristic 0 and residue field of
characteristic p. We fix an algebraic closure K of K. Let X be an OK-scheme of finite
type, let F be a finite locally constant abelian sheaf on XK ,ét, and let ψ ∶ XK ,ét → Eét

XK→X
be the morphism of sites defined in 3.2. Then, the canonical morphism ψ∗F→ Rψ∗F is
an isomorphism.

Corollary 5.8 Let OK be a strictly Henselian discrete valuation ring with fraction field
K of characteristic 0 and residue field of characteristic p. We fix an algebraic closure K
of K. Let X be a coherent OK-scheme, Y = Spec(K) ×Spec(OK) X, let F be a finite locally
constant abelian sheaf on Yét, and let ψ ∶ Yét → Eét

Y→X be the morphism of sites defined
in 3.2. Then, the canonical morphism ψ∗F→ Rψ∗F is an isomorphism.

We emphasize that we don’t need any finiteness condition of X over OK in 5.8. In
fact, one can replace OK by Zp without loss of generality, where Zp is the integral
closure of Zp in an algebraic closure of Qp . We keep working over OK only for the
continuation of our usage of notation.

Proof of 5.8 We take a directed inverse system (Xλ → Spec(OKλ))λ∈Λ of mor-
phisms of finite type of schemes by Noetherian approximation, such that Kλ is a finite
field extension of K and K = ⋃λ∈Λ Kλ , and that the transition morphisms Xλ′ → Xλ
are affine and X = limλ∈Λ Xλ (cf. [Sta23, 09MV]). For each λ ∈ Λ, we set Yλ =
Spec(K) ×Spec(OKλ ) Xλ . Notice that Y = lim Yλ . Then, there exists an index λ0 ∈ Λ and
a finite locally constant abelian sheaf Fλ0 on Yλ0 ,ét such that F is the pullback of Fλ0 by
Yét → Yλ0 ,ét (cf. [Sta23, 09YU]). LetFλ be the pullback ofFλ0 by Yλ ,ét → Yλ0 ,ét for each
λ ≥ λ0. Notice that OKλ also satisfies the conditions in 5.7. Let ψλ ∶ Yλ ,ét → Eét

Yλ→Xλ
be

the morphism of sites defined in 3.2, and let φλ ∶ Eét
Y→X → Eét

Yλ→Xλ
be the morphism of

sites defined by the transition morphism. Then, we have Rqψλ∗Fλ = 0 for each integer
q > 0 by 5.7, and moreover,

Rqψ∗F = colim
λ≥λ0

φ−1
λ Rqψλ∗Fλ = 0(5.8.1)

by [He23, 7.12], [SGA 4II , VII.5.6], and [SGA 4II , VI.8.7.3] whose conditions are
satisfied because each object in each concerned site is quasi-compact. ∎

Lemma 5.9 With the notation in 5.4, let F be a finite locally constant abelian sheaf
on Yét. Then, the canonical morphism f −1

E ψ∗F→ ψ′∗ f −1
ét F is an isomorphism.
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Proof The base change morphism f −1
E ψ∗F→ ψ′∗ f −1

ét F is the composition of the
adjunction morphisms [SGA 4III , XVII.2.1.3]

f −1
E ψ∗F→ ψ′∗ψ′−1( f −1

E ψ∗F) = ψ′∗ f −1
ét (ψ−1ψ∗F) → ψ′∗ f −1

ét F(5.9.1)

which are both isomorphisms by 5.3. ∎
5.10 Let K be a complete discrete valuation field of characteristic 0 with valuation
ring OK whose residue field k is algebraically closed (a condition required by [AG20,
4.1.3, 5.1.3]) of characteristic p > 0, and let K be an algebraic closure of K, OK the
integral closure of OK in K, η = Spec(K), η = Spec(K), S = Spec(OK), S = Spec(OK),
s = Spec(k). Remark that K is a pre-perfectoid field with valuation ring OK so we are
also in the situation of 3.9.

5.11 With the notation in 5.10, let X be an S-scheme, and let Y be an open subscheme
of the generic fiber Xη . We simply denote by MX the compactifying log structure
MXη→X (4.3). Following [AGT16, III.4.7], we say that Y → X is adequate over η → S
if the following conditions are satisfied:

(i) X is of finite type over S.
(ii) Any point of the special fiber Xs admits an étale neighborhood U such that

Uη → η is smooth and that Uη/Y is the support of a strict normal crossings
divisor on Uη .

(iii) (X , MY→X) is a fine log scheme and the structure morphism (X , MY→X) →
(S , MS) is smooth and saturated.

In this case, (X , MY→X) → (S , MS) is adequate in the sense of [AGT16, III.4.7]. We
remark that for any adequate (S , MS)-log scheme (X , M ), X tr → X is adequate over
η → S and (X , M ) = (X , MX tr→X) (see 4.4 and 4.5). Note that if Y → X is semi-stable
over η → S then it is adequate (see 4.5).

5.12 We recall the statement of Faltings’ main p-adic comparison theorem following
Abbes and Gros [AG20]. We take the notation and assumptions in 5.10. Firstly, recall
that for any adequate open immersion of schemes X○ → X over η → S and any finite
locally constant abelian sheaf F on X○η ,ét, the canonical morphism ψ∗F→ Rψ∗F is
an isomorphism, where ψ ∶ X○η ,ét → Eét

X○η→X is the morphism of sites defined in 3.2
[AG20, 4.4.2].

Let (X′▷ → X′) → (X○ → X) be a morphism of adequate open immersions of
schemes over η → S such that X′ → X is projective and that the induced mor-
phism (X′, MX′▷→X′) → (X , MX○→X) is smooth and saturated. Let Y ′ = η ×η X′▷,
Y = η ×η X○, f ∶ (Y ′ → X′) → (Y → X) be the natural morphism, and let F′ be a
finite locally constant abelian sheaf on Y ′ét. By the first paragraph, we have the relative
Faltings’ comparison morphism associated with f and F′ (5.6.1),

(Rψ∗R fét∗F
′) ⊗L

Z B �→ R fE∗(ψ′∗F′ ⊗Z B
′).(5.12.1)

Remark that under our assumption, the sheaf Rq fét∗F
′ on Yét is finite locally constant

for each integer q [AG20, 2.2.25].

