AN ERGODIC THEOREM FOR ASYMPTOTICALLY PERIODIC TIME-INHOMOGENEOUS MARKOV PROCESSES, WITH APPLICATION TO QUASI-STATIONARITY WITH MOVING BOUNDARIES

WILLIAM OÇAFRAIN,[∗] *Université de Lorraine*

Abstract

This paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose time-inhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that, for any measurable bounded function *f*, the time average $\frac{1}{t} \int_0^t f(X_s) ds$ converges in \mathbb{L}^2 towards a limiting distribution, starting from any initial distribution for the process $(X_t)_{t>0}$. This convergence can be improved to an almost sure convergence under an additional assumption on the initial measure. This result is then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically periodic moving boundary, satisfying a conditional Doeblin condition.

Keywords: Ergodic theorem; law of large numbers; time-inhomogeneous Markov processes; quasi-stationarity; quasi-ergodic distribution; moving boundaries

2020 Mathematics Subject Classification: Primary 60J25; 60F25; 60J55 Secondary 60J60; 60J65; 60J70

1. Notation

Throughout, we shall use the following notation:

- $\mathbb{N} = \{1, 2, ..., \}$ and $\mathbb{Z}_+ = \{0\} \cup \mathbb{N}$.
- $\mathcal{M}_1(E)$ denotes the space of the probability measures whose support is included in E .
- *B*(*E*) denotes the set of the measurable bounded functions defined on *E*.
- $\mathcal{B}_1(E)$ denotes the set of the measurable functions *f* defined on *E* such that $||f||_{\infty} < 1$.
- For all $\mu \in \mathcal{M}_1(E)$ and $p \in \mathbb{N}$, $\mathbb{L}^p(\mu)$ denotes the set of the measurable functions $f : E \mapsto$ \mathbb{R} such that $\int_E |f(x)|^p \mu(dx) < +\infty$.
- For any $\mu \in \mathcal{M}_1(E)$ and $f \in \mathbb{L}^1(\mu)$, we define

$$
\mu(f) := \int_E f(x)\mu(dx).
$$

Received 11 March 2021; revision received 3 July 2022.

[∗] Postal address: IECL, UMR 7502, F-54000, Nancy, France. Email address: w.ocafrain@hotmail.fr

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust.

• For any positive function ψ ,

$$
\mathcal{M}_1(\psi) := \{ \mu \in \mathcal{M}_1(E) : \mu(\psi) < +\infty \}.
$$

• Id denotes the identity operator.

2. Introduction

In general, an ergodic theorem for a Markov process $(X_t)_{t>0}$ and probability measure π refers to the almost sure convergence

$$
\frac{1}{t} \int_0^t f(X_s) ds \xrightarrow[t \to \infty]{} \pi(f), \quad \forall f \in \mathbb{L}^1(\pi). \tag{1}
$$

In the time-homogeneous setting, such an ergodic theorem holds for positive Harris-recurrent Markov processes with the limiting distribution π corresponding to an invariant measure for the underlying Markov process. For time-inhomogeneous Markov processes, such a result does not hold in general (in particular the notion of invariant measure is in general not well-defined), except for specific types of time-inhomogeneity such as *periodic time-inhomogeneous Markov processes*, defined as time-inhomogeneous Markov processes for which there exists $\gamma > 0$ such that, for any $s \le t$, $k \in \mathbb{Z}_+$, and *x*,

$$
\mathbb{P}[X_t \in \cdot | X_s = x] = \mathbb{P}[X_{t+k\gamma} \in \cdot | X_{s+k\gamma} = x]. \tag{2}
$$

In other words, a time-inhomogeneous Markov process is periodic when the transition law between any times *s* and *t* remains unchanged when the time interval [*s*, *t*] is shifted by a multiple of the period γ . In particular, this implies that, for any $s \in [0, \gamma)$, the Markov chain $(X_{s+n\gamma})_{n \in \mathbb{Z}_+}$ is time-homogeneous. This fact allowed Höpfner *et al.* (in [\[20,](#page-28-0) [21,](#page-28-1) [22\]](#page-28-2)) to show that, if the skeleton Markov chain $(X_{n\gamma})_{n \in \mathbb{Z}_+}$ is Harris-recurrent, then the chains $(X_{s+n\gamma})_{n \in \mathbb{Z}_+}$, for all $s \in [0, \gamma)$, are also Harris-recurrent and

$$
\frac{1}{t} \int_0^t f(X_s) ds \xrightarrow[t \to \infty]{} \frac{1}{\gamma} \int_0^{\gamma} \pi_s(f) ds,
$$
 almost surely, from any initial measure,

where π_s is the invariant measure for $(X_{s+n\nu})_{n\in\mathbb{Z}_+}$.

This paper aims to prove a similar result for time-inhomogeneous Markov processes said to be *asymptotically periodic*. Roughly speaking (a precise definition will be explicitly given later), an asymptotically periodic Markov process is such that, given a time interval $T \geq 0$, its transition law on the interval $[s, s + T]$ is asymptotically 'close to' the transition law, on the same interval, of a periodic time-inhomogeneous Markov process called an *auxiliary Markov process*, when $s \rightarrow \infty$. This definition is very similar to the notion of *asymptotic homogenization*, defined as follows in [\[1,](#page-28-3) Subsection 3.3]. A time-inhomogeneous Markov process $(X_t)_{t>0}$ is said to be *asymptotically homogeneous* if there exists a time-homogeneous Markovian semigroup $(Q_t)_{t>0}$ such that, for all $s \geq 0$,

$$
\lim_{t \to \infty} \sup_x \|\mathbb{P}[X_{t+s} \in \cdot | X_t = x] - \delta_x Q_s \|_{TV} = 0,
$$
\n(3)

where, for two positive measures with finite mass μ_1 and μ_2 , $\|\mu_1 - \mu_2\|_{TV}$ is the *total variation distance* between μ_1 and μ_2 :

$$
\|\mu_1 - \mu_2\|_{TV} := \sup_{f \in \mathcal{B}_1(E)} |\mu_1(f) - \mu_2(f)|. \tag{4}
$$

In particular, it is well known (see $[1,$ Theorem 3.11]) that, under this and suitable additional conditions, an asymptotically homogeneous Markov process converges towards a probability measure which is invariant for $(Q_t)_{t>0}$. It is similarly expected that an asymptotically periodic process has the same asymptotic properties as a periodic Markov process; in particular an ergodic theorem holds for the asymptotically periodic process.

The main result of this paper provides for an asymptotically periodic Markov process to satisfy

$$
\frac{1}{t}\int_0^t f(X_s)ds \xrightarrow[t \to \infty]{} \frac{\mathbb{L}^2(\mathbb{P}_{0,\mu})}{t \to \infty} \frac{1}{\gamma} \int_0^{\gamma} \beta_s(f)ds, \quad \forall f \in \mathcal{B}(E), \forall \mu \in \mathcal{M}_1(E),
$$
 (5)

where $\mathbb{P}_{0,\mu}$ is a probability measure under which $X_0 \sim \mu$, and where β_s is the limiting distribution of the skeleton Markov chain $(X_{s+n\gamma})_{n \in \mathbb{Z}_+}$, if it satisfies a Lyapunov-type condition and a local Doeblin condition (defined further in Section [3\)](#page-2-0), and is such that its auxiliary process satisfies a Lyapunov/minorization condition.

Furthermore, this convergence result holds almost surely if a Lyapunov function of the process $(X_t)_{t\geq 0}$, denoted by ψ , is integrable with respect to the initial measure:

$$
\frac{1}{t}\int_0^t f(X_s)ds \xrightarrow[t \to \infty]{} \frac{\mathbb{P}_{0,\mu}\text{-almost surely}}{t \to \infty} \frac{1}{\gamma} \int_0^{\gamma} \beta_s(f)ds, \quad \forall \mu \in \mathcal{M}_1(\psi).
$$

This will be more precisely stated and proved in Section [3.](#page-2-0)

The main motivation of this paper is then to deal with *quasi-stationarity with moving boundaries*, that is, the study of asymptotic properties for the process *X*, conditioned not to reach some moving subset of the state space. In particular, such a study is motivated by models such as those presented in [\[3\]](#page-28-4), which studies Brownian particles absorbed by cells whose volume may vary over time.

Quasi-stationarity with moving boundaries has been studied in particular in [\[24,](#page-28-5) [25\]](#page-28-6), where a 'conditional ergodic theorem' (see further the definition of a *quasi-ergodic distribution*) has been shown when the absorbing boundaries move periodically. In this paper, we show that a similar result holds when the boundary is asymptotically periodic, assuming that the process satisfies a conditional Doeblin condition (see Assumption (A')). This will be dealt with in Section [4.](#page-12-0)

The paper will be concluded by using these results in two examples: an ergodic theorem for an asymptotically periodic Ornstein–Uhlenbeck process, and the existence of a unique quasiergodic distribution for a Brownian motion confined between two symmetric asymptotically periodic functions.

3. Ergodic theorem for asymptotically periodic time-inhomogeneous semigroup.

Asymptotic periodicity: the definition. Let (E, \mathcal{E}) be a measurable space. Consider $\{(E_t, \mathcal{E}_t)_{t>0}, (P_{s,t})_{s\leq t}\}\$ a Markovian time-inhomogeneous semigroup, giving a family of measurable subspaces of (E, \mathcal{E}) , denoted by $(E_t, \mathcal{E}_t)_{t \geq 0}$, and a family of linear operator $(P_{s,t})_{s \leq t}$, with $P_{s,t}$: $\mathcal{B}(E_t) \to \mathcal{B}(E_s)$, satisfying for any $r \leq s \leq t$,

$$
P_{s,s} = \text{Id}, \quad P_{s,t} \mathbb{1}_{E_t} = \mathbb{1}_{E_s}, \quad P_{r,s} P_{s,t} = P_{r,t}.
$$

In particular, associated to $\{ (E_t, \mathcal{E}_t)_{t>0}, (P_{s,t})_{s \le t} \}$ is a Markov process $(X_t)_{t>0}$ and a family of probability measures ($\mathbb{P}_{s,x}$)_{*s*>0,*x*∈*E_s*} such that, for any *s* \leq *t*, *x* \in *E_s*, and *A* \in *E*_t,

$$
\mathbb{P}_{s,x}[X_t \in A] = P_{s,t} \mathbb{1}_A(x).
$$

We denote by $\mathbb{P}_{s,\mu} := \int_{E_s} \mathbb{P}_{s,x} \mu(dx)$ any probability measure μ supported on E_s . We also denote by $\mathbb{E}_{s,x}$ and $\mathbb{E}_{s,y}$ the expectations associated to $\mathbb{P}_{s,x}$ and $\mathbb{P}_{s,y}$ respectively. Finally, the following notation will be used for $\mu \in \mathcal{M}_1(E_s)$, $s \leq t$, and $f \in \mathcal{B}(E_t)$:

$$
\mu P_{s,t}f := \mathbb{E}_{s,\mu}[f(X_t)], \quad \mu P_{s,t} := \mathbb{P}_{s,\mu}[X_t \in \cdot].
$$

The periodicity of a time-inhomogeneous semigroup is defined as follows. We say a semigroup $\{(F_t, \mathcal{F}_t)_{t>0}, (Q_{s,t})_{s\leq t}\}\$ is *γ*-*periodic* (for $\gamma > 0$) if, for any $s \leq t$,

$$
(F_t, \mathcal{F}_t) = (F_{t+k\gamma}, \mathcal{F}_{t+k\gamma}), \quad Q_{s,t} = Q_{s+k\gamma, t+k\gamma}, \quad \forall k \in \mathbb{Z}_+.
$$

It is now possible to define an *asymptotically periodic semigroup*.

Definition 1. (*Asymptotically periodic semigroups.*) A time-inhomogeneous semigroup $\{(E_t, \mathcal{E}_t)_{t\geq 0}, (P_{s,t})_{s\leq t}\}\)$ is said to be *asymptotically periodic* if (for some $\gamma > 0$) there exist a γ periodic semigroup $\{(F_t, \mathcal{F}_t)_{t>0}, (Q_{s,t})_{s\leq t}\}$ and two families of functions $(\psi_s)_{s>0}$ and $(\psi_s)_{s>0}$ such that $\tilde{\psi}_{s+\gamma} = \tilde{\psi}_s$ for all $s \ge 0$, and for any $s \in [0, \gamma)$, the following hold:

- 1. $\bigcup_{k=0}^{\infty} \bigcap_{l \geq k} E_{s+l\gamma} \cap F_s \neq \emptyset$.
- 2. There exists $x_s \in \bigcup_{k=0}^{\infty} \bigcap_{l \geq k} E_{s+l\gamma} \cap F_s$ such that, for any $n \in \mathbb{Z}_+$,

$$
\|\delta_{x_s} P_{s+k\gamma,s+(k+n)\gamma} [\psi_{s+(k+n)\gamma} \times \cdot] - \delta_{x_s} Q_{s,s+n\gamma} [\tilde{\psi}_s \times \cdot] \|_{TV} \longrightarrow 0. \tag{6}
$$

The semigroup $\{(F_t, \mathcal{F}_t)_{t \geq 0}, (Q_{s,t})_{s \leq t}\}$ is then called the *auxiliary semigroup of* $(P_{s,t})_{s \leq t}$.

When $\psi_s = \tilde{\psi}_s = 1$ for all $s \ge 0$, we say that the semigroup $(P_{s,t})_{s \le t}$ is *asymptotically periodic in total variation.* By extension, we will say that the process $(X_t)_{t\geq0}$ is asymptotically periodic (in total variation) if the associated semigroup $\{(E_t, \mathcal{E}_t)_{t>0}, (P_{s,t})_{s\leq t}\}\)$ is asymptotically periodic (in total variation).

In what follows, the functions $(\psi_s)_{s\geq0}$ and $(\tilde{\psi}_s)_{s\in[0,\gamma)}$ will play the role of Lyapunov functions (that is to say, satisfying Assumption [1\(](#page-3-0)ii) below) for the semigroups $(P_{s,t})_{s \leq t}$ and $(Q_{s,t})_{s\leq t}$, respectively. The introduction of these functions in the definition of asymptotically periodic semigroups will allow us to establish an ergodic theorem for processes satisfying the Lyapunov/minorization conditions stated below.

Lyapunov/minorization conditions. The main assumption of Theorem [1,](#page-4-0) which will be provided later, will be that the asymptotically periodic Markov process satisfies the following assumption.

