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Abstract. In this paper, we introduce the notion of the equivalence relation, called
n-isoclinism, between crossed modules of groups, and give some basic properties of
this notion. In particular, we obtain some criteria under which crossed modules are
n-isoclinic. Also, we present the notion of n-stem crossed module and, under some
conditions, determine them within an n-isoclinism class.
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1. Introduction. Let G and H be two groups and n be a non-negative integer.
Then, G and H are said to be n-isoclinic, G ∼

n
H, if there exist isomorphisms

α : G/Zn(G) −→ H/Zn(H) and β : γn+1(G) −→ γn+1(H) in such a way that β is
compatible with α, that is, the (n + 1)-fold commutator [. . . [[h1, h2], h3], . . . , hn+1]
equals β([. . . [[g1, g2], g3], . . . , gn+1]) for any hi ∈ α(giZn(G)) and gi ∈ G for i =
1, . . . , n + 1. The pair (α, β) is called an n-isoclinism between G and H. It is obvious
that n-isoclinism is an equivalence relation and, hence, produces a partition on the class
of groups such that all nilpotent groups of class at most n fall into an equivalence class.
Historically, the 1-isoclinism relation was introduced by Hall [11], with the purpose of
classifying all finite p-groups (a beautiful outcome of the principle of 1-isoclinism is the
book [10] in which all isomorphism types of groups of order 2n (n ≤ 6) are described,
together with many similar results. See also [4, 5, 13, 17, 19] for more applications).
Later, Hall [12] generalized the notion of 1-isoclinism to the notion of V-isologism,
with respect to a given variety of groups V such that if V is the variety of all the
trivial groups or the variety of all abelian groups, then V-isologism coincides with
isomorphism and 1-isoclinism, respectively. For the variety V of nilpotent groups of
class at most n, the notion ofV-isologism is nothing but the notion of n-isoclinism. This
concept plays an important role in group theory and has since been further investigated
by several authors (see [2, 3, 6, 14, 15, 22, 30]). In particular, Bioch [3] determined all
groups occurring in an n-isoclinism class of a given group, and Hekster [14], under some
conditions, proved that each n-isoclinism class of groups contains at least a group with
the property that its centre is contained in (n + 1)-th term of its lower central series,
which are called n-stem groups. Also, it is shown in [29] that n-isoclinic groups can be
n-isoclinically embedded into one group.

The algebraic study of the category of crossed modules was initiated by Norrie
[24] and has led to a substantial algebraic theory contained essentially in the papers
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[1, 7–9, 18, 23, 25–28]. In particular, the second author in the joint paper [26] presented
the analogous notion of the 1-isoclinism for crossed modules and extended some known
properties of the 1-isoclinism between groups to the 1-isoclinism between crossed
modules. Also, Odabaş et al. [25] gave an algorithm for checking 1-isoclinism between
crossed modules and applied the algorithm to classify certain crossed modules.

In this paper, we introduce the notion of n-isoclinism between crossed modules,
which is a vast generalization of n-isoclinism of groups and the 1-isoclinism of crossed
modules. Similar to the works of Bioch [3] and van der Waall [30] in the group case,
we give some equivalent conditions under which crossed modules are n-isoclinic. Also,
we present an analogue to the n-stem groups in the n-isoclinic case of crossed modules
and characterize them inside an n-isoclinism class in an impotent special case.

2. Preliminaries on crossed modules. This section is devoted to recall some basic
definitions in the category of crossed modules and give some results related to the terms
of upper and lower central series of a given crossed module, which will be needed in
the sequel.

A crossed module (T, G, ∂) is a group homomorphism ∂ : T −→ G together with
an action of G on T , written gt for t ∈ T and g ∈ G, satisfying ∂(gt) = g∂(t)g−1 and
∂(t)t′ = tt′t−1, for all t, t′ ∈ T , g ∈ G. It is worth noting that for any crossed module
(T, G, ∂), Im∂ is a normal subgroup of G and ker ∂ is a G-invariant subgroup in the
centre of T . Evidently, for any normal subgroup N of a group G, (N, G, i) is a crossed
module, where i is the inclusion and G acts on N by conjugation. This way, every group
G can be seen as a crossed module in two obvious ways: (1, G, i) or (G, G, id).

A morphism of crossed modules (γ1, γ2) : (T, G, ∂) −→ (T ′, G′, ∂ ′) is a pair
of homomorphisms γ1 : T −→ T ′ and γ2 : G −→ G′ such that ∂ ′γ1 = γ2∂ and
γ1(gt) = γ2(g)γ1(t) for all g ∈ G, t ∈ T .

Taking objects and morphisms as defined above, we obtain the category CM

of crossed modules. In this category, one can find the familiar notions of injection,
surjection, (normal) subobject, kernel, cokernel, exact sequence, etc.; most of them
can be found in detail in [8, 24].

Let (T, G, ∂) be a crossed module with normal crossed submodules (S, H, ∂) and
(L, K, ∂). The following is a list of notations that will be used:
� Z(T, G, ∂) = (TG, Z(G) ∩ stG(T), ∂) is the centre of (T, G, ∂), where Z(G) is the

centre of G, TG = {t ∈ T | gt = t for all g ∈ G}, and stG(T) = {g ∈ G| gt = t for all t ∈
T}.

� (T, G, ∂)′ = ([G, T ], G′, ∂) is the commutator crossed submodule of (T, G, ∂), where
G′ = [G, G] and [G, T ] = 〈 gtt−1 | t ∈ T, g ∈ G〉 is the displacement subgroup of T
relative to G.

� [(S, H, ∂), (L, K, ∂)] is the normal crossed submodule ([K, S][H, L], [H, K ], ∂) of
(T, G, ∂).

� γn(T, G, ∂) denotes the nth term of lower central series of (T, G, ∂) defined
inductively by γ1(T, G, ∂) = (T, G, ∂) and γn+1(T, G, ∂) = [γn(T, G, ∂), (T, G, ∂)], for
n ≥ 1.

� Zn(T, G, ∂) denotes the nth term of the upper central series of (T, G, ∂) defined
inductively by Z0(T, G, ∂) = 1 and Zn+1(T, G, ∂)/Zn(T, G, ∂) is the centre of
(T, G, ∂)/Zn(T, G, ∂), for n ≥ 0.

Furthermore, for any n ≥ 1, we define
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� ζn(T) = {t ∈ T |[nG, t] = 1}, where [1G, t] = 〈gtt−1|g ∈ G〉 and inductively [n+1G, t] =
[G, [nG, t]];

� κn(G) = Zn(G) ∩ {g ∈ G|[iG, [[n−1−iG, g], T ]] = 1 for all 0 ≤ i ≤ n − 1}, where
[0G, T1] = T1 for each subgroup T1 of T , [g, T ] = 〈gtt−1|t ∈ T〉, [0G, g] = g and
inductively [nG, g] = [G, [n−1G, g]];

� �n(T, G) = [n−1G, T ], where [0G, T ] = T and inductively [nG, T ] = [G, [n−1G, T ]].
Note that a crossed module (T, G, ∂) is said to be finite (respectively, finitely

generated) if the groups T and G are both finite (respectively, finitely generated). In the
case of finite, we define |(T, G, ∂)| to be the ordered pair (|T |, |G|). Clearly, a total order
is defined on the class of all finite crossed modules by means of |(T, G, ∂)| < |(T ′, G′, ∂ ′)|
if and only if |T | < |T ′|, or |T | = |T ′| and |G| < |G′|. Also, the crossed module (T, G, ∂)
is called strongly finitely generated if it is a homomorphic image of a finitely generated
projective crossed module. Plainly, any finitely generated simply connected crossed
module is strongly finitely generated. In particular, a group G is finitely generated if
and only if it is strongly finitely generated as a crossed module in any of the usual
ways. Finally, the crossed module (T, G, ∂) is nilpotent of class at most n ≥ 1 when
γn+1(T, G, ∂) = 1.

The following results are very helpful in our further proofs.

LEMMA 2.1. Let (T, G, ∂) be any crossed module. Then,
(i) for all t, t′ ∈ T and g, g′ ∈ G, the following identities hold:

[gg′, t] = [g, [g′, t]][g′, t][g, t], (1)

[g, tt′] = [g, t][t, [g, t′]][g, t′]; (2)

(ii) for any L � T and H, K � G,
(a) [H, [K, L]] ⊆ [K, [H, L]][[H, K ], L],
(b) [[H, K ], L] ⊆ [H, [K, L]][K, [H, L]], if H is contained in K.

Proof.
(i) We have

[gg′, t] = gg′
tt−1 = g(g

′
tt−1)(gt)t−1 = g[g′, t][g′, t]−1[g′, t][g, t] = [g, [g′, t]][g′, t][g, t],

[g, tt′] = g(tt′)(tt′)−1 = (gtt−1)t(gt′t′−1)t−1 = [g, t]t[g, t′]t−1 = [g, t][t, [g, t′]][g, t′].

