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Abstract

By the technique of augmented truncations, we obtain the perturbation bounds on the
distance of the finite-time state distributions of two continuous-time Markov chains
(CTMCs) in a type of weaker norm than the V-norm. We derive the estimates for strongly
and exponentially ergodic CTMCs. In particular, we apply these results to get the bounds
for CTMCs satisfying Doeblin or stochastically monotone conditions. Some examples
are presented to illustrate the limitation of the V-norm in perturbation analysis and to
show the quality of the weak norm.
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1. Introduction

Let X = {Xt, t ∈R+} be an irreducible continuous-time Markov chain (CTMC) on state
space E =Z+ with transition function Pt(i, j) and regular q-matrix Q = (q(i, j)). Let X be pos-
itive recurrent with the unique invariant distribution π . Suppose that X is perturbed to another
irreducible and regular CTMC X̃ = {X̃t, t ∈R+} with transition function P̃t(i, j) and q-matrix
Q̃ = (q̃(i, j)). Denote by pt and p̃t the state probability vectors of Xt and X̃t, respectively. In par-
ticular, when t = 0, they represent the initial distributions. Let � = Q̃ − Q be the perturbation
of the q-matrix. As is shown in [14], a small perturbation may result in a big change in the
stability. Hence, it is meaningful to find sufficient conditions that guarantee the stability and,
moreover, obtain quantitative bounds on the difference between two chains when the stability
is robust.

For discrete-time Markov chains (DTMCs), perturbation bounds with respect to the V-
norms (as defined in Section 2) were developed in the seminal work of [10, 11]. Recent
advances in this direction can be found in [1, 13, 23, 24]. For CTMCs, the V-normwise per-
turbation bounds have also received recent attention, see [5, 9, 14, 15, 19]. However, as we
will see, we have to be careful to deal with a CTMC with an unbounded generator for which
the V-normwise results might be invalid. For instance, consider the following linear birth and
death process with catastrophes (see [25]) on state space E =Z+, whose q-matrix is given by
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Perturbation analysis for CTMCs in a weak sense 1279

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b b 0 0 · · ·
a −(a + b) b 0 · · ·
d2 2a −2(a + b) − d2 2b · · ·
d3 0 3a −3(a + b) − d3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

The model parameters are usually estimated based on statistical data, which naturally causes a
small deviation from the true value. Hence, it is reasonable to assume that there exist perturba-
tions imposed on the parameters. Specifically, we assume that the parameters di, a, and b in (1)
are perturbed to be di + ε, a + ε, and b + ε, respectively. As a consequence, the perturbation
matrix �(ε), given by

�(ε) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε ε 0 0 · · ·
ε −2ε ε 0 · · ·
ε 2ε −5ε 2ε · · ·
ε 0 3ε −7ε · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

is unbounded. Observe that, for any finite function V : E → [1, ∞),

‖�(ε)‖V ≥ max
i∈E

(2i + 1)εV(i)

V(i)
= ∞.

This shows that the V-normwise perturbation bound (see [14])

‖π̃ − π‖V ≤ C(Q, Q̃)‖�(ε)‖V ,

where C(Q, Q̃) is known as a positive condition number, becomes uninformative since its upper
bound is always ∞. From this example, we see that the V-norm may be too restrictive to
characterize unbounded perturbation problems.

For perturbation analysis of DTMCs in a weak sense, [27] first developed a perturbation
theory for geometrically ergodic Markov chains which requires controlling perturbations of
iterated transition kernels in a weak 1,V-norm (see Section 2 for the detailed definition).
Subsequently, [6] obtained explicit bounds on the stationary distributions between two Markov
chains via weak perturbation theory. [26] derived the bounds on finite-step state distributions by
using an approach based on drift conditions and ergodic convergence rate. [20] further refined
and extended this result and applied it to the Monte Carlo within Metropolis algorithms. We
aim to develop perturbation bounds on ‖p̃t − pt‖1 in terms of the perturbation � in the weak 1,
V-norm for CTMCs.

It is worth noting that the generators of CTMCs can be unbounded, like (1) mentioned
above, for which it is usually infeasible to extend the results of DTMCs to the continuous-
time case by the technique of uniformized chains or h-skeleton chains. Using a uniformized
chain introduces the quantity supi |q(i, i)| which is infinite for unbounded CTMCs, while using
h-skeleton chains will involve a relation between P̃h − Ph and Q̃ − Q which cannot be

https://doi.org/10.1017/jpr.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.20


1280 N. LIN AND Y. LIU

determined explicitly. In this paper, we develop an approach that combines the ergodicity
coefficients, drift functions, and the technique of augmented truncations to investigate the
perturbation in the weak sense.

This paper is organized as follows. Section 2 contains some preliminaries, such as the defi-
nitions of V-norms and 1,V-norms, and the properties of ergodicity coefficients. In Section 3,
we obtain the perturbation bounds for strongly ergodic CTMCs, in particular for those satis-
fying Doeblin or stochastically monotone conditions. In Section 4, we present the estimates
for exponentially ergodic CTMCs, and further apply our results to stochastically monotone
CTMCs. Finally, some conclusions are listed in Section 5.

2. Preliminaries

For a finite measure μ and V : E → [1, ∞), let μ(V) =∑
i∈E μ(i)V(i) and define its V-norm

to be ‖μ‖V =∑
i∈E |μ(i)|V(i). The V-norm for any matrix R = (R(i, j)) on E × E is given by

‖R‖V := sup
i∈E

1

V(i)

∑
j∈E

|R(i, j)|V(j).

When V ≡ 1, we replace the subscript V in ‖μ‖V and ‖R‖V by 1. Note that ‖μR‖V ≤
‖μ‖V‖R‖V and ‖AB‖V ≤ ‖A‖V‖B‖V for any pair of matrices A and B on E × E. In addition,
we define the weak 1,V-norm (see [3]) for any matrix R by

‖R‖1,V := sup
i∈E

1

V(i)

∑
j∈E

|R(i, j)|.

The V-norm ergodicity coefficient of the transition matrix Pt is defined by

τV (Pt) := sup
i,j∈E,i 
=j

‖Pt(i, ·) − Pt(j, ·)‖V

V(i) + V(j)
,

see [7, 12, 18]. When V ≡ 1, τ1(Pt) is the classical Dobrushin coefficient. [18, Proposition 2.1]
gives some properties of V-norm ergodicity coefficients. Based on their results, we can easily
obtain the following lemma on the contractivity of V-norm ergodicity coefficients.

Lemma 1. Let μ, ν be two measures on E satisfying (μ − ν)1 = 0 and ‖μ − ν‖V < ∞, where
1 is a column vector of 1s. For the transition matrix Pt,

‖μPt − νPt‖V ≤ τV (Pt)‖μ − ν‖V .

