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ABSTRACT. Two-dimensional (2D) views dominate the application of linear

elastic fracture mechanics to problems in ice shelf rift propagation, yet from

the perspective of fracture mechanics, processes at the rift front are inherently

three-dimensional (3D). 2D simplifications are nevertheless desirable for their

efficiency and apparent compatibility with shallow-shelf approximation (SSA)

ice flow models. Here, the implications of flattening the ice-shelf rift problem

are investigated and a theoretical foundation is established to support using

a plane stress approximation. In this way, we verify compatibility between

2D simplifications for rifts and for ice shelf flow, which is a requirement for

situations in which SSA-derived stresses are used to study rift propagation.

Comparing the plane problem to a 3D counterpart, we show that the 2D

results at rift tips are a good estimate for mean rift front stress conditions.

Mode I (opening mode) stress intensity factors exhibit a depth-dependence

that implies that rifts should be longer at the ice base than at sea level. Other

minor 3D effects, which also involve Modes II and III, arise where the rift

front intersects the upper and lower ice surfaces.

INTRODUCTION

Ice shelves, floating extensions of grounded ice sheets and glaciers, border much of the Antarctic coastline

and are responsible for most of the continent’s ice mass loss. Mass is lost by melting and by iceberg calving,

each process accounting for about half the total (Depoorter and others, 2013; Rignot and others, 2013).

Tabular icebergs, which dominate mass loss by calving (Tournadre and others, 2016), separate from ice

shelves at through-cutting rifts that form generally transverse to ice flow near the seaward front. Rifts are
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filled with seawater and often also contain ice mélange, a conglomerate of frozen seawater, shelf-ice and

accumulated snow (Swithinbank, 1988, p. B26). The rift walls meet at lateral fronts, which appear as rift

tips in 2D plan view. Rifts propagate over time scales that are rapid enough to set them apart as rare

examples of geophysical scale fractures for which the entire life cycle might be observed directly (Crary,

1961, p.166).

Fracture propagation is a brittle failure of the material whereby stored elastic potential energy is

balanced (released) by splitting the medium (Griffith, 1921). Elastic strain energy may also be dissipated

by inelastic deformation (yielding) around the fracture tip. If yielding is small, elastic strain energy is

not perturbed appreciably and a linear elastic analysis of the fracture mechanics is appropriate (Tada and

others, 1985). In linear elastic fracture mechanics (LEFM) theory, stresses in the vicinity of fracture tips

are described using stress intensity factors (SIFs) as formulated by Irwin (Lawn and others, 1993). SIFs

correspond to the first terms of a series expansion of the singular stress (or strain) at the sharp fracture

front and have the following general formulation

σpr, θq “
K

?
πr

fpθq (1)

in which σ, K, r, fpθq, are the stress tensor, stress intensity factor, distance to the crack tip and a geometry-

dependent function of the angle from the crack plane, respectively (Tada and others, 1985). Three SIFs

describe three displacement modes at the tip: opening (KI), shearing (KII), and tearing (KIII), which

correspond to tensile stress across the tip, in-plane shearing and out-of-plane shearing, respectively.

A significant body of work dedicated to the analysis of stresses for idealised reference (or, testcase)

configurations leads to a catalogue of analytical, and often experimentally validated, formulations of fpθq

or fpr, θq (Tada and others, 1985). SIFs may also be inferred using numerical approximation. Numerical

approaches are generally one of two types: direct comparison in which computed displacements are com-

pared to an ideal solution (Jiménez and Duddu, 2018; Gupta and others, 2017) or integration approaches

based on an energy balance view of the fracture tip (Cherepanov, 1967; Rice, 1968). Either way, idealised

solutions for stress and displacements are required. These are described for plane problems in Williams

(1957).

SIFs describe stress and strain conditions at the rift front and are related to the amount of energy

available to drive propagation. The theory expects a threshold SIF, sometimes called a Fracture toughness

value, as a limit beyond which propagation takes place. Empirical studies of laboratory-scale samples yield

Downloaded from https://www.cambridge.org/core. 28 Jan 2025 at 22:35:37, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


a range of fracture toughness values, from 0.022 to 0.4 MPa m1{2 (Zhang and others, 2023). Similarly,

negative SIF values for the opening mode imply the closing of a fracture, allowing for transmission of the

compression along the fracture lips, thereby eliminating the tip singularity (Schijve, 2009). Negative mode

II or mode III SIFs simply imply an opposing shear orientation. In the ice shelf system, existing stress

fields are expected to relate to opening mode SIF values between zero and the threshold range of toughness

values. While this admissible range of SIF values is of general interest here, our specific interest is to

analyse how model choices affect the stress and strain conditions at the rift front. Because they describe

the elastic solution at a sharp tip, SIFs are ideally suited to this purpose even when they fall outside the

physically admissible range. Furthermore, different contributions to SIFs at a rift front may in this way

be investigated, regardless of their value, prior to combining contributions, the total of which should be in

the physical range.

The spatial dimensions of ice shelves lend themselves to a 2D (plan or cross-section) view of their

mechanics. Ice shelves span 100s of km in the horizontal while thicknesses range from „1 km at the

deepest grounding lines to „200 m at calving fronts (Fretwell and others, 2013). Typical length:thickness

ratios are thus around or greater than 1000:1. Many rifts span 10s of km and have length:thickness ratios

greater than 100:1. Such scales lend themselves to simplification such as the shallow-shelf, or shelfy-stream,

approximation (SSA) of the stress balance for ice-shelf flow (Muszynski and Birchfield, 1987; Morland, 1987;

MacAyeal, 1989). Plane simplifications may pose some problems in the context of fracture mechanics: the

scaling arguments may not hold in the process zone around the tip (Tada and others, 1985) and singular

stress patterns due to the intersection of the rift front and the upper or lower shelf surface may be important

(Baant and Estenssoro, 1979). Additionally, the imbalance between the ice and ocean (or ocean + mélange)

overburden pressures at vertical faces of a rift has an out-of-plane dependence (Reeh, 1968) that cannot

be represented in plane. Furthermore, incompressibility of viscous deformation is required to establish

the SSA and this conflicts with laboratory observations of the elastic case (Schulson and Duval, 2009).

Nevertheless, 2D representations of fracture mechanics are desirable for glaciological problems because

they lend themselves to integration with common 2D approximations (as in Smith, 1976; van der Veen,

1998; Hulbe and others, 2010; Plate and others, 2012; Lipovsky, 2020).

The first applications of LEFM investigated vertically propagating crevasses (Smith, 1976; van der Veen,

1998) using the 2D assumption of plane strain conditions and crevasse-perpendicular stresses inferred from

observed viscous strain rates. Hulbe and others (2010) apply the same conceptual view to evaluate stresses
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in the vicinity of laterally propagating rifts using a boundary element model. Plate and others (2012)

use a configurational force approach to impose stresses from a viscous flow model onto a plane stress

approximation of an elastic ice shelf model. More recently, Lipovsky (2020) solved a 3D elastic ice shelf

problem for a “perturbation” stress field made by subtracting the glaciostatic overburden from the total

Cauchy stress tensor. In this case, stresses are calculated from boundary conditions using the elastic

constitutive relationship for all of a characteristic testcase shelf. A depth relationship for SIFs obtained

from a 3D model is fit and then used when interpreting results from a 2D plane strain representation.

Damage approaches, particularly anisotropic damage mechanics, have also been used to represent

crevasses and rifts. For example, Sun and others (2021) and Clayton and others (2022) use this theo-

retical framework to predict crevasse penetration depth using fracture energy functionals in the damage

approach to achieve LEFM results. In the case of laterally propagating rifts, Huth and others (2023) apply

anisotropic damage evolution in a viscous SSA with threshold stress criteria to simulate both propagation

and rift widening. The formulation accounts for mélange within rifts but uses only a viscous constitutive

relationship despite the fast rate of change.

Across all of the preceding examples, and others (for example, De Rydt and others, 2019; Wang and

others, 2022), relatively little has been written about the nature of the elastic plane problem (plane stress

vs. plane strain), the application of stresses derived using one simplification to a problem solved using the

other, or the relationship between the 2D problem being solved and the 3D system it approximates. Huth

and others (2023) include an extension of the plane problem to the vertical effects of water pressure and

Lipovsky (2020) provides 3D to 2D comparisons for particular rift-shelf configurations.