Assumption 1. *There exist* $t_1 \geq 0$, $n_0 \in \mathbb{N}$, $c > 0$, $\theta \in (0, 1)$, a family of measurable sets $(K_t)_{t>0}$ *such that* $K_t \subset E_t$ *for all t* ≥ 0 *, a family of probability measures* $(v_s)_{s>0}$ *on* $(K_s)_{s\geq 0}$ *, and a family of functions* (ψ*s*)*s*≥0*, all lower-bounded by* 1*, such that the following hold:*

(i) For any $s > 0$, $x \in K_s$, and $n > n_0$,

$$
\delta_x P_{s,s+nt_1} \geq c \nu_{s+nt_1}.
$$

(ii) For any s > 0 *,*

$$
P_{s,s+t_1}\psi_{s+t_1}\leq \theta\psi_s+C\mathbb{1}_{K_s}.
$$

(iii) For any s > 0 *and t* \in [0, *t*₁)*,*

$$
P_{s,s+t}\psi_{s+t}\leq C\psi_s.
$$

When a semigroup $(P_{s,t})_{s\leq t}$ satisfies Assumption [1](#page-3-0) as stated above, we will say that the functions $(\psi_s)_{s>0}$ are *Lyapunov functions* for the semigroup $(P_{s,t})_{s\leq t}$. In particular, under (ii) and (iii), it is easy to prove that for any $s \leq t$,

$$
P_{s,t}\psi_t \le C\bigg(1+\frac{C}{1-\theta}\bigg)\psi_s.\tag{7}
$$

We remark in particular that Assumption [1](#page-3-0) implies an *exponential weak ergodicity in* ψ_t *distance*; that is, we have the existence of two constants $C' > 0$ and $\kappa > 0$ such that, for all $s \leq t$ and for all probability measures $\mu_1, \mu_2 \in \mathcal{M}_1(E_s)$,

$$
\|\mu_1 P_{s,t} - \mu_2 P_{s,t}\|_{\psi_t} \le C' [\mu_1(\psi_s) + \mu_2(\psi_s)] e^{-\kappa(t-s)},
$$
\n(8)

where, for a given function ψ , $\|\mu - \nu\|_{\psi}$ is the ψ -distance, defined to be

$$
\|\mu - \nu\|_{\psi} := \sup_{|f| \le \psi} |\mu(f) - \nu(f)|, \quad \forall \mu, \nu \in \mathcal{M}_1(\psi).
$$

In particular, when $\psi = \mathbb{1}$ for all $t \ge 0$, the ψ -distance is the total variation distance. If we have weak ergodicity (8) in the time-homogeneous setting (see in particular [\[15\]](#page-28-7)), the proof of [\[15,](#page-28-7) Theorem 1.3] can be adapted to a general time-inhomogeneous framework (see for example $[6,$ Subsection 9.5]).

The main theorem and proof. The main result of this paper is the following.

Theorem 1. Let $\{ (E_t, \mathcal{E}_t)_{t>0}, (P_{s,t})_{s\leq t}, (X_t)_{t>0}, (\mathbb{P}_{s,x})_{s>0,x\in E_s} \}$ be an asymptotically γ -periodic *time-inhomogeneous Markov process, with* $\gamma > 0$, and denote by $\{(F_t, \mathcal{F}_t)_{t>0}, (Q_{s,t})_{s \leq t}\}$ *its periodic auxiliary semigroup. Also, denote by* $(\psi_s)_{s>0}$ *and* $(\bar{\psi}_s)_{s>0}$ *the two families of functions as defined in Definition* [1.](#page-3-1) *Assume moreover the following:*

- [1](#page-3-0). *The semigroups* $(P_{s,t})_{s \le t}$ *and* $(Q_{s,t})_{s \le t}$ *satisfy Assumption* 1*, with* $(\psi_s)_{s \ge 0}$ *and* $(\tilde{\psi}_s)_{s>0}$ *respectively as Lyapunov functions.*
- 2. *For any s* ∈ [0, γ), $(\psi_{s+n\gamma})_{n \in \mathbb{Z}_+}$ *converges pointwise to* $\tilde{\psi}_s$ *.*

Then, for any $\mu \in \mathcal{M}_1(E_0)$ *such that* $\mu(\psi_0) < +\infty$ *,*

$$
\left\| \frac{1}{t} \int_0^t \mu P_{0,s} [\psi_s \times \cdot] ds - \frac{1}{\gamma} \int_0^{\gamma} \beta_{\gamma} Q_{0,s} [\tilde{\psi}_s \times \cdot] ds \right\|_{TV} \to \infty, \tag{9}
$$

where $\beta_{\gamma} \in \mathcal{M}_1(F_0)$ *is the unique invariant probability measure of the skeleton semigroup* $(Q_{0,n\gamma})_{n\in\mathbb{Z}_+}$ *satisfying* $\beta_{\gamma}(\tilde{\psi}_0) < +\infty$ *. Moreover, for any* $f \in \mathcal{B}(E)$ *we have the following:*

1. *For any* $\mu \in \mathcal{M}_1(E_0)$,

$$
\mathbb{E}_{0,\mu}\left[\left|\frac{1}{t}\int_0^t f(X_s)ds-\frac{1}{\gamma}\int_0^{\gamma}\beta_{\gamma}Q_{0,s}f ds\right|^2\right]\right|\underset{t\to\infty}{\longrightarrow}0.\tag{10}
$$

2. *If moreover* $\mu(\psi_0) < +\infty$ *, then*

$$
\frac{1}{t} \int_0^t f(X_s) ds \xrightarrow[t \to \infty]{} \frac{1}{\gamma} \int_0^{\gamma} \beta_{\gamma} Q_{0,s} f ds, \quad \mathbb{P}_{0,\mu} \text{-almost surely.} \tag{11}
$$

Remark [1](#page-3-0). When Assumption 1 holds for $K_s = E_s$ for any s, the condition (i) in Assumption 1 implies the *Doeblin condition.*

Doeblin condition. There exist $t_0 \geq 0$, $c > 0$, and a family of probability measures $(v_t)_{t \geq 0}$ on $(E_t)_{t>0}$ such that, for any $s \geq 0$ and $x \in E_s$,

$$
\delta_x P_{s,s+t_0} \geq c \nu_{s+t_0}.\tag{12}
$$

In fact, if we assume that Assumption [1\(](#page-3-0)i) holds for $K_s = E_s$, the Doeblin condition holds if we set $t_0 := n_0 t_1$. Conversely, the Doeblin condition implies the conditions (i), (ii), and (iii) with $K_s = E_s$ and $\psi_s = \mathbb{1}_{E_s}$ for all $s \ge 0$, so that these conditions are equivalent. In fact, (ii) and (iii) straightforwardly hold true for $(K_s)_{s\geq 0} = (E_s)_{s\geq 0}$, $(\psi_s)_{s\geq 0} = (\mathbb{1}_{E_s})_{s\geq 0}$, $C = 1$, any $\theta \in (0, 1)$, and any $t_1 \ge 0$. If we set $t_1 = t_0$ and $n_0 = 1$, the Doeblin condition implies that, for any $s \in [0, t_1)$,

 $\delta_x P_{s,s+t_1} \geq c v_{s+t_1}, \quad \forall x \in E_s.$

Integrating this inequality over $\mu \in \mathcal{M}_1(E_s)$, one obtains

 $\mu P_{s,s+t_1} \geq c v_{s+t_1}, \quad \forall s \in [0, t_1), \ \forall \mu \in \mathcal{M}_1(E_s).$

Then, by the Markov property, for all $s \in [0, t_1)$, $x \in E_s$, and $n \in \mathbb{N}$, we have

$$
\delta_x P_{s,s+nt_1} = (\delta_x P_{s,s+(n-1)t_1}) P_{s+(n-1)t_1,s+nt_1} \geq c \nu_{s+nt_1},
$$

which is (i).

Theorem [1](#page-4-0) then implies the following corollary.

Corollary 1. Let $(X_t)_{t>0}$ be asymptotically γ -periodic in total variation distance. If $(X_t)_{t>0}$ *and its auxiliary semigroup satisfy a Doeblin condition, then the convergence* [\(10\)](#page-4-2) *is improved to*

$$
\sup_{\mu \in \mathcal{M}_1(E_0) f \in \mathcal{B}_1(E)} \sup_{f \in \mathcal{B}_1(E)} \mathbb{E}_{0,\mu} \left[\left| \frac{1}{t} \int_0^t f(X_s) ds - \frac{1}{\gamma} \int_0^{\gamma} \beta_{\gamma} Q_{0,s} f ds \right|^2 \right] \longrightarrow 0.
$$

Moreover, the almost sure convergence (11) *holds for any initial measure* μ *.*

Remark 2. We also note that, if the convergence [\(6\)](#page-3-2) holds for all

$$
x \in \bigcup_{k=0}^{\infty} \bigcap_{l \geq k} E_{s+l\gamma} \cap F_s,
$$

then this implies [\(6\)](#page-3-2) and therefore the pointwise convergence of $(\psi_{s+n\gamma})_{n\in\mathbb{Z}_+}$ to $\tilde{\psi}_s$ (by taking $n = 0$ in [\(6\)](#page-3-2)).

Proof of Theorem [1.](#page-4-0) The proof is divided into five steps.

First step. Since the auxiliary semigroup $(Q_{s,t})_{s \leq t}$ satisfies Assumption [1](#page-3-0) with $(\tilde{\psi}_s)_{s>0}$ as Lyapunov functions, the time-homogeneous semigroup $(Q_{0,n\gamma})_{n \in \mathbb{Z}_+}$ satisfies Assumptions 1 and 2 of [\[15\]](#page-28-7), which we now recall (using our notation).

Assumption 2. ([\[15,](#page-28-7) Assumption 1].) *There exist* $V: F_0 \to [0, +\infty)$, $n_1 \in \mathbb{N}$ *, and constants* $K > 0$ *and* $\kappa \in (0, 1)$ *such that*

$$
Q_{0,n_1\gamma}V \leq \kappa V + K.
$$

Assumption 3. ([\[15,](#page-28-7) Assumption 2].) *There exist a constant* $\alpha \in (0, 1)$ *and a probability measure* ν *such that*

$$
\inf_{x \in C_R} \delta_x Q_{0,n_1\gamma} \geq \alpha \nu(\cdot),
$$

with $C_R := \{x \in F_0 : V(x) \leq R\}$ *for some* $R > 2K/(1 - \kappa)$ *, where* n_1 *, K, and* κ *are the constants from Assumption* [2.](#page-5-0)

In fact, since $(Q_{s,t})_{s \le t}$ satisfies (ii) and (iii) of Assumption [1,](#page-3-0) there exist $C > 0$, $\theta \in (0, 1)$, $t_1 \geq 0$, and $(K_s)_{s>0}$ such that

$$
Q_{s,s+t_1}\tilde{\psi}_{s+t_1} \le \theta \tilde{\psi}_s + C \mathbb{1}_{K_s}, \quad \forall s \ge 0,
$$
\n(13)

and

$$
Q_{s,s+t}\tilde{\psi}_{s+t} \leq C\tilde{\psi}_s, \quad \forall s \geq 0, \forall t \in [0, t_1).
$$

We let $n_2 \in \mathbb{N}$ be such that $\theta^{n_2} C \left(1 + \frac{C}{1-\theta}\right) < 1$. By [\(13\)](#page-6-0) and recalling that $\tilde{\psi}_t = \tilde{\psi}_{t+\gamma}$ for all $t > 0$, one has for any $s > 0$ and $n \in \mathbb{N}$,

$$
Q_{s,s+nt_1}\tilde{\psi}_{s+nt_1} \leq \theta^n \tilde{\psi}_s + \frac{C}{1-\theta}.
$$
\n(14)

Thus, for all $n_1 \geq \lceil \frac{n_2 t_1}{\gamma} \rceil$,

$$
Q_{0,n_1\gamma}\tilde{\psi}_0 = Q_{0,n_1\gamma - n_2t_1}Q_{n_1\gamma - n_2t_1, n_1\gamma}\tilde{\psi}_{n_1\gamma}
$$

\n
$$
\leq \theta^{n_2}Q_{0,n_1\gamma - n_2t_1}\tilde{\psi}_{n_1\gamma - n_2t_1} + \frac{C}{1-\theta}
$$

\n
$$
\leq \theta^{n_2}C\left(1 + \frac{C}{1-\theta}\right)\tilde{\psi}_0 + \frac{C}{1-\theta},
$$

where we successively used the semigroup property of $(Q_{s,t})_{s \leq t}$, [\(14\)](#page-6-1), and [\(7\)](#page-4-4) applied to $(Q_{s,t})_{s\leq t}$. Hence one has Assumption [2](#page-5-0) by setting $V = \tilde{\psi}_0$, $\kappa := \theta^{n_2} C \left(1 + \frac{C}{1-\theta}\right)$, and $K := \frac{C}{1-\theta}$.

We now prove Assumption [3.](#page-6-2) To this end, we introduce a Markov process $(Y_t)_{t\geq0}$ and a family of probability measures ($\hat{P}_{s,x}$)_{*s*>0,*x*∈*F_s* such that}

$$
\hat{\mathbb{P}}_{s,x}(Y_t \in A) = Q_{s,t} \mathbb{1}_A(x), \quad \forall s \le t, \ x \in F_s, \ A \in \mathcal{F}_t.
$$

In what follows, for all $s \ge 0$ and $x \in F_s$, we will use the notation $\mathbb{E}_{s,x}$ for the expectation associated to $\hat{P}_{s,x}$. Moreover, we define

$$
T_K := \inf \{ n \in \mathbb{Z}_+ : Y_{nt_1} \in K_{nt_1} \}.
$$

Then, using [\(13\)](#page-6-0) recursively, for all $k \in \mathbb{N}$, $R > 0$, and $x \in \mathcal{C}_R$ (recalling that \mathcal{C}_R is defined in the statement of Assumption [3\)](#page-6-2), we have

$$
\hat{\mathbb{E}}_{0,x}[\tilde{\psi}_{kt_1}(Y_{kt_1})\mathbb{1}_{T_K>k}] = \hat{\mathbb{E}}_{0,x}[\mathbb{1}_{T_K>k-1}\hat{\mathbb{E}}_{(k-1)t_1,Y_{(k-1)t_1}}(\tilde{\psi}_{kt_1}(Y_{kt_1})\mathbb{1}_{T_K>k})]
$$
\n
$$
\leq \theta \hat{\mathbb{E}}_{0,x}[\tilde{\psi}_{(k-1)t_1}(Y_{(k-1)t_1})\mathbb{1}_{T_K>k-1}] \leq \theta^k \tilde{\psi}_{0}(x) \leq R\theta^k.
$$

Since $\tilde{\psi}_{kt_1} \geq 1$ for all $k \in \mathbb{Z}_+$, we have that for all $x \in \mathcal{C}_R$, for all $k \in \mathbb{Z}_+$,

$$
\hat{\mathbb{P}}_{0,x}(T_K > k) \le R\theta^k.
$$

In particular, there exists $k_0 \ge n_0$ such that, for all $k \ge k_0 - n_0$,

$$
\hat{\mathbb{P}}_{0,x}(T_K > k) \leq \frac{1}{2}.
$$

Hence, for all $x \in \mathcal{C}_R$,

$$
\delta_x Q_{0,k_0t_1} = \hat{\mathbb{P}}_{0,x} (Y_{k_0t_1} \in \cdot) \geq \sum_{i=0}^{k_0 - n_0} \hat{\mathbb{E}}_{0,x} (\mathbb{1}_{T_K = i} \hat{\mathbb{P}}_{it_1, Y_{it_1}} (Y_{k_0t_1} \in \cdot))
$$

$$
\geq c \sum_{i=0}^{k_0 - n_0} \hat{\mathbb{E}}_{0,x} (\mathbb{1}_{T_K = i}) \times \nu_{k_0t_1}
$$

$$
= c \hat{\mathbb{P}}_{0,x} (T_K \leq k_0 - n_0) \nu_{k_0t_1}
$$

$$
\geq \frac{c}{2} \nu_{k_0t_1}.
$$

Hence, for all $n_1 \ge \left\lceil \frac{k_0 t_1}{\gamma} \right\rceil$, for all $x \in \mathcal{C}_R$,

$$
\delta_x Q_{0,k_0t_1} Q_{k_0t_1,n_1\gamma} \geq \frac{c}{2} \nu_{k_0t_1} Q_{k_0t_1,n_1\gamma}.
$$

Thus, Assumption [3](#page-6-2) is satisfied if we take $n_1 := \left\lceil \frac{n_2 t_1}{\gamma} \right\rceil \vee \left\lceil \frac{k_0 t_1}{\gamma} \right\rceil$, $\alpha := \frac{c}{2}$, and $v(\cdot) :=$ $v_{k_0t_1}Q_{k_0t_1,n_1}y$.