Proof. Let R = 1(μ − ν). Since (μ − ν)1 = 0 and ‖μ − ν‖V < ∞, we have

∑
j∈E

R(i, j) =
∑
j∈E

(μ(j) − ν(j)) = 0 for all i ∈ E,

and

‖R‖V = sup
i∈E

‖R(i, ·)‖V

V(i)
= ‖μ − ν‖V

infi∈E V(i)
< ∞.
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Perturbation analysis for CTMCs in a weak sense 1281

It follows from [18, Proposition 2.1(iii)] that

‖RPt‖V = ‖(μ − ν)Pt‖V

infi∈E V(i)
≤ τV (Pt)‖R‖V = τV (Pt)‖μ − ν‖V

infi∈E V(i)
.

The assertion follows immediately by the fact that infi∈E V(i) > 0. �

In the following, we present the definitions of strong and exponential ergodicity.

Definition 1. Pt is called strongly ergodic if there exist positive constants ρ < 1 and C < ∞
such that, for any i and t,

‖Pt(i, ·) − π‖1 ≤ Cρt. (3)

Definition 2. Pt is called exponentially ergodic if there exists a positive constant ρ < 1 and a
finite function C : E → (0, ∞) such that, for any i and t,

‖Pt(i, ·) − π‖1 ≤ C(i)ρt.

Definition 3. Pt is called V-uniformly ergodic if there exist positive constants ρ < 1, C < ∞
and a finite function V : E → [1, ∞) such that, for any i and t,

‖Pt(i, ·) − π‖V ≤ CV(i)ρt.

For irreducible CTMCs, it is well known that exponential ergodicity is equivalent to
V-uniform ergodicity [4, Theorem 3.2]. Observe that the V-uniform ergodicity of Pt implies a
suitable upper bound on its V-norm ergodicity coefficient τV (Pt). Applying arguments similar
to [26, Lemma 3.2], we have the following statement.

Lemma 2. If Pt is V-uniformly ergodic, then τV (Pt) ≤ Cρt.

When V ≡ 1, τV (Pt) = τ1(Pt) and hence Lemma 2 generalizes the classical Dobrushin
coefficient. That is, if Pt is strongly ergodic, then τ1(Pt) ≤ Cρt.

3. Perturbation analysis for strongly ergodic CTMCs

In this section, we obtain perturbation bounds for strongly ergodic CTMCs by the technique
of augmented truncations. First, we obtain the results for finite state spaces with an approach
based on ergodicity coefficients and drift functions. Then we derive those of infinitely count-
able state spaces by letting the truncation size tend to infinity. In particular, the results are
applied to get the explicit perturbation bounds for CTMCs satisfying Doeblin or stochastically
monotone conditions. Some examples are presented to illustrate our results.

Our results in this section mainly rely on the following two assumptions.

Assumption 1. Pt is strongly ergodic with positive constants ρ < 1 and C < ∞.

Assumption 2. There exists a finite function V : E → [1, ∞) and positive constants δ and L <

∞ such that (Q̃V)(i) ≤ −δV(i) + L.

3.1. Finite state spaces

Let En = {0, 1, 2, . . . , n}, n ≥ 0. We are now in a position to present the perturbation bounds
for CTMCs on finite state space En.
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Proposition 1. Let X be an irreducible CTMC on finite state space En. Suppose that
Assumptions 1 and 2 hold. Then we have

‖p̃t − pt‖1 ≤ Cρt‖p̃0 − p0‖1 + Cκ‖�‖1,V

− log ρ
,

where κ = max{p̃0(V), L/δ}.
Proof. The vectors p̃t and pt satisfy the forward Kolmogorov equations

dp̃t

dt
= p̃tQ̃,

dpt

dt
= ptQ.

Therefore, the vector zt = p̃t − pt is the solution to the initial-value problem

dzt

dt
= ztQ + p̃t(Q̃ − Q), z0 = p̃0 − p0,

which implies that p̃t − pt = (p̃0 − p0)Pt + ∫ t
0 p̃t−u(Q̃ − Q)Pu du, and

‖p̃t − pt‖1 ≤ ‖(p̃0 − p0)Pt‖1 +
∫ t

0
‖p̃t−u(Q̃ − Q)Pu‖1 du;

see also the proof of [22, Theorem 2.1]. Since the state space En is finite and (p̃0 − p0)1 = 0,
p̃t−u(Q̃ − Q)1 = 0, it follows from Lemmas 1 and 2 that

‖(p̃0 − p0)Pt‖1 ≤ ‖p̃0 − p0‖1 · τ1(Pt) ≤ Cρt‖p̃0 − p0‖1,

‖p̃t−u(Q̃ − Q)Pu‖1 ≤ ‖p̃t−u(Q̃ − Q)‖1τ1(Pu).

We also have

‖p̃t−u(Q̃ − Q)‖1 =
∑
j∈En

∣∣∣∣∣
∑
i∈En

p̃t−u(i)(q̃(i, j) − q(i, j))

∣∣∣∣∣
≤
∑
i∈En

∑
j∈En

p̃t−u(i)|q̃(i, j) − q(i, j)|

=
∑
i∈En

p̃t−u(i)‖Q̃(i, ·) − Q(i, ·)‖1

≤ ‖�‖1,V

∑
i∈En

p̃t−u(i)V(i).

Moreover, since Q̃ satisfies the drift condition Q̃V ≤ −δV + L1, we have

Q̃2V = Q̃(Q̃V) ≤ (− δ)Q̃V + LQ̃1 = (− δ)Q̃V .

Using an induction argument yields

Q̃sV ≤ (− δ)s−1Q̃V ≤ (− δ)sV + (− δ)s−1L1, s ≥ 1.
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From this inequality, for t − u ≥ 0 we can obtain∑
i∈En

p̃t−u(i)V(i) =
∑
i∈En

p̃0eQ̃(t−u)(i)V(i)

=
∑
i∈En

∞∑
s=0

(t − u)s

s!
∑
j∈En

p̃0(j)Q̃s(j, i)V(i)

=
∞∑

s=0

(t − u)s

s!
∑
j∈En

∑
i∈En

p̃0(j)Q̃s(j, i)V(i)

=
∞∑

s=1

(t − u)s

s!
∑
j∈En

p̃0(j)Q̃sV(j) + p̃0(V)

≤
∞∑

s=1

(t − u)s

s!
∑
j∈En

p̃0(j)((− δ)sV(j) + (− δ)s−1L) + p̃0(V)

= e−δ(t−u)p̃0(V) + (1 − e−δ(t−u))
L

δ

≤ max{p̃0(V), L/δ} = κ . (4)

Based on these analyses, ‖p̃t − pt‖1 ≤ Cρt‖p̃0 − p0‖1 + κ‖�‖1,V
∫ t

0 τ1(Pu) du. By Lemma 2
we have ∫ t

0
τ1(Pu) du ≤ C

∫ t

0
ρu du = C(1 − ρt)

− log ρ
≤ C

− log ρ
,

from which we can finally obtain

‖p̃t − pt‖1 ≤ Cρt‖p̃0 − p0‖1 + Cκ‖�‖1,V

− log ρ
.

Thus, the proof is finished. �

Remark 1. This result is parallel to [26, Theorem 3.1] for DTMCs in the case of degenerating
the Wasserstein distance to the total variation norm, which can also be derived by the technique
of uniformization.