The aim of the present contribution is to establish an appropriate 2D approximation for simulating

the elastic problem, compatible with the shallow-shelf approach for the viscous problem. First, a plane

stress approximation is shown to be appropriate for the elastic problem as it relates to rift propagation. As

noted above, 2D representations are incomplete at domain boundaries. Rifts are such boundaries and we

therefore verify the effects of incorporating them into a 2D, rather than 3D, model. This is accomplished

by comparing 2D and 3D models focused on vertical variations in rift wall loading due to infilling ocean

water and its effects on 2D and 3D SIFs. Open-source FEM models are used in this work.
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Fig. 1. Boundary value problem (BVP) in a global reference frame. The domain over which the BVP applies is

Ω. The variable t is used to denote tractions acting on boundaries and c a rift. Boundaries to the domain, Γ, have a

normal n⃗ and subscripts t, c and g to describe boundaries: subject to traction, part of a rift or fixed. In the case of

the boundaries defined by a rift, Γc, the superscripts ` and ´ are used to distinguish between the two rift surfaces.

2D REPRESENTATION OF ICE SHELVES

Scaling arguments and perturbation series expansions have long been used to achieve useful simplifications

to the governing equations for viscous ice sheet and ice shelf flow (Morland and Johnson, 1980; McMeeking

and Johnson, 1986; Shoemaker and Morland, 1984). The widely-used SSA, in which deviatoric stresses are

associated with viscous deformation, is derived for cases in which basal shear stress is zero (the ice-shelf

case) or very small (the shelfy-stream case) (Muszynski and Birchfield, 1987; Morland, 1987; MacAyeal,

1989). Here, the shallow-shelf problem is developed using the total stress tensor as far as possible, so that

the result is agnostic to constitutive relationship and thus compatible with the elastic deformation.

Ice-shelf boundary value problem

Ultimately, ice deformation is inferred from either the displacement (elastic) or velocity (viscous) solution

to the same boundary value problem (BVP), represented here in a traditional potato-shape schematic

(Fig. 1). The strong form of the problem is given by the momentum equilibrium equation and boundary

conditions
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∇ ¨ σ ` b “ 0 in Ω

u “ u0 on Γg

σ ¨ n⃗ “ t on Γt

σ ¨ n⃗ “ t`
c on Γ`

c

σ ¨ n⃗ “ t´
c on Γ´

c

(2)

in which σ is the Cauchy stress tensor; b represents the body forces; Ω is the BVP domain; u represents

the displacement field and u0 are prescribed or initial displacements; Γt,Γ`
c ,Γ´

c and Γg are boundaries to

the domain; t, t`
c and t´

c are boundary tractions and n⃗ is the unit normal to any of the domain boundaries.

The boundaries Γ`
c and Γ´

c correspond opposing rift walls and in this work will be assumed to be loaded

by equal and opposing tractions, i.e. tc
` “ ´tc

´. Boundaries that are exposed to the atmosphere have

zero normal or shear stress conditions.

Constitutive relationships for modelling ice

The constitutive relation for the domain Ω must be representative of natural ice and describe the defor-

mation behaviour—elastic, viscous or both—targeted by the model. The Cauchy stress σ, strain ϵ, and

strain-rate 9ϵ are second order symmetrical tensors (e.g. Coman, 2020). The stress tensor σ can be sepa-

rated into deviatoric stress causing distortion deformation and spherical (or non-deviatoric) stress causing

a volume deformation

σ “ σ1 ` σs where σs “
Trpσq

3
I (3)

and where σ1 is the deviatoric stress, σs the spherical stress and I the 3 ˆ 3 identity matrix.

Nye’s generalization of the Glen flow law (Nye, 1952) provides the constitutive relationship between

strain rate 9ϵ and deviatoric stress σ1,

σ1 “ 2κ 9ϵ (4)

for viscous deformation in the case of incompressibility. The viscosity κ depends on 9ϵ and on temperature

T such that

κ “ ApT q 9ϵ
n

n´1
II (5)

in which the empirically derived rate factor function and exponent are ApT q and n, respectively. Generally,
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an exponent n “ 3 is used. The effective strain rate 9ϵII is given by

9ϵII “

c

1
2

9ϵij 9ϵij . (6)

Strain rate and strain are related by the derivative 9ϵ “ Bϵ{Bt. The focus of this work is to provide a 2D

approximation for the steady-state elastic BVP problem on short time-scales. However, the steady-state

long time-scale viscous BVP is required to obtain the initial loading condition of prior to propagation.

Due to the two time-scales being considered independently, the link between strain and strain rate is not

used here. The constitutive relationship for elastic deformation, considered here to be linear and isotropic

(Sergienko, 2010, and citations within), is

σ “ λTrpϵqI ` 2µϵ (7)

in which (Lamé) coefficients λ and µ are

λ “
Eν

p1 ` νqp1 ´ 2νq
, µ “

E

2p1 ` νq
(8)

written in terms of (Young’s) modulus of elasticity E, and (Poisson’s) coefficient ν expressing the ratio

between transverse contraction and longitudinal extension. The elastic constitutive relation can also be

formulated so as to separate deviatoric and spherical strain

σ “ BTrpϵqI ` 2µϵ1 (9)

in which ϵ1 is the deviatoric part of the strain and B is the bulk modulus. The bulk modulus relates to

both Lamé constants

B “ λ `
2
3

µ. (10)

3D description of the ice shelf

The general description of the ice shelf continuum for either viscous or elastic constitutive relationships

is given by equilibrium equations for the domain in 2. Adopting a Cartesian coordinate system, the
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equilibrium equation for each coordinate is

Bσxx

Bx
`

Bσxy

By
`

Bσxz

Bz
“ 0 (11a)

Bσyy

By
`

Bσyx

Bx
`

Bσyz

Bz
“ 0 (11b)

Bσzz

Bz
`

Bσzx

Bx
`

Bσzy

By
“ ´ρig (11c)

where ρi is the density of the ice and g is the acceleration due to gravity. Boundary conditions for the upper

surface Spx, yq, the underside Bpx, yq and the shelf front F px, y, zq require a set of unit normal vectors

”

´ BS
Bx , ´ BS

By , 1
ı

b

p BS
Bx q2 ` p BS

By q2 ` 1
(12a)

”

BB
Bx , BB

By , ´1
ı

b

p BB
Bx q2 ` p BB

By q2 ` 1
(12b)

”

BF
Bx , BF

By , 0
ı

b

p BF
Bx q2 ` p BF

By q2
. (12c)

The front is assumed to be perfectly vertical, making the z⃗ term in unit normal vector in Eq. 12c equal to

zero.

Boundaries exposed to the atmosphere experience zero pressure (the atmospheric pressure is negligible)

and submerged boundaries experience depth-dependent water pressure. Consequently, at the upper surface

´σxx

ˇ

ˇ

S

BS

Bx
´ σxy

ˇ

ˇ

S

BS

By
` σxz

ˇ

ˇ

S
“ 0 (13a)

´σyx

ˇ

ˇ

S

BS

Bx
´ σyy

ˇ

ˇ

S

BS

By
` σyz

ˇ

ˇ

S
“ 0 (13b)

´σzx

ˇ

ˇ

S

BS

Bx
´ σzy

ˇ

ˇ

S

BS

By
` σzz

ˇ

ˇ

S
“ 0, (13c)
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at the base

σxx

ˇ

ˇ

B

BB

Bx
` σxy

ˇ

ˇ

B

BB

By
´ σxz

ˇ

ˇ

B
“ ´ρwgB

BB

Bx
(14a)

σyx

ˇ

ˇ

B

BB

Bx
` σyy

ˇ

ˇ

B

BB

By
´ σyz

ˇ

ˇ

B
“ ´ρwgB

BB

By
(14b)

σzx

ˇ

ˇ

B

BB

Bx
` σzy

ˇ

ˇ

B

BB

By
´ σzz

ˇ

ˇ

B
“ ρwgB (14c)

and finally, at the front

σxx

ˇ

ˇ

F

BF

Bx
` σxy

ˇ

ˇ

F

BF

By
“

$

’

’

&

’

’

%

0 z ą 0

´ρwz BF
Bx z ă 0

(15a)

σyx

ˇ

ˇ

F

BF

Bx
` σyy

ˇ

ˇ

F

BF px, yq

By
“

$

’

’

&

’

’

%

0 z ą 0

´ρwz BF
By z ă 0

(15b)

σzx

ˇ

ˇ

F

BF

Bx
` σzy

ˇ

ˇ

F

BF

By
“ 0. (15c)

Nondimensional scaling of the problem

Nondimensionalisation, or scaling, is a change of variables used to facilitate simplifications to the governing

equations. For example, any model length x in the x⃗ direction is scaled as x̃ “ x
L in which L is a

characteristic length of an ice shelf. Similarly, any model length z in the z⃗ direction is scaled with the

characteristic thickness H. The ratio δ of characteristic ice shelf thickness H to characteristic ice shelf

extent L is small and used for the perturbation series expansion in the next subsection.