(ii) One first notes that [H, L] � T because

t(hll−1) = ∂(t)(hl)(tl−1) = ∂(t)h(∂(t)l)(tl−1) = ∂(t)h(tl)(tl)−1 ∈ [H, L],

for all t ∈ T , h ∈ H, l ∈ L. Similarly, [H, [K, L]], [K, [H, L]] and [[H, K ], L] are
normal in T .

(a) Put X = [K, [H, L]][[H, K ], L]. Then, for all h ∈ H, k ∈ K , l ∈ L, we have

h[k, l] = h( kll−1) = [h,k]k( hl)( hl)−1 = [[h, k]k, hl]
by(1)= [[h, k], [k, hl]][k, hl][[h, k], hl] ≡ [k, hl] (mod X)

= [k, [h, l]l]
by(2)= [k, [h, l]][[h, l], [k, l]][k, l]

≡ [k, l] (mod X),
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and consequently, [h, [k, l]] = h[k, l][k, l]−1 ≡ 1 (mod X). It thus follows that
[H, [K, L]] ⊆ X .

(b) Put Y = [H, [K, L]][K, [H, L]]. Then, for all h ∈ H, k ∈ K , l ∈ L, we have

[h−1k−1, l]
by(1)= [h−1, [k−1, l]][k−1, l][h−1, l] ≡ [k−1, l][h−1, l] (mod Y )

and so,

[k, [h−1k−1, l]] ≡ [k, [k−1, l][h−1, l]] (mod Y )
by(2)= [k, [k−1, l]][[k−1, l], [k, [h−1, l]]][k, [h−1, l]]

≡ [k, [k−1, l]] (mod Y ).

Using the above results, we obtain

[ kh−1, l]
by(1)= [k, [h−1k−1, l]][h−1k−1, l][k, l] ≡ [k, [k−1, l]][k−1, l][h−1, l][k, l] (mod Y )

= [k, l]−1[k−1, l]−1[k−1, l][h−1, l][k, l] = [[k, l]−1, [h−1, l]][h−1, l][k, l]−1[k, l]

≡ [h−1, l] (mod Y ),

and then, using the assumption that H ⊆ K , it follows that

[[h, k], l] = [h kh−1, l] = [h, [ kh−1, l]][ kh−1, l][h, l] ≡ [ kh−1, l][h, l] (mod Y )

≡ [h−1, l][h, l] (mod Y ).

On the other hand, 1 = [hh−1, l]
by(1)= [h, [h−1, l]][h−1, l][h, l] and hence [h−1, l] ≡

[h, l]−1 (mod Y ). We therefore conclude that [[h, k], l] ≡ 1 (mod Y ), whence
[[H, K ], L] ⊆ Y . �

The following proposition provides an explicit description for the terms of upper
and lower central series of a crossed module.

PROPOSITION 2.2. Let (T, G, ∂) be any crossed module and n ≥ 1. Then,
(i) Zn(T, G, ∂) = (ζn(T), κn(G), ∂),

(ii) γn(T, G, ∂) = (�n(T, G), γn(G), ∂).

Proof. Part (i) is immediate from [27, Lemma 2.1(i),(iii)]. As for (ii), applying [27,

Lemma 2.1(ii),(iv)], we have γn(T, G, ∂) = ([n−1G, T ]
n−1∏
i=2

[n−1−iG, [γi(G), T ]], γn(G), ∂).

So, it is enough to prove that for any i ≥ 1, [γi(G), T ] ⊆ [iG, T ]. But, this follows by
induction on i, and using the fact that [γi+1(G), T ] ⊆ [γi(G), [G, T ]][G, [γi(G), T ]] (the
latter inclusion follows by Lemma 2.1(ii)). �

We see from the proof of Proposition 2.2 that the subgroup �n(T, G) of T
introduced in [27] is equal to [n−1G, T ].

PROPOSITION 2.3. Let (T, G, ∂) be any crossed module, and i,j be positive integers
with j ≥ i. Then,

(i) [γi(G), κj(G)] ≤ κj−i(G),
(ii) [γi(G), ζj(T)] ≤ ζj−i(G),

(iii) [κj(G), �i(T, G)] ≤ ζj−i(G).
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Proof.
(i) Using induction on i, the case i = 1 being clear. The three subgroups lemma

shows that [γi+1(G), κj(G)] = [[γi(G), G], κj(G)] is contained in the product
[[G, κj(G)], γi(G)][[κj(G), γi(G)], G]; by induction, the latter is contained in
κj−i−1(G).

(ii) It is proved by using Lemma 2.1(ii) and an argument similar to part (i).
(iii) Induct on i. By the definition of κj(G), we have [j−1G, [κj(G), T ]] = 1, implying

that [κj(G), �1(T, G)] ≤ ζj−1(G). Now, assume that the result holds for i ≥ 1.
Then, it follows from Lemma 2.1(ii), the induction hypothesis and parts (i), (ii)
that

[κj(G), �i+1(T, G)] = [κj(G), [G, �i(T, G)]] ≤ [G, [κj(G), �i(T, G)]][[G, κj(G)], �i(T, G)]

≤ [G, ζj−i(T)][κj−1(G), �i(T, G)] ≤ ζj−i−1(T),

as wished to show.
�

The following corollary is an interesting consequence of the above.

COROLLARY 2.4. Let (T, G, ∂) be any crossed module. Then, for all positive integers
i, j with j ≥ i, [Zj(T, G, ∂), γi(T, G, ∂)] ≤ Zj−i(T, G, ∂).

LEMMA 2.5. Let (T, G, ∂) be any crossed module, z ∈ ζn(T) and k ∈ κn(G). Then, for
all t ∈ T and g1, . . . , gn+1 ∈ G, we have

(i) [gn, . . . , [g2, [g1, zt]] . . .] = [gn, . . . , [g2, [g1, t]] . . .],
(ii) for all 1 ≤ i ≤ n, [gn, . . . , [gik, . . . , [g1, t] . . .] . . .] = [gn, . . . , [gi, . . . ,

[g1, t] . . .] . . .],
(iii) for all 1 ≤ i ≤ n + 1, [. . . [. . . [g1, g2], . . . , gik] . . . , gn+1] = [. . . [g1, g2],

. . . , gn+1],
(iv) [gn, . . . , gn−i+1, [[gn−i, . . . , [g2, g1k] . . .], t] . . .] = [gn, . . . , gn−i+1, [[gn−i, . . . ,

[g2, g1] . . .], t] . . .].

Proof.
(i) Set z0 = z and recursively, for 1 ≤ i ≤ n, zi = [gi, zi−1][zi−1, [gi, . . . , [g1, t] . . .]].

Using Lemma 2.1(i), Proposition 2.3(iii) and an induction argument on i ≥ 1,
one gets that zi ∈ ζn−i(T) and

[gi, . . . , [g2, [g1, zt]] . . .] = zi[gi, . . . , [g2, [g1, t]] . . .].

The result now follows by taking i = n.
(ii) Fix 1 ≤ i ≤ n, and put xi = [gi, [k, [gi−1, . . . , [g1, t] . . .]]][k, [gi−1, . . . , [g1, t] . . .]]

(for i = 1, x1 = [g1, [k, t]][k, t]) and recursively, xj =
[gj, xj−1][xj−1, [gj, . . . , [g1, t] . . .]] for j = i + 1, . . . , n. By applying Lemma
2.1(ii) and Proposition 2.3, and using induction on j ≥ i, it is not hard to see that
xj ∈ ζn−j(T) and [gj, . . . , [gik, . . . , [g1, t] . . .] . . .] = xj[gj, [gj−1, . . . , [g1, t] . . .]].
Now, taking j = n, we obtain the result.

(iii) It is straightforward, since k ∈ Zn(G).
(iv) Putting k1 = k and recursively, kj = [[gj−1, . . . , g1], [gj, kj−1]][gj, kj−1] for

j = 2, . . . , n, one can show, by induction on j, that kj ∈ κn−j+1(G)
and [gj . . . , [g2, g1k] . . .] = [gj . . . , [g2, g1] . . .]kj. So, if we set yi =
[[gn−i . . . , [g2, g1] . . .], [kn−i, t]][kn−i, t] for 0 ≤ i ≤ n − 1, it is deduced from
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Lemma 2.1(i) that [[gn−i, . . . , [g2, g1k] . . .], t] = [[gn−i, . . . , [g2, g1] . . .]kn−i, t] =
yi[[gn−i, . . . , [g2, g1] . . .], t]. Taking into account that yi ∈ ζi(T), we thus
conclude from part (i) that

[gn, . . . , gn−i+1, [[gn−i, . . . , [g2, g1k] . . .], t] . . .]

= [gn, . . . , gn−i+1, yi[[gn−i, . . . , [g2, g1] . . .], t] . . .]