3.2. Infinitely countable state spaces

In the following we are going to obtain the bounds for strongly ergodic CTMCs on infinitely
countable state spaces E =Z+ by the technique of augmented truncations. For any n ≥ 1, let
(n)Q be the (n + 1) × (n + 1) northwest corner truncation of Q. For any 0 ≤ h ≤ n, we denote
the (h + 1)th-column augmentation of (n)Q by (n,h)Q = (

(n,h)q(i, j), i, j ∈ En
)
, where

(n,h)q(i, j) = q(i, j) + I{h}(j) ·
∑
k/∈En

q(i, k) for i, j ∈ En,

with the indicator function

I{h}(j) =
{

1 if j = h,

0 otherwise.
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Let (n,h)Pt(i, j) be the minimal transition function of (n,h)Q. From the special construction,
the state h can be reached from every other state in En. Hence, (n,h)Q has a unique invariant
distribution (n,h)π . Let (n)p0 = (

(n)p
0(i), i ∈ En

)
, where

(n)p
0(i) = p0(i)∑n

j=0 p0(j)
for i ∈ En,

be the initial distribution of (n,h)Q, then the state probability vector (n,h)pt = (n)p0
(n,h)Pt.

To present Theorem 1, we need the following lemma, which includes a simple fact about
the augmented truncation. For a function V on E, let Vn := (V(i), i ∈ En) be its corresponding
function on En.

Lemma 3. If Q̃ satisfies Assumption 2 with a nondecreasing function V, then its augmented
truncation (n,h)Q̃ also satisfies it with function Vn for any n.

Proof. Since V is nondecreasing, we have

∑
j∈En

(n,h)q̃(i, j)Vn(j) =
∑

j≤n,j 
=h

q̃(i, j)V(j) +
(

q̃(i, h) +
∑
j>n

q̃(i, j)

)
V(h)

≤
∑
j∈E

q̃(i, j)V(j) for any n ≥ 1 and i ∈ En,

which yields the assertion immediately. �

Theorem 1. Let X be an irreducible CTMC on state space E =Z+. For a large enough integer
N such that N ≥ h, assume that {(n,h)Pt, n ≥ N} uniformly satisfies Assumption 1, i.e. there exist
positive constants ρ < 1 and C < ∞ such that, for any i, t, and n ≥ N, ‖(n,h)Pt(i, ·) − (n,h)π‖1 ≤
Cρt. Moreover, suppose that Assumption 2 holds for a nondecreasing function V. Then we have

‖p̃t − pt‖1 ≤ Cρt‖p̃0 − p0‖1 + Cκ‖�‖1,V

− log ρ
,

where κ = max{p̃0(V), L/δ}.
Proof. Denote by (n,h)Q∗ = (

(n,h)q∗(i, j), i, j ∈ E
)

the zero-padded matrix of (n,h)Q. That is,

(n,h)q∗(i, j) =
{

(n,h)q(i, j) if i, j ∈ En,

0 otherwise.

Let (n,h)Pt∗(i, j) be its minimal transition function and (n,h)pt∗ = (n)p0∗(n,h)Pt∗, where (n)p0∗ is the
zero-padded vector of (n)p0. Similarly, we denote by (n)Q∗ the zero-padded matrix of (n)Q. Let
(n)Pt∗ be the transition function of (n)Q∗ and (n)pt∗ = (n)p0∗(n)Pt∗. By the triangle inequality, for
any n,

‖p̃t − pt‖1 ≤ ‖p̃t − (n,h)p̃
t∗‖1 + ‖pt − (n,h)p

t∗‖1 + ‖(n,h)p̃
t∗ − (n,h)p

t∗‖1. (5)

The following argument parallels the proof of [4, Theorem 2.1], which states that

(n)P
t∗(i, j) ≤ (n,h)P

t∗(i, j) ≤ (n)P
t∗(i, j) + f t

n(i)
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with f t
n(i) = 1 −∑n

k=0 (n)Pt∗(i, k). It follows that

(n)p
t∗(j) ≤ (n,h)p

t∗(j) ≤ (n)p
t∗(j) +

∞∑
i=0

(n)p
0∗(i)f t

n(i) · IEn (i). (6)

From [2, Proposition 2.2.14], we know that (n)Pt∗(i, j) ↑ Pt(i, j) as n → ∞ for all i, j ∈ E and
t ≥ 0. Applying the monotone convergence theorem shows that

lim
n→∞ (n)p

t∗(j) = lim
n→∞

1∑n
j=0 p0(j)

∞∑
i=0

p0(i)(n)P
t∗(i, j) · IEn (i)

=
∞∑

i=0

lim
n→∞ p0(i)(n)P

t∗(i, j) · IEn(i) = pt(j),

lim
n→∞

∞∑
i=0

(n)p
0∗(i)f t

n(i) · IEn (i) = lim
n→∞

1∑n
j=0 p0(j)

∞∑
i=0

p0(i)

(
1 −

n∑
k=0

(n)P
t∗(i, k)

)
· IEn (i)

= 1 −
∞∑

i=0

lim
n→∞ p0(i)

(
n∑

k=0

(n)P
t∗(i, k)

)
· IEn(i) = 0.

Taking limits in n on both sides of (6), we obtain limn→∞ (n,h)pt∗(j) = pt(j). This, together with
the fact that |a| = 2a+ − a, where a+ is the positive part of a, yields

lim
n→∞ ‖pt − (n,h)p

t∗‖1 = lim
n→∞

∑
j∈E

|pt(j) − (n,h)p
t∗(j)|

= lim
n→∞

(
2
∑
j∈E

[pt(j) − (n,h)p
t∗(j)]+ −

∑
j∈E

[pt(j) − (n,h)p
t∗(j)]

)

= 2 lim
n→∞

∑
j∈E

[pt(j) − (n,h)p
t∗(j)]+

= 2
∑
j∈E

lim
n→∞ [pt(j) −(n,h) pt∗(j)]+ = 0,

where the penultimate equality follows from the dominated convergence theorem and the fact
that [pt(j) − (n,h)pt∗(j)]+ ≤ pt(j) and

∑
j∈E pt(j) = 1. Using similar arguments also gives

lim
n→∞ ‖p̃t − (n,h)p̃

t∗‖1 = 0, lim
n→∞ ‖(n)p̃

0∗ − (n)p
0∗‖1 = ‖p̃0 − p0‖1. (7)

The next step is to figure out the limit of ‖(n,h)p̃t∗ − (n,h)pt∗‖1. Observe that

‖(n,h)p̃
t∗ − (n,h)p

t∗‖1 = ‖(n,h)p̃
t − (n,h)p

t‖1.
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Let

‖(n)�‖1,V = sup
i∈En

‖(n,h)Q̃(i, ·) − (n,h)Q(i, ·)‖1

V(i)
, (n)κ = max

{
(n)p̃

0(Vn),
L

δ

}
.

Since (n,h)Pt is strongly ergodic for any n and Assumption 2 holds, it follows from
Proposition 1 and Lemma 3 that

‖(n,h)p̃
t − (n,h)p

t‖1 ≤ Cρt‖(n)p̃
0 − (n)p

0‖1 + C(n)κ‖(n)�‖1,V

− log ρ
.