Theorem 5.13 [Fal02, Theorem 6, page 266], [AG20, 5.7.4] Under the assumptions in
5.12 and with the same notation, the relative Faltings’ comparison morphism associated
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with f andF′ is an almost isomorphism in the derived category D(OK-ModEét
Y→X
) [He23,

5.7], and it induces an almost isomorphism

(ψ∗Rq fét∗F
′) ⊗Z B �→ Rq fE∗(ψ′∗F′ ⊗Z B

′)(5.13.1)

of OK-modules for each integer q.

Proposition 5.14 With the notation in 5.10, let A be an absolutely integrally closed
valuation ring of height 1 extension of OK , let X be a proper A-scheme of finite presen-
tation, Y = Spec(A[1/p]) ×Spec(A) X, and let F be a finite locally constant abelian sheaf
on Yét. Then, there exists a proper surjective morphism X′ → X of finite presentation
such that the relative and absolute Faltings’ comparison morphisms associated with
f ′ ∶ (Y ′ → X′) → (Spec(A[1/p]) → Spec(A)) and F′ (which exist by 5.8) are almost
isomorphisms, where Y ′ = Y ×X X′ and F′ is the pullback of F on Y ′ét.

Proof Since the underlying topological space of X is Noetherian by 4.10, each
irreducible component Z of X admits a closed subscheme structure such that Z → X
is of finite presentation [Sta23, 01PH]. After replacing X by the disjoint union of
its irreducible components, we may assume that X is irreducible. If Y is empty,
then we take X′ = X and thus the relative (resp. absolute) Faltings’ comparison
morphism associated with f ′ and F′ is an isomorphism between zero objects. If Y
is not empty, then we are in the situation of 4.11(iv) by taking OL = A. With the
notation in 4.11, we check that the morphism X′ → X meets our requirements. We set
ηλ = Spec(Kλ), Sλ = Spec(OKλ), Tλ ,ηλ = η ×ηλ Uλ , X′λ ,ηλ

= η ×ηλ Y ′λ , and denote by
f ′λ ∶ (X′λ ,ηλ

→ X′λ) → (Tλ ,ηλ → Tλ) the natural morphism. We obtain a commutative
diagram:

Eét
Y ′→X′

gλ ,E ��

f ′E

��

Eét
X′λ ,ηλ

→X′λ

f ′λ ,E

��

Y ′ét
gλ ,ét ��

f ′ét

��

ψ′
�������������������

X′λ ,ηλ ,ét

f ′λ ,ét
��

ψ′λ
�����������

Spec(A[1/p])ét
hλ ,ét ��

ψ

		���
���

���
���

��
Tλ ,ηλ ,ét

ψλ



�
��

��
��

��

Eét
Spec(A[1/p])→Spec(A)

hλ ,E �� Eét
Tλ ,ηλ

→Tλ

(5.14.1)

Firstly, notice that the site Y ′ét (resp. Spec(A[1/p])ét) is the limit of the sites X′λ ,ηλ ,ét
(resp. Tλ ,ηλ ,ét) and the site Eét

Y ′→X′ (resp. Eét
Spec(A[1/p])→Spec(A)) is the limit of the sites

Eét
X′λ ,ηλ

→X′λ
(resp. Eét

Tλ ,ηλ
→Tλ

) ([SGA 4II , VII.5.6] and [He23, 7.12]). There exists an index
λ0 ∈ Λ and a finite locally constant abelian sheaf F′λ0

on X′λ0 ,ηλ0 ,ét such that F′ is
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the pullback of F′λ0
by Y ′ét → X′λ0 ,ηλ0 ,ét (cf. [Sta23, 09YU]). Let F′λ be the pullback of

F′λ0
by X′λ ,ηλ ,ét → X′λ0 ,ηλ0 ,ét for each λ ≥ λ0. We also have B

′ = colim g−1
λ ,EB

′
(resp.

B = colim h−1
λ ,EB) by [He23, 7.12]. According to [SGA 4II , VI.8.7.3], whose conditions

are satisfied because each object in each concerned site is quasi-compact, there are
canonical isomorphisms for each integer q,

(Rq(ψ ○ f ′ét)∗F′) ⊗Z B
∼�→ colim h−1

λ ,E((Rq(ψλ ○ f ′λ ,ét)∗F′λ) ⊗Z B),(5.14.2)

Rq f ′E∗(ψ′∗F′ ⊗Z B
′) ∼�→ colim h−1

λ ,ERq f ′λ ,E∗(ψ′λ∗F′λ ⊗Z B
′).(5.14.3)

On the other hand, (X′λ , MX′λ) → (Tλ , MTλ) is a smooth and saturated morphism
of adequate (Sλ , MSλ)-log schemes with X′λ → Tλ projective for each λ ∈ Λ by con-
struction. Thus, we are in the situation of 5.13, which implies that the relative Faltings’
comparison morphism associated with f ′λ and F′λ ,

(Rq(ψλ ○ f ′λ ,ét)∗F′λ) ⊗Z B �→ Rq f ′λ ,E∗(ψ′λ∗F′λ ⊗Z B
′)(5.14.4)

is an almost isomorphism for each λ ≥ λ0. Combining with (5.14.2) and (5.14.3), we
see that the relative Faltings’ comparison morphism associated with f ′ and F′,

Rψ∗(R f ′ét∗F
′) ⊗L

Z B �→ R f ′E∗(ψ′∗F′ ⊗Z B
′),(5.14.5)

is an almost isomorphism (and thus so is the absolute one). ∎

Corollary 5.15 Under the assumptions in 5.14 and with the same notation, there
exists a proper hypercovering X● → X of coherent schemes [Sta23, 0DHI] such that
for each degree n, the relative and absolute Faltings’ comparison morphisms associated
with fn ∶ (Yn → Xn) → (Spec(A[1/p]) → Spec(A)) and Fn (which exist by 5.8) are
almost isomorphisms, where Yn = Y ×X Xn and Fn is the pullback of F by the natural
morphism Yn ,ét → Yét. In particular, Y● → Y is a proper hypercovering and XY●

● → XY

is a hypercovering in Iη→S .