= [gn, . . . , gn−i+1, [[gn−i, . . . , [g2, g1] . . .], t] . . .],

which proves the result.
�

As an immediate consequence of the above lemma, we deduce that for any crossed
module (T, G, ∂) and n ≥ 1, there exist well-defined maps

ηn+1
(T,G,∂)

:
T

ζn(T)
× G

κn(G)
× · · · × G

κn(G)︸ ︷︷ ︸
n-copies

−→ �n+1(T, G),

θn+1
(T,G,∂)

:
G

κn(G)
× · · · × G

κn(G)︸ ︷︷ ︸
(n+1)-copies

−→ γn+1(G)

given by

ηn+1
(T,G,∂)

(tζn(T), g1κn(G), . . . , gnκn(G)) = [gn, . . . , [g2, [g1, t]] . . .],

θn+1
(T,G,∂)

(g1κn(G), . . . , gn+1κn+1(G)) = [. . . [[g1, g2], g3], . . . , gn+1].

If we consider a group G as a crossed module in any of the two usual ways, then
one easily sees that ηn+1

(1,G,i)
= 1, ηn+1

(G,G,id)
is defined by ηn+1

(G,G,id)
(g1κn(G), . . . , gn+1κn(G)) =

[gn+1, . . . , [g2, g1] . . .], and θn+1
(1,G,i)

= θn+1
(G,G,id)

is the map γ (n, G) defined in [14, Definition
3.1].

PROPOSITION 2.6. Let (T, G, ∂) be any crossed module with a crossed submodule
(S, H, ∂). Then,

(i) Zn((S, H, ∂)Zn(T, G, ∂)) = Zn(S, H, ∂)Zn(T, G, ∂),
(ii) γn+1((S, H, ∂)Zn(T, G, ∂)) = γn+1(S, H, ∂),

(iii) Zn(S, H, ∂) = (S, H, ∂) ∩ Zn((S, H, ∂)Zn(T, G, ∂)),
(iv) γn+1((S, H, ∂)Zn(T, G, ∂)) ∩ Zn((S, H, ∂)Zn(T, G, ∂)) = γn+1(S, H, ∂) ∩

Zn(S, H, ∂).

Proof.
(i) By virtue of Lemma 2.5(i), (ii), it is easy to verify that ζn(Sζn(T)) =

ζn(S)ζn(T). So, we have only to show that κn(Hκn(G)) = κn(H)κn(G).
Since [κn(H)κn(G), nHκn(G)] ⊆ [Zn(HZn(G)), nHZn(G)] = 1, it follows that
κn(H)κn(G) ⊆ Zn(Hκn(G)). On the other hand, for given 1 ≤ i ≤ n − 1, we have
the following consequences:
(1) An easy inductive proof shows that [n−i−1Hκn(G), κn(H)κn(G)] ⊆

[n−i−1H, κn(H)]κi+1(G).
(2) Invoking Proposition 2.3(ii), (iii), [[n−i−1H, κn(H)], ζn(T)] ⊆

[γn−i(G), ζn(T)] ⊆ ζi(T) and [κi+1(G), Sζn(T)] ⊆ [κi+1(G), T ] ⊆ ζi(T).
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(3) By the definition of κn(H), [ iH, [[ n−i−1H, κn(H)], S]] = 1, implying that
[[n−i−1H, κn(H)], S] is contained in ζi(S).

(4) As Sζn(T) = Sζn(T)ζi(Sζi(T)), it forces that ζi(Sζn(T)) =
ζi(Sζn(T))ζi(Sζi(T)) and then ζi(Sζi(T)) ⊆ ζi(Sζn(T)).

Now, by using the above information, we obtain

[iHκn(G), [[n−i−1Hκn(G), κn(H)κn(G)], Sζn(T)]]
by(1)
⊆ [iHκn(G), [[n−i−1H, κn(H)]κi+1(G), Sζn(T)]]

= [iHκn(G), [[n−i−1H, κn(H)], S][[n−i−1H, κn(H)], ζn(T)][κi+1(G), Sζn(T)]]
by(2,3)
⊆ [iHκn(G), ζi(S)ζi(T)] = [iHκn(G), ζi(Sζi(T))]

by(4)
⊆ [iHκn(G), ζi(Sζn(T))] = 1.

We therefore deduce that κn(H)κn(G) ⊆ κn(Hκn(G)). To prove the reverse
inclusion, we fix an arbitrary hg ∈ κn(Hκn(G)). We must prove that h ∈ κn(H).
It is obvious that [nHκn(G), hg] = 1 and consequently, owing to Lemma 2.5(iii),
[nH, h] = 1 and h ∈ Zn(H). Also, by the assumption,

[iH, [[n−i−1H, hg], S]] ⊆ [iHκn(G), [[n−i−1Hκn(G), hg], Sζn(T)]] = 1,

for i = 1, . . . , n − 1. But, this result together with Lemma 2.5(iv) yields that
[iH, [[n−i−1H, h], S]] = 1 for all i and then h ∈ κn(H), as desired.

(ii) Combining Proposition 2.2(ii) with Lemma 2.5, we have

γn+1((S, H, ∂)Zn(T, G, ∂)) = (�n+1(Sζn(T), Hκn(G)), γn+1(Hκn(G)), ∂)

= (�n+1(S, H), γn+1(H), ∂) = γn+1(S, H, ∂),

proving the result.
(iii) It easily follows by part (i).
(iv) This is immediate from parts (ii) and (iii).

�

3. n-isoclinism of crossed modules. This section is devoted to present the notion
of n-isoclinism on the class of all crossed modules and to give some criteria for crossed
modules to be n-isoclinic.

DEFINITION. The crossed modules (T1, G1, ∂1) and (T2, G2, ∂2) are said to be n-isoclinic
(n ≥ 0), (T1, G1, ∂1) ∼

n
(T2, G2, ∂2), if there exists a pair of isomorphisms of crossed

modules

α = (α1, α2) :
(T1, G1, ∂1)

Zn(T1, G1, ∂1)
−→ (T2, G2, ∂2)

Zn(T2, G2, ∂2)
,

β = (β1, β2) : γn+1(T1, G1, ∂1) −→ γn+1(T2, G2, ∂2),
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such that the following diagrams are commutative:

T1

ζn(T1)
× G1

κn(G1)
× · · · × G1

κn(G1)

ηn+1
(T1 ,G1 ,∂1)−−−−−→ �n+1(T1, G1)

α1×αn
2

⏐⏐�
⏐⏐�β1

T2

ζn(T2)
× G2

κn(G2)
× · · · × G2

κn(G2)

ηn+1
(T2 ,G2 ,∂2)−−−−−→ �n+1(T2, G2),

G1

κn(G1)
× · · · × G1

κn(G1)

θn+1
(T1 ,G1 ,∂1)−−−−−→ γn+1(G1)

αn+1
2

⏐⏐�
⏐⏐�β2

G2

κn(G2)
× · · · × G2

κn(G2)

θn+1
(T2 ,G2 ,∂2)−−−−−→ γn+1(G2).

In other words, for all t1 ∈ T1 and g1, . . . , gn+1 ∈ G1, we have

β1([gn, . . . , [g2, [g1, t1]] . . .]) = [g′
n, . . . , [g′

2, [g′
1, t′1]] . . .],

β2([. . . [[g1, g2], g3], . . . , gn+1]) = [. . . [[g′
1, g′

2], g′
3], . . . , g′

n+1],

where t′1 ∈ α1(t1ζn(T1)) and g′
i ∈ α2(giκn(G1)) for i = 1, . . . , n + 1. The pair (α, β) is

called an n-isoclinism between (T1, G1, ∂1) and (T2, G2, ∂2).
If we consider groups as crossed modules in any of the two usual ways, we get

the definition of n-isoclinism between groups given by Hall [12]. It is obvious that
n-isoclinism between crossed modules is an equivalence relation, and so, it divides the
class of all crossed modules into n-isoclinism equivalence classes.

In the following, we deal with the connection between the n-isoclinism of crossed
modules and the n-isoclinism of groups.

PROPOSITION 3.1. Let (T1, G1, ∂1) and (T2, G2, ∂2) be two n-isoclinic crossed modules.
Then, T1 ∼

n
T2 and G1 ∼

n
G2.

Proof. Let (α, β) be an n-isoclinism between (T1, G1, ∂1) and (T2, G2, ∂2). As
γn+1(Ti) is a subgroup of �n+1(Ti, Gi) (i = 1, 2), we show that β1 maps any generator of
γn+1(T1) to a generator of γn+1(T2). Suppose t1, . . . , tn+1 are arbitrary elements of T1

and choose t′i ∈ α1(tiζn(T1)) for 1 ≤ i ≤ n + 1. Then, α2(∂1(ti)κn(G1)) = ∂2(t′i)κn(G2) for
all i. Now, if n = 1, then β1([t1, t2]) = β1([∂1(t1), t2]) = [∂2(t′1), t′2] = [t′1, t′2], thanks to
the above definition. We hence assume that n ≥ 2. Setting xi = [. . . [[t1, t2], t3], . . . , ti]
for i = 2, . . . , n, an easy inductive argument establishes that

[. . . [[t1, t2], t3], . . . , tn+1]=
{

[xn tn+1, [tn, [xn−2 tn−1, . . . , [x2 t3, [t2, t1]] . . .]]] when n is even

[tn+1, [xn−1 tn, [tn−1, . . . , [x2 t3, [t2, t1]] . . .]]]−1 when n is odd.