Note that we have, for i 
= h,

‖(n,h)Q̃(i, ·) − (n,h)Q(i, ·)‖1

=
∑
j∈En

|(n,h)q̃(i, j) − (n,h)q(i, j)|

=
∑

j≤n,j 
=h

|q̃(i, j) − q(i, j)| +
∣∣∣∣∣(q̃(i, h) − q(i, h)) +

∑
k>n

(q̃(i, k) − q(i, k))

∣∣∣∣∣
≤

∑
j≤n+1,j 
=h

|q̃(i, j) − q(i, j)| +
∣∣∣∣∣(q̃(i, h) − q(i, h)) +

∑
k>n+1

(q̃(i, k) − q(i, k))

∣∣∣∣∣
= ‖(n+1,h)Q̃(i, ·) −(n+1,h) Q(i, ·)‖1,

and for i = h,

‖(n,h)Q̃(h, ·) − (n,h)Q(h, ·)‖1

=
∑

j≤n,j 
=h

|q̃(h, j) − q(h, j)| +
∣∣∣∣∣−

∑
j≤n,j 
=h

(q̃(h, j) − q(h, j))

∣∣∣∣∣
≤

∑
j≤n,j 
=h

|q̃(h, j) − q(h, j)| +
∣∣∣∣∣−

∑
j≤n+1,j 
=h

(q̃(h, j) − q(h, j))

∣∣∣∣∣+ |q̃(h, n + 1) − q(h, n + 1)|

=
∑

j≤n+1,j 
=h

|q̃(h, j) − q(h, j)| +
∣∣∣∣∣−

∑
j≤n+1,j 
=h

(q̃(h, j) − q(h, j))

∣∣∣∣∣
= ‖(n+1,h)Q̃(h, ·) − (n+1,h)Q(h, ·)‖1.

This, together with the assumption that V is nondecreasing, implies that both ‖(n)�‖1,V

and (n)p̃0(Vn) increase monotonously with n and ‖(n)�‖1,V ≤ ‖�‖1,V , (n)κ ≤ κ . Applying the
monotone convergence theorem gives limn→∞ ‖(n)�‖1,V = ‖�‖1,V and limn→∞ (n)κ = κ . By
this fact and (7), we have

lim
n→∞ ‖(n,h)p̃

t − (n,h)p
t‖1 ≤ Cρt‖p̃0 − p0‖1 + Cκ‖�‖1,V

− log ρ
.

Finally, we complete the proof by taking the limit of both sides of (5). �
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If P̃ has a stationary distribution, say π̃ , as a consequence of the previous theorem, we can
easily obtain a bound on the difference between π and π̃ .

Corollary 1. Assume that the conditions in Theorem 1 hold. Then we have

‖π̃ − π‖1 ≤ Cκ ′‖�‖1,V

− log ρ
,

where κ ′ = max{π̃ (V), L/δ}.
Proof. With p0 = π , p̃0 = π̃ , and by letting t → ∞, we obtain the statement immediately by

Theorem 1. �

3.3. Explicit results for particular CTMCs

Based on the technique of augmented truncations, our arguments inevitably require that
(n,h)Pt uniformly satisfies Assumption 1, i.e. for any n ≥ 1, (n,h)Pt satisfies (3) for the same
constants C and ρ. There are two cases where we can easily verify this condition: CTMCs
satisfying Doeblin conditions and stochastically monotone CTMCs. Explicit results for these
two cases are given below.

3.3.1. CTMCs satisfying Doeblin conditions One of the most significant conditions for ergod-
icity of Markov chains is Doeblin’s condition. Q is said to satisfy the Doeblin condition if there
exists a finite set D ⊆ E satisfying

∑
j∈D q(i, j) ≥ α > 0 for all i ∈ T := E\D. It is worth noting

that we can estimate the strongly ergodic rate if D is a single-point set [8, p. 913]. Here we
give our proof.

Lemma 4. Suppose Q satisfies the Doeblin condition with single-point set D = {m} and α > 0.
Then the CTMC X is strongly ergodic and ‖Pt(i, ·) − π‖1 ≤ 2e−αt.

Proof. Since x > 1 − e−x for any x > 0 and Pt(i, m) = q(i, m)t + oi(t), we have

inf
i 
=m

Pt(i, m) ≥ αt + inf
i 
=m

oi(t) > 1 − e−αt + inf
i 
=m

oi(t).

For any ε > 0, there exists t0 such that when t < t0, | infi 
=m oi(t)| < ε and

inf
i 
=m

Pt(i, m) > 1 − e−αt − ε,

from which we can get infi 
=m Pt(i, m) ≥ 1 − e−αt. In addition, we have Pt(m, m) ≥ e−qit. Thus,
we can choose small enough h such that Ph(i, m) ≥ 1 − e−αh for all i ∈ E. Then, for the
h-skeleton chain with transition probabilities Ph(i, j), we know from [21, Theorem 16.2.4]
that it is strongly ergodic and

‖Pnh(i, ·) − π‖1 ≤ 2[1 − (1 − e−αh)]n = 2e−αnh.

For any t ∈R+ with t of the form t = nh + s for some s ∈ [0, h), we have

‖Pt(i, ·) − π‖1 ≤
∑
j∈E

∑
k∈E

|Pnh(i, k) − π (k)|Ps(k, j) = ‖Pnh(i, ·) − π‖1 ≤ 2e−α(t−s).

Letting h → 0, the assertion follows immediately from the previous inequality and the fact that
s → 0 as h → 0. �
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Theorem 1 and Lemma 4 lead to the following perturbation bounds for CTMCs satisfying
Doeblin conditions.

Theorem 2. Let X be an irreducible CTMC on state space E =Z+. Assume that Q satisfies the
Doeblin condition with single-point set D = {m} and α > 0. Suppose that Assumption 2 holds
true for a nondecreasing function V. Then we have

‖p̃t − pt‖1 ≤ 2e−αt‖p̃0 − p0‖1 + 2κ‖�‖1,V

α
,

where κ = max{p̃0(V), L/δ}.
Proof. Observe that if Q satisfies the Doeblin condition, then so does its augmented trunca-

tion (n,h)Q for any n such that m ∈ En and (n,h)q(i, m) ≥ q(i, m) ≥ α for i ∈ En and i 
= m. Due
to this fact and Lemma 4, we can obtain the uniform convergence rate of (n,h)Q, which is not
smaller than α. That is, we have ‖(n,h)Pt(i, ·) − (n,h)π‖1 ≤ 2e−αt. Then the assertion follows by
Theorem 1 immediately. �

We are now in a position to deal with our example of a linear birth and death process
with catastrophes as described in Section 1. Note that Q, written as (1), evidently satisfies the
Doeblin condition. For such a model, we will make a comparison of feasibility between the
bounds in the V-norm and the weak norm, and show the quality of the latter.