Proof Let C be the category of proper A-schemes of finite presentation endowed
with the pretopology formed by families of morphisms { f i ∶ X i → X}i∈I with I finite
and X = ⋃i∈I f i(X i). Consider the functor u+ ∶ C → ISpec(A[1/p])→Spec(A) sending X
to XY , where Y = Spec(A[1/p]) ×Spec(A) X. It is well-defined by [He23, 3.19(4)] and
commutes with fibered products by [He23, 3.21] and is continuous by [He23, 3.15].
Proposition 5.14 allows us to take a hypercovering X● → X in C meeting our require-
ment by [Sta23, 094K and 0DB1]. We see that Y● → Y is a proper hypercovering and
that XY●

● → XY is a hypercovering in Iη→S by the properties of u+ [Sta23, 0DAY]. ∎

Lemma 5.16 Let Zp be the integral closure of Zp in an algebraic closure of Qp, let
A be a Zp-algebra which is an absolutely integrally closed valuation ring, let X be
a proper A-scheme of finite presentation, Y = Spec(A[1/p]) ×Spec(A) X, and let F be
a finite locally constant abelian sheaf on Yét. Let A′ = ((A/ ∩n>0 pn A)√pA)∧ (p-adic
completion), X′ = XA′ , Y ′ = YA′ , F′ the pullback of F on Y ′ét. Then, the following
statements are equivalent:
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(1) The absolute Faltings’ comparison morphism associated with f ∶ (Y → X) →
(Spec(A[1/p]) → Spec(A)) and F (which exists by 5.8) is an almost isomorphism.

(2) The absolute Faltings’ comparison morphism associated with f ′ ∶ (Y ′ → X′) →
(Spec(A′[1/p]) → Spec(A′)) and F′ (which exists by 5.8) is an almost isomor-
phism.

Proof If p is zero (resp. invertible) in A, then the absolute Faltings’ comparison
morphisms are both isomorphisms between zero objects, since Y and Y ′ are empty
(resp. the abelian sheaves F and F′ are zero after inverting p). Thus, we may assume
that p is a nonzero element of the maximal ideal of A. Notice that ∩n>0 pn A is the
maximal prime ideal of A not containing p and that

√
pA is the minimal prime ideal

of A containing p (2.1). Thus, (A/ ∩n>0 pn A)√pA is an absolutely integrally closed
valuation ring of height 1 extension of Zp (2.1) and thus so is its p-adic completion A′.

We denote by u ∶ (Y ′ → X′) → (Y → X) the natural morphism. We have
F′ = u−1

ét F. The natural morphisms in (5.5.1) induce a commutative diagram:

RΓ(Yét ,F) ⊗L
Z

A

γ1

��

RΓ(Eét
Y→X , ψ∗F) ⊗L

Z
Aα1�� α2 ��

γ2

��

RΓ(Eét
Y→X , ψ∗F⊗Z B)

γ3

��

RΓ(Y ′ét ,F′) ⊗L
Z

A′ RΓ(Eét
Y ′→X′ , ψ′∗F′) ⊗L

Z
A′

α′1�� α′2 �� RΓ(Eét
Y ′→X′ , ψ′∗F′ ⊗Z B

′)

(5.16.1)

where γ1 is induced by the canonical morphism F→ Ruét∗u−1
ét F, and γ2 (resp. γ3)

is induced by the composition of ψ∗F→ RuE∗u−1
E ψ∗F→ RuE∗ψ′∗u−1

ét F (resp. and by
the canonical morphism B → RuE∗B

′
). Since α1 and α′1 are isomorphisms by 5.8, it

suffices to show that γ1 and γ3 are almost isomorphisms.
Since A/ ∩n>0 pn A→ (A/ ∩n>0 pn A)√pA is injective whose cokernel is killed by

√
pA [He23, 4.7], the morphism A→ A′ induces an almost isomorphism A/pn A→

A′/pn A′ for each n. Then, for any torsion abelian group M, the natural morphism
M ⊗Z A→ M ⊗Z A′ is an almost isomorphism. Therefore, γ1 is an almost isomor-
phism by the proper base change theorem over the strictly Henselian local ring A[1/p]
[SGA 4III , XII 5.5, 5.4]. For γ3, it suffices to show that the canonical morphism
ψ∗F⊗B → RuE∗(ψ′∗F′ ⊗B

′) is an almost isomorphism. The problem is local on
Eét

Y→X , thus we may assume that ψ∗F is the constant sheaf with value Z/pnZ by 5.3.
Then, ψ′∗F′ is also the constant sheaf with valueZ/pnZ by 5.9. Thus, it remains to show
that B/pnB → RuE∗(B

′/pnB
′) is an almost isomorphism. Consider the following

commutative diagram of ringed sites (see 3.6):

(IY ′→X′Y′ , O ′)
ε ��

uI

��

(Eét
Y ′→X′ , B

′)

uE

��
(IY→XY , O) ε �� (Eét

Y→X , B)

(5.16.2)

By the cohomological descent for Faltings ringed topos (3.9), it remains to show
that O/pnO → RuE∗(O ′/pnO ′) is an almost isomorphism. Let W be an object of
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IY→XY such that W is the spectrum of a Zp-algebra R which is almost pre-perfectoid
[He23, 5.19]. Since the almost isomorphisms R/pn → (R ⊗A A′)/pn (n ≥ 1) induces
an almost isomorphism of the p-adic completions R̂ → R⊗̂AA′, the Zp-algebra R ⊗A
A′ is still almost pre-perfectoid [He23, 5.19]. The pullback of W in IY ′→X′Y′ is the
spectrum of the integral closure R′ of R ⊗A A′ in R ⊗A A′[1/p] [He23, (3.21.1)]. Since
R ⊗A A′ is almost pre-perfectoid, R′ is also almost pre-perfectoid and the morphism
(R ⊗A A′)/pn → R′/pn is an almost isomorphism by [He23, 5.30]. Recall that such W
forms a topological generating family of IY→XY [He23, 8.10]. Therefore, the morphism
O/pnO → RuE∗(O ′/pnO ′) is an almost isomorphism by [He23, 8.11]. ∎

Theorem 5.17 Let Zp be the integral closure of Zp in an algebraic closure of Qp, let A
be a Zp-algebra which is an absolutely integrally closed valuation ring, let X be a proper
A-scheme of finite presentation, Y = Spec(A[1/p]) ×Spec(A) X, and let F be a finite
locally constant abelian sheaf on Yét. Then, the absolute Faltings’ comparison morphism
associated with f ∶ (Y → X) → (Spec(A[1/p]) → Spec(A)) andF (5.6.2) (which exists
by 5.8),

RΓ(Yét ,F) ⊗L
Z A�→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(5.17.1)

is an almost isomorphism in D(Zp-Mod) [He23, 5.7].