Also, setting yi = [. . . [[t′1, t′2], t′3], . . . , t′i] for i = 2, . . . , n, a similar result holds
for [. . . [[t′1, t′2], t′3], . . . , t′n]. It is easily verified that α1(xiζn(T1)) = yiζn(T2) and
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α2(∂1(xi ti+1)κn(G1)) = ∂2(yi t′i+1)κn(G2) (2 ≤ i ≤ n). Consequently, we have

β1([. . .[[t1, t2], t3], . . . , tn+1])

= β1([xn tn+1, [tn, [xn−2 tn−1, . . . , [x2 t3, [t2, t1]] . . .]]])

= β1([∂1(xn tn+1), [∂1(tn), [∂1(xn−2 tn−1), . . . , [∂1(x2 t3), [∂1(t2), t1]] . . .]]])

= [∂2(yn t′n+1), [∂2(t′n), [∂2(yn−2 t′n−1), . . . , [∂2(y2 t′3), [∂2(t′2), t′1]] . . .]]]

= [yn t′n+1, [t′n, [yn−2 t′n−1, . . . , [y2 t′3, [t′2, t′1]] . . .]]]

= [. . . [[t′1, t′2], t′3], . . . , t′n+1],

whenever n is even and analogously, the above equality holds when n is odd. Now,
one readily sees that the restriction of β1 to γn+1(T1) is an isomorphism of γn+1(T1)
onto γn+1(T2), and α1 induces an isomorphism ᾱ1 : T1/Zn(T1) −→ T2/Zn(T2) given by
ᾱ1(t1Zn(T1)) = t′1Zn(T2). Also, using the isomorphism β2, the map ᾱ2 : G1/Zn(G1) −→
G2/Z2(G2) defined by ᾱ2(gZn(G1)) = g′Z2(G2), where g ∈ G1 and g′ ∈ α2(gZn(G1)), is
an isomorphism. It is straightforward to check that the pair (ᾱ1, β1|γn+1(T1)) is an n-
isoclinism between the groups T1 and T2, and the pair (ᾱ2, β2) is an n-isoclinism
between the groups G1 and G2, as required. �

When n = 1, Proposition 3.1 improves [25, Proposition 6]. Also, it follows from the
above proposition that for any two group G and H, if (1, G, i) ∼

n
(1, H, i) or (G, G, id) ∼

n
(H, H, id), then G ∼

n
H.

We remark that the converse of Proposition 3.1 is not true in general. For a
simple counterexample, suppose for m ≥ 1, C2m = 〈am〉 denotes the cyclic group of
order 2m. Then, (C2m , C21 , ∂) is a crossed module, where ∂ is the trivial homomorphism
and C21 acts on C2m by a1 am = a3

m. An easy induction shows that for any 1 ≤ n < m,
�n+1(C2m , C21 ) = 〈a2n

m 〉 ∼= C2m−n , and so γn+1(C2m , C21 , ∂) �= 1, that is, (C2m , C21 , ∂) ∼
n
/ 1.

However, C2m ∼
n

1 ∼
n

C21 .

The following proposition is a routine extension of [26, Lemma 3.2].

PROPOSITION 3.2. Let (T, G, ∂) be a crossed module with a crossed submodule
(S, H, ∂) and a normal crossed submodule (L, K, ∂). Then,

(i) (S, H, ∂) ∼
n

(S, H, ∂)Zn(T, G, ∂). In particular, if (T, G, ∂) =
(S, H, ∂)Zn(T, G, ∂), then (T, G, ∂) ∼

n
(S, H, ∂). Conversely, if

(T, G, ∂)/Zn(T, G, ∂) is finite and (T, G, ∂) ∼
n

(S, H, ∂), then (T, G, ∂) =
(S, H, ∂)Zn(T, G, ∂).

(ii) (T, G, ∂)/(L, K, ∂) ∼
n

(T, G, ∂)/((L, K, ∂) ∩ γn+1(T, G, ∂)). In particular, if

the crossed submodule (L, K, ∂) ∩ γn+1(T, G, ∂) = 1, then (T, G, ∂) ∼
n

(T, G, ∂)/(L, K, ∂). Conversely, if γn+1(T, G, ∂) is finite and (T, G, ∂) ∼
n

(T, G, ∂)/(L, K, ∂), then (L, K, ∂) ∩ γn+1(T, G, ∂) = 1.

A result of Bioch [3] states that two n-isoclinic groups G1 and G2 have a common
n-isoclinic ancestor G, that is, G1 and G2 can be realized as quotients of a group G,
while G, G1, G2 are n-isoclinic to each other. By arguments rather similar to those used
in [26, Proposition 3.4], we can extend this result by proving the following.
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THEOREM 3.3. Let (Ti, Gi, ∂i), i = 1, 2 be two crossed modules. Then, (T1, G1, ∂1) ∼
n

(T2, G2, ∂2) if and only if there exists a crossed module (T, G, ∂) containing normal crossed
modules (L1, K1, ∂1) and (L2, K2, ∂2), such that

(a) (T1, G1, ∂1) ∼= (T/L2, G/K2, ∂̄) ∼
n

(T, G, ∂) ∼
n

(T/L1, G/K1, ∂̄) ∼= (T2, G2, ∂2);

(b) (T/Li × T/�n+1(T, G), G/Ki × G/γn+1(G), ∂̄ × ∂̄) ∼
n

(Si, Hi, ∂̄ × ∂̄) ∼=
(T, G, ∂), for some crossed submodule (Si, Hi, ∂̄ × ∂̄) of (T/Li ×
T/�n+1(T, G), G/Ki × G/γn+1(G), ∂̄ × ∂̄), i = 1, 2.

Proof. The sufficiency holds trivially. We only need to prove the necessity. Assume
(α, β) is an n-isoclinism between (T1, G1, ∂1) and (T2, G2, ∂2). We define the crossed
module (T, G, ∂) by a pullback square in the category of crossed modules:

(T, G, ∂) −−−−−→ (T2, G2, ∂2)⏐⏐�
⏐⏐�γ ′

(T1, G1, ∂1) −−−−−→
αγ

(
T2

ζn(T2)
,

G2

κn(G2)
, ∂̄2),

where γ and γ ′ are the obvious surjective morphisms. Here, T = {(t1, t2)|α1(t1ζn(T1)) =
t2ζn(T2)}, G = {(g1, g2)|α2(g1κn(G1)) = g2κn(G2)} and ∂ is the restriction of ∂1 ×
∂2 to T . Denote by (Li, Ki, ∂) the image of Zn(Ti, Gi, ∂i) via the canonical
morphism (Ti, Gi, ∂i) −→ (T1 × T2, G1 × G2, ∂1 × ∂2), i = 1, 2. It is routine to check
that (Li, Ki, ∂), i = 1, 2, is a normal crossed submodule of (T, G, ∂), (T1, G1, ∂1) ∼=
(T/L2, G/K2, ∂̄) and (T2, G2, ∂2) ∼= (T/L1, G/K1, ∂̄).

(i) Using the definition of n-isoclinism, one sees that

�n+1(T, G) = 〈(x, β1(x))|x ∈ �n+1(T1, G1)〉 and γn+1(G) = 〈(y, β2(y))|y ∈ γn+1(G1)〉

from which is deduced that (Li, Ki, ∂) ∩ γn+1(T, G, ∂) = 1 for i =
1, 2. Therefore, according to Proposition 3.2(ii), (T/L1, G/K1, ∂̄) and
(T/L2, G/K2, ∂̄) are both n-isoclinic to (T, G, ∂), proving part (i).

(ii) For i = 1, 2, set Si = {(tLi, t�n+1(T, G)) | t ∈ T} and Hi =
{(gKi, gγn+1(G)) | g ∈ G}. Then, (Si, Hi, ∂̄ × ∂̄) is a crossed submodule
of (T/Li × T/�n+1(T, G), G/Ki × G/γn+1(G), ∂̄ × ∂̄) and the pair
(δi, θi) : (T, G, ∂) −→ (Si, Hi, ∂̄ × ∂̄), given by δi(t) = (tLi, t�n+1(T, G))
and θi(g) = (gKi, gγn+1(G)), is an isomorphism (i = 1, 2). Now, in view of
Proposition 3.2(i), to show

(T/Li × T/�n+1(T, G), G/Ki × G/γn+1(G), ∂̄ × ∂̄) ∼
n

(Si, Hi, ∂̄ × ∂̄),

it is enough to prove that

T
Li

× T
�n+1(T, G)

= Siζn

(
T
Li

× T
�n+1(T, G)

)
and

G
Ki

× G
γn+1(G)

= Hiκn

(
G
Ki

× G
γn+1(G)

)
.