Example 1. Consider a linear birth–death process with catastrophes on state space E =Z+
with q-matrix given by (1). Let d = infi≥2{di, a} > 0. Now suppose that all the parameters are
perturbed by the same amount ε, which implies Q is perturbed to be

Q̃ =

⎛
⎜⎜⎜⎜⎜⎝

−b − ε b + ε 0 · · ·
a + ε −(a + b + 2ε) b + ε · · ·
d2 + ε 2(a + ε) −2(a + b + 2ε) − d2 − ε · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

and the perturbation matrix is given by (2).

Observe that infi≥1 qi0 = d > 0, which implies Q satisfies the Doeblin condition with single-
point set D = {0} and α = d. Let δ = (a − b)/2 and L = (a + b)/2 + ε. Define the function V
by V(i) = i + 1, i ≥ 0. It is easy to verify that Q̃V(i) ≤ −δV(i) + L, i ∈ E. From

∑
j |�(i, j)|
V(i)

=

⎧⎪⎨
⎪⎩

2ε, i = 0, 1,

4i + 2

i + 1
ε, i ≥ 2,

∑
j |�(i, j)|V(j)

V(i)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3ε, i = 0,

4ε, i = 1,

4i2 + 5i + 2

i + 1
ε, i ≥ 2,

it follows that

‖�‖1,V = max
i

{
2ε,

4i + 2

i + 1
ε

}
< 4ε, ‖�‖V = max

i

{
4ε,

4i2 + 5i + 2

i + 1
ε

}
= ∞.

This shows that the V-norm cannot be used to analyze this perturbation because ‖�‖V is always
∞ as the perturbation parameter ε → 0. However, letting
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κ = max

{
p̃0(V),

a + b + 2ε

a − b

}
,

by our Theorem 2 we have ‖p̃t − pt‖1 < 2e−dt‖p̃0 − p0‖1 + 8κε/d.
In addition, we give an simple example of a queuing model to demonstrate the applicability

of our results.

Example 2. Consider an open Jackson network with two servers. We restrict ourselves here
to the simplest assumptions: independent Poisson inputs with parameter λi > 0 for i = 1 or 2,
exponential service times with parameter μi > 0, and first-in-first-out service discipline. Once a
customer is served by server 1, they then join the queue at server 2. After they complete service
at server 2, they are transferred with probability p to the end of the queue at server 1, and with
probability 1 − p they leave the system. The whole system may experience a breakdown with
exponential rate μb. If a breakdown occurs, all customers leave and the system immediately
goes into repair. The repair time is also exponentially distributed with parameter λr.

Denote by N the total number of customers in the system and by L the number of customers
at server 1. Let us define the state by the pair (N, L). When the system is empty, it would not
be enough to specify that there is no customer in the system (and hence at server 1) as we
would also have to know whether the system is broken. So we introduce another state (0, 0, b)
to indicate ‘empty due to breakdown’ and retain (0, 0) to represent ‘temporarily empty’ while
the system is working. Let Ek = {(k, i), 0 ≤ i ≤ k}; then we are able to arrange the state space
as E = {(0, 0, b), E0, E1, . . .}. The generator Q can be expressed as

Q =

(0, 0, b) E0 E1 E2 E3 · · ·⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0, 0, b) −λr λr 0 0 0 · · ·
E0 �μb Q00 Q01 0 0 · · ·
E1 �μb Q10 Q11 Q12 0 · · ·
E2 �μb 0 Q21 Q22 Q23 · · ·
E3 �μb 0 0 Q32 Q33 · · ·
...

...
...

...
...

...
. . .

,

where �μb is a column vector of all μbs with appropriate length, Q00 = −λ1 − λ2 − μb, Q01 =
(λ2, λ1), and, for k ≥ 1,

Qk,k−1 =

(k − 1, 0) (k − 1, 1) · · · (k − 1, k − 1)⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(k, 0) μ2(1 − p) 0 · · · 0

(k, 1) 0 μ2(1 − p) · · · 0

...
...

...
. . .

...

(k, k − 1) 0 0 · · · μ2(1 − p)

(k, k) 0 0 · · · 0

,
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Qkk =

(k, 0) (k, 1) · · · (k, k − 1) (k, k)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(k, 0)
−λ1 − λ2

−μ2 − μb
μ2p · · · 0 0

(k, 1) μ1
−λ1 − λ2 − μ1

−μ2 − μb

. . . 0 0

...
...

. . .
. . .

. . .
...

(k, k − 1) 0 0
. . .

−λ1 − λ2 − μ1

−μ2 − μb
μ2p

(k, k) 0 0 · · · μ1
−λ1 − λ2

−μ1 − μb

,

and

Qk,k+1 =

(k + 1, 0) (k + 1, 1) · · · (k + 1, k) (k + 1, k + 1)⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

(k, 0) λ2 λ1 · · · 0 0

(k, 1) 0 λ2
. . . 0 0

...
...

...
. . .

. . .
...

(k, k) 0 0 · · · λ2 λ1

.

It is evident that Q satisfies the Doeblin condition with single-point set D = {0} and α = μb.
Suppose that the breakdown rate μb is perturbed to be μb + ε and assume that

ω := min{μ2(1 − p), μ1} > 2(λ1 + λ2 + μ2p).

Define a nondecreasing function V by V(i, j) = max{si+j, s2i−2}, where

1 < s ≤ 3
√

ω/2(λ1 + λ2 + μ2p).

We can check after some calculations that the perturbed continuous-time Markov chain
satisfies the drift condition Q̃V ≤ −δV + L with

δ = (λ1 + λ2 + μ2p)(1 − s2) + ω(1 − s−1) > 0,

L = c + μb + ε + λ1(s2 − 1) + λ2(s − 1).

Then it follows from Theorem 2 that

‖p̃t − pt‖1 ≤ 2e−μbt‖p̃0 − p0‖1 + 4κε

μb
,

where κ = max{p̃0(V), L/δ}.
3.3.2. CTMCs with monotone q-matrix The chain X is said to be stochastically monotone if∑

j≥k Pt(i, j) is a nondecreasing function of i for every fixed k and t. For an irreducible CTMC
with regular q-matrix Q, the chain X is stochastically monotone if and only if Q is (stochas-
tically) monotone, i.e.

∑
j≥k q(i, j) ≤∑j≥k q(m, j), whenever i ≤ m, and k is such that either
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k ≤ i or k > m [2]. Note that if Q is stochastically monotone, so is its last-column-augmented
truncation (n,n)Q.

We now introduce a drift condition that will be used frequently later.

Assumption 3. There exists a fixed state m ∈ E and a bounded nonnegative function x such
that {

Qx(i) ≤ −1, i 
= m,

x(i) = 0, i = m.

Considering the equivalence between the drift conditions, the following lemma is essen-
tially the same as [16, Lemma 2.2], which presents the explicit uniform convergence rate for
stochastically monotone CTMCs.

Lemma 5. If Q is monotone and satisfies Assumption 3, then, for any t ≥ 0,

sup
i∈E

‖Pt(i, ·) − π‖1 ≤ 4

(
sup
i∈E

x(i) + 1

)
e−βt,

where 0 < β ≤ 1/( supi∈E x(i) + 1).