Then, by [\[15,](#page-28-7) Theorem 1.[2](#page-5-0)], Assumptions 2 and [3](#page-6-2) imply that $Q_{0,n_1\gamma}$ admits a unique invariant probability measure β_{γ} . Furthermore, there exist constants $C > 0$ and $\delta \in (0, 1)$ such that, for all $\mu \in \mathcal{M}_1(F_0)$,

$$
\|\mu Q_{0,m_1\gamma} - \beta_\gamma\|_{\tilde{\psi}_0} \le C\mu(\tilde{\psi}_0)\delta^n. \tag{15}
$$

Since β_{γ} is the unique invariant probability measure of $Q_{0,n_1\gamma}$, and noting that $\beta_{\gamma}Q_{0,\gamma}$ is invariant for $Q_{0,n_1\gamma}$, we deduce that β_{γ} is the unique invariant probability measure for $Q_{0,\gamma}$, and by [\(15\)](#page-7-0), for all μ such that $\mu(\tilde{\psi}_0) < +\infty$,

$$
\|\mu Q_{0,n\gamma}-\beta_\gamma\|_{\tilde{\psi}_0}\underset{n\to\infty}{\longrightarrow}0.
$$

Now, for any $s \ge 0$, note that $\delta_x Q_{s, \lceil \frac{s}{\gamma} \rceil} \psi_0 < +\infty$ for all $x \in F_s$ (this is a consequence of [\(7\)](#page-4-4) applied to the semigroup $(Q_{s,t})_{s \le t}$, and therefore, taking $\mu = \delta_x Q_{s,\lceil \frac{s}{\gamma} \rceil \gamma}$ in the above convergence,

$$
\|\delta_x Q_{s,n\gamma} - \beta_\gamma\|_{\tilde{\psi}_0} \underset{n\to\infty}{\longrightarrow} 0
$$

for all $x \in F_s$. Hence, since $Q_{n\gamma,n\gamma+s}\tilde{\psi}_s \leq C\left(1+\frac{C}{1-\theta}\right)\tilde{\psi}_{n\gamma}$ by [\(7\)](#page-4-4), we conclude from the above convergence that

$$
\|\delta_x Q_{s,s+n\gamma} - \beta_\gamma Q_{0,s}\|_{\tilde{\psi}_s} \le C \bigg(1 + \frac{C}{1-\theta} \bigg) \|\delta_x Q_{s,n\gamma} - \beta_\gamma\|_{\tilde{\psi}_0} \underset{n \to \infty}{\longrightarrow} 0. \tag{16}
$$

Moreover, $\beta_{\nu}(\tilde{\psi}_0) < +\infty$.

Second step. The first part of this step (up to the equality [\(20\)](#page-8-0)) is inspired by the proof of [\[1,](#page-28-3) Theorem 3.11].

We fix $s \in [0, \gamma]$. Without loss of generality, we assume that $\bigcap_{l \geq 0} E_{s+l\gamma} \cap F_s \neq \emptyset$. Then, by Definition [1,](#page-3-1) there exists $x_s \in \bigcap_{l \geq 0} E_{s+l} \cap F_s$ such that for any $n \geq 0$,

$$
\left\|\delta_{x_s}P_{s+k\gamma,s+(k+n)\gamma}\left[\psi_{s+(k+n)\gamma}\times\cdot\right]-\delta_{x_s}Q_{s,s+n\gamma}\left[\tilde{\psi}_s\times\cdot\right]\right\|_{TV}\longrightarrow\infty 0,
$$

which implies by (16) that

$$
\lim_{n \to \infty} \lim_{k \to \infty} \left\| \delta_{x_s} P_{s+k\gamma, s+(k+n)\gamma} \left[\psi_{s+(k+n)\gamma} \times \cdot \right] - \beta_{\gamma} Q_{0,s} \left[\tilde{\psi}_s \times \cdot \right] \right\|_{TV} = 0. \tag{17}
$$

Then, by the Markov property, ([8\)](#page-4-1), and [\(7\)](#page-4-4), one obtains that, for any $k, n \in \mathbb{N}$ and $x \in$ $\bigcap_{l\geq 0} E_{s+l\gamma},$

$$
\|\delta_x P_{s,s+(k+n)\gamma} - \delta_x P_{s+k\gamma,s+(k+n)\gamma}\|_{\psi_{s+(k+n)\gamma}}= \|\left(\delta_x P_{s,s+k\gamma}\right) P_{s+k\gamma,s+(k+n)\gamma} - \delta_x P_{s+k\gamma,s+(k+n)\gamma}\|_{\psi_{s+(k+n)\gamma}}\leq C' [P_{s,s+k\gamma}\psi_{s+k\gamma}(x) + \psi_{s+k\gamma}(x)]e^{-\kappa\gamma n}\leq C' [\psi_s(x) + \psi_{s+k\gamma}(x)]e^{-\kappa\gamma n},
$$
\n(18)

where $C'' := C'(C(1 + \frac{C}{1-\theta}) \vee 1)$. Then, for any $k, n \in \mathbb{N}$,

$$
\|\delta_{x_s} P_{s,s+(k+n)\gamma} [\psi_{s+(k+n)\gamma} \times \cdot] - \beta_\gamma Q_{0,s} [\tilde{\psi}_s \times \cdot] \|_{TV}
$$
(19)

$$
\leq C'[\psi_s(x)+\psi_{s+k\gamma}(x)]e^{-\kappa\gamma n}+\big\|\delta_{x_s}P_{s+k\gamma,s+(k+n)\gamma}[\psi_{s+(k+n)\gamma}\times\cdot]-\beta_\gamma Q_{0,s}[\tilde{\psi}_s\times\cdot]\big\|_{TV},
$$

which by [\(17\)](#page-8-1) and the pointwise convergence of $(\psi_{s+k\gamma})_{k \in \mathbb{Z}_+}$ implies that

$$
\lim_{n \to \infty} \|\delta_{x_s} P_{s,s+n\gamma} [\psi_{s+n\gamma} \times \cdot] - \beta_{\gamma} Q_{0,s} [\tilde{\psi}_s \times \cdot] \|_{TV}
$$
\n
$$
= \lim_{n \to \infty} \limsup_{k \to \infty} \|\delta_{x_s} P_{s,s+(k+n)\gamma} [\psi_{s+(k+n)\gamma} \times \cdot] - \beta_{\gamma} Q_{0,s} [\tilde{\psi}_s \times \cdot] \|_{TV}
$$
\n
$$
= 0. \tag{20}
$$

The weak ergodicity [\(8\)](#page-4-1) implies therefore that the previous convergence actually holds for any initial distribution $\mu \in \mathcal{M}_1(E_0)$ satisfying $\mu(\psi_0) < +\infty$, so that

$$
\|\mu P_{0,s+n\gamma}[\psi_{s+n\gamma} \times \cdot] - \beta_{\gamma} Q_{0,s}[\tilde{\psi}_s \times \cdot] \|_{TV} \to 0.
$$
 (21)

Since

$$
\|\mu P_{0,s+n\gamma}[\psi_{s+n\gamma} \times \cdot] - \beta_{\gamma} Q_{0,s}[\tilde{\psi}_s \times \cdot] \|_{TV} \le 2
$$

for all $\mu \in \mathcal{M}_1(E_0)$, $s \ge 0$, and $n \in \mathbb{Z}_+$, [\(21\)](#page-8-2) and Lebesgue's dominated convergence theorem imply that

$$
\frac{1}{\gamma}\int_0^{\gamma} \|\mu P_{0,s+n\gamma}[\psi_{s+n\gamma} \times \cdot] - \beta_{\gamma} Q_{0,s}[\tilde{\psi}_s \times \cdot] \|_{TV} ds \longrightarrow 0,
$$

which implies that

$$
\left\|\frac{1}{\gamma}\int_0^{\gamma}\mu P_{0,s+n\gamma}[\psi_{s+n\gamma}\times\cdot]ds-\frac{1}{\gamma}\int_0^{\gamma}\beta_{\gamma}Q_{0,s}[\tilde{\psi}_s\times\cdot]ds\right\|_{TV}\underset{n\to\infty}{\longrightarrow}0.
$$

By Cesaro's lemma, this allows us to conclude that, for any $\mu \in \mathcal{M}_1(E_0)$ such that $\mu(\psi_0)$ < +∞,

$$
\begin{split}\n\left\| \frac{1}{t} \int_{0}^{t} \mu P_{0,s}[\psi_{s} \times \cdot] ds - \frac{1}{\gamma} \int_{0}^{\gamma} \beta_{\gamma} Q_{0,s} [\tilde{\psi}_{s} \times \cdot] ds \right\|_{TV} \\
&\leq \frac{1}{\lfloor \frac{t}{\gamma} \rfloor} \sum_{k=0}^{\lfloor \frac{t}{\gamma} \rfloor} \left\| \frac{1}{\gamma} \int_{0}^{\gamma} \mu P_{0,s+k\gamma} [\psi_{s+k\gamma} \times \cdot] ds - \frac{1}{\gamma} \int_{0}^{\gamma} \beta_{\gamma} Q_{0,s} [\tilde{\psi}_{s} \times \cdot] ds \right\|_{TV} \\
&\quad + \left\| \frac{1}{t} \int_{\lfloor \frac{t}{\gamma} \rfloor \gamma}^{t} \mu P_{0,s} [\psi_{s} \times \cdot] ds \right\|_{TV} \xrightarrow{t \to \infty} 0,\n\end{split}
$$

which concludes the proof of (9) .

Third step. In the same manner, we now prove that, for any $\mu \in \mathcal{M}_1(E_0)$ such that $\mu(\psi_0)$ < +∞,

$$
\left\| \frac{1}{t} \int_0^t \mu P_{0,s} ds - \frac{1}{\gamma} \int_0^\gamma \beta_\gamma Q_{0,s} ds \right\|_{TV} \to \infty \quad . \tag{22}
$$

In fact, for any function *f* bounded by 1 and $\mu \in \mathcal{M}_1(E_0)$ such that $\mu(\psi_0) < +\infty$,

$$
\left| \mu P_{0,s+n\gamma} \left[\psi_{s+n\gamma} \times \frac{f}{\psi_{s+n\gamma}} \right] - \beta_{\gamma} Q_{0,s} \left[\tilde{\psi}_{s} \times \frac{f}{\tilde{\psi}_{s}} \right] \right|
$$
\n
$$
\leq \left| \mu P_{0,s+n\gamma} \left[\psi_{s+n\gamma} \times \frac{f}{\psi_{s+n\gamma}} \right] - \beta_{\gamma} Q_{0,s} \left[\tilde{\psi}_{s} \times \frac{f}{\psi_{s+n\gamma}} \right] \right| + \left| \beta_{\gamma} Q_{0,s} \left[\tilde{\psi}_{s} \times \frac{f}{\psi_{s+n\gamma}} \right] - \beta_{\gamma} Q_{0,s} \left[\tilde{\psi}_{s} \times \frac{f}{\tilde{\psi}_{s}} \right] \right|
$$
\n
$$
\leq \left| \mu P_{0,s+n\gamma} [\psi_{s+n\gamma} \times \cdot] - \beta_{\gamma} Q_{0,s} [\tilde{\psi}_{s} \times \cdot] \right|_{TV} + \left| \beta_{\gamma} Q_{0,s} \left[\tilde{\psi}_{s} \times \frac{f}{\psi_{s+n\gamma}} \right] - \beta_{\gamma} Q_{0,s} \left[\tilde{\psi}_{s} \times \frac{f}{\tilde{\psi}_{s}} \right] \right|.
$$

We now remark that, since $\psi_{s+n\gamma} \geq 1$ for any *s* and $n \in \mathbb{Z}_+$, one has that

$$
\left|\frac{\tilde{\psi}_s}{\psi_{s+n\gamma}}-1\right|\leq 1+\tilde{\psi}_s.
$$

Since $(\psi_{s+n\gamma})_{n \in \mathbb{Z}_+}$ converges pointwise towards $\tilde{\psi}_s$ and $\beta_{\gamma} Q_{0,s} \tilde{\psi}_s < +\infty$, Lebesgue's dominated convergence theorem implies

$$
\sup_{f\in\mathcal{B}_1(E)}\left|\beta_\gamma Q_{0,s}\left[\tilde{\psi}_s\times \frac{f}{\psi_{s+n\gamma}}\right]-\beta_\gamma Q_{0,s}\left[\tilde{\psi}_s\times \frac{f}{\tilde{\psi}_s}\right]\right|\underset{n\to\infty}{\longrightarrow} 0.
$$

Then, using (21) , one has

$$
\|\mu P_{0,s+n\gamma}-\beta_\gamma Q_{0,s}\|_{TV}\mathop{\longrightarrow}\limits_{n\to\infty}0,
$$

which allows us to conclude (22) , using the same argument as in the first step.

Fourth step. In order to show the \mathbb{L}^2 -ergodic theorem, we let $f \in \mathcal{B}(E)$. For any $x \in E_0$ and $t \geq 0$,

$$
\mathbb{E}_{0,x}\left[\left|\frac{1}{t}\int_{0}^{t}f(X_{s})ds-\mathbb{E}_{0,x}\left[\frac{1}{t}\int_{0}^{t}f(X_{s})ds\right]\right|^{2}\right]
$$
\n
$$
=\frac{2}{t^{2}}\int_{0}^{t}\int_{s}^{t}(\mathbb{E}_{0,x}[f(X_{s})f(X_{u})]-\mathbb{E}_{0,x}[f(X_{s})]\mathbb{E}_{0,x}[f(X_{u})])du ds
$$
\n
$$
=\frac{2}{t^{2}}\int_{0}^{t}\int_{s}^{t}\mathbb{E}_{0,x}[f(X_{s})(f(X_{u})-\mathbb{E}_{0,x}[f(X_{u})])]du ds
$$
\n
$$
=\frac{2}{t^{2}}\int_{0}^{t}\int_{s}^{t}\mathbb{E}_{0,x}[f(X_{s})(\mathbb{E}_{s,X_{s}}[f(X_{u})]-\mathbb{E}_{s,\delta_{x}P_{0,s}}[f(X_{u})])]du ds,
$$

where the Markov property was used in the last line. By (8) (weak ergodicity) and (7) , one obtains for any $s \leq t$

$$
\left|\mathbb{E}_{s,X_s}[f(X_t)] - \mathbb{E}_{s,\delta_x P_{0,s}}[f(X_t)]\right| \le C'' \|f\|_{\infty} [\psi_s(X_s) + \psi_0(x)] e^{-\kappa(t-s)}, \quad \mathbb{P}_{0,x} \text{-almost surely,}
$$
\n(23)

where *C'* was defined in the first part. As a result, for any $x \in E_0$ and $t > 0$,

$$
\mathbb{E}_{0,x} \Bigg[\Bigg| \frac{1}{t} \int_0^t f(X_s) ds - \mathbb{E}_{0,x} \Bigg[\frac{1}{t} \int_0^t f(X_s) ds \Bigg] \Bigg|^2 \Bigg] \n\leq \frac{2C'' \|f\|_{\infty}}{t^2} \int_0^t \int_s^t \mathbb{E}_{0,x} [f(X_s)|(\psi_s(X_s) + \psi_0(x))] e^{-\kappa (u-s)} du ds \n= \frac{2C'' \|f\|_{\infty}}{t^2} \int_0^t \mathbb{E}_{0,x} [f(X_s)|(\psi_s(X_s) + \psi_0(x))] e^{\kappa s} \frac{e^{-\kappa s} - e^{-\kappa t}}{\kappa} ds \n= \frac{2C'' \|f\|_{\infty}}{\kappa t} \times \mathbb{E}_{0,x} \Bigg[\frac{1}{t} \int_0^t |f(X_s)|(\psi_s(X_s) + \psi_0(x)) ds \Bigg] \n- \frac{2C'' \|f\|_{\infty} e^{-\kappa t}}{\kappa t^2} \int_0^t e^{\kappa s} \mathbb{E}_{0,x} [f(X_s)|(\psi_s(X_s) + \psi_0(x))] ds.
$$