(3)

Since for all t, t′ ∈ T and g, g′, g1, . . . , gn, g′
1, . . . , g′

n ∈ G, we have

[
n

G
Ki

× G
γn+1(G)

, (Li, t−1t′�n+1(T, G))
]

=
([

n
G
Ki

, Li

]
,

[
n

G
γn+1(G)

, t−1t′�n+1(T, G)
])

=1,
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[
i
G
Ki

× G
γn+1(G)

,

[[
n−1−i

G
Ki

× G
γn+1(G)

, (Ki, g−1g′γn+1(G))
]

,
T
Li

× T
�n+1(T, G)

]]
=1,

[(Ki, g−1g′γn+1(G)), (g1Ki,g′
1γn+1(G)), . . . , (gnKi, g′

nγn+1(G))]

= ([1, g1, . . . , gn]Ki, [g−1g′, g′
1, . . . , g′

n]γn+1(G)) = 1,

it follows that

(tLi, t′�n+1(T, G)) = (tLi, t�n+1(T, G))(Li, t−1t′�n+1(T, G)) ∈ Siζn

(
T
Li

× T
�n+1(T, G)

)
,

(gKi, g′γn+1(G)) = (gKi, gγn+1(G))(Ki, g−1g′γn+1(G)) ∈ Hiκn

(
G
Ki

× G
γn+1(G)

)
.

So, the equalities hold in (3) and the proof is complete. �

From the above theorem, we conclude that the crossed module (T2, G2, ∂2) lies
in the n-isoclinism family {(T1, G1, ∂1)} if and only if it satisfies one of following
conditions:

(i) (T2, G2, ∂2) is isomorphic to a direct product of (T1, G1, ∂1) with a nilpotent
crossed module of class at most n.

(ii) (T2, G2, ∂2) is a crossed submodule of a crossed module (L, K, δ) in {(T1, G1, ∂1)}
with (L, K, δ) = (T2, G2, ∂2)Zn(L, K, δ).

(iii) There exists a surjective morphism (θ1, θ2) from a crossed module (L, K, δ) ∈
{(T1, G1, ∂1)} onto (T2, G2, ∂2) such that ker(θ1, θ2) ∩ γn+1(L, K, δ) = 1.

The next corollary establishes that an n-isoclinism between two crossed modules
induces some certain m-isoclinisms between their upper central factor crossed modules
and lower commutator crossed submodules.

COROLLARY 3.4. Let (T1, G1, ∂1) and (T2, G2, ∂2) be two n-isoclinic crossed
modules. Then,

(i) for any 0 ≤ i ≤ n, (T1, G1, ∂1)/Zi(T1, G1, ∂1) ∼
n−i

(T2, G2, ∂2)/Zi(T2, G2, ∂2);

(ii) for any 0 ≤ i ≤ n, γi+1(T1, G1, ∂1) ∼
n−i

γi+1(T2, G2, ∂2);

(iii) for any m ≥ n, (T1, G1, ∂1) ∼
m

(T2, G2, ∂2).

Proof. By virtue of Theorem 3.3, we may assume that (T2, G2, ∂2) ∼=
(T1/L1, G1/K1, ∂̄1) for some normal crossed submodule (L1, K1, ∂1) of (T1, G1, ∂1)
with (L1, K1, ∂1) ∩ γn+1(T1, G1, ∂1) = 1.

(i) Put Zi(T1/L1, G1/K1, ∂̄1) = (S1, H1, ∂1)/(L1, K1, ∂1) for some
normal crossed submodule (S1, H1, ∂1) of (T1, G1, ∂1). If we
define [(S1, H1, ∂1), 0(T1, G1, ∂1)] = (S1, H1, ∂1) and recursively
[(S1, H1, ∂1), i(T1, G1, ∂1)] = [[(S1, H1, ∂1), i−1(T1, G1, ∂1)], (T1, G1, ∂1)] for
i ≥ 1, then it follows from the assumption that [(S1, H1, ∂1), i(T1, G1, ∂1)] ⊆
(L1, K1, ∂1), and consequently

[(S1, H1, ∂1) ∩ γn−i+1(T1, G1, ∂1), i(T1, G1, ∂1)] ⊆ (L1, K1, ∂1) ∩ γn+1(T1, G1, ∂1) = 1.
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Therefore, (S1, H1, ∂1) ∩ γn−i+1(T1, G1, ∂1) is a crossed submodule of
Zi(T1, G1, ∂1), and then,

(S1, H1, ∂1)/Zi(T1, G1, ∂1) ∩ γn−i+1((T1, G1, ∂1)/Zi(T1, G1, ∂1)) = 1.

Now, the result follows from Proposition 3.2(ii).
(ii) We only need to prove that

γi+1(T1, G1, ∂1) ∼
n−i

γi+1(
T1

L1
,

G1

K1
, ∂̄1) ∼= γi+1(T1, G1, ∂1)

γi+1(T1, G1, ∂1) ∩ (L1, K1, ∂1)
.

It suffices to show from Proposition 3.2(ii) that

γi+1(T1, G1, ∂1) ∩ (L1, K1, ∂1) ∩ γn−i+1(γi+1(T1, G1, ∂1))

= (L1, K1, ∂1) ∩ γn−i+1(γi+1(T1, G1, ∂1)) = 1.

But, the latter equality always holds because

(L1, K1, ∂1) ∩ γn−i+1(γi+1(T1, G1, ∂1)) ⊆ (L1, K1, ∂1) ∩ γn+1(T1, G1, ∂1) = 1.

(iii) Noticing that for any m ≥ n,

(L1, K1, ∂1) ∩ γm+1(T1, G1, ∂1) ⊆ (L1, K1, ∂1) ∩ γn+1(T1, G1, ∂1) = 1,

Proposition 3.2(ii) yields that (T1, G1, ∂1) ∼
m

(T1/L1, G1/K1, ∂̄1), as desired.

�
The (n − i)-isoclinism obtained between the quotient crossed modules

(T1, G1, ∂1)/Zi(T1, G1, ∂1) and (T2, G2, ∂2)/Zi(T2, G2, ∂2) in Corollary 3.4(i) is
the best possible, in the sense that n − i is the smallest non-negative
integer j such that (T1, G1, ∂1)/Zi(T1, G1, ∂1) ∼

j
(T2, G2, ∂2)/Zi(T2, G2, ∂2). Because

suppose that (T1, G1, ∂1) is a finite nilpotent crossed module of class n and
(T2, G2, ∂2) = (T1 × T1, G1 × G1, ∂1 × ∂1). Then, (T1, G1, ∂1) ∼

n
(T2, G2, ∂2) ∼

n
1. Now,

if (T1, G1, ∂1)/Zi(T1, G1, ∂1) ∼
j

(T2, G2, ∂2)/Zi(T2, G2, ∂2) for some j ≥ 0, then

(T1, G1, ∂1)
Zi+j(T1, G1, ∂1)

∼= (T2, G2, ∂2)
Zi+j(T2, G2, ∂2)

∼= (T1, G1, ∂1)
Zi+j(T1, G1, ∂1)

× (T1, G1, ∂1)
Zi+j(T1, G1, ∂1)

.

Thus, the finiteness of (T1, G1, ∂1) implies that (T1, G1, ∂1) = Zi+j(T1, G1, ∂1) and so,
j ≥ n − i.

In [29], it was established that two n-isoclinic groups G1 and G2 have a common
n-isoclinic descendant G, that is, G1 and G2 can be isomorphically embedded into a
group G, whereas G, G1, G2 are n-isoclinic to each other. In case n = 1, this result was
generalized to crossed modules, thanks to [26, Proposition 3.5]. It is not clear whether
the result holds for n ≥ 2. However, the following theorem supplies a partial answer.

THEOREM 3.5. Let (α, β) : (T1, G1, ∂1) −→ (T2, G2, ∂2) be an n-isoclinism of crossed
modules. Then, there exists a crossed module (T̃, G̃, ∂̃) with crossed submodules
(S̃i, H̃i, ∂̃), i = 1, 2, such that

(i) (S̃1, H̃1, ∂̃) ∼
n

(T̃, G̃, ∂̃) ∼
n

(S̃2, H̃2, ∂̃),
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(ii) (T1, G1, ∂1)/[(T1, G1, ∂1), Zn(T1, G1, ∂1)] ∼= (S̃1, H̃1, ∂̃),
(iii) (T2, G2, ∂2)/β([(T1, G1, ∂1), Zn(T1, G1, ∂1)] ∩ γn+1(T1, G1, ∂1)) ∼= (S̃2, H̃2, ∂̃).