Material properties are taken to be constant and used to infer sensible scaling for variables. In this

case, E “ 9.6 ˆ 109 and ν “ 0.33. Mean densities of ρi “ 917 kgm´3 and ρw “ 1023 kgm´3 are used for

ice and ocean water, respectively (Cuffey and Paterson, 2010). In the case of the elastic problem, changes

in density due to deformation are neglected for linear analysis (see for e.g. Martinec, 2019).

Differentiating with respect to scaled variables is as follows:

B

Bx
“

1
L

B

Bx̃
,

B

By
“

1
L

B

Bỹ
,

B

Bz
“

1
H

B

Bz̃
. (16)
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Table 1. Variables and characteristic scales for the ice shelf problem. From the characteristic length scales of the

problem geometry, δ “ 10´3 is then used for σ1
xz, σ1

yz and σxz, σyz

Variables Scale Value of Scale unit

x,y L 3 ˆ 105 m

z H 3 ˆ 102 m

p ρigH 2.70 ˆ 106 Pa

σ1
xx, σ1

yy, σ1
xy, p̃ 2.70 ˆ 106 Pa

σxx, σyy, σxy, p̃ 2.70 ˆ 106 Pa

σ1
xz, σ1

yz δσ̃1
xx 2.70 ˆ 103 Pa

σxz, σyz δ ˜σxx 2.70 ˆ 103 Pa

The dimensionless equations of conservation of momentum, equation 2 or 11, become

Bσ̃xx

Bx̃
`

Bσ̃xy

Bỹ
`

Bσ̃xz

Bz̃
“ 0 (17a)

Bσ̃yy

Bỹ
`

Bσ̃yx

Bx̃
`

Bσ̃yz

Bz̃
“ 0 (17b)

Bσ̃zz

Bz̃
` δ2 Bσ̃zx

Bx̃
` δ2 Bσ̃zy

Bỹ
“ ´1. (17c)

The conditions at the shelf boundaries, Eq. 13-15 are presented in dimensionless form in Appendix .

Perturbation series expansion

A perturbation series expansion is used to simplify the governing equations using the problem scaling which

leads to a small ratio δ, where

δ “
H

L
ăă 1. (18)

The problem variables, for example σ, are expanded in a power series in δ,

σ̃ “

8
ÿ

i“0
δiσ̃piq (19)
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and then the zeroth-order terms of δ are gathered to form a scaled approximation (Weis, 2001; Ahlkrona

and others, 2013). Using this approach the Eq. 17 becomes

Bσ̃xx

Bx̃
`

Bσ̃xy

Bỹ
`

Bσ̃xz

Bz̃
“ 0 (20a)

Bσ̃yy

Bỹ
`

Bσ̃yx

Bx̃
`

Bσ̃yz

Bz̃
“ 0 (20b)

Bσ̃zz

Bz̃
“ ´1. (20c)

The zeroth-order conditions on the upper, base, and front surfaces are detailed in Appendix B.

Vertical integration

Vertical or depth integration of the governing equations then reduces the problem to two dimensions. This

is demonstrated for all of the different components of the first line in Eq. 20. Depth-integration of Bσ̃xx{Bx̃

is

ż S̃

B̃

Bσ̃xx

Bx̃
dz̃ “

B

Bx̃

ż S̃

B̃
σ̃xx dz̃ ´ σ̃xx

ˇ

ˇ

S̃

BS̃

Bx̃
` σ̃xx

ˇ

ˇ

B̃

BB̃

Bx̃

“
BΣx

Bx̃
´ σ̃xx

ˇ

ˇ

S̃

BS̃

Bx̃
` σ̃xx

ˇ

ˇ

B̃

BB̃

Bx̃

(21)

in which Σx represents the depth integration of σ̃xx through the shelf thickness. Depth-integration of

Bσ̃xy{Bỹ is

ż S̃

B̃

Bσ̃xy

Bx̃
dz̃ “

B

Bỹ

ż S̃

B̃
σ̃xy dz̃ ´ σ̃xy

ˇ

ˇ

S̃

BS̃

Bỹ
` σ̃xy

ˇ

ˇ

B̃

BB̃

Bỹ

“
BΣxy

Bỹ
´ σ̃xy

ˇ

ˇ

S̃

BS̃

Bỹ
` σ̃xy

ˇ

ˇ

B̃

BB̃

Bỹ

(22)

in which Σxy represents the vertical integration of σ̃xy through the shelf thickness. Depth-integration of

the Bσ̃xz{Bz̃ term is simpler
ż S̃

B̃

Bσ̃xz

Bz̃
dz̃ “ σ̃xz

ˇ

ˇ

S̃
´ σ̃xz

ˇ

ˇ

B̃
. (23)

Bringing these integrations together, the first line in Eq. 20 is

BΣx

Bx̃
`

BΣxy

Bỹ
`

ˆ

´σ̃xx

ˇ

ˇ

S̃

BS̃

Bx̃
´ σ̃xy

ˇ

ˇ

S̃

BS̃

Bỹ
` σ̃xz

ˇ

ˇ

S̃

˙

`

ˆ

σ̃xx

ˇ

ˇ

B̃

BB̃

Bx̃
` σ̃xy

ˇ

ˇ

B̃

BB̃

Bỹ
´ σ̃xz

ˇ

ˇ

B̃

˙

“ 0 (24a)
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and simplifies to, using conditions at the boundaries, and now including the other two dimensions

BΣxx

Bx̃
`

BΣxy

Bỹ
“ ´

ρw

ρi
B̃

BB̃

Bx̃
(25a)

BΣyy

Bỹ
`

BΣyx

Bx̃
“ ´

ρw

ρi
B̃

BB̃

Bỹ
(25b)

Σzz “
pS̃ ´ B̃q2

2
. (25c)

Eq. 25 can be simplified by introducing the shelf thickness, h̃, which replaces both, S̃´B̃ and ´pρw{ρiqB̃.

Another vertical integration that will prove to be useful is to integrate Eq. 20c from an unspecified

height, z̃ to the surface, S̃. This provides the following dimensionless relationship

σ̃zzpz̃q “ S̃ ´ z̃. (26)

When an incompressible constitutive relationship is used, as is the case for ice flow, the stress tensor

components in Eq. 20 can be separated into deviatoric stresses and pressure. A similar vertical integration

with appropriate boundary conditions is then used to simplify the equations. This is demonstrated in

Appendix C and results in the familiar SSA,

B2Nx

Bx̃
`

BNy

Bx̃
`

BNxy

Bỹ
“ h̃

BS̃

Bx̃
(27a)

BNx

Bỹ
`

B2Ny

Bỹ
`

BNxy

Bx̃
“ h̃

BS̃

Bỹ
(27b)

in which Nx, Ny, Nxy are depth-integrations of σ̃xx, σ̃yy and σ̃xy as in Weis (2001). However, incom-

pressibility is not implied by Eq. 25 and the equations are those of a plane problem. This is analogous

to plane stress because the field variables are integrated through the depth and the vertical stress Σzz is

completely independent of Σxx and Σyy, and therefore does not contribute to the stress solution in the

px, yq plane. A further simplification to Eq. 25 can be made using the stress tensor decomposition proposed

in Lipovsky (2020), demonstrating that the elastic equivalent to the SSA is unequivocally a plane stress

problem regardless of whether the elastic constitutive relationship is compressible or not.