Proof Let K be the p-adic completion of the maximal unramified extension of Qp .
By 5.16, we may assume that A is a valuation ring of height 1 extension of OK . Let
X● → X be the proper hypercovering of coherent schemes constructed in 5.15. For
each degree n, the canonical morphisms (5.6.2),

RΓ(Yn ,ét ,Fn) ⊗L
Z A←� RΓ(Eét

Yn→Xn
, ψn∗Fn) ⊗L

Z A�→ RΓ(Eét
Yn→Xn

, ψn∗Fn ⊗Z B)
(5.17.2)

are, respectively, an isomorphism and an almost isomorphism, where Fn is the pull-
back of F by the natural morphism Yn ,ét → Yét. Consider the commutative diagram:

RΓ(Yét ,F) ⊗L
Z A

��

RΓ(Eét
Y→X , ψ∗F) ⊗L

Z A
α2 ��

��

α1�� RΓ(Eét
Y→X , ψ∗F⊗Z B)

��
RΓ(Y●,ét ,F●) ⊗L

Z A RΓ(Eét
Y●→X● , ψ●∗F●) ⊗L

Z A
α1●�� α2● �� RΓ(Eét

Y●→X● , ψ●∗F● ⊗Z B●)

(5.17.3)

where F● = (Fn)[n]∈Ob(Δ) (see [He23, 6.5] for the notation). By the functorial spectral
sequence of simplicial sites [Sta23, 09WJ], we deduce from (5.17.2) that α1● is an
isomorphism and α2● is an almost isomorphism. Since α1 is an isomorphism by 5.8,
it remains to show that the left vertical arrow is an isomorphism and the right vertical
arrow is an almost isomorphism.

We denote by b ∶ Eét
Y●→X● → Eét

Y→X the augmentation of simplicial site and
by bn ∶ Eét

Yn→Xn
→ Eét

Y→X the natural morphism of sites. Notice that b−1ψ∗F =
(b−1

n ψ∗F)[n]∈Ob(Δ) = (ψn∗Fn)[n]∈Ob(Δ) = ψ●∗F● by 5.9 [Sta23, 0D70]. Since XY●
● →

XY forms a hypercovering in Iη→S , the right vertical arrow is an almost isomorphism
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by 5.3 and 3.10. Finally, the left vertical arrow is an isomorphism by the cohomological
descent for étale cohomology [Sta23, 0DHL]. ∎

6 Faltings’ main p-adic comparison theorem: the relative case

6.1 Let Y → X be a morphism of coherent schemes such that Y → XY is an open
immersion. Recall that there is a natural commutative diagram of sites (see 3.6):

(Schcoh
/Y )v

a ��

Ψ
��

Yét

ψ

��

ρ

���
��

��
��

��

IY→XY
ε �� Eét

Y→X
β �� Yf ét

(6.1.1)

Lemma 6.2 With the notation in 6.1, for any finite locally constant abelian sheaf F on
Yét, the canonical morphism ε−1ψ∗F→ Ψ∗a−1F is an isomorphism.

Proof The base change morphism ε−1ψ∗F→ Ψ∗a−1F is the composition of the
adjunction morphisms [SGA 4III , XVII.2.1.3]

ε−1ψ∗F→ Ψ∗Ψ−1(ε−1ψ∗F) = Ψ∗a−1(ψ−1ψ∗F) → Ψ∗a−1F(6.2.1)

which are both isomorphisms by 3.8(2) and 5.3. ∎

6.3 We fix an algebraic closure Qp of Qp and we denote by Zp the integral closure of
Zp in Qp . We set η = Spec(Qp), η = Spec(Qp), S = Spec(Zp), S = Spec(Zp). Remark
that Qp is a pre-perfectoid field with valuation ring Zp so we are also in the situation
of 3.9. Let f ∶ (Y ′ → X′) → (Y → X) be a Cartesian morphism of morphisms of
coherent schemes with a Cartesian morphism (Y → XY) → (η → S) (then, Y ′ → X′Y

′

is Cartesian over η → S by [He23, 3.19(4)]). Thus, XY and X′Y
′

are objects of Iη→S .
Consider the following commutative diagram of sites associated with f (see 3.6):

Y ′ét

f ét

��

ψ′

��
(Schcoh

/Y ′ )v
a′�� Ψ′ ��

fv

��

IY ′→X′Y′
ε′ ��

fI

��

Eét
Y ′→X′

fE

��
Yét

ψ

��(Schcoh
/Y )v

a�� Ψ �� IY→XY
ε �� Eét

Y→X

(6.3.1)

6.4 Following 6.3, let g ∶ (Ỹ → X̃) → (Y → X) be a morphism of coherent schemes
such that Ỹ→ X̃ Ỹ is also Cartesian over η→ S. We denote by g′ ∶ (Ỹ ′→ X̃′)→
(Y ′ → X′) the base change of g by f, and denote by f̃ ∶ (Ỹ ′ → X̃′) → (Ỹ → X̃) the
natural morphism which is Cartesian by base change. Thus, X̃ Ỹ and X̃′

Ỹ ′
are also

objects of Iη→S . We write the diagram (6.3.1) associated with f̃ by equipping all labels
with tildes.
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Lemma 6.5 With the notation in 6.3 and 6.4, let F′ be a finite locally constant abelian
sheaf on Y ′ét and we set F ′ = Ψ′∗a′−1F′. Let X̃ be an object of IY→XY , Ỹ = η ×S X̃,
F̃′ = g′−1

ét F′, q an integer.

(1) The sheaf Rq fI∗F
′ on IY→XY is canonically isomorphic to the sheaf associated with

the presheaf X̃ ↦ Hq
ét(Ỹ ′ , F̃′).

(2) The sheaf Rq fI∗(F ′ ⊗Z O ′) on IY→XY is canonically almost isomorphic to the sheaf
associated with the presheaf X̃ ↦ Hq(Eét

Ỹ ′→X̃′ , ψ̃′∗F̃′ ⊗Z B
′).