To prove this, we first need the following observation.
Let the crossed module (T, G, ∂) with normal crossed submodules (Li, Ki, ∂i),

i = 1, 2, be defined as in the proof of Theorem 3.3. We put

(V, W, δ) = (
T
L2

× T
�n+1(T, G)

,
G
K2

× G
γn+1(G)

, ∂̄ × ∂̄),

U = {(xL2, x�n+1(T, G)) | x ∈ L1},
N = {(yK2, yγn+1(G)) | y ∈ K1},

and define (V1, W1, δ) = (U [W, U ][N, V ], N[W, N], δ). Then, we have the following:

LEMMA 3.6.
(i) (V1, W1, δ) is a normal crossed submodule of (V, W, δ).

(ii) V1 = U〈((1, 1)L2, (x, 1)�n+1(T, G)) | x ∈ [κn(G1), T1][G1, ζn(T1)]〉.
(iii) W1 = N〈((1, 1)K2, (y, 1)γn+1(G)) | y ∈ [G1, κn(G1)]〉.

Proof.
(i) One immediately verifies that (V1, W1, δ) is a crossed submodule of (V, W, δ).

We now demonstrate that (V1, W1, δ) satisfies the conditions of normality.
(1) W1 is the normal closure of N in W and so is normal in W .
(2) V1 is a W -invariant subgroup of V . For, let w = ((g1, g2)K2, (g′

1, g′
2)γn+1(G))

be an arbitrary element of W . Then for any u ∈ U , wuu−1 ∈ [W, U ]
and in consequence, wu ∈ U [W, U ] ⊆ V1. This result also implies that
the action of the element w on any generator of [W, U ] belongs in
V1. Now, assume that u is any generator of [N, V ]. It is easy to see
that u = (( k1 t1t−1

1 , 1)L2, ( k1 t′1t′1
−1

, 1)�n+1(T, G)) for some t1, t′1 ∈ T1 and
k1 ∈ κn(G1). Setting a = k1 t1t−1

1 and a′ = k1 t′1t′1
−1, Proposition 2.3(iii) yields

that a, a′ ∈ ζn(T1) and also the element ((a′, 1)L2, (a, 1)�n+1(T, G)) is equal
to

((k1,1)K2,(k1,1)γn+1(G))((t′1, t′2)L2, (t1, t2)�n+1(T, G))((t′1, t′2)L2, (t1, t2)�n+1(T, G))−1∈[N, V ].

So,

wu = ((g1 a, 1)L2, (g′
1 a′, 1)�n+1(T, G)),

= ((g1,g2)K2,γn+1(G))((a, 1)L2, (a, 1)�n+1(T, G))((a′−1, 1)L2, (a−1, 1)�n+1(T, G))
(K2,(g′

1,g
′
2)γn+1(G))((a′, 1)L2, (a′, 1)�n+1(T, G)) ∈ V1.

These results confirm that V1 is invariant under the action of W .
(3) [W1, V ] ≤ V1. To see this, we must prove that [nx, v] ∈ V1 for all n ∈ N,

x ∈ [W, N], v ∈ V . Using Lemma 2.1(i) and the definition of V1, it suffices
to show that [x, v] ∈ V1. Without loss of generality, we may assume that
x = wnn−1 where w ∈ W and n ∈ N. Then, we have

[x, v] = (wnn−1)vv−1 = (wn)(n−1
vv−1)(wn)vv−1 = (wn)(n−1

vv−1)w(n(w
−1

v)(w
−1

v)−1) ∈ V1,
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since n−1
vv−1, n( w−1

v)( w−1
v)−1 ∈ [N, V ] ⊆ V1. The proof of part (i) is

complete.
(ii) Denote X = U〈((1, 1)L2, (x, 1)�n+1(T, G)) | x ∈ [κn(G1), T1][G1, ζn(T1)]〉. Since

((1, 1)L2, (k1 t1t−1
1 , 1)�n+1(T, G)) =((k1,1)K2,(k1,1)γn+1(G))(L2, (t1, 1)�n+1(T, G))

(L2, (t1, 1)�n+1(T, G))−1 ∈ [N, V ] ⊆ V1,

((1, 1)L2, (g1 a1a−1
1 , 1)�n+1(T, G)) =(K2,(g1,1)γn+1(G))((a1, 1)L2, (a1, 1)�n+1(T, G))

((a1, 1)L2, (a1, 1)�n+1(T, G))−1 ∈ [W, U ] ⊆ V1,

for all t1 ∈ T , a1 ∈ ζn(T1), g1 ∈ G1, k1 ∈ κn(G1), one deduces that X ⊆ V1. On
the other hand,

((k1 t1t−1
1 , 1)L2, (k1 t′1t′−1

1 , 1)�n+1(T, G))

= ((k1 t1t−1
1 , 1)L2, (k1 t1t−1

1 , 1)�n+1(T, G))(L2, ((k1 t1t−1
1 )−1(k1 t′1t′−1

1 ), 1)�n+1(T, G))

for all t1, t′1 ∈ T1 and k1 ∈ κn(G1), from which we infer that [N, V ] ⊆ X .
Analogously, [W, U ] is contained in X and so V1 ⊆ X .

(iii) It is proved in a similar way to part (ii).
�

We are now ready to provide the proof of Theorem 3.5.

Proof of Theorem 3.5 We consider the crossed module (V, W, δ) with normal
crossed submodule (V1, W1, δ) obtained in Lemma 3.6(i) and define two morphisms

ϕ = (ϕ1, ϕ2) : (T1, G1, ∂1) −→ (
V
V1

,
W
W1

, δ̄) and

ψ = (ψ1, ψ2) : (T2, G2, ∂2) −→ (
V
V1

,
W
W1

, δ̄)

as follows:
First, suppose t1 ∈ T1, g1 ∈ G1 and choose t2 ∈ T2, g2 ∈ G2 such that α1(t1ζn(T1)) =
t2ζn(T2) and α2(g1κn(G1)) = g2κn(G2). Then, we set ϕ1(t1) = ((t1, t2)L2, �n+1(T, G))V1

and ϕ2(g1) = ((g1, g2)K2, γn+1(G))W1.
Second, suppose t2 ∈ T2, g2 ∈ G2 and choose t1 ∈ T1, g1 ∈ G1 such that
α1(t1ζn(T1)) = t2ζn(T2) and α2(g1κn(G1)) = g2κn(G2). Then, we set ψ1(t2) =
((t1, t2)L2, (t1, t2)�n+1(T, G))V1 and ψ2(g2) = ((g1, g2)K2, (g1, g2)γn+1(G))W1.
Note that the above maps are well defined. It is easy to check, but somewhat tedious.
For the sake of clarity, we divide the rest of the proof into three steps.
Step 1. ImϕZn(V/V1, W/W1, δ̄) = (V/V1, W/W1, δ̄) = ImψZn(V/V1, W/W1, δ̄).
These equalities hold because

(tL2, t′�n+1(T, G))V1 =(tL2, �n+1(T, G))V1(L2, t′�n+1(T, G))V1 ∈ ϕ1(T1)ζn(V/V1),

(gK2, g′γn+1(G))W1 =(gK2, γn+1(G))W1(K2, g′γn+1(G))W1 ∈ ϕ2(G1)κn(W/W1),

(tL2, t′�n+1(T, G))V1 =(tL2, t�n+1(T, G))V1(L2, t−1t′�n+1(T, G))V1∈ψ1(T1)ζn(V/V1),

(gK2, g′γn+1(G))W1 =(gK2, gγn+1(G))W1(K2, g−1g′γn+1(G))W1 ∈ ϕ2(G1)κn(W/W1),

for all t, t′ ∈ T , g, g′ ∈ G.
Step 2. ker ϕ = [(T1, G1, ∂1), Zn(T1, G1, ∂1)].
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Suppose t1 ∈ ker ϕ1 and choose t2 ∈ T2 with α1(t1ζn(T1)) = t2ζn(T2). Then,
((t1, t2)L2, �n+1(T, G)) ∈ V1 and so, using Lemma 3.6(ii), one sees that

((t1, t2)L2, �n+1(T, G)) = ((a1, 1)L2, (a1, 1)�n+1(T, G))(L2, (c1, 1)�n+1(T, G)),

for some a1 ∈ ζn(T1) and c1 ∈ [κn(G1), T1][G1, ζn(T1)]. The conclusion
is that t1 = a1 and (a1c1, 1) ∈ �n+1(T, G) ∩ T1 = 1, implying that t1 ∈
[κn(G1), T1][G1, ζn(T1)]. Conversely, suppose t1 ∈ [κn(G1), T1][G1, ζn(T1)]. Then,
t1 ∈ ζn(T1) and α1(t1ζn(T1)) = ζn(T2). Hence, ϕ1(t1) = ((t1, 1)L2, �n+1(T, G))V1 =
((t1, 1)L2, (t1, 1)�n+1(T, G))(L2, (t−1

1 , 1)�n+1(T, G))V1. It follows, by applying again
Lemma 3.6(ii), that ϕ1(t1) = 1. Therefore, indeed ker ϕ1 = [κn(G1), T1][G1, ζn(T1)].
Using Lemma 3.6(iii) and applying a similar argument, we can show that
ker ϕ2 = [G1, κn(G1)].
Step 3. ker ψ = β([(T1, G1, ∂1), Zn(T, G, ∂)] ∩ γn+1(T, G, ∂)).
Let t2 ∈ ker ψ1. Choose t1 ∈ T1 with α1(t1ζn(T1)) = t2ζn(T2). Then,
((t1, t2)L2, (t1, t2)�n+1(T, G)) = ((a1, 1)L2, (a1c1, 1)�n+1(T, G)) for some
a1 ∈ ζn(T1) and c1 ∈ [κn(G1), T1][G1, ζn(T1)]. Thus, we must have t1 = a1

and (t1c1a−1
1 , t2) ∈ �n+1(T, G), forcing β1(t1c1a−1

1 ) = t2. On the other hand,
t1c1a−1

1 ∈ [κn(G1), T1][G1, ζn(T1)] ∩ �n+1(T1, G1). So,

ker ψ1 ⊆ β1([κn(G1), T1][G1, ζn(T1)] ∩ �n+1(T1, G1)).