Using the principle of superposition of elastic strain due to different loads, the overburden pressure is
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subtracted from the total stress tensor. The decomposition is as follows,

σ̃ “ ϕ̃ ` σ̃zzI (28)

in which ϕ̃ is the stress tensor of interest, is similar to that for deviatoric stresses σ̃1. Compression or

extension may occur due to sources other than overburden (for example, upstream of an ice rise) and ϕ̃ is

therefore different from σ̃1.

With this decomposition of the Cauchy stress tensor and following the SSA approach, an elastic consti-

tutive relation compatible approximation is achieved. The process is described in detail in Appendix D and

follows these key steps: σ̃ is replaced with ϕ̃ and σ̃zz using Eq. 28; σ̃zz is eliminated by substituting the

derivative of Eq. 26 in terms of x and y; and then the governing equations are depth-integrated. The first

step shows that, to the order of this approximation, the stress ϕ̃zz is zero. The resulting depth-integrated

governing equations are those of plane stress,

BΦxx

Bx̃
`

BΦxy

Bỹ
“ h̃

BS̃

Bx̃
(29a)

BΦyy

Bỹ
`

BΦyx

Bx̃
“ h̃

BS̃

Bỹ
. (29b)

The right-hand terms in Eq. 27 and 29 are the same and therefore the left-hand sides of each are equal.

This results in the following equivalencies for the depth-integrated stress terms

Φxx “ 2Nxx ` Nyy (30a)

Φyy “ 2Nyy ` Nxx (30b)

Φxy “ Nxy. (30c)

If elastic and viscous stresses are taken to be the same in the deforming ice shelf, then Eq. 30 provides

an equivalency for comparing 2D viscous and elastic models. Conceptually, this is a non-linear Maxwell

viscoelastic model represented by linear spring in series with a non-linear dashpot in series. In practice,

the limited space and time resolution of observational data mean that the above equivalency is likely to

only be relevant to infer elastic stresses on viscous timescales.
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The plane stress approximation in Eq. 29 can be restated in terms of strain and material properties

h̃

ˆ

E

1 ´ ν2
Bpξ̃xx ` νξ̃yyq

Bx̃
`

E

1 ` ν

Bξ̃xy

Bỹ

˙

“ h̃
BS̃

Bx̃
(31a)

h̃

ˆ

E

1 ´ ν2
Bpξ̃yy ` νξ̃xxq

Bỹ
`

E

1 ` ν

Bξ̃xy

Bx̃

˙

“ h̃
BS̃

Bỹ
(31b)

in which ξ̃ is the strain associated with ϕ̃ and the material properties are assumed constant with depth.

Alternatively, depth-integrated strain and material properties can be used.

The condition at the front in equation B3 must also be vertically integrated in order to complete a 2D

model of the shelf,

Φxx
BF̃

Bx̃
` Φxy

BF̃

Bỹ
“

h̃2

2
p1 ´

ρi

ρw
q
BF̃

Bx̃
(32a)

Φyx
BF̃

Bx̃
` Φyy

BF̃

Bỹ
“

h̃2

2
p1 ´

ρi

ρw
q
BF̃

Bỹ
. (32b)

It is thus shown that the ice shelf can be represented elastically as a 2D plane stress problem for all strains

that are not due to glaciostatic overburden pressure. If required, the full strain or stress field can be

obtained from the displacement solution for the glaciostatic stress, given here in dimensional form:

σglac “ σzzI (33a)

ϵglac “ ϵzzI (33b)

ϵzz “
E

p1 ´ 2νq
pS ´ zqgρi. (33c)

2D SOLUTIONS TO A 3D RIFT PROBLEM

The preceding derivation establishes the elastic plane problem and the appropriate comparison between

elastic plane stresses and viscous deviatoric stresses should they be conceptually linked, as for example,

with an assumption of non-linear Maxwell viscoelasticity. While representative of the problem at ice-shelf

scale, both approximations are limited near boundaries where the underlying assumptions may not be

satisfied (Weis, 2001). This is particularly relevant at floating boundaries, where a depth-dependent load

results from the glaciostatic and hydrostatic imbalance (GHI) acting on the ice face (Fig. 4). Next, 2D

and 3D representations of a rift front are compared in order to understand the limitations of the plane

view with regard to the inherently 3D GHI (Fig. 3).
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Fig. 2. The models presented in this section are representative of a subsection of shelf in close proximity to the

tip (2D) or front (3D).

Fig. 3. The propagating end of a rift is a line for a 3D representation and a point for a 2D representation. The

GHI acts on all shelf surfaces including rift walls and is plotted in Figure 4.

Downloaded from https://www.cambridge.org/core. 28 Jan 2025 at 22:35:37, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Fig. 4. The non-dimensional glaciostatic and hydrostatic overburden imbalance (GHI) on a shelf face (front or

rift). The vertical coordinate is the non-dimensional thickness. Positive is here taken to be outward from the ice

(pulling on the face). With constant ice and seawater densities of 917 kg m´3 and 1023 kg m´3, the ice cliff height

is 0.104.
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Rift walls are subject to the same conditions as at the shelf front, provided that both are assumed to

be in contact with ocean water and atmosphere only. When using the tensor ϕ̃, as is the case here, the

glacial overburden pressure is removed from the problem setup. At the front of the shelf, this results in

the boundary condition being precisely the GHI. In the case of a 2D problem the depth-integration of the

boundary condition is described in Eq. 32. The associated traction tGHI is normal to the surface and

takes on the form

tGHI “
h̃2

2
p1 ´

ρi

ρw
q for 2D models, and (34a)

tGHIpz̃q “

$

’

’

&

’

’

%

S̃ ´ z̃ z̃ ą 0

S̃ ´ z̃p1 ´
ρw

ρi
q z̃ ă 0

for 3D models. (34b)

The GHI is plotted for a non-dimensional shelf face in Figure 4.

A 3D analytical solution from (Tada and others, 1985) can be used to develop intuition about the effect

of the rift-wall loading on SIFs at a rift front. The most appropriate analytical solution available is for

point loads on crack walls in an infinite, rather than finite, thickness layer. In Appendix E, these point

loads are scaled and integrated to simulate the GHI and explore the effects on SIFs at rift fronts in an

infinite medium.

Comparing SIFs from 3D and plane stress models

A link is established between the 3D and 2D views by comparing SIFs from idealised models designed to

isolate the effects of the GHI on SIFs. In both cases, SIFs are calculated using the displacement correlation

method (DCM; Jiménez and Duddu, 2018; Lipovsky, 2020; Gupta and others, 2017). The DCM is

an analytical technique in LEFM that can be used to approximately determine SIFs by correlating the

displacements measured near the crack tip with the appropriate (plane stress or plane strain) theoretical
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displacements. The following displacement solutions from Gupta and others (2017) are used here:

uI
ypr, θq “

KI

2µ

c

r

2π
sin θ

2
pκ `

1
2

q ´
1
2

sin 3θ

2
(35a)

uII
x pr, θq “

KII

2µ

c

r

2π
sin θ

2
pκ ´

3
2

q `
1
2

sin 3θ

2
(35b)

uIII
z pr, θq “

KIII

µ

c

r

2π
sin θ

2
. (35c)

The SIFs are calculated using measured displacements between the two walls ∆ux and ∆uy, using the

following expressions derived from Eq. 35:

KI “
µ

pκ ` 1q

c

2π

r
∆uI

y (36a)

KII “
µ

pκ ` 1q

c

2π

r
∆uII

x (36b)

KIII “
µ

4

c

2π

r
∆uIII

z . (36c)

The constant (Kolosov) κ, is

κ “

$

’

’

&

’

’

%

3 ´ 4ν for plane strain

3´ν
1`ν for plane stress

. (37)

In practice, sets of radially emanating pairs of points on opposite sides of the crack are used to reduce

the mismatch of the fit to the ideal solutions (Jiménez and Duddu, 2018). In the present work, an averaging

scheme proposed in Gupta and others (2017) is used for 10 pairs of points within H{5 of the rift front or

tip. The DCM is applied using the plane strain coefficient in Eq. 37 at different depths within the 3D

model to obtain SIFs as a function of depth. In the 2D model, the DCM is applied with a plane stress

coefficient (Tada and others, 1985).