(3) The canonical morphism (Rq fI∗F
′) ⊗Z O → (Rq fI∗F

′ ⊗Z O ′) is compati-
ble with the canonical morphisms Hq

ét(Ỹ ′ , F̃′) ⊗Z R α1←� Hq(Eét
Ỹ ′→X̃′ , ψ̃′∗F̃′) ⊗Z

R α2�→ Hq(Eét
Ỹ ′→X̃′ , ψ̃′∗F̃′ ⊗Z B

′), where R =B(Ỹ → X̃) (cf. (5.5.1)).

Proof Let F̃ ′ be the restriction of F ′ on I
Ỹ ′→X̃′ Ỹ

′ . We have F̃ ′ = Ψ̃′∗ ã′−1
F̃′. We set

L̃′ = ψ̃′∗F̃′ which is a finite locally constant abelian sheaf on Eét
Ỹ ′→X̃′ by 5.3. Notice that

the canonical morphisms ψ̃′−1
L̃′ → F̃′ and ε̃′−1

L̃′ → F̃ ′ are isomorphisms by 5.3 and
6.2, respectively.

(1) It follows from the canonical isomorphisms

Hq(I
Ỹ ′→X̃′ Ỹ

′ , ε̃′−1
L̃′)

γ1
�→ Hq

v (Ỹ ′ , Ψ̃′−1 ε̃′−1
L̃′) = Hq

v (Ỹ ′ , ã′−1ψ̃′−1
L̃′)

γ2
←� Hq

ét(Ỹ ′ , ψ̃′−1
L̃′),

(6.5.1)

where γ1 is induced by the canonical isomorphism ε̃′−1
L̃′

∼�→ RΨ̃′∗Ψ̃′
−1

ε̃′−1
L̃′

(3.8(2)), and γ2 is induced by the canonical isomorphism ψ̃′−1
L̃′ → Rã′∗ ã′−1ψ̃′−1

L̃′

(3.4).
(2) It follows from the canonical almost isomorphism

γ3 ∶ Hq(Eét
Ỹ ′→X̃′ , L̃

′ ⊗Z B
′) �→ Hq(I

Ỹ ′→X̃′ Ỹ
′ , ε̃′−1

L̃′ ⊗O ′),(6.5.2)

which is induced by the canonical almost isomorphism L̃′⊗Z B
′→Rε̃′∗(ε̃′

−1
L̃′⊗O ′)

(3.9).
(3) Consider the following diagram:

Hq
ét(Ỹ ′ , ψ̃′−1

L̃′) ⊗ R

γ2⊗idR ≀

��

Hq(Eét
Ỹ′→X̃′ , L̃

′) ⊗ R
α1�� α2 ��

��

Hq(Eét
Ỹ′→X̃′ , L̃

′ ⊗Z B
′

)

γ3

��
Hq

v (Ỹ ′ , Ψ̃′
−1 ε̃′−1

L̃′) ⊗ R Hq(I
Ỹ′→X̃′ Ỹ

′ , ε̃′−1
L̃′) ⊗ R∼

γ1⊗idR

�� �� Hq(I
Ỹ′→X̃′ Ỹ

′ , ε̃′−1
L̃′ ⊗O ′)

(6.5.3)

where the unlabeled vertical arrow is induced by the canonical morphism
L̃′ → Rε̃′∗ ε̃′−1

L̃′, and the unlabeled horizontal arrow is the canonical morphism
which induces (Rq fI∗F

′) ⊗Z O → Rq fI∗(F ′ ⊗Z O ′) on IY→XY by sheafification. It
is clear that the diagram (6.5.3) is commutative, which completes the proof. ∎
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6.6 We remark that 6.5 gives a new definition of the relative (resp. absolute) Faltings’
comparison morphism without using 5.8. Following 6.3, let F′ be a finite locally con-
stant abelian sheaf on Y ′ét and we set F ′ = Ψ′∗a′−1F′. We setL′ = ψ′∗F′, which is a finite
locally constant abelian sheaf on Eét

Y ′→X′ by 5.3. Remark that the canonical morphisms
ψ′−1L′ → F′ and ε′−1L′ →F ′ are isomorphisms by 5.3 and 6.2, respectively. We also
remark that B, O are flat over Z. The canonical morphisms in the derived category
D(B-ModEét

Y→X
) (cf. (5.4.2)),

(Rψ∗R fét∗ψ′−1L′) ⊗L
Z

B (R fE∗L
′) ⊗L

Z
B

α1�� α2 �� R fE∗(L′ ⊗Z B
′),(6.6.1)

fit into the following commutative diagram:

Rψ∗(R fét∗ψ′−1L′) ⊗L
Z

B

≀α3

��

(R fE∗L
′) ⊗L

Z
B

α1�� α2 ��

��

R fE∗(L′ ⊗Z B
′
)

α4

��
Rψ∗(Ra∗R fv∗Ψ′−1ε′−1L′) ⊗L

Z
B Rε∗(R fI∗ε′−1L′) ⊗L

Z
B

∼

α5
��

α6
�� Rε∗R fI∗(ε′−1L′ ⊗Z O′)

(6.6.2)

(1) The morphism α3 is induced by the canonical isomorphism ψ′−1L′ →
Ra′∗a′−1(ψ′−1L′) by 3.4, and thus α3 is an isomorphism.

(2) The morphism α5 is induced by the canonical isomorphism ε′−1L′ →
RΨ′∗Ψ′−1ε′−1L′ by 3.8(2), and thus α5 is an isomorphism.

(3) The unlabeled arrow is induced by the canonical morphism L→ Rε′∗ε′−1L.
(4) The morphism α4 is induced by the canonical almost isomorphism L′ ⊗Z B

′ →
Rε′∗(ε′−1L′ ⊗Z O ′) by 3.9, and thus α4 is an almost isomorphism.