Then, by [\(9\)](#page-4-5), there exists a constant $\tilde{C} > 0$ such that, for any $x \in E_0$, when $t \to \infty$,

$$
\mathbb{E}_{0,x} \Bigg[\left| \frac{1}{t} \int_0^t f(X_s) ds - \mathbb{E}_{0,x} \left[\frac{1}{t} \int_0^t f(X_s) ds \right] \right|^2 \Bigg] \le \frac{\tilde{C} \|f\|_{\infty} \psi_0(x)}{t}
$$

$$
\times \frac{1}{\gamma} \int_0^{\gamma} \beta_{\gamma} Q_{0,s} [f] \tilde{\psi}_s] ds + o\left(\frac{1}{t}\right).
$$
 (24)

Since $f \in \mathcal{B}(E)$ and by definition of the total variation distance, [\(22\)](#page-9-0) implies that, for all $x \in E_0$,

$$
\left|\frac{1}{t}\int_0^t P_{0,s}f(x)-\frac{1}{\gamma}\int_0^{\gamma}\beta_{\gamma}Q_{0,s}f ds\right|\leq \|f\|_{\infty}\left\|\frac{1}{t}\int_0^t\delta_x P_{0,s}ds-\frac{1}{\gamma}\int_0^{\gamma}\beta_{\gamma}Q_{0,s}ds\right\|_{TV}\to\infty 0.
$$

Then, using [\(22\)](#page-9-0), one deduces that for any $x \in E_0$ and bounded function *f*,

$$
\mathbb{E}_{0,x} \Bigg[\left| \frac{1}{t} \int_0^t f(X_s) ds - \frac{1}{\gamma} \int_0^{\gamma} \beta_{\gamma} Q_{0,s} f ds \right|^2 \Bigg] \n\leq 2 \Bigg(\mathbb{E}_{0,x} \Bigg[\left(\frac{1}{t} \int_0^t f(X_s) ds - \frac{1}{t} \int_0^t P_{0,s} f(x) \right)^2 \Bigg] + \left| \frac{1}{t} \int_0^t P_{0,s} f(x) - \frac{1}{\gamma} \int_0^{\gamma} \beta_{\gamma} Q_{0,s} f ds \right|^2 \Bigg) \underset{t \to \infty}{\longrightarrow} 0.
$$

The convergence for any probability measure $\mu \in \mathcal{M}_1(E_0)$ comes from Lebesgue's dominated convergence theorem.

Fifth step. We now fix nonnegative $f \in \mathcal{B}(E)$, and $\mu \in \mathcal{M}_1(E_0)$ satisfying $\mu(\psi_0) < +\infty$. The following proof is inspired by the proof of [\[26,](#page-28-9) Theorem 12].

Since $\mu(\psi_0) < +\infty$, the inequality [\(24\)](#page-10-0) implies that there exists a finite constant $C_{f,\mu} \in$ $(0, \infty)$ such that, for *t* large enough,

$$
\mathbb{E}_{0,\mu}\left[\left|\frac{1}{t}\int_0^t f(X_s)ds-\mathbb{E}_{0,\mu}\left[\frac{1}{t}\int_0^t f(X_s)ds\right]\right|^2\right]\leq \frac{C_{f,\mu}}{t}.
$$

Then, for *n* large enough,

$$
\mathbb{E}_{0,\mu}\Bigg[\Bigg|\frac{1}{n^2}\int_0^{n^2}f(X_s)ds - \mathbb{E}_{0,\mu}\Bigg[\frac{1}{n^2}\int_0^{n^2}f(X_s)ds\Bigg]\Bigg|^2\Bigg] \leq \frac{C_{f,\mu}}{n^2}.
$$

Then, by Chebyshev's inequality and the Borel–Cantelli lemma, this last inequality implies that

$$
\left|\frac{1}{n^2}\int_0^{n^2}f(X_s)ds-\mathbb{E}_{0,\mu}\left[\frac{1}{n^2}\int_0^{n^2}f(X_s)ds\right]\right|\underset{n\to\infty}{\longrightarrow}0,\quad\mathbb{P}_{0,\mu}\text{-almost surely.}
$$

One thereby obtains by the convergence (22) that

$$
\frac{1}{n^2} \int_0^{n^2} f(X_s) ds \longrightarrow \frac{1}{n \to \infty} \frac{1}{\gamma} \int_0^{\gamma} \beta_{\gamma} Q_{0,s} f ds, \quad \mathbb{P}_{0,\mu} \text{-almost surely.}
$$
 (25)

Since the nonnegativity of f is assumed, this implies that for any $t > 0$ we have

$$
\int_0^{\lfloor \sqrt{t} \rfloor^2} f(X_s) ds \le \int_0^t f(X_s) ds \le \int_0^{\lceil \sqrt{t} \rceil^2} f(X_s) ds.
$$

These inequalities and (25) then give that

$$
\frac{1}{t} \int_0^t f(X_s) ds \xrightarrow[t \to \infty]{} \frac{1}{\gamma} \int_0^{\gamma} \beta_{\gamma} Q_{0,s} f ds, \quad \mathbb{P}_{0,\mu} \text{-almost surely.}
$$

In order to conclude that the result holds for any bounded measurable function *f* , it is enough to decompose $f = f_+ - f_-$ with $f_+ := f \vee 0$ and $f_- = (-f) \vee 0$ and apply the above convergence to *f*⁺ and *f*−. This concludes the proof of Theorem [1.](#page-4-0) -

Proof of corollary [1.](#page-5-1) We remark as in the previous proof that, if $||f||_{\infty} \le 1$ and $\psi_s = 1$, an upper bound for the inequality (24) can be obtained, which does not depend on *f* and *x*. Likewise, the convergence [\(21\)](#page-8-2) holds uniformly in the initial measure thanks to [\(23\)](#page-10-1). \Box

Remark 3. The proof of Theorem [1,](#page-4-0) as written above, does not allow us to deal with semigroups satisfying a Doeblin condition with time-dependent constant *cs*, that is, such that there exist $t_0 \ge 0$ and a family of probability measure $(v_t)_{t \ge 0}$ on $(E_t)_{t \ge 0}$ such that, for all $s \ge 0$ and $x \in E_s$

$$
\delta_x P_{s,s+t_0} \geq c_{s+t_0} v_{s+t_0}.
$$

In fact, under the condition written above, we can show (see for example the proof of the formula (2.7) of [\[9,](#page-28-10) Theorem 2.1]) that, for all $s \le t$ and $\mu_1, \mu_2 \in \mathcal{M}_1(E_s)$,

$$
\|\mu_1 P_{s,t} - \mu_2 P_{s,t}\|_{TV} \le 2 \prod_{k=0}^{\left\lfloor \frac{t-s}{t_0} \right\rfloor - 1} (1 - c_{t-kt_0}).
$$

Hence, by this last inequality with $\mu_1 = \delta_x P_{s,s+k\gamma}$, $\mu_2 = \delta_x$, replacing *s* by $s + k\gamma$ and *t* by $s + (k + n)\gamma$, one obtains

$$
\|\delta_x P_{s,s+(k+n)\gamma} - \delta_x P_{s+k\gamma,s+(k+n)\gamma}\|_{TV} \le 2 \prod_{l=0}^{\lfloor \frac{n\gamma}{l_0} \rfloor - 1} (1 - c_{s+(k+n)\gamma - l_0}),
$$

which replaces the inequality (18) in the proof of Theorem [1.](#page-4-0) Plugging this last inequality into the formula (19) , one obtains

$$
\|\delta_x P_{s,s+(k+n)\gamma} - \beta_\gamma Q_{0,s}\|_{TV} \le 2 \prod_{l=0}^{\left\lfloor \frac{n\gamma}{t_0} \right\rfloor - 1} (1 - c_{s+(k+n)\gamma - lt_0}) + \|\delta_x P_{s+k\gamma,s+(k+n)\gamma} - \beta_\gamma Q_{0,s}\|_{TV}.
$$

Hence, we see that we cannot conclude a similar result when $c_s \rightarrow 0$ as $s \rightarrow +\infty$, since, for *n* fixed,

$$
\limsup_{k \to \infty} \prod_{l=0}^{\left\lfloor \frac{n\gamma}{l_0} \right\rfloor - 1} (1 - c_{s + (k+n)\gamma - lt_0}) = 1.
$$

4. Application to quasi-stationarity with moving boundaries

In this section, $(X_t)_{t\geq0}$ is assumed to be a time-homogeneous Markov process. We consider a family of measurable subsets $(A_t)_{t\geq0}$ of *E*, and define the hitting time

$$
\tau_A := \inf\{t \geq 0 : X_t \in A_t\}.
$$

For all $s \leq t$, denote by $\mathcal{F}_{s,t}$ the σ -field generated by the family $(X_u)_{s \leq u \leq t}$, with $\mathcal{F}_t := \mathcal{F}_{0,t}$. Assume that τ_A is a stopping time with respect to the filtration $(\mathcal{F}_t)_{t\geq0}$. Assume also that for any $x \notin A_0$,

$$
\mathbb{P}_{0,x}[\tau_A < +\infty] = 1 \quad \text{and} \quad \mathbb{P}_{0,x}[\tau_A > t] > 0, \ \forall t \ge 0.
$$

We will be interested in a notion of *quasi-stationarity with moving boundaries*, which studies the asymptotic behavior of the Markov process $(X_t)_{t>0}$ conditioned not to hit $(A_t)_{t>0}$ up to the time *t*. For non-moving boundaries ($A_t = A_0$ for any $t \ge 0$), the *quasi-limiting distribution* is defined as a probability measure α such that, for at least one initial measure μ and for all measurable subsets $A \subset E$,

$$
\mathbb{P}_{0,\mu}[X_t \in \mathcal{A} | \tau_A > t] \longrightarrow_{t \to \infty} \alpha(\mathcal{A}).
$$

Such a definition is equivalent (still in the non-moving framework) to the notion of *quasistationary distribution*, defined as a probability measure α such that, for any $t > 0$,

$$
\mathbb{P}_{0,\alpha}[X_t \in \cdot | \tau_A > t] = \alpha. \tag{26}
$$

If quasi-limiting and quasi-stationary distributions are in general well-defined for time-homogeneous Markov processes and non-moving boundaries (see [\[11,](#page-28-11) [23\]](#page-28-12) for a general overview of the theory of quasi-stationarity), these notions are nevertheless not well-defined for time-inhomogeneous Markov processes or moving boundaries, for which they are no longer equivalent. In particular, under reasonable assumptions on irreducibility, it was shown in $[24]$ that the notion of quasi-stationary distribution as defined by (26) is not well-defined for time-homogeneous Markov processes absorbed by moving boundaries.

Another asymptotic notion to study is the *quasi-ergodic distribution*, related to a conditional version of the ergodic theorem and usually defined as follows.

Definition 2. A probability measure β is a *quasi-ergodic distribution* if, for some initial measure $\mu \in \mathcal{M}_1(E \setminus A_0)$ and for any bounded continuous function *f*,

$$
\mathbb{E}_{0,\mu}\bigg[\frac{1}{t}\int_0^t f(X_s)ds\bigg|\tau_A>t\bigg]\underset{t\to\infty}{\longrightarrow}\beta(f).
$$

In the time-homogeneous setting (in particular for non-moving boundaries), this notion has been extensively studied (see for example [\[2,](#page-28-13) [8,](#page-28-14) [10,](#page-28-15) [12,](#page-28-16) [13,](#page-28-17) [16](#page-28-18)[–18,](#page-28-19) [24\]](#page-28-5)). In the 'moving boundaries' framework, the existence of quasi-ergodic distributions has been dealt with in [\[24\]](#page-28-5) for Markov chains on finite state spaces absorbed by periodic boundaries, and in [\[25\]](#page-28-6) for processes satisfying a Champagnat-Villemonais condition (see Assumption (A') below) absorbed by converging or periodic boundaries. In this last paper, the existence of the quasi-ergodic distribution is dealt with through the following inequality (see $[25,$ Theorem 1]), which holds for any initial state *x*, *s* $\leq t$, and for some constants *C*, $\gamma > 0$ independent of *x*, *s*, and *t*:

$$
\|\mathbb{P}_{0,x}(X_s \in \cdot | \tau_A > t) - \mathbb{Q}_{0,x}(X_s \in \cdot)\|_{TV} \leq Ce^{-\gamma(t-s)},
$$

where the family of probability measures $(\mathbb{Q}_{s,x})_{s>0,x\in E_s}$ is defined by

$$
\mathbb{Q}_{s,x}[\Gamma] := \lim_{T \to \infty} \mathbb{P}_{s,x}[\Gamma | \tau_A > T], \quad \forall s \leq t, \ x \in E \setminus A_s, \ \Gamma \in \mathcal{F}_{s,t}.
$$

Moreover, by [\[9,](#page-28-10) Proposition 3.1], there exists a family of positive bounded functions $(\eta_t)_{t>0}$ defined in such a way that, for all $s \le t$ and $x \in E_s$,

$$
\mathbb{E}_{s,x}(\eta_t(X_t)\mathbb{1}_{\tau_A>t})=\eta_s(x).
$$

Then we can show (this is actually shown in [\[9\]](#page-28-10)) that

$$
\mathbb{Q}_{s,x}(\Gamma) = \mathbb{E}_{s,x} \bigg(\mathbb{1}_{\Gamma, \tau_A > t} \frac{\eta_t(X_t)}{\eta_s(x)} \bigg)
$$

and that, for all $\mu \in \mathcal{M}_1(E_0)$,

$$
\|\mathbb{P}_{0,\mu}(X_s \in \cdot | \tau_A > t) - \mathbb{Q}_{0,\eta_0 * \mu}(X_s \in \cdot)\|_{TV} \leq Ce^{-\gamma(t-s)},
$$

where

$$
\eta_0 * \mu(dx) := \frac{\eta_0(x)\mu(dx)}{\mu(\eta_0)}.
$$

By the triangle inequality, one has

$$
\left\| \frac{1}{t} \int_0^t \mathbb{P}_{0,\mu}[X_s \in \cdot | \tau_A > t] ds - \frac{1}{t} \int_0^t \mathbb{Q}_{0,\eta_0 * \mu}[X_s \in \cdot] ds \right\|_{TV} \le \frac{C}{\gamma t}, \quad \forall t > 0. \tag{27}
$$

In particular, the inequality [\(27\)](#page-14-0) implies that there exists a quasi-ergodic distribution β for the process $(X_t)_{t\geq0}$ absorbed by $(A_t)_{t\geq0}$ if and only if there exist some probability measures $\mu \in \mathcal{M}_1(E_0)$ such that $\frac{1}{t} \int_0^t \mathbb{Q}_{0,\eta_0*\mu}[X_s \in \cdot]ds$ converges weakly to β , when *t* goes to infinity. In other words, under Assumption (A') , the existence of a quasi-ergodic distribution for the absorbed process is equivalent to the law of large numbers for its *Q*-process.

We now state Assumption (A') .