Model implementation

The 3D model domain is a 2LˆLˆH shelf section with homogeneous mechanical properties and a through-

cutting rift (Fig. 6). The rift is explicitly represented as a sharp wedge, 0.0002 ˚ H in width at the domain

edge, of length a and perpendicular to the edge it bisects (Fig. 5). All dimensions in the model are scaled

to the constant thickness H and some care is required in interpreting figures of results in this section as

factors of varying powers of H are therefore involved.
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Fig. 5. The 3D model domain and dimensions. A comparison is made to an equivalent 2D domain, the surface

plane, using plane stress. In the 3D model domain the rift wall traction, tGHI , is the GHI and depends on the depth

and the traction at the front of the domain, tF , is constant with depth and has components ptx, tyq. For the 2D

plane stress model the rift wall traction and the traction at the front are the same.
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Boundary conditions on the 3D domain are chosen to represent a small rift in an approximately uniform

stress field (Fig. 2). One end of the domain is held fixed in all directions and the opposite end is loaded

with a depth-constant traction. This boundary condition is used to simulate loading from surrounding ice

shelf rather than simulate a small shelf with a center rift. All vertical faces except for the one bisected

by the rift are fixed in the z⃗ direction. The face bisected by the rift is fixed in the direction of the rift,

the x⃗ direction, to enact a symmetry condition that makes this domain comparable to a square (2L ˆ 2L)

testcase with a horizontal center crack. The front of the domain is loaded with a constant traction, tF ,

which has components ptx, tyq. The components ptx, tyq are scaled to be either multiples or fractions of the

depth-averaged GHI tG. Empirically validated analytical formulations, in this case 2.34 is used, for the

SIFs of center crack cases are provided in(Tada and others, 1985). All domains in this section are created

and meshed with Gmsh (Geuzaine and Remacle, 2009). Surfaces are meshed using triangular elements and

volumes are meshed using tetrahedral elements.

The domain is used with the governing equations written in terms of ϕ. This is advantageous because

the model mesh is made representative of ice after glaciostatic compression, avoiding deformation of the

mesh by the overburden pressure (which is not of interest). The elastostatic BVP problem is solved using

FEniCS, an opensource library for writing models in their variational form (Alnaes and others, 2015;

A. Logg, 2012).

Mesh and configuration sensitivity

Mesh resolution may affect the accuracy of the numerical result and domain configuration may introduce

boundary effects where a rift front becomes close to a domain boundary. These issues are examined in

a sensitivity study using a test domain with L “ 8H and depth-constant traction tF , equivalent to the

average traction due to the GHI, normal to the front surface, imposed on the rift front. The initial rift

length is a “ 2H. The mesh is designed to be scaled with respect to 3 different regions of the model

domain: the rift front, the rift walls and the rest of the domain.

Suitable mesh resolution is identified qualitatively, using the patterns of SIFs obtained at the rift front

(Fig. 7). Within the range of element sizes explored, the rift front SIFs are found to be most sensitive

to mesh element size within the domain (Fig. 7 c). Henceforth, meshes are made using a rift tip mesh

size of p4 ˆ 10´3qH, rift wall element size of 0.1H and domain element size of 0.25H. An analysis of

the importance of rift tip, rift wall and domain element sizes for 2D models is compiled in Tables 2-4.
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a b

Fig. 6. Examples of (a) 3D and (b) 2D meshes generated with Gmsh for FEniCS simulations of stresses at the

rift tip. The 3D mesh includes an enlargement of the gap between the rift walls on the leftmost side.
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a b c

Fig. 7. Depth profiles of KI in dark blue and KII in purple for varying mesh sizes at (a) the rift tips, (b) walls,

and (c) in the remaining domain. The mesh size dimensions in each legend are factors of H. For example, 8 ˆ 10´3

in panel (a) means the rift tip elements are H ˚ 8 ˆ 10´3. For this sensitivity analysis, the rift length is a “ 2H and

the domain width is L “ 8H. The traction tF at the front of the domain has only a component normal to the front,

ty, which is equal to the depth averaged GHI traction tG

.

Henceforth, 2D meshes are made using H ˆ 10´3 for the rift-tip mesh size, 0.025H for the rift-wall mesh

size and 0.125H for the rift-domain mesh size.

The general testcase geometry is also evaluated. SIF profile shapes may depend on the relationship

between rift length and domain size because this affects rift proximity to domain boundaries. For ease of

comparison, the traction applied to the front of the domain is scaled to obtain constant 2D SIF magnitudes.

This causes the 3D profiles to overlay each other and facilitates their comparison. The SIF profile is found

to be insensitive to the domain size provided the rift length does not bisect too much of the domain (Fig.

8 a). This shows that the testcase adequately isolates the rift from domain boundary effects (other than

the GHI acting on the rift walls).

Rift length affects vertical variation in the SIFs (Fig. 8 b). Would the GHI not be applied to the rift

walls, we could expect SIFs to increase as a function of the square root of the length of the rift. This

contribution is in competition with the length of GHI contributing to keeping the rift closed. Longer

lengths of GHI loading on rift walls leads to steeper profiles of SIFs at the rift front, meaning a greater

tendency for rifts to propagate at depth and remain closed at the top surface.
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a b

Fig. 8. KI and KII profiles for varying domain and rift sizes. (a) Model domain length, b, is varied from 4H to

32H and rift length is maintained at 2H. (b) Rift length is increased from 2H to 12H and the domain is maintained

at 32H. The rift length in panel b is maintained below a 2:5 ratio of the domain length as this is the rift length to

domain length ratio past which KI profiles change appreciably in panel a.

Table 2. Sensitivity of the 2D domain to rift-tip element size. Mesh sizes are given as factors of H.

rift tip mesh 8 ˆ 10´3 4 ˆ 10´3 2 ˆ 10´3 1 ˆ 10´3 analytical

KI 0.1362 0.1385 0.1401 0.1405 0.1429

KII 0.0003 0.0006 0.0003 0.0003 0

Table 3. Sensitivity of the 2D domain to rift-wall element size.

rift wall mesh 0.2 0.1 0.05 0.025 analytical

KI 0.1408 0.1405 0.1409 0.1405 0.1429

KII 0.0004 0.0003 0.0005 0.0004 0

Table 4. Sensitivity of the 2D domain to rift-domain element size.

domain mesh 1 0.5 0.25 0.125 0.0625 analytical

KI 0.1392 0.1397 0.1405 0.1415 0.1419 0.1429

KII 0.0004 0.0003 0.0004 0.0005 0.0005 0
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ty “ 1 ˆ tG ty “ 2 ˆ tG ty “ 3 ˆ tG

Fig. 9. Depth profiles and 2D results for KI and KII at the front/tip of a rift in a symmetrical 8H ˆ 16H ˆ H

section of shelf. The rift walls are loaded with the GHI, tGHI . The traction at the front, tF has only a component

normal to the front, ty, which is equal to Y ˆ tG, where Y “ 1, 2, 3 for plots from left to right.

3D and 2D comparison

Results generated using the 3D model with optimum mesh sizes and a rift length of a “ 2H, are now

compared to their 2D plane stress counterparts. The size of the domain is always maintained such that

L “ 8H. 3D SIF profiles are shown to be well-approximated by the 2D models. In Figure 9 the tractions

at the front of the domain are normal and increase in multiples of the depth-averaged GHI. The first panel

in Figure 9 is recreated in Appendix F using a 300m thick ice shelf as a demonstration of the range of SIF

values that these non-dimensional results represent. In Figure 10, the traction at the front is applied in

the direction of the rift, x⃗, increasing by fractions of the depth-averaged GHI. In this manner significant

shearing also occurs and KII may also be investigated. In Figure 11, the traction acting on the rift walls

is removed. KIII is also investigated for the 3D models and can be found in Appendix G.