Conversely, suppose t1 ∈ [κn(G1), T1][G1, ζn(T1)] ∩ �n+1(T1, G1) and t2 = β1(t1). Then,
(t1, t2) ∈ �n+1(T, G)) and so, invoking Lemma 3.6(ii), we have

ψ1(t2) = ((t1, t2)L2, �n+1(T, G))V1

= ((t1, 1)L2, (t1, 1)�n+1(T, G))(L2, (t−1
1 , 1)�n+1(T, G))V1 = V1,

whence t2 ∈ ker ψ1. Hence, ker ψ1 = β1([κn(G1), T1][G1, ζn(T1)] ∩ �n+1(T1, G1)). Using
Lemma 3.6(iii) and applying a similar argument, one can show that ker ψ2 =
β2([G1, κn(G1)] ∩ γn+1(G1)).

Now, taking (T̃, G̃, ∂̃) = (V/V1, W/W1, δ̃), (S̃1, H̃1, ∂̃) =Imϕ and
(S̃2, H̃2, ∂̃) =Imψ , the above steps together with Proposition 3.2(i) give the
required results. �

The following corollary is an immediate consequence of Theorem 3.5.

COROLLARY 3.7. If (T1, G1, ∂1) ∼
n

(T2, G2, ∂2) and Zn(T1, G1, ∂1) = Z(T1, G1, ∂1),

then there exists a crossed module (T̃, G̃, ∂̃) with crossed submodules (S̃i, H̃i, ∂̃), i =
1, 2, such that

(T1, G1, ∂1) ∼= (S̃1, H̃1, ∂̃) ∼
n

(T̃, G̃, ∂̃) ∼
n

(S̃2, H̃2, ∂̃) ∼= (T2, G2, ∂2).

4. Construction of n-stem crossed modules. For n ≥ 1, a crossed module (T, G, ∂)
is called n-stem if satisfies Zn(T, G, ∂) ⊆ γn+1(T, G, ∂).
In case n = 1, Salemkar et al. [26] proved the existence of 1-stem crossed module
within an arbitrary 1-isoclinism class and determined them inside 1-isoclinism classes
containing at least one finite crossed module. These results and a theorem of Hekster
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[14, Theorem 6.5] for groups are both extended in the following main result of this
section.

THEOREM 4.1. Let E be an n-isoclinism family of crossed modules containing at least
one strongly finitely generated crossed module (T, G, ∂) with γn+1(T, G, ∂) finite. Then,

(i) E contains at least a finite n-stem crossed module;
(ii) the n-stem crossed modules of E are precisely the crossed modules such as (S, H, δ)

for which
(a) Z(S, H, ∂) ⊆ γn(S, H, δ), and
(b) γn(S, H, δ) is finite and |γn(S, H, δ)| =min{|γn(T, G, ∂)| : (T, G, ∂) ∈ E}.

Note that the n-isoclinism family of crossed modules containing at least one
nilpotent crossed module of class at most n satisfies the requirements of Theorem
4.1. Also, if G is a finitely generated group with γn+1(G) finite, [14, Theorem 6.5] shows
that the n-isoclinism families {(1, G, i)} and {(G, G, id)} of crossed modules again satisfy
the conditions of Theorem 4.1.

The rest of this section will provide a proof.

LEMMA 4.2. Let (Y, F, μ) be a projective crossed module. Then, in the category
of abelian crossed modules, any crossed submodule of γn(Y, F, μ)/γn+1(Y, F, μ) is
projective.

Proof. In view of [1, Proposition 3], μ is monic and the groups Y , F and F/μ(Y )
are free. So, we can assume that μ is the inclusion map. We first claim that the crossed
module

(�n(Y, F)/�n+1(Y, F), γn(F)/γn+1(F), μ̄)

is aspherical. The freeness of F/Y ensures that the n-nilpotent multiplier of F/Y is
trivial (see [6]) and then Y ∩ γn+1(F) = �n+1(Y, F). Hence, we have

ker μ̄ = �n(Y, F) ∩ γn+1(F)
�n+1(Y, F)

= �n(Y, F) ∩ Y ∩ γn+1(F)
�n+1(Y, F)

= 1,

as claimed. By [16, Theorem 11.15(a)], γn(F)/γn+1(F) and then �n(Y, F)/�n+1(Y, F)
are free abelian groups. So, if (A, B, μ̄) is a crossed submodule of
(�n(Y, F)/�n+1(Y, F), γn(F)/γn+1(F), μ̄), then the groups A and B are free abelian
on subsets, say X and Y , respectively. We may assume that X ⊆ Y . Now, let
ε = (ε1, ε2) : (T1, G1, ∂1) −→ (T2, G2, ∂2) and δ = (δ1, δ2) : (A, B, μ̄) −→ (T2, G2, ∂2)
be given morphisms of abelian crossed modules with ε surjective. Due to the
projectivity property of A, there is a homomorphism θ1 : A −→ T1 with ε1θ1 = δ1.
We define the map h : Y −→ G1 as follows: For any x ∈ X , h(x) = ∂1θ1(x) and for
any x ∈ Y \ X , h(x) = gx chosen in the pre-image of δ2(x) (by axiom of choice) via
ε2. Then, h extends to a homomorphism θ2 : B −→ G1. It is readily verified that
θ = (θ1, θ2) : (A, B, μ̄) −→ (T1, G1, ∂1) is a morphism such that εθ = δ. �

PROPOSITION 4.3. Let (T, G, ∂) be any crossed module and n ≥ 1. Then,
(i) if γn((T, G, ∂)/Z(T, G, ∂)) is finite, then so is γn+1(T, G, ∂);

(ii) if (T, G, ∂) is finitely generated, then the following statements are equivalent:
(a) (T, G, ∂)/Zn(T, G, ∂) is finite,
(b) γn((T, G, ∂)/Z(T, G, ∂)) is finite,
(c) γn+1((T, G, ∂) is finite.
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Proof. It is well known that the category CM of crossed modules is equivalent
to the category Cat1 of cat1-groups (see [20]). (Recall that a cat1-group is a triple
(C, ν, ω), where C is a group and ν, ω : C −→ C are group homomorphisms satisfying
the conditions νω = ω, ων = ν, and [ker ν, ker ω] = 1.) A functor s : CM −→ Cat1

defining the equivalence of the categories CM and Cat1 can be given as

s : (T, G, ∂) �→ (C := T � G, ν : (t, g) �→ (1, g), ω : (t, g) �→ (1, ∂(t)g)),

where T � G denotes the semi-direct product group of T by G. It is routine to show
that the subgroups Zn(C) and γn+1(C) of the group C inherit cat1-structures equivalent
to Zn(T, G, ∂) and γn+1(T, G, ∂), respectively, and the factor group C/Zn(C) inherits
a cat1-structure equivalent to (T, G, ∂)/Zn(T, G, ∂), for all n ≥ 1. These conclusions
together with [21, Theorem 1] and [14, Theorem 2.10] give the results, as required. �

LEMMA 4.4. For each crossed module (T, G, ∂), there exists a crossed module
(L, K, δ) n-isoclinic to (T, G, ∂) such that

(i) Z(L, K, δ) ∩ γn(L, K, δ) ≤ γn+1(L, K, δ);
(ii) if the crossed module γn((T, G, ∂)/Z(T, G, ∂)) is finite, then so is γn(L, K, δ);

(iii) if (T, G, ∂) is strongly finitely generated, then so is (L, K, δ).