Based on Theorem 1, Lemma 5, and the proof of Lemma 3, we can refine the perturbation
bounds for stochastically monotone CTMCs.

Theorem 3. Let X be an irreducible and stochastically monotone CTMC on state space
E =Z+ satisfying Assumption 3. Suppose that Assumption 2 holds true for a nondecreasing
function V. Let κ = max{p̃0(V), L/δ}. Then

‖p̃t − pt‖1 ≤ 4

(
sup
i∈E

x(i) + 1

)
exp

{
−
(

sup
i∈E

x(i) + 1

)−1

t

}
‖p̃0 − p0‖1

+ 4

(
sup
i∈E

x(i) + 1

)2

κ‖�‖1,V .

As an application, we adopt Theorem 3 to obtain the perturbation bounds for general birth
and death processes. In particular instances, we further provide numerical analyses in terms of
the relative errors.

Example 3. Let X be a birth–death process with q-matrix Q which is given by qi,i+1 = bi,
i ∈Z+; qi,i−1 = ai, i ∈N; qij = 0, |i − j| ≥ 2, where ai > 0 for i ∈N and bi > 0 for i ∈Z+. It is
well known that Q is regular if and only if Q is conservative and

R =
∞∑

n=1

(
1

bn
+ an

bnbn−1
+ · · · + an · · · a2

bn · · · b1

)
= ∞.

It is easy to check that Q is stochastically monotone and so is X. From [28], we know that the
function x defined by

x(0) = 0, x(i) =
i−1∑
k=0

(
1

ak+1
+

∞∑
j=k+1

bk+1 · · · bj

ak+1 · · · aj+1

)
, i ≥ 1,
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satisfies Assumption 3 with equality. Obviously, x(i) is strictly increasing and

sup
i∈E

x(i) =
∞∑

k=0

(
1

ak+1
+

∞∑
j=k+1

bk+1 · · · bj

ak+1 · · · aj+1

)
:= A.

Then from Theorem 3 we have the following statement.

Let X be a birth–death process with regular q-matrix Q. Suppose that A < ∞ and
Assumption 2 holds for a nondecreasing function V . Then

‖p̃t − pt‖1 ≤ 4(A + 1)e−t/(A+1)‖p̃0 − p0‖1 + 4(A + 1)2κ‖�‖1,V , (8)

where κ = max{p̃0(V), L/δ}.
To present a numerical illustration of our results, we further consider the special case b0 = 1

and ai = bi = si, i ≥ 1. Suppose that the birth and death rates are perturbed to be b0 = 1 + ε and
ai = bi = si + ε for i ≥ 1. By simple calculations, we have A = s/(s − 1)2,

π (i) = π (0)
1

si
, π̃ (i) = π (0)

i∏
k=1

sk−1 + ε

sk + ε
.

Take V ≡ 1 and note that Assumption 2 is satisfied with L = δ > 0. In view of (8), we can
bound ‖π̃ − π‖1 with p̃0 = p0 and by letting t → ∞. It follows that

‖π̃ − π‖1 ≤ 16

(
s

(s − 1)2
+ 1

)2

ε = U(ε).

For U(ε) to become informative, ε has to be smaller than 0.0599 for s = 4, as otherwise U(ε)
becomes larger than 2. It can be seen that the perturbation bound U(ε) diminishes linearly as ε

tends to 0.
To test the performance of U(ε), we investigate the relative error of the perturbation bound,

which was first introduced and discussed in [1] and is given by

η(ε) = U(ε) − ‖π̃ − π‖1

‖π̃ − π‖1
.

Clearly, a smaller relative error means a sharper bound. In the setting of s = 4, the relative
errors of U(ε) are plotted in Figure 1, which shows that the relative error of the condition
number bound U(ε) converges to a finite non-zero value as ε → 0, which is consistent with the
findings of [1]. Hence, we have to acknowledge that our results might not be that sharp due to
the limitations inherent in the arguments of condition number bounds.

4. Perturbation analysis for exponentially ergodic CTMCs

By using similar arguments to Section 3 but with the introduction of multiplicative decom-
position, we derive perturbation bounds for exponentially ergodic CTMCs. In particular,
estimates for stochastically monotone CTMCs are proposed.

In this part, the following assumptions are considered.

Assumption 4. Pt is V-uniformly ergodic with positive constants ρ < 1 and C < ∞ and finite
function V.
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FIGURE 1. Log relative errors log (η(ε)) for ‖π̃ − π‖1 with ε ∈ (0, 0.01] in the case of s = 4.

Assumption 5. There is a constant M < ∞ such that

‖�‖V = sup
i∈E

‖Q̃(i, ·) − Q(i, ·)‖V

V(i)
≤ M.

4.1. Finite state spaces

First, we have the following perturbation bounds for exponentially ergodic CTMCs on a
finite state space En.

Proposition 2. Let X be an irreducible CTMC on finite state space En. Suppose that
Assumptions 2, 4, and 5 hold for the same function V. Then, for ‖�‖1,V ∈ (0, 1/e) we have

‖p̃t − pt‖1 ≤ Cρt‖p̃0 − p0‖V + eκ‖�‖1,V

log ρ
(CM)−( log ‖�‖1,V )−1

log ‖�‖1,V ,

where κ = max{p̃0(V), L/δ}.
Proof. In the proof of Proposition 1, we obtained

‖p̃t − pt‖1 ≤ ‖(p̃0 − p0)Pt‖1 +
∫ t

0
‖p̃t−u(Q̃ − Q)Pu‖1 du.

By Lemmas 1 and 2, we have

‖(p̃0 − p0)Pt‖1 ≤ ‖(p̃0 − p0)Pt‖V ≤ ‖p̃0 − p0‖V · τV (Pt) ≤ Cρt‖p̃0 − p0‖V ,

‖p̃t−u(Q̃ − Q)Pu‖V ≤ ‖p̃t−u(Q̃ − Q)‖VτV (Pu).
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Fix a real number r ∈ (0, 1) and let s = 1 − r. By considering the definition of τ1(Pu), we can
see that τ1(Pu) ≤ 1. These lead to

‖p̃t−u(Q̃ − Q)Pu‖1 ≤ ∥∥p̃t−u(Q̃ − Q)Pu
∥∥r

1

∥∥p̃t−u(Q̃ − Q)Pu
∥∥s

V

≤ ∥∥p̃t−u(Q̃ − Q)
∥∥r

1(τ1(Pu))r
∥∥p̃t−u(Q̃ − Q)

∥∥s
V (τV (Pu))s

≤ ∥∥p̃t−u(Q̃ − Q)
∥∥r

1

∥∥p̃t−u(Q̃ − Q)
∥∥s

V (τV (Pu))s.

Further, we also have

‖p̃t−u(Q̃ − Q)‖1 ≤
∑
i∈En

p̃t−u(i)‖Q̃(i, ·) − Q(i, ·)‖1 ≤ ‖�‖1,V

∑
i∈En

p̃t−u(i)V(i),

‖p̃t−u(Q̃ − Q)‖V ≤
∑
i∈En

p̃t−u(i)‖Q̃(i, ·) − Q(i, ·)‖V ≤ M
∑
i∈En

p̃t−u(i)V(i).