(5) The morphism α6 is the composition of

Rε∗(R fI∗ε′−1L′) ⊗L
Z B �→ Rε∗((R fI∗ε′−1L′) ⊗L

Z O)(6.6.3)

with Rε∗((R fI∗ε′−1L′) ⊗L
Z O) �→ Rε∗R fI∗(ε′−1L′ ⊗Z O ′).(6.6.4)

In conclusion, the arrows α3, α5, α6 and α4 induce an arrow

α−1
4 ○ α6 ○ α−1

5 ○ α3 ∶ Rψ∗(R fét∗F
′) ⊗L

Z B �→ R fE∗(ψ′∗F′ ⊗Z B
′)(6.6.5)

in the derived category of almost Zp-modules on Eét
Y→X [He23, 5.7]. Remark that we

don’t assume that α1 is an isomorphism here. We also call (6.6.5) the relative Faltings’
comparison morphism. Indeed, if α1 is an isomorphism, then the relative Faltings’
comparison morphism (5.6.1) induces (6.6.5) in D(Zp

al
-Mod) (the derived category

of almost Zp-modules, see [He23, 5.7]) due to the commutativity of the diagram
(6.6.2).

If X is the spectrum of an absolutely integrally closed valuation ring A and if
Y = η ×S X, then applying the functor RΓ(Y → X ,−) on (6.6.2) we obtain the natural
morphisms in the derived category D(A-Mod) by 3.7 making the following diagram
commutative.
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RΓ(Y ′ét , ψ′−1
L
′) ⊗L

Z
A

≀α3

��

RΓ(Eét
Y ′→X′ , L

′) ⊗L
Z

A
α1�� α2 ��

��

RΓ(Eét
Y ′→X′ , L

′ ⊗Z B
′)

α4

��
RΓ((Schcoh

/Y ′)v , Ψ′−1 ε′−1
L
′) ⊗L

Z
A RΓ(IY ′→X′Y′ , ε′−1

L
′) ⊗L

Z
A∼

α5

��
α6

�� RΓ(IY ′→X′Y′ , ε′−1
L
′ ⊗Z O′)

(6.6.6)

The arrows α3, α5, α6 , and α4 induce an arrow

α−1
4 ○ α6 ○ α−1

5 ○ α3 ∶ RΓ(Y ′ét ,F
′) ⊗L

Z A�→ RΓ(Eét
Y ′→X′ , ψ′∗F′ ⊗Z B

′)(6.6.7)

in the derived category D(Zp
al

-Mod) of almost Zp-modules [He23, 5.7]. We also call
(6.6.7) the absolute Faltings’ comparison morphism.

Lemma 6.7 With the notation in 6.3, let F′ be a finite locally constant abelian sheaf
on Y ′ét and we set F ′ = Ψ′∗a′−1F′. Assume that X′ → X is proper of finite presentation.
Then, the canonical morphism

(R fI∗F
′) ⊗L

Z O �→ R fI∗(F ′ ⊗Z O ′)(6.7.1)

is an almost isomorphism.

Proof Following 6.5, consider the following presheaves on IY→XY for each integer q:

H
q
1 ∶ X̃ �→ Hq

ét(Ỹ ′ , F̃′) ⊗Z B(Ỹ → X̃),(6.7.2)

H
q
2 ∶ X̃ �→ Hq(Eét

Ỹ ′→X̃′ , ψ̃′∗F̃′) ⊗Z B(Ỹ → X̃),(6.7.3)

H
q
3 ∶ X̃ �→ Hq(Eét

Ỹ ′→X̃′ , ψ̃′∗F̃′ ⊗Z B
′).(6.7.4)

They satisfy the limit-preserving condition [He23, 3.25(ii)] by [He23, 7.12], [SGA 4II ,
VII.5.6], and [SGA 4II , VI 8.5.9, 8.7.3]. Moreover, if X̃ = Spec(A), where A is an
absolutely integrally closed valuation ring with p nonzero in A, then the canonical
morphisms

H
q
1 (Spec(A)) ←H

q
2(Spec(A)) →H

q
3(Spec(A))(6.7.5)

are, respectively, an isomorphism and an almost isomorphism by 5.17. Thus, the
canonical morphisms H

q
1 ←H

q
2 →H

q
3 induce an isomorphism and an almost iso-

morphism of their sheafifications by [He23, 3.25]. The conclusion follows from 6.5. ∎

Lemma 6.8 Let Y → X be an open immersion of coherent schemes, Y ′ → Y a finite
morphism of finite presentation. Then, there exists a finite morphism X′ → X of finite
presentation whose base change by Y → X is Y ′ → Y.

Proof Firstly, assume that X is Noetherian. We have Y ′ = Y ×X XY by [He23,
3.19(4)]. We write XY = SpecX(A) where A is an integral quasi-coherent OX-algebra
on X, and we write A as a filtered colimit of its finite quasi-coherent OX-subalgebras
A = colimAα [Sta23, 0817]. Let Bα be the restriction of Aα to Y. Then, B = colimBα
is a filtered colimit of finite quasi-coherent OY -algebras with injective transition
morphisms. Since Y ′ = SpecY(B) is finite over Y, there exists an index α0 such that
Y ′ = SpecY(Bα0). Therefore, X′ = SpecX(Aα0)meets our requirements.
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In general, we write X as a cofiltered limit of coherent schemes of finite type over
Z with affine transition morphisms X = limλ∈Λ Xλ [Sta23, 01ZA]. Since Y → X is an
open immersion of finite presentation, using [EGA IV3, 8.8.2, 8.10.5] there exists
an index λ0 ∈ Λ, an open immersion Yλ0 → Xλ0 and a finite morphism Y ′λ0

→ Yλ0

such that the base change of the morphisms Y ′λ0
→ Yλ0 → Xλ0 by X → Xλ0 are the

morphisms Y ′ → Y → X. By the first paragraph, there exists a finite morphism
X′λ0
→ Xλ0 of finite presentation such that Y ′λ0

= Yλ0 ×Xλ0
X′λ0

. We see that the base
change X′ → X of X′λ0

→ Xλ0 by X → Xλ0 meets our requirements. ∎

Lemma 6.9 With the notation in 6.3, let g ∶ Y ′′ → Y ′ be a finite morphism of finite
presentation, let F′′ be a finite locally constant abelian sheaf on Y ′′ét and we set
F ′ = Ψ′∗a′−1(gét∗F

′′). Assume that X′ → X is proper of finite presentation. Then, the
canonical morphism

(R fI∗F
′) ⊗L

Z O �→ R fI∗(F ′ ⊗Z O ′)(6.9.1)

is an almost isomorphism.