Proof. Let (V, R, μ) � (Y, F, μ) � (T, G, ∂) be a projective presentation of
(T, G, ∂) and denote (Ȳ , F̄, μ̄) = (Y, F, μ)/((V, R, μ) ∩ γn+1(Y, F, μ)). By Proposition
3.2(ii), (T, G, ∂) ∼

n
(Ȳ , F̄, μ̄). Since

Z(Ȳ , F̄, μ̄) ∩ γn(Ȳ , F̄, μ̄)

Z(Ȳ , F̄, μ̄) ∩ γn+1(Ȳ , F̄, μ̄)
∼= (Z(Ȳ , F̄, μ̄) ∩ γn(Ȳ , F̄, μ̄))γn+1(Ȳ , F̄, μ̄)

γn+1(Ȳ , F̄, μ̄)

is isomorphic to a crossed submodule γn(Ȳ , F̄, μ̄)/γn+1(Ȳ , F̄, μ̄) ∼=
γn(Y, F, μ)/γn+1(Y, F, μ), we observe from Lemma 4.2 that there is a crossed
submodule (Ū, Q̄, μ̄) of Z(Ȳ , F̄, μ̄) ∩ γn(Ȳ , F̄, μ̄) such that

Z(Ȳ , F̄, μ̄) ∩ γn(Ȳ , F̄, μ̄) ∼= (Z(Ȳ , F̄, μ̄) ∩ γn+1(Ȳ , F̄, μ̄)) × (Ū, Q̄, μ̄).

Note that (Ū, Q̄, μ̄) is a normal crossed submodule of (Ȳ , F̄, μ̄) and
(Ū, Q̄, μ̄) ∩ γn+1(Ȳ , F̄, μ̄) = 1. Taking (L, K, δ) = (Ȳ , F̄, μ̄)/(Ū, Q̄, μ̄), Proposition
3.2(ii) indicates that (T, G, ∂) ∼

n
(L, K, δ). We now claim that (L, K, δ) satisfies the

properties mentioned in the lemma. Choose arbitrary elements ȳ ∈ LK ∩ �n(L, K) and
x̄ ∈ Z(K) ∩ stK (L) ∩ γn(K), in which y ∈ �n(Ȳ , F̄) and x ∈ γn(F̄). Then, for each z ∈ F̄ ,
[z, y] ∈ �n+1(Ȳ , F̄) ∩ Ū = 1 and [x, z] ∈ γn+1(F̄) ∩ Q̄ = 1, whence

y ∈ Ȳ F̄ ∩ �n(Ȳ , F̄) = (Ȳ F̄ ∩ �n+1(Ȳ , F̄))Ū ≤ �n+1(Ȳ , F̄)Ū,

x ∈ Z(F̄) ∩ stF̄ (Ȳ ) ∩ γn(F̄) = (Z(F̄) ∩ stF̄ (Ȳ ) ∩ γn+1(F̄))Q̄ ≤ γn+1(F̄))Q̄.

Hence, ȳ ∈ �n+1(L, K) and x̄ ∈ γn+1(K). It therefore follows that

(LK ∩ �n(L, K), Z(K) ∩ stK (L) ∩ γn(K), δ) ≤ (�n+1(L, K), γn+1(K), δ),

proving (i).
Suppose that γn((T, G, ∂)/Z(T, G, ∂)) is finite. Then, owing to Proposition

4.3(i), γn+1(T, G, ∂) is finite. Bearing in mind that (T, G, ∂) ∼
n

(Ȳ , F̄, μ̄), and
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using Corollary 3.4(i), it can be inferred that the crossed modules γn+1(Ȳ , F̄, μ̄)
and γn(Ȳ , F̄, μ̄))/(Z(Ȳ , F̄, μ̄) ∩ γn(Ȳ , F̄, μ̄))) are also finite. By the foregoing,
(Z(Ȳ , F̄, μ̄) ∩ γn(Ȳ , F̄, μ̄)))/(Ū, Q̄, μ̄) is isomorphic to a crossed submodule of
γn+1(Ȳ , F̄, μ̄). We thus derive that γn(L, K, δ) = γn(Ȳ , F̄, μ̄))/(Ū, Q̄, μ̄) is finite,
proving (ii).

Finally, the part (iii) holds trivially. This completes the proof of the lemma. �
PROPOSITION 4.5. Let (L, K, δ) be any crossed module in which the crossed submodule

γn(L, K, δ) is finite. Then, Z(L, K, δ) ∩ γn(L, K, δ) ≤ γn+1(L, K, δ) if and only if for any
crossed module (T, G, ∂) n-isoclinic to (L, K, δ), |γn(L, K, δ)| ≤ |γn(T, G, ∂)|.

Proof. We begin by proving the ‘only if ’ direction. Assume (T, G, ∂) is a crossed
module n-isoclinic to (L, K, δ) with γn(T, G, ∂) finite. By Corollary 3.4(i), the factor
crossed modules (T, G, ∂)/Z(T, G, ∂) and (L, K, δ)/Z(L, K, δ) are (n − 1)-isoclinic. In
particularly, we have γn+1((T, G, ∂)/Z(T, G, ∂)) ∼= γn+1((L, K, δ)/Z(L, K, δ)), implying
that |Z(T, G, ∂) ∩ γn+1(T, G, ∂)| = |Z(L, K, δ) ∩ γn+1(L, K, δ)|. It therefore follows
from the hypothesis that

|γn(T, G, ∂)| = |γn(L, K, δ)||Z(T, G, ∂) ∩ γn(T, G, ∂)|
|Z(L, K, δ) ∩ γn(L, K, δ)| = |γn(L, K, δ)||Z(T, G, ∂) ∩ γn(T, G, ∂)|

|Z(L, K, δ) ∩ γn+1(L, K, δ)|
= |γn(L, K, δ)||Z(T, G, ∂) ∩ γn(T, G, ∂)|

|Z(T, G, ∂) ∩ γn+1(T, G, ∂)| ≥ |γn(L, K, δ)|.

We now prove the ‘if ’ direction. As γn((L, K, δ)/Z(L, K, δ)) is finite, Lemma
4.4 guarantees the existence of a crossed module (S, H, σ ) with γn(S, H, σ ) finite,
being n-isoclinic to (L, K, δ) and satisfying the condition Z(S, H, σ ) ∩ γn(S, H, σ ) ≤
γn+1(S, H, σ ). As above, one can see that

|γn(L, K, δ)| = |γn(S, H, σ )||Z(L, K, δ) ∩ γn(L, K, δ)|
|Z(L, K, δ) ∩ γn+1(L, K, δ)| .

The minimality of |γn(L, K, δ)| so yields that |Z(L, K, δ) ∩ γn(L, K, δ)| = |Z(L, K, δ) ∩
γn+1(L, K, δ)|, or equivalently, Z(L, K, δ) ∩ γn(L, K, δ) ≤ γn+1(L, K, δ). �

After these preparations, the proof of the main Theorem 4.1 is easy to describe.

Proof of Theorem 4.1 (i) We proceed by induction on n ≥ 1. The result
is true for n = 1, thanks to Lemma 4.4 and Proposition 4.5. Hence, let n ≥
2. By Proposition 4.3(ii), γn((T, G, ∂)/Z(T, G, ∂)) is finite. Combining Lemma
4.4 with Proposition 4.5, we can find a crossed module (L, K, δ) such that
|γn(L, K, δ)| is finite and |γn(L, K, δ)| =min{|γn(T1, G1, ∂1)| : (T1, G1, ∂1) ∈ E}. By the
induction hypothesis, there is a finite crossed module (S, H, σ ) with Z(S, H, σ ) ⊆
γn(S, H, σ ) and (L, K, δ) ∼

n−1
(S, H, σ ). Now, we have (L, K, δ) ∼

n
(S, H, σ ), because of

Corollary 3.4(iii), and Z(S, H, σ ) = Z(S, H, σ ) ∩ γn(S, H, σ ) ⊆ γn+1(S, H, σ ), thanks
to Proposition 4.5. We therefore infer that (S, H, σ ) ∈ E is a finite n-stem crossed
module.

(ii) Let (L, K, δ) be an n-stem crossed module in E . Since γn+1(L, K, δ) ∼=
γn+1(T, G, ∂), one gets that γn+1(L, K, δ) and then Z(L, K, δ) are finite. By
part (i), E contains a finite n-stem crossed module, (S, H, σ ) say. Using
Corollary 3.4(i), (L, K, δ)/Z(L, K, δ) ∼

n−1
(S, H, σ )/Z(S, H, σ ), and consequently,

γn((L, K, δ)/Z(L, K, δ)) is finite. Therefore, γn(L, K, δ) is finite. Now, the proofs of
parts (a) and (b) follow by Proposition 4.5.
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Conversely, let (S, H, σ ) ∈ E be a crossed module satisfying the conditions
(a) and (b). Then, Z(S, H, σ ) = Z(S, H, σ ) ∩ γn(S, H, σ ) ⊆ γn+1(S, H, σ ), thanks to
Proposition 4.5. Hence, (S, H, σ ) is an n-stem crossed module. This completes the
proof. �
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