DISCUSSION

Fractures propagate in response to a stress field in the ice, resolved at the location of propagation. By

breaking and creating new boundaries in the material, fractures modify that field. Simulation of crevasse

and rift behaviour, then, requires the stress field to be known and to be updated as propagation occurs.

Both theoretical and applied challenges arise from the requirement to update the stress field during propa-

gation. A fully viscoelastic constitutive relationship would allow for a direct theoretical update of the stress
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tx “ 0.2 ˆ tG tx “ 0.4 ˆ tG tx “ 0.6 ˆ tG

Fig. 10. Depth profiles and 2D results for KI and KII at the front/tip of a rift in a symmetrical 8H ˆ 16H ˆ H

section of shelf. The rift walls are loaded with the GHI, tGHI . The traction at the front, tF , has only the component

tangential to the model front, tx, which is X ˆ tG, where X “ 0.2, 0.4, 0.6 for plots from left to right.

ty “ 1 ˆ tG ty “ 2 ˆ tG ty “ 3 ˆ tG

Fig. 11. Depth profiles and 2D results for KI and KII at the front/tip of a rift in a symmetrical 8H ˆ 16H ˆ H

section of shelf. The rift walls are not loaded with the GHI. The traction at the front, tF has only a component

normal to the front, ty, which is equal to Y ˆ tG, where Y “ 1, 2, 3 for plots from left to right.
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field though in that case, propagation rate must be resolved and for 2D models, the two approximations

somehow simultaneously satisfied. The present contribution is grounded in the theoretical worldview of

the SSA, enabling stresses from a 2D viscous simulation to be linked with an equivalent elastic problem.

Decomposing the problem into viscous and elastic components (van der Veen, 1998; Hulbe and others,

2010; Plate and others, 2012), is akin to applying a non-linear Maxwell viscoelasticity. A similar concep-

tual framework is employed to link viscous and elastic stress fields for rapidly evolving damage in Huth and

others (2023). It is important to note that the reverse approachtaking the stress field from an elastic model

and imposing it on a viscous flow modelis not likely relevant, as even small strains will modify boundary

conditions around the rift and invalidate elastic solutions on viscous time scales.

A proposed approach to a stepped viscous and elastic model of ice shelf rifts using the SSA and plane

stress is as follows. A viscous SSA solution that matches a derived velocity field for an interval in which the

studied rift is not observed to be propagating is used to obtain an initial stress field to be applied to the

elastic problem. Assuming propagation rates to be fast enough that viscous deformation is insignificant,

the plane stress elastic problem is then used to simulate propagation with standard fracture mechanics

approaches, in which the elastic stress field updates as the rift geometry changes. Propagation should

continue until complete separation of the shelf or stress conditions warrant arrest (i.e. SIFs fall bellow

Fracture Toughness values for ice). The effect of rift front geometry and depth-dependence of SIFs on

propagation and arrest conditions should be considered. If the effect of rift propagation on the shelf flow

is the object of the study, the viscous flow model would then be modified to reflect the presence of the

lengthened rift via new boundary conditions or updates to spatially varying rheological parameters that

represent the presence of rifts.

In most applied studies, stresses are inferred from observations of viscous deformation using the SSA.

These inversions provide good insight into the stress state while managing spatial heterogeneity by adjusting

the stiffness parameter in the flow law (MacAyeal, 1993; Goldberg and Sergienko, 2011; Rommelaere and

MacAyeal, 1997; Vieli and Payne, 2003). However, the time resolution of observational data may not be

matched with rift propagation. By creating internal boundaries, rifts locally modify the deformation field

on time scales that are poorly resolved and unrelated to the stiffness parameter.

In numerical 3D crack problems, SIFs are calculated at points along the front in a local coordinate
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systems defined by the front’s geometry, with one crack-front-tangent component and two components in

the front-perpendicular plane (for example, Sukumar and others, 2000; Gosz and Moran, 2002; Daimon

and Okada, 2014; Shih and others, 1986). KI and KII depend on plane strain field values, strain or

stress, in the front-perpendicular plane only (Gosz and Moran, 2002). If a 3D rift front is assumed to

be vertical (the rift-front and gravity are aligned), then the overburden pressure is constant throughout

the front-perpendicular plane at the fracture mechanics relevant scales and does not contribute to SIFs.

Consequently, only ϕ, the stress tensor with that pressure removed, is required to obtain SIFs relevant for

horizontal propagation of rifts. This is the case for other elastic ice-shelf applications because compression

from overburden is rarely relevant (for example, Still and others, 2022). However, the overburden pressure

may be relevant to material properties that affect propagation (Liu and Ravichandran, 2006) and it can

be easily reintroduced to the solution stress or strain field using Eq. 33.

Interpreting stresses from a viscous plane problem for fracture requires caution. Assuming that elastic

stresses are the same as viscous stresses, the elastic stress tensor that is relevant for brittle fracture is the

composition of depth-integrated deviatoric stress components as described in Eq. 30. That is the total

(Cauchy) stress tensor with the overburden subtracted from it and in the 2D case, depth-integrated. 2D

approaches that interpret stress or strain to update either explicit or diffuse fractures should use this plane

stress tensor. In the 3D case the same tensor is required without depth integration. Although including

the overburden pressure is also correct it does not directly contribute to SIFs of a horizontally propagating

rift. The integrated GHI on the rift walls is the only means by which the weight of ice and water-pressure

impact these SIFs.

Decomposition of the stress tensor resulting in ϕ also provides a straightforward way to consider the

effect of ocean water filling through-cutting rifts. When ϕ is used, the boundary condition on a rift

becomes the imbalance between glaciostatic and hydrostatic overburdens (GHI). If no other material is

present within a rift, an extensional stress sufficient to overcome the inward pull of the GHI is required

for separation of the rift walls. This provides a simple limit on the formation of rifts. Extensional stresses

within the shelf must be larger than the (thickness-dependent) GHI within the rift.

The GHI contributes to depth-dependence in mode I SIFs at the rift front. From the sea surface to the

base of the ice shelf, mode I SIFs increase. Above the sea surface the depth dependence varies with rift

length. The present work focuses on SIFs below the sea surface. In other works, the effect of the GHI is

described as a bending moment on the rift walls (Lipovsky, 2020). The greater the rift length, the greater
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the magnitude of the depth-dependence. This suggests that in the absence of other effects, the lateral

extent of rifts should be greater at the lower ice shelf surface than at the upper surface and the longer

the rift, the greater this mismatch should be. However, other contributions to the stress balance on rift

walls are likely, for example, partial contact between walls (Lipovsky, 2020) and mélange acting on the rift

walls (Bassis and others, 2007; Huth and others, 2023). These contributions are also likely to depend on

rift length and the distance between rift walls. Further work is required to explore how non-vertical fronts

alleviate mismatches in mode one SIFs at the front.

In our 3D models, negative values are obtained for KI at particular depths for certain loading conditions.

While it is safe to say these are depths at which propagation will not be favoured under those conditions,

the negative values do imply rift-inward displacements on the rift walls, which may lead to nonphysical

interpenetration. Managing interpenetration via numerical contact techniques would alter the SIFs in these

locations and the net contribution would be larger depth-averaged KI along the rift front.

CONCLUSION

Rift and crevasse propagation in glacier ice is an inherently 3D problem for which 2D simplifications are

highly desirable and useful. This simplification can be made in either the vertical (rifts) or horizontal

(crevasses) direction and various cases have been studied in this way. For example, stresses derived from

observed viscous deformation are widely used to study rift propagation and tabular iceberg calving. Such

studies include validation by comparison of model outputs with what can be observed directly, such as

surface traces of rifts. Here, we examine the relationship between the 3D and 2D problems for this case

and in so doing, provide theoretical verification for practical applications requiring a 2D approach. This

also provides a theoretical link with the 3D-to-2D simplifications widely used in computational simulation

of ice flow.