Proof There exists a Cartesian morphism g ∶ (Y ′′ → X′′) → (Y ′ → XY ×X X′) of
open immersions of coherent schemes such that X′′ → XY ×X X′ is finite and of finite
presentation by 6.8. Consider the diagram (6.3.1) associated with g:

Y ′′ét

g ét

��

(Schcoh
/Y ′′)v

a′′�� Ψ′′ ��

gv

��

IY ′′→X′′Y′′

gI

��
Y ′ét (Schcoh

/Y ′ )v
a′�� Ψ′ �� IY ′→X′Y′

(6.9.2)

We set G ′′ = Ψ′′∗ a′′−1F′′. As g ∶ Y ′′ → Y ′ is finite, the base change morphism
a′−1 gét∗ → gv∗a′′−1 induces a canonical isomorphism F ′ ∼�→ gI∗G

′′ by [He23, 3.10].
Moreover, the canonical morphism gI∗G

′′ → RgI∗G
′′ is an isomorphism by 6.5(1) and

[He23, 3.25], since g ∶ Y ′′ → Y ′ is finite [SGA 4II , VIII.5.6]. By applying 6.7 to g and
F′′, the canonical morphism

(RgI∗G
′′) ⊗L

Z O ′ �→ RgI∗(G ′′ ⊗Z O ′′)(6.9.3)

is an almost isomorphism. Let h be the composition of (Y ′′ → X′′) → (Y ′ → XY

×X X′) → (Y → XY). Note that X′′ → XY is also proper of finite presentation. By
applying 6.7 to h and F′′, the canonical morphism

(RhI∗G
′′) ⊗L

Z O �→ RhI∗(G ′′ ⊗Z O ′′)(6.9.4)

is an almost isomorphism. It is clear that hI = fI ○ gI. The conclusion follows from
the canonical isomorphism F ′ → RgI∗G

′′ and the canonical almost isomorphisms
(6.9.3) and (6.9.4). ∎

Lemma 6.10 With the notation in 6.3, let F′ be a constructible abelian sheaf on Y ′ét
and we set F ′ = Ψ′∗a′−1F′. Assume that X′ → X is proper of finite presentation. Then,
the canonical morphism
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(R fI∗F
′) ⊗L

Z O �→ R fI∗(F ′ ⊗Z O ′)(6.10.1)

is an almost isomorphism.

Proof We prove by induction on an integer q that the canonical morphism
(Rq fI∗F

′) ⊗Z O → Rq fI∗(F ′ ⊗Z O ′) is an almost isomorphism. It holds trivially for
each q ≤ −1. Notice that there exists a finite morphism g ∶ Y ′′ → Y ′ of finite presen-
tation, a finite locally constant abelian sheaf F′′ on Y ′′ét and an injective morphism
F′ → gét∗F

′′ by [Sta23, 09Z7] (cf. [SGA 4III , IX.2.14]). Let G′ be the quotient of
F′ → gét∗F

′′, which is also a constructible abelian sheaf on Y ′ét since gét∗F
′′ is so

[Sta23, 095R, 03RZ]. The exact sequence 0→ F′ → gét∗F
′′ → G′ → 0 induces an exact

sequence by 3.8(1),

0 �� Ψ′∗a′−1F′ �� Ψ′∗a′−1(gét∗F
′′) �� Ψ′∗a′−1G′ �� 0.(6.10.2)

We set H ′ = Ψ′∗a′−1(gét∗F
′′) and G ′ = Ψ′∗a′−1G′. Then, we obtain a morphism of long

exact sequences:

(Rq−1 fI∗H
′) ⊗O

γ1

��

�� (Rq−1 fI∗G
′) ⊗O

γ2

��

�� (Rq fI∗F
′) ⊗O

γ3

��

�� (Rq fI∗H
′) ⊗O

γ4

��

�� (Rq fI∗G
′) ⊗O

γ5

��
Rq−1 fI∗(H ′ ⊗O ′) �� Rq−1 fI∗(G ′ ⊗O ′) �� Rq fI∗(F ′ ⊗O ′) �� Rq fI∗(H ′ ⊗O ′) �� Rq fI∗(G ′ ⊗O ′)

(6.10.3)

Notice that γ1 and γ2 are almost isomorphisms by induction, and that γ4 is an almost
isomorphism by 6.9. Thus, applying the 5-lemma [Sta23, 05QA] in the abelian category
of almost Zp-modules over IY→XY , we see that γ3 is almost injective. Since F′ is an
arbitrary constructible abelian sheaf, the morphism γ5 is also almost injective. Thus,
γ3 is an almost isomorphism. ∎

Theorem 6.11 With the notation in 6.3, let F′ be a torsion abelian sheaf on Y ′ét and
we set F ′ = Ψ′∗a′−1F′. Assume that X′ → X is proper of finite presentation. Then, the
canonical morphism

(R fI∗F
′) ⊗L

Z O �→ R fI∗(F ′ ⊗Z O ′)(6.11.1)

is an almost isomorphism in the derived category D(Zp-ModIY→XY ) [He23, 5.7].

Proof We write F′ as a filtered colimit of constructible abelian sheaves F′ =
colimλ∈Λ F′λ ([Sta23, 03SA], cf. [SGA 4III , IX.2.7.2]). We set F ′

λ = Ψ′∗a′−1Fλ . We have
F ′ = colimλ∈Λ F ′

λ by [SGA 4II , VI.5.1] whose conditions are satisfied since each
object in each concerned site is quasi-compact. Moreover, for each integer q, we have

(Rq fI∗F
′) ⊗Z O = colim

λ∈Λ
(Rq fI∗F

′
λ) ⊗Z O ,(6.11.2)

Rq fI∗(F ′ ⊗Z O ′) = colim
λ∈Λ

Rq fI∗(F ′
λ ⊗Z O ′).(6.11.3)

The conclusion follows from 6.10. ∎
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Corollary 6.12 Let Zp be the integral closure of Zp in an algebraic closure of Qp, let A
be a Zp-algebra which is an absolutely integrally closed valuation ring, let X be a proper
A-scheme of finite presentation, Y = Spec(A[1/p]) ×Spec(A) X, and let F be a torsion
abelian sheaf on Yét and we set F = Ψ∗a−1F with the notation in 3.6. Then, there is a
canonical isomorphism

RΓ(Yét ,F)
∼�→ RΓ(IY→XY , F ),(6.12.1)

and the canonical morphism

RΓ(IY→XY , F ) ⊗L
Z A�→ RΓ(IY→XY , F ⊗Z O)(6.12.2)

is an almost isomorphism in the derived category D(Zp-ModIY→XY ) [He23, 5.7].