Assumption 4. *There exists a family of probability measures* $(v_t)_{t>0}$ *, defined on E* \ A_t *for each t, such that the following hold:*

 $(A'1)$ There exist $t_0 \ge 0$ and $c_1 > 0$ such that

$$
\mathbb{P}_{s,x}[X_{s+t_0} \in \cdot | \tau_A > s+t_0] \ge c_1 \nu_{s+t_0}, \quad \forall s \ge 0, \ \forall x \in E \setminus A_s.
$$

 $(A'2)$ There exists $c_2 > 0$ *such that*

$$
\mathbb{P}_{s,\nu_s}[\tau_A > t] \geq c_2 \mathbb{P}_{s,x}[\tau_A > t], \quad \forall s \leq t, \ \forall x \in E \setminus A_s.
$$

In what follows, we say that the pair $\{(X_t)_{t\geq 0}, (A_t)_{t\geq 0}\}$ satisfies Assumption (A') when the assumption holds for the Markov process $(X_t)_{t\geq0}$ considered as absorbed by the moving boundary $(A_t)_{t>0}$.

The condition $(A'1)$ is a conditional version of the Doeblin condition [\(12\)](#page-5-2), and $(A'2)$ is a Harnack-like inequality on the probabilities of surviving, necessary to deal with the conditioning. They are equivalent to the set of conditions presented in $[1,$ Definition 2.2], when the non-conservative semigroup is sub-Markovian. In the time-homogeneous framework, we obtain the Champagnat–Villemonais condition defined in [\[5\]](#page-28-20) (see Assumption (A)), shown as being equivalent to the exponential uniform convergence to quasi-stationarity in total variation.

In [\[25\]](#page-28-6), the existence of a unique quasi-ergodic distribution is proved only for converging or periodic boundaries. However, we can expect such a result on existence (and uniqueness) for other kinds of movement for the boundary. Hence, the aim of this section is to extend the results on the existence of quasi-ergodic distributions obtained in [\[25\]](#page-28-6) to Markov processes absorbed by asymptotically periodic moving boundaries.

Now let us state the following theorem.

Theorem 2. Assume that there exists a γ -periodic sequence of subsets $(B_t)_{t\geq0}$ such that, for *any* $s \in [0, \gamma)$ *,*

$$
E'_{s} := E \setminus \bigcap_{k \in \mathbb{Z}_+} \bigcup_{l \geq k} A_{s+l\gamma} \cup B_s \neq \emptyset,
$$

and there exists $x_s \in E_s$ *such that, for any n* $\leq N$ *,*

$$
\|\mathbb{P}_{s+k\gamma,x_s}[X_{s+(k+n)\gamma}\in\cdot,\tau_A>s+(k+N)\gamma]-\mathbb{P}_{s,x_s}[X_{s+n\gamma}\in\cdot,\tau_B>s+N\gamma]\|_{TV}\underset{k\to\infty}{\longrightarrow}0. \tag{28}
$$

Ergodicity of time-inhomogeneous processes and quasi-stationarity with moving boundaries 687

Assume also that Assumption (A') *is satisfied by the pairs* $\{(X_t)_{t\geq0}, (A_t)_{t\geq0}\}\$ *and* $\{(X_t)_{t>0}, (B_t)_{t>0}\}.$

Then there exists a probability measure $\beta \in \mathcal{M}_1(E)$ *such that*

$$
\sup_{\mu \in \mathcal{M}_1(E \setminus A_0)} \sup_{f \in \mathcal{B}_1(E)} \mathbb{E}_{0,\mu} \left[\left| \frac{1}{t} \int_0^t f(X_s) ds - \beta(f) \right|^2 \middle| \tau_A > t \right] \underset{t \to \infty}{\longrightarrow} 0. \tag{29}
$$

Remark 4. Observe that the condition [\(28\)](#page-14-1) implies that, for any $n \in \mathbb{Z}_+$,

$$
\mathbb{P}_{s+k\gamma,x_s}[\tau_A>s+(k+n)\gamma]\underset{k\to\infty}{\longrightarrow}\mathbb{P}_{s,x_s}[\tau_B>s+n\gamma].
$$

Under the additional condition $B_t \subset A_t$ for all $t \geq 0$, these two conditions are equivalent, since for all $n \leq N$,

$$
\|\mathbb{P}_{s+k\gamma,x_s}[X_{s+(k+n)\gamma}\in\cdot,\tau_A>s+(k+N)\gamma]-\mathbb{P}_{s,x_s}[X_{s+n\gamma}\in\cdot,\tau_B>s+N\gamma]\|_{TV}
$$

\n
$$
=\|\mathbb{P}_{s+k\gamma,x_s}[X_{s+(k+n)\gamma}\in\cdot,\tau_B\leq s+(k+N)\gamma<\tau_A]\|_{TV}
$$

\n
$$
\leq\mathbb{P}_{s+k\gamma,x_s}[\tau_B\leq s+(k+N)\gamma<\tau_A]
$$

\n
$$
=\|\mathbb{P}_{s+k\gamma,x_s}[\tau_A>s+(k+N)\gamma]-\mathbb{P}_{s,x_s}[\tau_B>s+N\gamma]],
$$

where we used the periodicity of $(B_t)_{t>0}$, writing

$$
\mathbb{P}_{s,x_s}[X_{s+n\gamma} \in \cdot, \tau_B > s + N\gamma] = \mathbb{P}_{s+k\gamma,x_s}[X_{s+(k+n)\gamma} \in \cdot, \tau_B > s + (k+N)\gamma]
$$

for all $k \in \mathbb{Z}_+$. This implies the following corollary.

Corollary 2. Assume that there exists a γ -periodic sequence of subsets $(B_t)_{t>0}$, with $B_t \subset A_t$ *for all t* \geq 0*, such that, for any s* \in [0*,* γ *), there exists* $x_s \in E_s'$ *such that, for any n* \leq *N,*

$$
\mathbb{P}_{s+k\gamma,x_s}[\tau_A > s + (k+n)\gamma] \longrightarrow_{k\to\infty} \mathbb{P}_{s,x_s}[\tau_B > s + n\gamma].
$$

Assume also that Assumption (*A'*) *is satisfied by* { $(X_t)_{t\geq0}$ *,* $(A_t)_{t\geq0}$ } *and* { $(X_t)_{t\geq0}$ *,* $(B_t)_{t\geq0}$ }*. Then there exists* $\beta \in M_1(E)$ *such that* [\(29\)](#page-15-0) *holds.*

Proof of theorem [2.](#page-14-2) Since $\{(X_t)_{t\geq0}, (B_t)_{t\geq0}\}$ satisfies Assumption (A') and $(B_t)_{t\geq0}$ is a periodic boundary, we already know by $[25,$ Theorem 2] that, for any initial distribution μ , $t \mapsto \frac{1}{t} \int_0^t \mathbb{P}_{0,\mu}[X_s \in \cdot | \tau_B > t] ds$ converges weakly to a quasi-ergodic distribution β .

The main idea of this proof is to apply Corollary [1.](#page-5-1) Since $\{(X_t)_{t>0}, (A_t)_{t>0}\}\$ and $\{(X_t)_{t\geq 0}, (B_t)_{t\geq 0}\}\$ satisfy Assumption (A[']), [\[25,](#page-28-6) Theorem 1] implies that there exist two families of probability measures $(Q_{s,x}^A)_{s \geq 0, x \in E \setminus A_s}$ and $(Q_{s,x}^B)_{s \geq 0, x \in E \setminus B_s}$ such that, for any $s \leq t$, *x* ∈ *E* \ *A_s*, *y* ∈ *E* \ *B_s*, and Γ ∈ $\mathcal{F}_{s,t}$,

$$
\mathbb{Q}_{s,x}^A[\Gamma] = \lim_{T \to \infty} \mathbb{P}_{s,x}[\Gamma | \tau_A > T] \text{ and } \mathbb{Q}_{s,y}^B[\Gamma] = \lim_{T \to \infty} \mathbb{P}_{s,y}[\Gamma | \tau_B > T].
$$

In particular, the quasi-ergodic distribution β is the limit of $t \mapsto \frac{1}{t} \int_0^t \mathbb{Q}_{0,\mu}^B[X_s \in \cdot] ds$, when *t* goes to infinity (see [\[25,](#page-28-6) Theorem 5]). Also, by [25, Theorem 1], there exist constants $C > 0$ and $\kappa > 0$ such that, for any $s \le t \le T$, for any $x \in E \setminus A_s$,

$$
\left\| \mathbb{Q}_{s,x}^A [X_t \in \cdot] - \mathbb{P}_{s,x} [X_t \in \cdot | \tau_A > T] \right\|_{TV} \leq Ce^{-\kappa (T-t)},
$$

and for any $x \in E \setminus B_s$,

$$
\left\|\mathbb{Q}_{s,x}^B[X_t\in\cdot]-\mathbb{P}_{s,x}[X_t\in\cdot|\tau_B>T]\right\|_{TV}\leq Ce^{-\kappa(T-t)}.
$$

Moreover, for any $s \le t \le T$ and $x \in E'_s$,

$$
\|\mathbb{P}_{s,x}[X_t \in \cdot | \tau_A > T] - \mathbb{P}_{s,x}[X_t \in \cdot | \tau_B > T] \|_{TV}
$$
\n
$$
= \left\| \frac{\mathbb{P}_{s,x}[X_t \in \cdot, \tau_A > T]}{\mathbb{P}_{s,x}[\tau_A > T]} - \frac{\mathbb{P}_{s,x}[X_t \in \cdot, \tau_B > T]}{\mathbb{P}_{s,x}[\tau_B > T]} \right\|_{TV}
$$
\n
$$
= \left\| \frac{\mathbb{P}_{s,x}(\tau_B > T)}{\mathbb{P}_{s,x}(\tau_A > T)} \frac{\mathbb{P}_{s,x}[X_t \in \cdot, \tau_A > T]}{\mathbb{P}_{s,x}[\tau_B > T]} - \frac{\mathbb{P}_{s,x}[X_t \in \cdot, \tau_B > T]}{\mathbb{P}_{s,x}[\tau_B > T]} \right\|_{TV}
$$
\n
$$
\leq \left\| \frac{\mathbb{P}_{s,x}(\tau_B > T)}{\mathbb{P}_{s,x}(\tau_A > T)} \frac{\mathbb{P}_{s,x}[X_t \in \cdot, \tau_A > T]}{\mathbb{P}_{s,x}[\tau_B > T]} - \frac{\mathbb{P}_{s,x}[X_t \in \cdot, \tau_A > T]}{\mathbb{P}_{s,x}[\tau_B > T]} \right\|_{TV}
$$
\n
$$
+ \left\| \frac{\mathbb{P}_{s,x}[X_t \in \cdot, \tau_A > T]}{\mathbb{P}_{s,x}[\tau_B > T]} - \frac{\mathbb{P}_{s,x}[X_t \in \cdot, \tau_B > T]}{\mathbb{P}_{s,x}[\tau_B > T]} \right\|_{TV}
$$
\n
$$
\leq \frac{|\mathbb{P}_{s,x}(\tau_B > T) - \mathbb{P}_{s,x}(\tau_A > T)|}{\mathbb{P}_{s,x}[\tau_B > T]} + \frac{|\mathbb{P}_{s,x}[X_t \in \cdot, \tau_A > T] - \mathbb{P}_{s,x}[X_t \in \cdot, \tau_B > T]|_{TV}}{\mathbb{P}_{s,x}[\tau_B > T]}
$$
\n
$$
\leq 2 \frac{|\mathbb{P}_{s,x}[X_t \in \cdot, \tau_A > T] - \mathbb{P}_{s,x}[X_t \in \cdot, \tau_B > T]|_{TV}}{\mathbb{P}_{s,x}[\tau_B > T]}
$$
\n(30)

since

$$
|\mathbb{P}_{s,x}(\tau_B > T) - \mathbb{P}_{s,x}(\tau_A > T)| \leq ||\mathbb{P}_{s,x}[X_t \in \cdot, \tau_A > T] - \mathbb{P}_{s,x}[X_t \in \cdot, \tau_B > T]||_{TV}.
$$

Then we obtain, for any $s \le t \le T$ and $x \in E'_s$,

$$
\| \mathbb{Q}_{s,x}^A [X_t \in \cdot] - \mathbb{Q}_{s,x}^B [X_t \in \cdot] \|_{TV} \n\leq 2Ce^{-\kappa(T-t)} + 2 \frac{\| \mathbb{P}_{s,x}[X_t \in \cdot, \tau_A > T] - \mathbb{P}_{s,x}[X_t \in \cdot, \tau_B > T] \|_{TV}}{\mathbb{P}_{s,x}[\tau_B > T]}.
$$
\n(31)

The condition [\(28\)](#page-14-1) implies the existence of $x_s \in E_s$ such that, for any $n \le N$, for all $k \in \mathbb{Z}_+$,

$$
\lim_{k\to\infty} \|\mathbb{P}_{s+k\gamma,x_s}[X_{s+(k+n)\gamma}\in\cdot,\,\tau_A>s+(k+N)\gamma]-\mathbb{P}_{s,x_s}[X_{s+n\gamma}\in\cdot,\,\tau_B>s+N\gamma]\|_{TV}=0,
$$

which implies by [\(31\)](#page-16-0) that, for any $n \leq N$,

$$
\limsup_{k\to\infty} \left\| \mathbb{Q}_{s+k\gamma,x_s}^A[X_{s+(k+n)\gamma}\in \cdot] - \mathbb{Q}_{s+k\gamma,x_s}^B[X_{s+(k+n)\gamma}\in \cdot]\right\|_{TV} \leq 2Ce^{-\kappa\gamma(N-n)}.
$$

Now, letting $N \to \infty$, for any $n \in \mathbb{Z}_+$ we have

$$
\lim_{k \to \infty} \left\| \mathbb{Q}_{s+k\gamma,x_s}^A[X_{s+(k+n)\gamma} \in \cdot] - \mathbb{Q}_{s+k\gamma,x_s}^B[X_{s+(k+n)\gamma} \in \cdot] \right\|_{TV}
$$
\n
$$
= \lim_{k \to \infty} \left\| \mathbb{Q}_{s+k\gamma,x_s}^A(X_{s+(k+n)\gamma} \in \cdot) - \mathbb{Q}_{s,x_s}^B(X_{s+n\gamma} \in \cdot) \right\|_{TV}
$$
\n
$$
= 0.
$$

In other words, the semigroup $(Q_{s,t}^A)_{s \leq t}$ defined by

$$
Q_{s,t}^A f(x) := \mathbb{E}_{s,x}^{\mathbb{Q}^A} (f(X_t)), \quad \forall s \leq t, \ \forall f \in \mathcal{B}(E \setminus A_t), \ \forall x \in E \setminus A_s,
$$

is asymptotically periodic (according to Definition [1,](#page-3-1) with $\psi_s = \tilde{\psi}_s = 1$ for all $s \ge 0$), associated to the auxiliary semigroup $(Q_{s,t}^B)_{s \leq t}$ defined by

$$
Q_{s,t}^B f(x) := \mathbb{E}_{s,x}^{\mathbb{Q}^B} (f(X_t)), \quad \forall s \leq t, \ \forall f \in \mathcal{B}(E \setminus B_t), \ \forall x \in E \setminus B_s.
$$