The present work demonstrates that plane stress should be used when simulating horizontal strain for

an elastic ice shelf even though the fracture mechanics conditions at a given depth along a rift tip are

those of plane strain. The comparison also leads to new insight into the geometry of the rift tip. Depth-

dependence of the GHI results in depth dependence in KI SIFs (Fig. 9-10) (as in Lipovsky, 2020). The

magnitude of that dependence increases with rift length contrary to what was noted the analytical solutions

in Figure 12. The depth-dependence implies that rift length should be greater at depth than at sea level,

such that rift fronts should tend not to be vertical. KII and KIII exhibit very small depth-dependence
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which we attribute to a perturbation due to the intersection of rift front with the upper or lower surface

of the ice shelf (Baant and Estenssoro, 1979).

CODE AND DATA AVAILABILITY

Numerical models used in this work are freely available on github at \https://github.com/mforb/2Dv3D_rift_FEniCS.git.
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APPENDIX A

The dimensionless boundary conditions at the surface, base and front of the shelf are provided here. Spx, yq

and Bpx, yq are functions for elevation and must be scaled as such. The surface condition becomes
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ˇ
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Bỹ
` σ̃xz

ˇ

ˇ

S̃
“ 0 (A1a)

´σ̃yx

ˇ

ˇ

S̃

BS̃

Bx̃
´ σ̃yy

ˇ

ˇ

S̃

BS̃

Bỹ
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The condition on the underside becomes
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Bỹ
(A2b)

δ2σ̃zx

ˇ

ˇ

B̃

BB̃

Bx̃
` δ2σ̃zy

ˇ

ˇ

B̃

BB̃

Bỹ
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Finally, the condition at the front of the shelf in non-dimensional form, is
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Bỹ
“ 0. (A3c)

APPENDIX B

The dimensionless zeroth-order terms are gathered for the boundary conditions at the surface, base and

front of the shelf. The condition at the surface,
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and finally, at the front,
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APPENDIX C

This section, describes the steps to obtain the Shallow Shelf Approximation (SSA). The SSA approximation

does not require a specific constitutive relationship but rather is reliant on incompressibility of the material

description. It is included here for comparison with the steps carried out in order to obtain a plane elastic

approximation (plane stress). The starting point for the SSA are the dimensionless, zeroth-order equations

of momentum, Eq. C1, in which the deviatoric stress and pressure is decomposed,
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The upper surface of the shelf conditions, with the same decomposition,
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Using the last line, pressure at the surface can be replaced into the other two directions, remembering

that σ̃1
xx ` σ̃1

yy ` σ̃1
zz “ 0,
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The underside of the shelf conditions become,
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This can also be simplified by solving for p̃ in the last line and then inserting it back into the other two
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directions to obtain
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Now a more general simplification can be made vertically integrating C1c. Then, a general depth

relation for the pressure is obtained from

ż S̃

z̃

Bσ̃1
zz

Bz̃
dz̃ “

ż S̃

z̃

Bp̃

Bz̃
´ 1 dz̃ (C6)

Which evaluates to

σ̃1
zz

ˇ

ˇ

S̃
´ σ̃1

zzpz̃q “ p̃pS̃q ´ p̃pz̃q ´ S̃ ` z̃. (C7)

This last equation can be rearranged,

p̃pz̃q “ σ1
zzpz̃q ´ S̃ ` z̃. (C8)

Deriving in terms of x and y, is useful for replacing the pressure terms in momentum balance equation,

Bp̃

Bx̃
“ ´

Bpσ̃1
xx ` σ̃1

yyq

Bx̃
`

BS̃

Bx̃
(C9a)

Bp̃

Bỹ
“ ´

Bpσ̃1
xx ` σ̃1

yyq

Bỹ
`

BS̃

Bỹ
. (C9b)

Combining the above with the equations of momentum balance results in

B2σ̃1
xx

Bx̃
`

Bσ̃1
xy

Bỹ
`

Bσ̃1
xz

Bz̃
`

Bσ̃1
yy

Bx̃
“

BS̃

Bx̃
(C10a)

B2σ̃1
yy

Bỹ
`

Bσ̃1
yx

Bx̃
`

Bσ̃1
yz

Bz̃
`

Bσ̃1
xx

Bỹ
“

BS̃

Bỹ
. (C10b)

Using the same vertical integration steps described in the main body of this work, the first line is

integrated,
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B2Nx

Bx̃
`

BNy

Bx̃
`

BNxy

Bỹ
`

ˆ

2σ̃1
xx

ˇ

ˇ

B̃

BB̃

Bx̃
` σ̃1

yy

ˇ

ˇ

B̃

BB̃

Bx̃
` σ̃1

xy

ˇ

ˇ

B̃

BB̃

Bỹ
´ σ̃1

xz

ˇ

ˇ

B̃

˙

`

ˆ

´2σ̃1
xx

ˇ

ˇ

S̃

BS̃

Bx̃
´ σ̃1

yy

ˇ

ˇ

S̃

BS̃

Bx̃
´ σ̃1

xy

ˇ

ˇ

S̃

BS̃

Bỹ
` σ̃1

xz

ˇ

ˇ

S̃

˙

“

ż S̃

B̃

BS̃

Bx̃
dz̃

(C11)

in which Nx, Ny, Nxy are depth-integrations of σ̃xx, σ̃yy and σ̃xy. In Eq. labeleq:viD, within the first

pair of large parentheses is the surface boundary condition in Eq. C3 and within the second pair of large

parenthesis, the basal boundary condition from Eq. C5. Replacing these, Eq. C11 becomes,

B2Nx

Bx̃
`

BNy

Bx̃
`

BNxy

Bỹ
“

ż S̃

B̃

BS̃

Bx̃
dz̃ (C12)

which leads to, now including the second line,

B2Nx

Bx̃
`

BNy

Bx̃
`

BNxy

Bỹ
“ h̃

BS̃

Bx̃
(C13a)

BNx

Bỹ
`

B2Ny

Bỹ
`

BNxy

Bỹ
“ h̃

BS̃

Bỹ
. (C13b)

This equations in Eq. C13 are the SSA, for an incompressible rheology as is typically used in ice flow

models.

APPENDIX D

In this appendix, the derivation of the plane stress approximation for the stress tensor ϕ̃ is demonstrated.

First, σ̃ needs to be replaced by ϕ̃ in the governing equations and boundary conditions. To do this the

derivative in x and y of Eq. 26 is useful,

Bσ̃zz

Bx̃
“

BS̃

Bx̃
(D1a)

Bσ̃zz

Bỹ
“

BS̃

Bỹ
. (D1b)
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The governing equations in terms of ϕ̃ become,

Bϕ̃xx

Bx̃
`

Bϕ̃xy

Bỹ
`

Bϕ̃xz

Bz̃
“

BS̃

Bx̃
(D2a)

Bϕ̃yy

Bỹ
`

Bϕ̃yx

Bx̃
`

Bϕ̃yz

Bz̃
“

BS̃

Bỹ
(D2b)

Bϕ̃zz

Bz̃
“ 0. (D2c)

The boundary conditions become, at the surface,

´ϕ̃xx

ˇ

ˇ

S̃

BS̃

Bx̃
´ ϕ̃xy

ˇ

ˇ

S̃

BS̃

Bỹ
` ϕ̃xz

ˇ

ˇ

S̃
“ 0 (D3a)

´ϕ̃xy

ˇ

ˇ

S̃

BS̃

Bx̃
´ ϕ̃yy

ˇ

ˇ

S̃

BS̃

Bỹ
` ϕ̃yz

ˇ

ˇ

S̃
“ 0 (D3b)

ϕ̃zz

ˇ

ˇ

S̃
“ 0 (D3c)

at the base,

ϕ̃xx

ˇ

ˇ

B̃

BB̃

Bx
` ϕ̃xy

ˇ

ˇ

B̃

BB̃

Bỹ
´ ϕ̃xz

ˇ

ˇ

B̃
“ ´

ρw

ρi
B̃

BB̃

Bx
´ h̃

BB̃

Bx
(D4a)

ϕ̃yx

ˇ

ˇ

B̃

BB̃

Bx
` ϕ̃yy

ˇ

ˇ

B̃

BB̃

Bỹ
´ ϕ̃yz

ˇ

ˇ

B̃
“ ´

ρw

ρi
B̃

BB̃

Bỹ
´ h̃

BB̃

Bỹ
(D4b)