From the proof of the inequality (4) and the drift condition in Assumption 2, we have, for
t − u ≥ 0, ∑

i∈En

p̃t−u(i)V(i) ≤ max

{
p̃0(V),

L

δ

}
= κ .

Then we get

‖p̃t − pt‖1 ≤ Cρt‖p̃0 − p0‖V + κ(‖�‖1,V )rMs
∫ t

0
(τV (Pu))s du.

Finally, it follows from Lemma 2 that∫ t

0
(τV (Pu))s du ≤ Cs

∫ t

0
ρsu du = Cs(1 − ρst)

−s log ρ
≤ Cs

−s log ρ
,

and hence

‖p̃t − pt‖1 ≤ Cρt‖p̃0 − p0‖V + κ(‖�‖1,V )r(CM)s

−s log ρ
.

For ‖�‖1,V ∈ (0, 1/e), we can choose the numbers r = 1 + ( log ‖�‖1,V )−1 and s =
−( log ‖�‖1,V )−1, which leads to

∥∥�∥∥r
1,V = e‖�‖1,V and allows us to complete the

proof. �

Remark 2. This result parallels [26, Theorem 3.2] for DTMCs, which can also be derived
through the uniformization technique.

4.2. Infinitely countable state spaces

By the technique of augmented truncations used in Section 3, we can get our results for
exponentially ergodic CTMCs on an infinitely countable state space.

Theorem 4. Let X be an irreducible CTMC on state space E =Z+, and V : E → [1, ∞) a
nondecreasing function. For a large enough integer N such that N ≥ h, assume that {(n,h)Pt, n ≥
N} uniformly satisfies Assumption 4 with Vn, i.e. there exist positive constants ρ < 1 and C <

∞ such that, for any i, t, and n ≥ N,

‖(n,h)P
t(i, ·) − (n,h)π‖Vn ≤ CVn(i)ρt.
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Moreover, suppose that Assumptions 2 and 5 hold for V. Then, for ‖�‖1,V ∈ (0, 1/e),

‖p̃t − pt‖1 ≤ Cρt‖p̃0 − p0‖V + eκ‖�‖1,V

log ρ
(CM)−( log ‖�‖1,V )−1

log ‖�‖1,V ,

where κ = max{p̃0(V), L/δ}.
Proof. Referring to the proof of Theorem 1, we know that

‖p̃t − pt‖1 ≤ ‖p̃t − (n,h)p̃
t∗‖1 + ‖pt − (n,h)p

t∗‖1 + ‖(n,h)p̃
t∗ − (n,h)p

t∗‖1, (9)

and limn→∞ ‖pt − (n,h)pt∗‖1 = 0, limn→∞ ‖p̃t − (n,h)p̃t∗‖1 = 0. Since V is nondecreasing, we
can see that, for i 
= h,

‖(n,h)Q̃(i, ·) − (n,h)Q(i, ·)‖Vn

=
∑

j≤n,j 
=h

|q̃(i, j) − q(i, j)|V(j) +
∣∣∣∣∣(q̃(i, h) − q(i, h)) +

∑
j>n

(q̃(i, j) − q(i, j))

∣∣∣∣∣V(h)

≤
∑

j≤n+1,

j 
=h

|q̃(i, j) − q(i, j)|V(j) +
∣∣∣∣∣(q̃(i, h) − q(i, h)) +

∑
j>n+1

(q̃(i, j) − q(i, j))

∣∣∣∣∣V(h)

= ‖(n+1,h)Q̃(i, ·) − (n+1,h)Q(i, ·)‖Vn+1,

and for i = h,

‖(n,h)Q̃(h, ·) − (n,h)Q(h, ·)‖Vn

=
∑

j≤n,j 
=h

|q̃(h, j) − q(h, j)|V(j) +
∣∣∣∣∣−

∑
j≤n,j 
=h

(q̃(h, j) − q(h, j))

∣∣∣∣∣V(h)

≤
∑

j≤n,j 
=h

|q̃(h, j) − q(h, j)|V(j) +
∣∣∣∣∣−

∑
j≤n+1,j 
=h

(q̃(h, j) − q(h, j))

∣∣∣∣∣V(h)

+ |q̃(h, n + 1) − q(h, n + 1)|V(h)

≤
∑

j≤n+1,j 
=h

|q̃(h, j) − q(h, j)|V(j) +
∣∣∣∣∣−

∑
j≤n+1,j 
=h

(q̃(h, j) − q(h, j))

∣∣∣∣∣V(h)

= ‖(n+1,h)Q̃(h, ·) − (n+1,h)Q(h, ·)‖Vn+1 ,

which implies

sup
i∈E

‖(n,h)Q̃(i, ·) − (n,h)Q(i, ·)‖Vn

V(i)
≤ sup

i∈E

‖Q̃(i, ·) − Q(i, ·)‖V

V(i)
< M.

Let ‖(n)�‖1,V = supi∈En
‖(n,h)Q̃(i, ·) − (n,h)Q(i, ·)‖1/V(i) and (n)κ = max{(n)p̃0(Vn), L/δ}.

Since (n,h)Pt uniformly satisfies V-uniform ergodicity and Assumption 2 holds true for V , it
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follows from Lemma 3 and Proposition 2 that, for ‖(n)�‖1,V ∈ (0, 1/e),

‖(n,h)p̃
t − (n,h)p

t‖1 ≤ Cρt‖(n)p̃
0 − (n)p

0‖Vn

+ e(n)κ‖(n)�‖1,V

log ρ
(CM)−( log ‖(n)�‖1,V )−1

log ‖(n)�‖1,V .

Using similar arguments to the proof of Theorem 1 gives limn→∞ ‖(n)�‖1,V = ‖�‖1,V ,
limn→∞ (n)κ = κ , and limn→∞ ‖(n)p̃0 −(n) p0‖Vn = ‖p̃0 − p0‖V . Hence, for ‖�‖1,V ∈ (0, 1/e)
we have

lim
n→∞ ‖(n,h)p̃

t − (n,h)p
t‖1 ≤ Cρt‖p̃0 − p0‖V + eκ‖�‖1,V

log ρ
(CM)−( log ‖�‖1,V )−1

log ‖�‖1,V .

By taking the limit of both sides of (9), we obtain the assertion immediately. �

As a consequence of the previous theorem, we have the following results on the distance
between the two stationary distributions π̃ and π .

Corollary 2. Assume that the conditions in Theorem 4 hold. Then, for ‖�‖1,V ∈ (0, 1/e),

‖π̃ − π‖1 ≤ eκ ′‖�‖1,V

log ρ
(CM)−( log ‖�‖1,V )−1

log ‖�‖1,V ,

where κ ′ = max{π̃ (V), L/δ}.

4.3. Explicit results for CTMCs with monotone q-matrix

For a class of exponentially ergodic CTMCs, the condition in Theorem 4 that (n,h)Pt uni-
formly satisfies Assumption 4 is easy to verify. In the remainder of this part, we give explicit
results for stochastically monotone CTMCs that satisfy the following drift condition.