Proof The first assertion follows from the canonical isomorphisms RΓ(Yét ,F)
∼�→

RΓ((Schcoh
/Y )v , a−1F) = RΓ(IY→XY , RΨ∗a−1F) ∼←� RΓ(IY→XY , Ψ∗a−1F) by 3.4 and

3.8(1) (cf. 6.13(1)). The second assertion follows from applying 6.11 to the morphism
X → Spec(A) and from the fact that the associated topos of ISpec(A[1/p])→Spec(A) is
local (3.7). ∎

Lemma 6.13 (cf. 6.5(1)) With the notation in 6.3 and 6.4, let F′ be a torsion abelian
sheaf on Y ′ét, H = R fét∗F

′, and we set F ′ = Ψ′∗a′−1F′, H = RΨ∗a−1H. Let X̃ be an
object of IY→XY , Ỹ = η ×S X̃, F̃′ = g′−1

ét F′.

(1) The sheaf Rq fI∗F
′ is canonically isomorphic to the presheaf X̃ ↦ Hq

ét(Ỹ ′ , F̃′) for
each integer q.

(2) If Y ′ → Y is proper, then there exists a canonical isomorphism H
∼�→ R fI∗F

′.

Proof Note that the canonical morphism F ′ → RΨ′∗a′−1F′ is an isomorphism by
3.8(1). Thus, R fI∗F

′ = R(Ψ ○ fv)∗a′−1F′, whose qth cohomology is the sheaf associ-
ated with the presheaf X̃ ↦ Hq

v (Ỹ ′ , ã′−1
F̃′) = Hq

ét(Ỹ ′ , F̃′) by 3.4, and thus (1) follows.
If Y ′ → Y is proper, then the base change morphism a−1R fét∗ → R fv∗a′−1 induces an
isomorphism a−1H

∼�→ R fv∗a′−1F′ by [He23, 3.10], and thus (2) follows. ∎

Theorem 6.14 With the notation in 6.3, let F′ be a finite locally constant abelian sheaf
on Y ′ét. Assume that:

(i) the morphism X′ → X is proper of finite presentation, and that
(ii) the sheaf Rq fét∗F

′ is finite locally constant for each integer q and nonzero for finitely
many q, and that

(iii) we have Rqψ∗H = 0 (resp. Rqψ′∗H = 0) for any finite locally constant abelian sheaf
H on Yét (resp. Y ′ét) and any integer q > 0.

Then, the relative Faltings’ comparison morphism associated with f and F′ (5.6.1) (which
exists by (iii)) is an almost isomorphism in the derived category D(Zp-ModEét

Y→X
)

[He23, 5.7], and it induces an almost isomorphism

(ψ∗Rq fét∗F
′) ⊗Z B �→ Rq fE∗(ψ′∗F′ ⊗Z B

′)(6.14.1)

of Zp-modules for each integer q.
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Proof We follow the discussion of 6.6 and set F ′ = Ψ′∗a′−1F′. The canonical
morphism (6.6.4)

Rε∗((R fI∗F
′) ⊗L

Z O) �→ Rε∗R fI∗(F ′ ⊗Z O ′)(6.14.2)

is an almost isomorphism by 6.7. It remains to show that the canonical morphism
(6.6.3)

Rε∗(R fI∗F
′) ⊗L

Z B �→ Rε∗((R fI∗F
′) ⊗L

Z O)(6.14.3)

is also an almost isomorphism. With the notation in 6.13 by taking F′ = F′, the
complex H is a bounded complex whose cohomologies Hq(H) are finite locally
constant abelian sheaves by condition (ii). Consider the commutative diagram (3.6.4):

(Schcoh
/Y )v

a ��

Ψ
��

Yét

ψ

��
IY→XY

ε �� Eét
Y→X

(6.14.4)

We set L = Rψ∗H. Then, Hq(L) = ψ∗Hq(H) by Cartan–Leray spectral sequence and
condition (iii). Hence,L is a bounded complex of abelian sheaves whose cohomologies
are finite locally constant by 5.3 so that the canonical morphism

L⊗L
Z B �→ Rε∗(ε−1L⊗L

Z O)(6.14.5)

is an almost isomorphism by 3.9 (cf. [He23, 8.15]).
On the other hand, Hq(H ) = Ψ∗a−1Hq(H) by Cartan–Leray spectral sequence

and 3.8(1). Thus, the base change morphism ε−1Rψ∗ → RΨ∗a−1 induces an iso-
morphism ε−1L

∼�→H by 6.2. Moreover, the canonical morphism L→ Rε∗ε−1L =
Rε∗H = Rψ∗Ra∗a−1H is an isomorphism by 3.4. Thus, the canonical morphism

(Rε∗ε−1L) ⊗L
Z B �→ Rε∗(ε−1L⊗Z O)(6.14.6)

is an almost isomorphism by (6.14.5). In conclusion, (6.14.3) is an almost isomorphism
by (6.14.6) and by the canonical isomorphisms ε−1L

∼�→H
∼�→ R fI∗F

′. ∎

Remark 6.15 We give two concrete situations where the conditions in 6.14 are
satisfied:
(1) Let Zp be the integral closure of Zp in an algebraic closure Qp of Qp , let X′ → X

be a proper and finitely presented morphism of coherent Zp-schemes, and let
Y ′ → Y be the base change of X′ → X by Spec(Qp) → Spec(Zp). Assume that
Y ′ → Y is smooth. Then, the condition (ii) is guaranteed by [SGA 4III , XVI.2.2
and XVII.5.2.8.1], and the condition (iii) is guaranteed by 5.8.

(2) Let OK be a strictly Henselian discrete valuation ring with fraction field K of
characteristic 0 and residue field of characteristic p, let K be an algebraic closure
of K, let X′ → X be a proper morphism of OK-schemes of finite type, and let
Y ′ → Y be the base change of X′ → X by Spec(K) → Spec(OK). Assume that
Y ′ → Y is smooth. Then, the condition (ii) is guaranteed by [SGA 4III , XVI.2.2
and XVII.5.2.8.1], and the condition (iii) is guaranteed by 5.7.
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