ϕ̃zz

ˇ

ˇ

B̃
“ ´

ρw

ρi
B̃ ` h̃ (D4c)

which simplifies to,

ϕ̃xx

ˇ

ˇ

B̃

BB̃

Bx
` ϕ̃xy

ˇ

ˇ

B̃

BB̃

Bỹ
´ ϕ̃xz

ˇ

ˇ

B̃
“ 0 (D5a)

ϕ̃yx

ˇ

ˇ

B̃

BB̃

Bx
` ϕ̃yy

ˇ

ˇ

B̃

BB̃

Bỹ
´ ϕ̃yz

ˇ

ˇ

B̃
“ 0 (D5b)

ϕ̃zz

ˇ

ˇ

B̃
“ 0 (D5c)

Downloaded from https://www.cambridge.org/core. 28 Jan 2025 at 22:35:37, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


and finally, at the front,

ϕ̃xx

ˇ

ˇ

F̃

BF̃

Bx̃
` ϕ̃xy

ˇ

ˇ

F̃

BF̃

Bỹ
“

$

’

’

&

’

’

%

pS̃ ´ z̃q BF̃
Bx̃ z̃ ą 0

ppS̃ ´ z̃q `
ρw

ρi
z̃q BF̃

Bx̃ z̃ ă 0
(D6a)

ϕ̃yx

ˇ

ˇ

F̃

BF̃

Bx̃
` ϕ̃yy

ˇ

ˇ

F̃

BF̃

Bỹ
“

$

’

’

&

’

’

%

pS̃ ´ z̃q BF̃
Bỹ z̃ ą 0

ppS̃ ´ z̃q `
ρw

ρi
z̃q BF̃

Bỹ z̃ ă 0
. (D6b)

The vertical integration of the momentum equation D2 is obtained with the same approach as in the

manuscript. First, vertical integration is demonstrated for ϕ̃xx,

ż S̃

B̃

Bϕ̃xx

Bx̃
dz̃ “

B

Bx̃

ż S̃

B̃
ϕ̃xx dz̃ ´ ϕ̃xx

ˇ

ˇ

S̃

BS̃

Bx̃
` ϕ̃xx

ˇ

ˇ

B̃

BB̃

Bx̃
(D7)

“
BΦxx

Bx̃
´ ϕ̃xx

ˇ

ˇ

S̃

BS̃

Bx̃
` ϕ̃xx

ˇ

ˇ

B̃

BB̃

Bx̃
(D8)

where Φxx “
şS̃
B̃ ϕ̃xx dz̃. The integration of the whole top line leads to

BΦxx

Bx̃
´ ϕ̃xx

ˇ

ˇ

S̃

BS̃

Bx̃
` ϕ̃xx

ˇ

ˇ

B̃

BB̃

Bx̃
`

BΦxy

Bỹ
´ ϕ̃xy

ˇ

ˇ

S̃

BS̃

Bỹ
` ϕ̃xy

ˇ

ˇ

B̃

BB̃

Bỹ

`ϕ̃xz

ˇ

ˇ

S̃
´ ϕ̃xz

ˇ

ˇ

B̃
“

ż S̃

B̃

BS̃

Bx̃
dz.

(D9)

Reorganizing in such a way that the surface and underside conditions are easily identifiable and can be

used to simplify, the integration becomes

BΦxx

Bx̃
`

BΦxy

Bỹ
`

ˆ

ϕ̃xz

ˇ

ˇ

S̃
´ ϕ̃xx

ˇ

ˇ

S̃

BS̃

Bx̃
´ ϕ̃xy

ˇ

ˇ

S̃

BS̃

Bỹ

˙

`

ˆ

´ϕ̃xz

ˇ

ˇ

B̃
` ϕ̃xx

ˇ

ˇ

B̃

BB̃

Bx̃
` ϕ̃xy

ˇ

ˇ

B̃

BB̃

Bỹ

˙

“

ż S̃

B̃

BS̃

Bx̃
dz.

(D10)

Simplifying by substituting the boundary conditions and now including both the first and second line, the
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Eq. D2, becomes:

BΦxx

Bx̃
`

BΦxy

Bỹ
“ h̃

BS̃

Bx̃
(D11a)

BΦyx

Bx̃
`

BΦyy

Bỹ
“ h̃

BS̃

Bỹ
. (D11b)

Eq. D11 are the governing equations of a plane elastic problem. Furthermore this is a plane stress problem

as ϕ̃zz is zero throughout the thickness for this order of approximation given that it is zero at the boundaries

and Bϕ̃zz

Bz̃ “ 0.

APPENDIX E

A 3D analytical solution, 23.1 from (Tada and others, 1985) can be used to develop intuition about the

effect of vertical variation in rift-wall loading on SIFs at a rift front. The most appropriate analytical

solution available is for point loads on crack walls in an infinite, rather than finite, thickness layer. This

enables the effect of the GHI to be investigated for a different geometry that is overall stiffer, due to

the infinite thickness, then an ice-shelf. The point loads are used to represent the GHI, their effect is

integrated over a section of the infinite planes representing opposite crack faces, of length a and height H,

and a depth-dependent profile for KI is obtained for different lengths of integrated GHI. Because the GHI

acts perpendicularly to the rift walls, it does not contribute to variation in KII or KIII . The following

results are non-dimensional and scaled to the ice shelf thickness, H.

The analytical result demonstrates the shape of the depth-dependence of KI SIF values (Fig. 12). SIFs

are characterised by maxima at the upper and lower surfaces and a minimum close to sea level. This occurs

because the GHI “pull” on both rift walls is greatest at sea level, where the unopposed ice overburden is

largest, and tends to zero as it approaches the upper and lower surface. The analytical KI profile shapes

exhibit a dependence on a that decreases with increasing a. The decreasing dependence on a suggests a

limit after which conditions on the rift wall no longer influence depth-dependence of the SIFs.

APPENDIX F

As an example of the dimensionless 3D to 2D comparison in the text, Figure 13 shows the KI SIFs when

the shelf domain is scaled so that the thickness H is 300 m.
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Fig. 12. Integration of the effects of point loads on the rift walls provides this expected effect of the GHI on the

KI profile. The analytical expression is for an infinite medium, as shown schematically on the right, and therefore

not directly comparable to an ice shelf rift.
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Fig. 13. The effect of the GHI on the KI profile for a dimensioned shelf section where H “ 300 m. A symmetrical

8H ˆ 16H ˆ H section of shelf is used as the domain. The rift walls are loaded with the GHI, tGHI , and the traction

at the front is purely normal to the front, ty, and equal to the mean GHI value, tG. The fracture toughness value

range from Zhang and others (2023) is plotted in teal.
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ty “ 1 ˆ tG ty “ 2 ˆ tG ty “ 3 ˆ tG

Fig. 14. Depth profiles of KIII at the front of a rift in a symmetrical 8H ˆ 16H ˆ H section of shelf. The rift walls

are loaded with the GHI, tG. The traction at the front, tF has only a component normal to the front, ty, which is

equal to Y ˆ tG, where Y “ 1, 2, 3 for plots from left to right.

APPENDIX G

The same conditions presented in the comparison between 3D and 2D models are used to investigate

KIII SIFs. There are no comparable results from 2D models as there there are admissible out-of-plane

displacements.
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tx “ 0.2 ˆ tG tx “ 0.4 ˆ tG tx “ 0.6 ˆ tG

Fig. 15. Depth profiles of KIII at the front of a rift in a symmetrical 8H ˆ 16H ˆ H section of shelf. The rift walls

are loaded with the GHI, tG. The traction at the front, tF has only a component tangent to the front, tx, which is

X ˆ tG, where X “ 0.2, 0.4, 0.6 for plots from left to right.

ty “ 1 ˆ tG ty “ 2 ˆ tG ty “ 3 ˆ tG

Fig. 16. Depth profiles of KIII at the front of a rift in a symmetrical 8H ˆ 16H ˆ H section of shelf. The rift walls

are not loaded with the GHI. The traction at the front, tF has only a component normal to the front, ty, which is

equal to Y ˆ tG, where Y “ 1, 2, 3 for plots from left to right.
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