Moreover, since Assumption (A') is satisfied for $\{(X_t)_{t\geq0}, (A_t)_{t\geq0}\}\$ and $\{(X_t)_{t\geq0}, (B_t)_{t\geq0}\}\$, the Doeblin condition holds for these two *Q*-processes. As a matter of fact, by the Markov property, for all $s \le t \le T$ and $x \in E \setminus A_s$,

$$
\mathbb{P}_{s,x}(X_t \in \cdot | \tau_A > T) = \mathbb{E}_{s,x} \left[\mathbb{1}_{X_t \in \cdot, \tau_A > t} \frac{\mathbb{P}_{t,X_t}(\tau_A > T)}{\mathbb{P}_{s,x}(\tau_A > T)} \right]
$$
\n
$$
= \mathbb{E}_{s,x} \left[\frac{\mathbb{1}_{X_t \in \cdot, \tau_A > t}}{\mathbb{P}_{s,x}(\tau_A > t)} \frac{\mathbb{P}_{t,X_t}(\tau_A > T)}{\mathbb{P}_{t,\phi_{t,s}(\delta_x)}(\tau_A > T)} \right]
$$
\n
$$
= \mathbb{E}_{s,x} \left[\mathbb{1}_{X_t \in \cdot} \frac{\mathbb{P}_{t,X_t}(\tau_A > T)}{\mathbb{P}_{t,\phi_{t,s}(\delta_x)}(\tau_A > T)} \Big| \tau_A > t \right],
$$
\n(32)

where, for all $s \le t$ and $\mu \in \mathcal{M}_1(E_s)$, $\phi_{t,s}(\mu) := \mathbb{P}_{s,\mu}(X_t \in \cdot | \tau_A > t)$. By (A'1), for any $s \ge 0$, $T \geq s + t_0, x \in E \setminus A_s$, and measurable set *A*,

$$
\mathbb{E}_{s,x}\bigg[\mathbb{1}_{X_{s+t_0}\in\mathcal{A}}\frac{\mathbb{P}_{s+t_0,X_{s+t_0}}(\tau_A>T)}{\mathbb{P}_{s+t_0,\phi_{s+t_0,s}(\delta_x)}(\tau_A>T)}\bigg|\tau_A>s+t_0\bigg]\ge c_1\int_{\mathcal{A}}\nu_{s+t_0}(dy)\frac{\mathbb{P}_{s+t_0,y}(\tau_A>T)}{\mathbb{P}_{s+t_0,\phi_{s+t_0,s}(\delta_x)}(\tau_A>T)};
$$

that is, by (32) ,

$$
\mathbb{P}_{s,x}(X_{s+t_0} \in \mathcal{A} | \tau_A > T) \geq c_1 \int_{\mathcal{A}} v_{s+t_0}(dy) \frac{\mathbb{P}_{s+t_0,y}(\tau_A > T)}{\mathbb{P}_{s+t_0,\phi_{s+t_0,s}(\delta_x)}(\tau_A > T)}.
$$

Letting $T \to \infty$ in this last inequality and using [\[9,](#page-28-10) Proposition 3.1], for any $s \ge 0$, $x \in E \setminus A_s$, and measurable set *A*,

$$
\mathbb{Q}_{s,x}^A(X_{s+t_0} \in \mathcal{A}) \ge c_1 \int_{\mathcal{A}} \nu_{s+t_0}(dy) \frac{\eta_{s+t_0}(y)}{\phi_{s+t_0,s}(\delta_x)(\eta_{s+t_0})}.
$$

The measure

$$
\mathcal{A} \mapsto \int_{\mathcal{A}} v_{s+t_0}(dy) \frac{\eta_{s+t_0}(y)}{\phi_{s+t_0,s}(\delta_x)(\eta_{s+t_0})}
$$

is then a positive measure whose mass is bounded below by c_2 , by $(A'2)$, since for all $s \ge 0$ and $T \geq s + t_0$,

$$
\int_{E\setminus A_{s+t_0}}\nu_{s+t_0}(dy)\frac{\mathbb{P}_{t,y}(\tau_A>T)}{\mathbb{P}_{t,\phi_{t,s}(\delta_x)}(\tau_A>T)}\geq c_2.
$$

This proves a Doeblin condition for the semigroup $(Q_{s,t}^A)_{s \le t}$. The same reasoning also applies to prove a Doeblin condition for the semigroup $(Q_{s,t}^B)_{s \leq t}$. Then, using [\(27\)](#page-14-0) followed by Corollary [1,](#page-5-1) we have

$$
\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{P}_{0,\mu}[X_s \in \cdot | \tau_A > t] ds = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{Q}_{0,\eta_0 * \mu}^A(X_s \in \cdot) ds
$$

$$
= \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{Q}_{0,\eta_0 * \mu}^B[X_s \in \cdot] ds = \beta,
$$

where the limits refer to convergence in total variation and hold uniformly in the initial measure.

For any $\mu \in \mathcal{M}_1(E \setminus A_0), f \in \mathcal{B}_1(E)$, and $t \geq 0$,

$$
\mathbb{E}_{0,\mu}\left[\left|\frac{1}{t}\int_0^t f(X_s)ds\right|^2\middle|\tau_A>t\right]=\frac{2}{t^2}\int_0^t\int_s^t \mathbb{E}_{0,\mu}[f(X_s)f(X_u)|\tau_A>t]du\,ds.
$$

Then, by [\[25,](#page-28-6) Theorem 1], for any $s \le u \le t$, for any $\mu \in \mathcal{M}_1(E \setminus A_0)$ and $f \in \mathcal{B}(E)$,

$$
\left|\mathbb{E}_{0,\mu}[f(X_s)f(X_u)|\tau_A>t]-\mathbb{E}_{0,\eta_0*\mu}^{\mathbb{Q}^A}[f(X_s)f(X_u)]\right|\leq C\|f\|_{\infty}e^{-\kappa(t-u)},
$$

where the expectation $\mathbb{E}_{0,\eta_0*\mu}^{\mathbb{Q}^4}$ is associated to the probability measure $\mathbb{Q}_{0,\eta_0*\mu}^4$. Hence, for any $\mu \in \mathcal{M}_1(E \setminus A_0), f \in \mathcal{B}_1(E)$, and $t > 0$,

$$
\begin{split} \left| \mathbb{E}_{0,\mu} \left[\left| \frac{1}{t} \int_0^t f(X_s) ds - \beta(f) \right|^2 \right| \tau_A > t \right] - \mathbb{E}_{0,\eta_0 * \mu}^{\mathbb{Q}^A} \left[\left| \frac{1}{t} \int_0^t f(X_s) ds - \beta(f) \right|^2 \right] \\ &\leq \frac{4C}{t^2} \int_0^t \int_s^t e^{-\kappa(t-u)} du \, ds \\ &\leq \frac{4C}{\kappa t} - \frac{4C(1 - e^{-\kappa t})}{\kappa^2 t^2} . \end{split}
$$

Moreover, since $(Q_{s,t}^A)_{s \leq t}$ is asymptotically periodic in total variation and satisfies the Doeblin condition, like $(Q_{s,t}^B)_{s \leq t}$, Corollary [1](#page-5-1) implies that

$$
\sup_{\mu \in \mathcal{M}_1(E \setminus A_0)} \sup_{f \in \mathcal{B}_1(E)} \mathbb{E}^{\mathbb{Q}^A}_{0, \eta_0 * \mu} \left[\left| \frac{1}{t} \int_0^t f(X_s) ds - \beta(f) \right|^2 \right] \longrightarrow 0.
$$

Then

$$
\sup_{\mu \in \mathcal{M}_1(E \setminus A_0)} \sup_{f \in \mathcal{B}_1(E)} \mathbb{E}_{0,\mu} \Bigg[\bigg| \frac{1}{t} \int_0^t f(X_s) ds - \beta(f) \bigg|^2 \bigg| \tau_A > t \Bigg] \underset{t \to \infty}{\longrightarrow} 0.
$$

Remark 5. It seems that Assumption (A') can be weakened by a conditional version of Assumption [1.](#page-3-0) In particular, such conditions can be derived from Assumption (F) in [\[6\]](#page-28-8), as will be shown later in the paper [\[4\]](#page-28-21), currently in preparation.

5. Examples

5.1. Asymptotically periodic Ornstein–Uhlenbeck processes

Let $(X_t)_{t>0}$ be a time-inhomogeneous diffusion process on R satisfying the stochastic differential equation

$$
dX_t = dW_t - \lambda(t)X_t dt,
$$

where $(W_t)_{t\geq0}$ is a one-dimensional Brownian motion and $\lambda : [0, \infty) \to [0, \infty)$ is a function such that

$$
\sup_{t\geq 0} |\lambda(t)| < +\infty
$$

and such that there exists $\nu > 0$ such that

$$
\inf_{s\geq 0}\int_{s}^{s+\gamma}\lambda(u)du>0.
$$

By Itô's lemma, for any $s \le t$,

$$
X_t = e^{-\int_s^t \lambda(u)du} \bigg[X_s + \int_s^t e^{\int_s^u \lambda(v)dv} dW_u \bigg].
$$

In particular, denoting by $(P_{s,t})_{s \le t}$ the semigroup associated to $(X_t)_{t>0}$, for any $f \in \mathcal{B}(\mathbb{R})$, $t \ge 0$, and $x \in \mathbb{R}$,

$$
P_{s,t}f(x) = \mathbb{E}\left[f\left(e^{-\int_s^t \lambda(u)du}x + e^{-\int_s^t \lambda(u)du}\sqrt{\int_s^t e^{2\int_s^u \lambda(v)dv}du} \times \mathcal{N}(0,1)\right)\right],
$$

where $\mathcal{N}(0, 1)$ denotes a standard Gaussian variable.

Theorem 3. *Assume that there exists a* γ *-periodic function g, bounded on* R*, such that* λ ∼*t*→∞ *g. Then the assumptions of Theorem* [1](#page-4-0) *hold.*

Proof. In our case, the auxiliary semigroup $(Q_{s,t})_{s \leq t}$ of Definition [1](#page-3-1) will be defined as follows: for any $f \in \mathcal{B}(\mathbb{R})$, $t \ge 0$, and $x \in \mathbb{R}$,

$$
Q_{s,f}(x) = \mathbb{E}\left[f\left(e^{-\int_s^t g(u)du}x + e^{-\int_s^t g(u)du}\sqrt{\int_s^t e^{2\int_s^u g(v)dv}du} \times \mathcal{N}(0,1)\right)\right].
$$

In particular, the semigroup $(Q_{s,t})_{s \leq t}$ is associated to the process $(Y_t)_{t \geq 0}$ following

$$
dY_t = dW_t - g(t)Y_t dt.
$$

We first remark that the function ψ : $x \mapsto 1 + x^2$ is a Lyapunov function for $(P_{s,t})_{s \le t}$ and ($Q_{s,t}$)_{*s*≤*t*}. In fact, for any *s* ≥ 0 and *x* ∈ ℝ,

$$
P_{s,s+\gamma}\psi(x) = 1 + e^{-2\int_{s}^{s+\gamma} \lambda(u)du} x^{2} + e^{-2\int_{s}^{s+\gamma} \lambda(u)du} \int_{s}^{s+\gamma} e^{2\int_{s}^{u} \lambda(v)dv} du
$$

= $e^{-2\int_{s}^{s+\gamma} \lambda(u)du} \psi(x) + 1 - e^{-2\int_{s}^{s+\gamma} \lambda(u)du} + e^{-2\int_{s}^{s+\gamma} \lambda(u)du} \int_{s}^{s+\gamma} e^{2\int_{s}^{u} \lambda(v)dv} du$
 $\leq e^{-2\gamma c_{\inf}} \psi(x) + C,$

where $C \in (0, +\infty)$ and $c_{\inf} := \inf_{t \geq 0} \frac{1}{\gamma} \int_{t}^{t+\gamma} \lambda(u) du > 0$. Taking $\theta \in (e^{-2\gamma c_{\inf}}, 1)$, there exists a compact set *K* such that, for any $s \geq 0$,

$$
P_{s,s+\gamma}\psi(x) \le \theta \psi(x) + C \mathbb{1}_K(x).
$$

Moreover, for any $s > 0$ and $t \in [0, \gamma)$, the function $P_{s, s+t} \psi / \psi$ is upper-bounded uniformly in *s* and *t*. It remains therefore to prove Assumption [1\(](#page-3-0)i) for $(P_{s,t})_{s \le t}$, which is a consequence of the following lemma.

Lemma 1. *For any a, b*₋, *b*₊ > 0*, define the subset* $C(a, b_-, b_+) \subset M_1(\mathbb{R})$ *as*

$$
C(a, b_-, b_+) := \{ \mathcal{N}(m, \sigma) : m \in [-a, a], \sigma \in [b_-, b_+] \}.
$$

*Then, for any a, b*_−, *b*₊ > 0*, there exist a probability measure* ν *and a constant c* > 0 *such that, for any* $\mu \in C(a, b_-, b_+)$,

$$
\mu \geq c \nu.
$$

The proof of this lemma is postponed until after the end of this proof.

Since $\lambda \sim t \to \infty$ *g* and these two functions are bounded on \mathbb{R}_+ , Lebesgue's dominated convergence theorem implies that, for all $s < t$,

$$
\bigg|\int_{s+k\gamma}^{t+k\gamma} \lambda(u)du - \int_{s}^{t} g(u)du\bigg|\underset{k\to\infty}{\longrightarrow} 0.
$$

In the same way, for all $s \leq t$,

$$
\int_{s+k\gamma}^{t+k\gamma} e^{2\int_{s+k\gamma}^{u} \lambda(v)dv} du \longrightarrow_{k\to\infty} \int_{s}^{t} e^{2\int_{s}^{u} g(v)dv} du.
$$

Hence, for any $s \leq t$,

$$
e^{-\int_{s+k\gamma}^{t+k\gamma} \lambda(u)du} \longrightarrow e^{-\int_{s}^{t} g(u)du},
$$

and

$$
e^{-\int_{s+k\gamma}^{t+k\gamma} \lambda(u)du} \sqrt{\int_{s+k\gamma}^{t+k\gamma} e^{2\int_{s+k\gamma}^{u} \lambda(v)dv} du} \xrightarrow[k \to \infty]{} e^{-\int_{s}^{t} g(u)du} \sqrt{\int_{s}^{t} e^{2\int_{s}^{u} g(v)dv} du}.
$$

Using [\[14,](#page-28-22) Theorem 1.3], for any $x \in \mathbb{R}$,

$$
\|\delta_x P_{s+k\gamma,t+k\gamma} - \delta_x Q_{s+k\gamma,t+k\gamma}\|_{TV} \underset{k\to\infty}{\longrightarrow} 0. \tag{33}
$$

To deduce the convergence in ψ -distance, we will draw inspiration from the proof of [\[19,](#page-28-23) Lemma 3.1]. Since the variances are uniformly bounded in k (for $s \le t$ fixed), there exists *H* > 0 such that, for any $k \in \mathbb{N}$ and $s \le t$,

$$
\delta_x P_{s+k\gamma,t+k\gamma} \left[\psi^2 \right] \le H \quad \text{and} \quad \delta_x Q_{s,t} \left[\psi^2 \right] \le H. \tag{34}
$$

Since $\lim_{|x|\to\infty} \frac{\psi(x)}{\psi^2(x)} = 0$, for any $\epsilon > 0$ there exists $l_{\epsilon} > 0$ such that, for any function *f* such that $|f| \leq \psi$ and for any $|x| \geq l_{\epsilon}$,

$$
|f(x)| \le \frac{\epsilon \psi(x)^2}{H}.
$$

Combining this with [\(34\)](#page-20-0), and letting $K_{\epsilon} := [-l_{\epsilon}, l_{\epsilon}]$, we find that for any $k \in \mathbb{Z}_+, f$ such that $|f| \leq \psi$, and $x \in \mathbb{R}$,

Ergodicity of time-inhomogeneous processes and quasi-stationarity with moving boundaries 693

$$
\delta_x P_{s+k\gamma,t+k\gamma}[f \mathbb{1}_{K_{\epsilon}^c}] \leq \epsilon \quad \text{and} \quad \delta_x Q_{s,t}[f \mathbb{1}_{K_{\epsilon}^c}] \leq \epsilon.
$$