Assumption 6. There exists a nondecreasing function V : E → [1, ∞) and positive constants
c and K < ∞ such that QV(i) ≤ −cV(i) + K · I{0}(i).

Based on this drift condition, [17] proposed an exponential convergence rate for stochasti-
cally monotone CTMCs.

Lemma 6. Suppose that X is an irreducible and stochastically monotone CTMC on the state
space E =Z+ satisfying Assumption 6. Then

‖Pt(i, ·) − π‖V ≤ 2e−ct
[

V(i)(1 − I{0}(i)) + K

c

]
.

As an immediate consequence of Lemma 6 and Theorem 4, we obtain the following
theorem.

Theorem 5. Let X be an irreducible and stochastically monotone CTMC on the state space
E =Z+ satisfying Assumption 6. Moreover, suppose that Assumptions 2 and 5 hold for the
nondecreasing function V. Then, for ‖�‖1,V ∈ (0, 1/e),

‖p̃t − pt‖1 ≤ 2

(
1 + K

c
· 1

infi∈E V(i)

)
e−ct‖p̃0 − p0‖V

+ eκ‖�‖1,V

−c

[
2M

(
1 + K

c
· 1

infi∈E V(i)

)]−( log ‖�‖1,V )−1

log ‖�‖1,V ,

where κ = max{p̃0(V), L/δ}.
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Proof. Note that if Q is stochastically monotone, so is its (n + 1) × (n + 1) northwest corner
truncation (n,n)Q augmented in the last column. Since V is nondecreasing, it follows from the
proof of Lemma 3 that (n,n)Q uniformly satisfies the conditions of Lemma 6 with Vn, and

‖(n,n)P
t(i, ·) − (n,n)π‖Vn ≤ 2e−ct

[
Vn(i)(1 − I{0}(i)) + K

c

]

≤ 2

(
1 + K

c
· 1

infi∈E V(i)

)
Vn(i)e−ct.

By taking h = n and using similar arguments to the proof of Theorem 4, we can obtain the
statement immediately. �

In the following, we show, through an example of birth and death processes with catastro-
phes, that our results in the weak sense are more feasible than V-normwise bounds in some
cases.

Example 4. Consider a birth–death process with catastrophes on the state space E =Z+ with
q-matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b b 0 0 · · ·
a + ε −(a + b + ε) b 0 · · ·
d2 + ε 2a −2(a + b) − d2 − ε 2b · · ·
d3 + ε 0 3a −3(a + b) − d3 − ε · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where di, i ≥ 2, is a nonnegative decreasing sequence and a, b, ε are positive constants such
that a > max{b, d2}. Suppose the q-matrix is perturbed to be

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b b 0 0 · · ·
a −(a + b) b 0 · · ·
d2 2a −2(a + b) − d2 2b · · ·
d3 0 3a −3(a + b) − d3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is obvious that Q is monotone. Define the function V by V(i) = 1 + (i + 1)/ε, i ≥ 0. Then
we can easily verify that

QV(i) ≤ −a − b

ε + 2
V(i) + aε + a + b

ε2 + 2ε
· I{0}(i), i ∈ E.

Let

c = a − b

ε + 2
, K = aε + a + b

ε2 + 2ε
.

To use [14, Theorem 3.3], we only need to check that ‖�‖V < c/(1 + π (V)) or ‖�‖V <

c2/(K + c). Observe that M = ‖�‖V = (2ε2 + 3ε)/(ε + 2) → 0 as ε → 0. Unfortunately, when
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a − b < min{3,
√

3(a + b)}, we can get

c

1 + π (V)
<

c

1 + (1 + 1/ε)
= 1

ε + 2
· (a − b)ε

2ε + 1
<

2ε2 + 3ε

ε + 2
= ‖�‖V ,

c2

K + c
= c

(K/c) + 1
= 1

ε + 2
· a − b

(K/c) + 1
<

2ε2 + 3ε

ε + 2
= ‖�‖V .

Hence, in the case where a − b < min{3,
√

3(a + b)}, the condition cannot be satisfied and the
results of [14, Theorem 3.3] fail.

However, our results in the weak sense are still valid for such a case. For the same function
V , we can also see that Q̃V(i) ≤ −cV(i) + K, i ∈ E. To use our Theorem 5, we only require that

‖�‖1,V = sup
i∈E

‖�(i, ·)‖1

V(i)
= 2ε2

ε + 2
<

1

e
.

Therefore, if ε is small enough, the condition will be satisfied and we can obtain

‖p̃t − pt‖1 ≤ 2

(
1 + aε + a + b

(a − b)(ε + 1)

)
exp

{
−a − b

ε + 2
t

}

− 2ε2eκ ′

a − b
log

[
2ε2

ε + 2

]{
4ε2 + 6ε

ε + 2

(
1 + aε + a + b

(a − b)(ε + 1)

)}−( log (2ε2/(ε+2)))−1

,

(10)

where

κ = max

{
p̃0(V),

K

c

}
= max

{
p̃0(V),

aε + a + b

(a − b)ε

}
.

Obviously, the second term on the right-hand side of (10) is

2ε2eκ ′

a − b
log

[
2ε2

ε + 2

]{
4ε2 + 6ε

ε + 2

(
1 + aε + a + b

(a − b)(ε + 1)

)}−( log (2ε2/(ε+2)))−1

= O(ε log ε).

This shows that the weak norm is a better choice than the V-norm to analyze the perturbation
for this example, and our bounds are more feasible than the bounds in [14].

5. Conclusion

By the technique of augmented truncations, we obtained accurate bounds on ‖p̃t − pt‖1
in terms of the convergence rate and drift condition for strongly and exponentially ergodic
CTMCs, respectively. In particular, the explicit results were derived for CTMCs satisfying
Doeblin or stochastically monotone conditions. Through some examples, we showed that when
the perturbation matrices are unbounded, the V-normwise bounds may fail while our bounds in
the weak norm still hold. We now discuss possible extensions and improvements of the results
in this paper.

In Theorems 1 and 4, it is required that (n,h)Pt has a uniform convergence rate, which may
be difficult to verify for general CTMCs. We may expect a more straightforward condition on
Pt rather than (n,h)Pt. However, our arguments with the approach of augmented truncations fail
to do that. It may be interesting to investigate this in different ways.
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Observe that for exponentially ergodic CTMCs, our bounds rely on the boundedness of
‖�‖V . When the perturbation matrix is unbounded, this condition cannot be satisfied and the
bounds given in Section 4 may fail to hold. To investigate this issue requires some different
methods, which is a topic for future research.

Following [1], the perturbation bounds we presented are condition number bounds.
Example 3 illustrates that the relative error of our bound converges to a finite non-zero value
as the perturbation size ε → 0. It is open to find a good way to derive bounds in the weak sense
whose relative error vanishes.

One possible extension is to consider a perturbation for a continuous-time Markov process
on a continuous state space, say [0, ∞). To the best of our knowledge, this is a quite new
topic which is worthy of further research. However, working with the extended generator may
require different arguments.
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