Then, for any $k \in \mathbb{Z}_+$ and *f* such that $|f| \leq \psi$,

$$
|\delta_x P_{s+k\gamma,t+k\gamma}f - \delta_x Q_{s,t}f| \le 2\epsilon + |\delta_x P_{s+k\gamma,t+k\gamma}[f\mathbb{1}_{K_{\epsilon}}] - \delta_x Q_{s,t}[f\mathbb{1}_{K_{\epsilon}}]| \tag{35}
$$

$$
\leq 2\epsilon + (1 + l_{\epsilon}^2) \|\delta_x P_{s+k\gamma, t+k\gamma} - \delta_x Q_{s,t}\|_{TV}.
$$
 (36)

Hence, [\(33\)](#page-20-1) implies that, for *k* large enough, for any *f* bounded by ψ ,

$$
|\delta_x P_{s+k\gamma, t+k\gamma} f - \delta_x Q_{s,t} f| \le 3\epsilon,\tag{37}
$$

implying that

$$
\|\delta_x P_{s+k\gamma,t+k\gamma}-\delta_x Q_{s,t}\|_{\psi} \longrightarrow 0.
$$

We now prove Lemma [1.](#page-20-2) \Box

Proof of Lemma [1.](#page-20-2) Defining

$$
f_{\nu}(x) := e^{-\frac{(x-a)^2}{2b-2}} \wedge e^{-\frac{(x+a)^2}{2b-2}},
$$

we conclude easily that, for any $m \in [-a, a]$ and $\sigma \ge b_-,$ for any $x \in \mathbb{R}$,

$$
e^{-\frac{(x-m)^2}{2\sigma^2}} \geq f_{\nu}(x).
$$

Imposing moreover that $\sigma \leq b_+$, one has

$$
\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^2}{2\sigma^2}} \ge \frac{1}{\sqrt{2\pi}b_+}f_\nu(x),
$$

which concludes the proof. \Box

5.2. Quasi-ergodic distribution for Brownian motion absorbed by an asymptotically periodic moving boundary

Let $(W_t)_{t\geq0}$ be a one-dimensional Brownian motion, and let *h* be a C^1 -function such that

$$
h_{\min} := \inf_{t \ge 0} h(t) > 0 \quad \text{and} \quad h_{\max} := \sup_{t \ge 0} h(t) < +\infty.
$$

We assume also that

$$
-\infty < \inf_{t \ge 0} h'(t) \le \sup_{t \ge 0} h'(t) < +\infty.
$$

Define

$$
\tau_h := \inf\{t \ge 0 : |W_t| \ge h(t)\}.
$$

Since *h* is continuous, the hitting time τ_h is a stopping time with respect to the natural filtration of $(W_t)_{t\geq 0}$. Moreover, since $\sup_{t>0} h(t) < +\infty$ and $\inf_{t\geq 0} h(t) > 0$,

$$
\mathbb{P}_{s,x}[\tau_h < +\infty] = 1 \quad \text{and} \quad \mathbb{P}_{s,x}[\tau_h > t] > 0, \quad \forall s \le t, \ \forall x \in [-h(s), h(s)].
$$

The main assumption on the function *h* is the existence of a γ -periodic function *g* such that $h(t) \le g(t)$, for any $t \ge 0$, and such that

$$
h \sim_{t \to \infty} g
$$
 and $h' \sim_{t \to \infty} g'$.

Similarly to τ_h , define

$$
\tau_g := \inf\{t \ge 0 : |W_t| = g(t)\}.
$$

Finally, let us assume that there exists $n_0 \in \mathbb{N}$ such that, for any $s \ge 0$,

$$
\inf\{u \ge s : h(u) = \inf_{t \ge s} h(t)\} - s \le n_0 \gamma. \tag{38}
$$

This condition says that there exists $n_0 \in \mathbb{N}$ such that, for any time $s \ge 0$, the infimum of the function *h* on the domain $[s, +\infty)$ is reached on the subset $[s, s + n_0 \gamma]$.

We first prove the following proposition.

Proposition 1. *The Markov process* $(W_t)_{t>0}$ *, considered as absorbed by h or by g, satisfies Assumption (A).*

Proof. In what follows, we will prove Assumption (A') with respect to the absorbing function *h*. The proof can easily be adapted for the function *g*.

• *Proof of (A'1).* Define $\mathcal{T} := \{ s \ge 0 : h(s) = \inf_{t \ge s} h(t) \}$. The condition [\(38\)](#page-22-0) implies that this set contains an infinity of times.

In what follows, the following notation is needed: for any $z \in \mathbb{R}$, define τ_z as

$$
\tau_z := \inf\{t \geq 0 : |W_t| = z\}.
$$

Also, let us state that, since the Brownian motion absorbed at $\{-1, 1\}$ satisfies Assumption (A) of [\[5\]](#page-28-20) at any time (see [\[7\]](#page-28-24)), it follows that, for a given $t_0 > 0$, there exist $c > 0$ and $v \in$ *M*₁((−1, 1)) such that, for any $x \in (-1, 1)$,

$$
\mathbb{P}_{0,x} \bigg[W_{\frac{t_0}{h_{\text{max}}^2} \wedge t_0} \in \cdot \bigg| \tau_1 > \frac{t_0}{h_{\text{max}}^2} \wedge t_0 \bigg] \geq c \nu. \tag{39}
$$

Moreover, in relation to the proof of [\[7,](#page-28-24) Section 5.1], the probability measure ν can be expressed as

$$
\nu = \frac{1}{2} \left(\mathbb{P}_{0, 1-\epsilon}[W_{t_2} \in \cdot | \tau_1 > t_2] + \mathbb{P}_{0, -1+\epsilon}[W_{t_2} \in \cdot | \tau_1 > t_2] \right), \tag{40}
$$

for some $0 < t_2 < \frac{t_0}{h_{\text{max}}^2} \wedge t_0$ and $\epsilon \in (0, 1)$.

The following lemma is very important for the next part of the argument.

Lemma 2. *For all* $z \in [h_{\min}, h_{\max}]$,

$$
\mathbb{P}_{0,x}[W_u \in \cdot | \tau_z > u] \geq c \nu_z, \quad \forall x \in (-z, z), \ \forall u \geq t_0,
$$

*where t*₀ *is as previously mentioned,* $c > 0$ *<i>is the same constant as in* [\(39\)](#page-22-1)*, and*

$$
\nu_z(f) = \int_{(-1,1)} f(zx)\nu(dx),
$$

with $v \in M_1((-1, 1))$ *defined in* [\(40\)](#page-22-2)*.*

The proof of this lemma is postponed until after the current proof.

Ergodicity of time-inhomogeneous processes and quasi-stationarity with moving boundaries 695

Let *s* ∈ \mathcal{T} . Then, for all *x* ∈ (−*h*(*s*), *h*(*s*)) and *t* ≥ 0,

$$
\mathbb{P}_{s,x}[W_{s+t} \in \cdot | \tau_h > s+t] \geq \frac{\mathbb{P}_{s,x}[\tau_{h(s)} > s+t]}{\mathbb{P}_{s,x}[\tau_h > s+t]} \mathbb{P}_{s,x}[W_{s+t} \in \cdot | \tau_{h(s)} > s+t].
$$

By Lemma [2,](#page-22-3) for all $x \in (-h(s), h(s))$ and $t \ge t_0$,

$$
\mathbb{P}_{s,x}[W_{s+t} \in \cdot | \tau_{h(s)} > s+t] \geq c \nu_{h(s)},
$$

which implies that, for any $t \in [t_0, t_0 + n_0 \gamma]$,

$$
\mathbb{P}_{s,x}[W_{s+t} \in \cdot | \tau_h > s+t] \ge \frac{\mathbb{P}_{s,x}[\tau_{h(s)} > s+t]}{\mathbb{P}_{s,x}[\tau_h > s+t]} c \nu_{h(s)} \ge \frac{\mathbb{P}_{s,x}[\tau_{h(s)} > s+t_0 + n_0 \gamma]}{\mathbb{P}_{s,x}[\tau_h > s+t_0]} c \nu_{h(s)}.
$$
\n(41)

Let us introduce the process X^h defined by, for all $t \geq 0$,

$$
X_t^h := \frac{W_t}{h(t)}.
$$

By Itô's formula, for any $t \geq 0$,

$$
X_t^h = X_0^h + \int_0^t \frac{dW_s}{h(s)} - \int_0^t \frac{h'(s)}{h(s)} X_s^h ds.
$$

Define

$$
(M_t^h)_{t \geq 0} := \left(\int_0^t \frac{1}{h(s)} dW_s \right)_{t \geq 0}.
$$

By the Dubins–Schwarz theorem, it is well known that the process M^h has the same law as

$$
\left(W_{\int_0^t \frac{1}{h^2(s)}ds}\right)_{t\geq 0}.
$$

Then, defining

$$
I^h(s) := \int_0^s \frac{1}{h^2(u)} du
$$

and, for any $s \le t$ and for any trajectory *w*,

$$
\mathcal{E}_{s,t}^{h}(w) := \sqrt{\frac{h(t)}{h(s)}} \exp\left(-\frac{1}{2}\left[h'(t)h(t)w_{I^{h}(t)}^{2} - h'(s)h(s)w_{I^{h}(s)}^{2}\right]\right)
$$
(42)

$$
+\int_{s}^{t} w_{I^{h}(u)}^{2}[(h'(u))^{2}-[h(u)h'(u)]']du\bigg\}\bigg),
$$
 (43)

Girsanov's theorem implies that, for all $x \in (-h(s), h(s))$,

$$
\mathbb{P}_{s,x}[\tau_h > s + t_0] = \mathbb{E}_{I^h(s), \frac{x}{h(s)}} \bigg[\mathcal{E}_{s,s+t_0}^h(W) \mathbb{1}_{\tau_1 > \int_0^{s+t_0} \frac{1}{h^2(u)} du} \bigg]. \tag{44}
$$

On the event

$$
\left\{\tau_1 > \int_0^{s+t_0} \frac{1}{h^2(u)} du\right\},\,
$$

and since *h* and *h*^{\prime} are bounded on \mathbb{R}_+ , the random variable $\mathcal{E}_{s,s+t_0}^h(W)$ is almost surely bounded by a constant $C > 0$, uniformly in *s*, such that for all $x \in (-h(s), h(s))$,

$$
\mathbb{E}_{I^{h}(s),\frac{x}{h(s)}}\bigg[\mathcal{E}^{h}_{s,s+t_{0}}(W)\mathbb{1}_{\tau_{1}>\int_{0}^{s+t_{0}}\frac{1}{h^{2}(u)}du}\bigg]\leq C\mathbb{P}_{0,\frac{x}{h(s)}}\bigg[\tau_{1}>\int_{s}^{s+t_{0}}\frac{1}{h^{2}(u)}du\bigg].\tag{45}
$$

Since $h(t) \geq h(s)$ for all $t \geq s$ (since $s \in \mathcal{T}$),

$$
I^h(s+t_0) - I^h(s) \le \frac{t_0}{h(s)^2}.
$$

By the scaling property of the Brownian motion and by the Markov property, one has for all $x \in (-h(s), h(s))$

$$
\mathbb{P}_{s,x}[\tau_{h(s)} > s + t_0] = \mathbb{P}_{0,x}[\tau_{h(s)} > t_0]
$$
\n
$$
= \mathbb{P}_{0,\frac{x}{h(s)}} \left[\tau_1 > \frac{t_0}{h^2(s)} \right]
$$
\n
$$
= \mathbb{E}_{0,\frac{x}{h(s)}} \left[\mathbb{1}_{\tau_1 > \int_s^{s+t_0} \frac{1}{h^2(u)} du} \mathbb{P}_{0,W_{\int_s^{s+t_0} \frac{1}{h^2(u)} du}} \left[\tau_1 > \frac{t_0}{h^2(s)} - \int_s^{s+t_0} \frac{1}{h^2(s)} ds \right] \right]
$$
\n
$$
= \mathbb{P}_{0,\frac{x}{h(s)}} \left[\tau_1 > \int_s^{s+t_0} \frac{1}{h^2(u)} du \right]
$$
\n
$$
\mathbb{P}_{0,\phi_{h^h(s+t_0)-h^h(s)}(\delta_x)} \left[\tau_1 > \frac{t_0}{h^2(s)} - \int_s^{s+t_0} \frac{1}{h^2(u)} du \right],
$$

where, for any initial distribution μ and any $t \geq 0$,

$$
\phi_t(\mu) := \mathbb{P}_{0,\mu}[W_t \in \cdot | \tau_1 > t].
$$

The family $(\phi_t)_{t\geq0}$ satisfies the equality $\phi_t \circ \phi_s = \phi_{t+s}$ for all $s, t \geq 0$. By this property, and using that

$$
I^{h}(s + t_0) - I^{h}(s) \ge \frac{t_0}{h_{\max}^2}
$$

for any $s \ge 0$, the minorization [\(39\)](#page-22-1) implies that, for all $s \ge 0$ and $x \in (-1, 1)$,

$$
\phi_{I^h(s+t_0)-I^h(s)}(\delta_x) \geq c \nu.
$$

Hence, by this minorization, and using that *h* is upper-bounded and lower-bounded positively on \mathbb{R}_+ , one has for all $x \in (-1, 1)$

$$
\mathbb{P}_{0,\phi_{h^{h}(s+t_0)-1^{h}(s)}(\delta_x)} \bigg[\tau_1 > \frac{t_0}{h^2(s)} - \int_s^{s+t_0} \frac{1}{h^2(u)} du \bigg] \newline \geq c \mathbb{P}_{0,\nu} \bigg[\tau_1 > \inf_{s \geq 0} \bigg\{ \frac{t_0}{h^2(s)} - \int_s^{s+t_0} \frac{1}{h^2(u)} du \bigg\} \bigg];
$$

that is to say,

$$
\frac{\mathbb{P}_{s,x}[\tau_{h(s)} > s+t_0]}{\mathbb{P}_{0,\frac{x}{h(s)}}[\tau_1 > \int_s^{s+t_0} \frac{1}{h^2(u)} du]} \geq c \mathbb{P}_{0,\nu} \bigg[\tau_1 > \inf_{s \geq 0} \bigg\{ \frac{\gamma}{h^2(s)} - \int_s^{s+t_0} \frac{1}{h^2(u)} du \bigg\} \bigg].
$$

In other words, we have just shown that, for all $x \in (-h(s), h(s))$,

$$
\frac{\mathbb{P}_{s,x}[\tau_{h(s)} > s+t_0]}{\mathbb{P}_{s,x}[\tau_h > s+t_0]} \geq \frac{c}{C} \mathbb{P}_{0,\nu} \bigg[\tau_1 > \inf_{s \geq 0} \left\{ \frac{t_0}{h^2(s)} - \int_s^{s+t_0} \frac{1}{h^2(u)} du \right\} \bigg] > 0. \tag{46}
$$

Moreover, by Lemma [2](#page-22-3) and the scaling property of the Brownian motion, for all $x \in$ (−*h*(*s*), *h*(*s*)),

$$
\frac{\mathbb{P}_{s,x}[\tau_{h(s)} > s + t_0 + n_0 \gamma]}{\mathbb{P}_{s,x}[\tau_{h(s)} > s + t_0]} = \mathbb{P}_{0,\mathbb{P}_{0,x}[W_{t_0} \in \cdot | \tau_{h(s)} > t_0]}[\tau_{h(s)} > n_0 \gamma]
$$
\n
$$
\ge c \mathbb{P}_{0,\nu_{h(s)}}[\tau_{h(s)} > n_0 \gamma]
$$
\n
$$
= c \int_{(-1,1)} \nu(dy) \mathbb{P}_{h(s)y}[\tau_{h(s)} > n_0 \gamma]
$$
\n
$$
\ge c \mathbb{P}_{0,\nu} \left[\tau_1 > \frac{n_0 \gamma}{h_{\min}^2} \right] > 0. \tag{47}
$$

Thus, combining [\(41\)](#page-23-0), [\(46\)](#page-25-0), and [\(47\)](#page-25-1), for any $x \in (-h(s), h(s))$ and any $t \in [t_0, t_0 + n_0 \gamma]$,

$$
\mathbb{P}_{s,x}[W_{s+t} \in \cdot | \tau_h > s+t] \ge c_1 \nu_{h(s)},\tag{48}
$$

where

$$
c_1 := c \mathbb{P}_{0,\nu} \bigg[\tau_1 > \frac{n_0 \gamma}{h_{\max}^2} \bigg] \times \frac{c}{C} \mathbb{P}_{0,\nu} \bigg[\tau_1 > \inf_{s \ge 0} \bigg\{ \frac{\gamma}{h^2(s)} - \int_s^{s+\gamma} \frac{1}{h^2(u)} du \bigg\} \bigg] c.
$$

We recall that the Doeblin condition [\(48\)](#page-25-2) has, for now, been obtained only for $s \in \mathcal{T}$. Consider now $s \notin \mathcal{T}$. Then, by the condition [\(38\)](#page-22-0), there exists $s_1 \in \mathcal{T}$ such that $s < s_1 \leq$ $s + n_0 \gamma$. The Markov property and [\(48\)](#page-25-2) therefore imply that, for any $x \in (-h(s), h(s))$,

 $\mathbb{P}_{s,x}[W_{s+t_0+n_0\gamma} \in \cdot | \tau_h > s+t_0+n_0\gamma] = \mathbb{P}_{s_1,\phi_{s_1,s}}[W_{s+t_0+n_0\gamma} \in \cdot | \tau_h > s+t_0+n_0\gamma] \geq c_1 \nu_{h(s_1)},$ where, for all $s < t$ and $\mu \in \mathcal{M}_1((-h(s), h(s))),$

$$
\phi_{t,s}(\mu) := \mathbb{P}_{s,\mu}[W_t \in \cdot | \tau_h > t].
$$

This concludes the proof of $(A[']1)$.

• *Proof of (A'2).* Since $(W_t)_{t\geq 0}$ is a Brownian motion, note that for any $s \leq t$,

$$
\sup_{x\in(-1,1)}\mathbb{P}_{s,x}[\tau_h>t]=\mathbb{P}_{s,0}[\tau_h>t].
$$

Also, for any $a \in (0, h(s))$,

$$
\inf_{[-a,a]} \mathbb{P}_{s,x}[\tau_h > t] = \mathbb{P}_{s,a}[\tau_h > t].
$$

Thus, by the Markov property, and using that the function $s \mapsto \mathbb{P}_{s,0}[\tau_g > t]$ is nondecreasing on [0, *t*] (for all $t \ge 0$), one has, for any $s \le t$,

$$
\mathbb{P}_{s,a}[\tau_h > t] \geq \mathbb{E}_{s,a}[\mathbb{1}_{\tau_0 < s+\gamma < \tau_h} \mathbb{P}_{\tau_0,0}[\tau_h > t]] \geq \mathbb{P}_{s,a}[\tau_0 < s+\gamma < \tau_h] \mathbb{P}_{s,0}[\tau_h > t]. \tag{49}
$$

Defining $a := \frac{h_{\min}}{h_{\max}}$, by Lemma [2](#page-22-3) and taking $s_1 := \inf\{u \ge s : u \in \mathcal{T}\}\)$, one obtains that, for all $s \leq t$,

$$
\mathbb{P}_{s,\nu_{h(s_1)}}[\tau_h > t] = \int_{(-1,1)} \nu(dx) \mathbb{P}_{s,h(s_1)x}[\tau_h > t]
$$

\n
$$
\geq \nu([-a, a]) \mathbb{P}_{s,h(s_1)a}[\tau_h > t]
$$

\n
$$
\geq \nu([-a, a]) \mathbb{P}_{0,h_{\min}}[\tau_0 < \gamma < \tau_h] \sup_{x \in (h(s),h(s))} \mathbb{P}_{s,x}[\tau_h > t].
$$

This concludes the proof, since, using [\(40\)](#page-22-2), one has $v([-a, a]) > 0$.

We now prove Lemma [2.](#page-22-3)

Proof of Lemma [2.](#page-14-2) This result comes from the scaling property of a Brownian motion. In fact, for any $z \in [h_{\min}, h_{\max}]$, $x \in (-z, z)$, and $t \ge 0$, and for any measurable bounded function f ,

$$
\mathbb{E}_{0,x}[f(W_t)|\tau_z > t] = \mathbb{E}_{0,x}\bigg[f\bigg(z \times \frac{1}{z}W_{z^2}\frac{t}{z^2}\bigg)\bigg|\tau_z > t\bigg]
$$

$$
= \mathbb{E}_{0,\frac{x}{z}}\bigg[f\bigg(z \times W_{\frac{t}{z^2}}\bigg)\bigg|\tau_1 > \frac{t}{z^2}\bigg].
$$

Then the minorization [\(39\)](#page-22-1) implies that for any $x \in (-1, 1)$,

$$
\mathbb{P}_{0,x}\bigg[W_{\frac{t_0}{h_{\max}^2}}\in\cdot\bigg|\tau_1>\frac{t_0}{h_{\max}^2}\bigg]\geq c\nu.
$$

This inequality holds for any time greater than $\frac{t_0}{h_{\text{max}}^2}$. In particular, for any $z \in [h_{\text{min}}, h_{\text{max}}]$ and $x \in (-1, 1)$,

$$
\mathbb{P}_{0,x}\bigg[W_{\frac{t_0}{z^2}} \in \cdot \bigg|\tau_1 > \frac{t_0}{z^2}\bigg] \geq c \nu.
$$

Then, for any $z \in [a, b]$, *f* positive and measurable, and $x \in (-z, z)$,

$$
\mathbb{E}_{0,x}[f(W_{t_0})|\tau_z>t_0]\geq c\nu_z(f)\,,
$$

where $v_z(f) := \int_E f(z \times x) v(dx)$. This completes the proof of Lemma [2.](#page-22-3)

We now conclude the section by stating and proving the following result.

Theorem 4. *For any s* $\leq t$, *n* $\in \mathbb{N}$ *, and any x* $\in \mathbb{R}$ *,*

$$
\mathbb{P}_{s+k\gamma,x}[\tau_h \le t+k\gamma < \tau_g] \underset{k\to\infty}{\longrightarrow} 0.
$$

In particular, Corollary [2](#page-15-1) *holds for* $(W_t)_{t>0}$ *absorbed by h.*

Lebesgue's dominated convergence theorem implies that

for all
$$
s \le t \in [0, \gamma]
$$
. Moreover, since $h \sim_{t \to \infty} g$ and $h' \sim_{t \to \infty} g'$, one has for all trajectories $w = (w_u)_{u \ge 0}$ and $s \le t \in [0, \gamma]$

$$
\mathcal{A}_{s,t,k}^{h}(w) \xrightarrow[k \to \infty]{} g'(t)g(t)w_{I^{g}(t)-I^{g}(s)}^{2} - g'(s)g(s)w_{0}^{2} + \int_{s}^{t} w_{I^{g}(u)}^{2}[(g'(u))^{2} - [g(u)g'(u)]']du.
$$

Since the random variable

k, *n* ∈ $\mathbb N$ and any *x* ∈ $\mathbb R$,

 $\mathbb{P}_{s+k\gamma,x}[\tau_h > t+k\gamma] =$

$$
\exp\bigg(-\frac{1}{2}\mathcal{A}^h_{s,t,k}(W)\bigg)\mathbb{1}_{\tau_1>I^h(t+k\gamma)-I^h(s+k\gamma)}
$$

is bounded almost surely, Lebesgue's dominated convergence theorem implies that

$$
\mathbb{P}_{s+k\gamma,x}[\tau_h > t + k\gamma] \underset{k\to\infty}{\longrightarrow} \mathbb{P}_{s,x}[\tau_g > t],
$$

which concludes the proof. \Box

Acknowledgements

I would like to thank the anonymous reviewers for their valuable and relevant comments and suggestions, as well as Oliver Kelsey Tough for reviewing a part of this paper.

Funding information

A part of this research was supported by the Swiss National Foundation grant 200020 196999.

 $\int h(t + k\gamma)$

where, for any trajectory
$$
w = (w_u)_{u \ge 0}
$$
,
\n
$$
A_{s,t,k}^h(w) = h'(t + k\gamma)h(t + k\gamma)w_{I^h(t + k\gamma) - I^h(s + k\gamma)}^2 - h'(s + k\gamma)h(s + k\gamma)w_0^2
$$
\n
$$
s(t-s)
$$

Proof. Recalling [\(43\)](#page-23-1), by the Markov property for the Brownian motion, one has, for any

 $\frac{h(t+k\gamma)}{h(s+k\gamma)}\mathbb{E}_{0,x}\bigg[\exp\bigg(-\frac{1}{2}\mathcal{A}^h_{s,t,k}(W)\bigg)\mathbb{1}_{\tau_1>I^h(t+k\gamma)-I^h(s+k\gamma)}\bigg],$

$$
+ \int_0^{t-s} w_{I^h(u+s+k\gamma)-I^h(s+k\gamma)}^2 [(h'(u+s+k\gamma))^2 - [h(u+s+k\gamma)h'(u+s+k\gamma)]'] du.
$$

Since $h \sim t \to \infty$ *g*, one has for any *s*, $t \in [0, \gamma]$

$$
\sqrt{\frac{h(t+k\gamma)}{h(s+k\gamma)}}\underset{k\to\infty}{\longrightarrow}\sqrt{\frac{g(t)}{g(s)}}.
$$

$$
I^h(t + k\gamma) - I^h(s + k\gamma) \underset{k \to \infty}{\longrightarrow} I^g(t) - I^g(s)
$$

 \int_0^t

and
$$
s \leq t \in [0, \gamma]
$$

$$
(t)g(t)w_{I^{g}(t)-I^{g}(s)}^{2}-g'(s)g(s)w_{0}^{2}+\int_{s} w_{I^{g}(u)}^{2}[(g'(u))
$$

$$
\overline{a}
$$

Competing interests

There were no competing interests to declare which arose during the preparation or publication process of this article.

References

- [1] BANSAYE, V., CLOEZ, B. AND GABRIEL, P. (2020). Ergodic behavior of non-conservative semigroups via generalized Doeblin's conditions. *Acta Appl. Math.* **166**, 29–72.
- [2] BREYER, L. AND ROBERTS, G. (1999). A quasi-ergodic theorem for evanescent processes. *Stoch. Process. Appl.* **84**, 177–186.
- [3] CATTIAUX, P., CHRISTOPHE, C. AND GADAT, S. (2016). A stochastic model for cytotoxic T lymphocyte interaction with tumor nodules. Preprint.
- [4] CHAMPAGNAT, N., OÇAFRAIN, W. AND VILLEMONAIS, D. (2021). Quasi-stationarity for time- (in)homogeneous Markov processes absorbed by moving boundaries through Lyapunov criteria. In preparation.
- [5] CHAMPAGNAT, N. AND VILLEMONAIS, D. (2016). Exponential convergence to quasi-stationary distribution and *Q*-process. *Prob. Theory Relat. Fields* **164**, 243–283.
- [6] CHAMPAGNAT, N. AND VILLEMONAIS, D. (2017). General criteria for the study of quasi-stationarity. Preprint. Available at [https://arxiv.org/abs/1712.08092.](https://arxiv.org/abs/1712.08092)
- [7] CHAMPAGNAT, N. AND VILLEMONAIS, D. (2017). Uniform convergence of conditional distributions for absorbed one-dimensional diffusions. *Adv. Appl. Prob.* **50**, 178–203.
- [8] CHAMPAGNAT, N. AND VILLEMONAIS, D. (2017). Uniform convergence to the *Q*-process. *Electron. Commun. Prob.* **22**, paper no. 33, 7 pp.
- [9] CHAMPAGNAT, N. AND VILLEMONAIS, D. (2018). Uniform convergence of penalized time-inhomogeneous Markov processes. *ESAIM Prob. Statist.* **22**, 129–162.
- [10] CHEN, J. AND JIAN, S. (2018). A deviation inequality and quasi-ergodicity for absorbing Markov processes. *Ann. Mat. Pura Appl.* **197**, 641–650.
- [11] COLLET, P., MARTÍNEZ, S. AND SAN MARTÍN, J. (2013). *Quasi-Stationary Distributions: Markov Chains, Diffusions and Dynamical Systems*. Springer, Berlin, Heidelberg.
- [12] COLONIUS, F. AND RASMUSSEN, M. (2021). Quasi-ergodic limits for finite absorbing Markov chains. *Linear Algebra Appl.* **609**, 253–288.
- [13] DARROCH, J. N. AND SENETA, E. (1965). On quasi-stationary distributions in absorbing discrete-time finite Markov chains. *J. Appl. Prob.* **2**, 88–100.
- [14] DEVROYE, L., MEHRABIAN, A. AND REDDAD, T. (2018). The total variation distance between highdimensional Gaussians. Preprint. Available at [https://arxiv.org/abs/1810.08693.](https://arxiv.org/abs/1810.08693)
- [15] HAIRER, M. AND MATTINGLY, J. C. (2011). Yet another look at Harris' ergodic theorem for Markov chains. In *Seminar on Stochastic Analysis, Random Fields and Applications VI*, Birkhäuser, Basel, pp. 109–117.
- [16] HE, G. (2018). A note on the quasi-ergodic distribution of one-dimensional diffusions. *C. R. Math. Acad. Sci. Paris* **356**, 967–972.
- [17] HE, G., YANG, G. AND ZHU, Y. (2019). Some conditional limiting theorems for symmetric Markov processes with tightness property. *Electron. Commun. Prob.* **24**, paper no. 60, 11 pp.
- [18] HE, G., ZHANG, H. AND ZHU, Y. (2019). On the quasi-ergodic distribution of absorbing Markov processes. *Statist. Prob. Lett.* **149**, 116–123.
- [19] HENING, A. AND NGUYEN, D. H. (2018). Stochastic Lotka-Volterra food chains. *J. Math. Biol.* **77**, 135–163.
- [20] HÖPFNER, R. AND KUTOYANTS, Y. (2010). Estimating discontinuous periodic signals in a time inhomogeneous diffusion. *Statist. Infer. Stoch. Process.* **13**, 193–230.
- [21] HÖPFNER, R., LÖCHERBACH, E. AND THIEULLEN, M. (2016). Ergodicity and limit theorems for degenerate diffusions with time periodic drift. Application to a stochastic Hodgkin–Huxley model. *ESAIM Prob. Statist.* **20**, 527–554.
- [22] HÖPFNER, R., LÖCHERBACH, E. AND THIEULLEN, M. (2016). Ergodicity for a stochastic Hodgkin–Huxley model driven by Ornstein–Uhlenbeck type input. *Ann. Inst. H. Poincaré Prob. Statist.* **52**, 483–501.
- [23] MÉLÉARD, S. AND VILLEMONAIS, D. (2012). Quasi-stationary distributions and population processes. *Prob. Surveys* **9**, 340–410.
- [24] OÇAFRAIN, W. (2018). Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically. *ALEA* **15**, 429–451.
- [25] OÇAFRAIN, W. (2020). *Q*-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries. *Stoch. Process. Appl.* **130**, 3445–3476.
- [26] VASSILIOU, P.-C. (2018). Laws of large numbers for non-homogeneous Markov systems. *Methodology Comput. Appl. Prob.* **22**, 1631–1658.