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Problem Corner
Solutions are invited to the following problems. They should be addressed

to Chris Starr, c/o Kintail, Longmorn, Elgin IV30 8RJ
(e-mail: czqstarr@gmail.com) and should arrive not later than 10th August 2025.
Proposals for problems are equally welcome. They should also be sent to Chris
Starr at the above address and should be accompanied by solutions and any
relevant background information.

Note: in order to fulfil any commitments to the publication of problems, I
have used the problems suggested by the former editor, Nick Lord. In the
transition between editors, if any solutions have not been accounted for then
please inform me.  CS.

108.I (Chris Starr)
Consider triangle , with ,  and

. The lines  and  are constructed such that
and . It may then be verified that triangle  is split into
three triangles, each with integer side lengths, and the areas of triangles

,  and  are all integer values.
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(a) Can you find a triangle  that can be split into four triangles with
integer side lengths and integer areas?

PXY

(b) Is there a value  such that  cannot be split into  triangles with
integer side lengths and integer areas?

N PXY N

108.J (Mark Hennings)
The points  and  lie on the diameter of a unit circle, and  is a third

point on that circle, making a right-angled triangle . The Feuerbach
point  of a triangle is the point where the triangle's incircle (centre ) and
the nine-point circle (centre  are tangential to each other. The locus of the
Feuerbach point as  varies forms an elegant bow-tie shape as below:
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What is the area of the region enclosed by the locus?
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108.K (Toyesh Prakash Sharma)
Show that, in the acute-angled triangle , the following inequality

holds:
ABC

(sin A)cos A (sin B)cos B (sin C)cos C ≤ (27
64)1/4

.

108.L (Albert Natian)
You are invited to play the following two-stage game using a fair -

sided die labelled .
n

1, 2, … , n

Stage 1: You roll the die to get a number, say , which is the number of gold
coins that you win, and the possession of which is subject to the outcome(s)
in Stage 2.

x

Stage 2: Now you roll the die  times. You win, in gold coins, all numbers
that come up in the  rolls, except if any number is , in which case you lose
all your winnings, including that of Stage 1.

x
x x

Find an expression for the expected winnings  in this game, and
determine

E [W]

lim
n → ∞

E [W]
n2

.

Solutions and comments on 108.A, 108.B, 108.C, 108.D (March 2024).
108.A  (W. C. Gosnell)

The right-angled triangle T with legs of length  and hypotenuse of
length  has inradius . These lengths satisfy the conditions:

a, b
c r

•  for some positive rational number, ;r + ka = b k
• .c2 = a + b + c

(a) Show that T is similar to a triangle whose sides form a Pythagorean triple.
(b) Can all Pythagorean triples be created this way?

Solution:
Most solvers approached part (a) by finding a parametric expression for

the three sides. The following is based on the solution by Nick Lord. 
A standard result is that the inradius  of a right-angled triangle of

hypotenuse  is given by . Combining this with the first
condition,  gives , (*) and using the second
condition we obtain:

r
c r = 1

2 (a + b − c)
r + ka = b b + c = (1 + 2k) a

c2 = a + b + c = a + (1 + 2k) a = (2 + 2k) a.
So , and using (*) we obtain .c = a (2 + 2k) b = (1 + 2k)a + a (2 + 2k)
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Substituting these into Pythagoras' Theorem we obtain, after some
simplification, the following solutions:

a =
2 (1 + 2k)2 (1 + k)

(2k2 + 2k + 1)2 ,  b =
4k (1 + 2k) (1 + k)2

(2k2 + 2k + 1)2 ,

c =
2 (1 + 2k) (1 + k) (2k2 + 2k + 1)

(2k2 + 2k + 1)2 .

The triangle is therefore similar to that with sides , ,
 and it may readily be verified that this is a Pythagorean triple.

1 + 2k 2k2 + 2k
2k2 + 2k + 1

For part (b), the answer is “yes”. Stan Dolan observed that if  is
a Pythagorean triple, then clearly  is rational, giving the first
condition . If the sides are then scaled by  the
same still holds true, and furthermore, if we define ,

, , then it may be verified that .

(a, b, c)
k = 1

a (b − r)
r + ka = b 1

c2 (a + b + c)
A = a + b + c

c2 a
B = a + b + c

c2 b C = a + b + c
c2 c A + B + C = C2

Correct solutions were received from: N. Curwen, S. Dolan, M. G. Elliot, M. Hennings, P.F.
Johnson, N. Lord, J.A. Mundie, Z. Retkes and the proposer W. C. Gosnell.

108.B  (Luc Duc Binh and Dau Anh Hung)
Given a regular -sided polygon  with centre  and any

straight line . Let points  lie on  such that
are parallel vectors. Show that

n A1A2… An O
d B1, … , Bn d A1B1

⎯⎯→
, A2B2

⎯⎯→
, … , AnBn

⎯⎯→

∑
n

i = 1

AiB
2
i = ∑

n

i = 1

OB2
i .

Solution:
The most common techniques employed for this problem involved

complex numbers or vectors, with careful use of trigonometric identities when
computing the sums. The following solution, based on that by Zoltan Retkes
was striking because of its unexpected physical interpretation at the end.

Let the centre  have coordinates . For simplicity, relabel the
vertices of the polygon , and let the starting angle of
relative to the -axis be . The projections of  onto the -
axis are . Without loss of generality, the line  is represented
by the -axis, and the points  lie on this line. Define the
angle between  and the -axis to be .

O (0, a)
A0, A1, … , An − 1 A0

x a A0, A1, … , An − 1 x
T0, T1, … , Tn −1 d

x B0, B1, … , Bn − 1
ArBr x θ

If the radius of the circumscribing circle is 1, then the coordinates of the

-th vertex,  are given by .r Ar (cos (α +
2πr

n ) , a + sin (α +
2πr

n ))
We now compute the following:

∑
n− 1

r =0

ArB
2
r = ∑

n− 1

r =0

(ArT
2
r + TrB

2
r)

= ∑
n− 1

r =0

⎡
⎢
⎣(a + sin (α +

2πr
n ))2

+
1

tan2θ (a + sin (α +
2πr

n ))2⎤
⎥
⎦
.
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O

T1 T0 B1 B0
x

y

A1 (cos (α +
2π
n ) , a + sin (α +

2π
n ))

A0 (cos α, a + sin α)

Expanding, and using the identities:

∑
n − 1

r = 0

sin (u + rv) =
sin 1

2nv cos (u + (n − 1) v)
sin 1

2v
, (1)

∑
n − 1

r = 0

cos (u + rv) =
sin 1

2nv sin (u + (n − 1) v)
sin 1

2v
. (2)

with , , we obtainu = α v = 2πr
n

∑
n− 1

r =0

ArB
2
r = n2a2 + ∑

n− 1

r =0

sin2(α +
2πr

n ) +
1

tan2θ ∑
n− 1

r =0

⎡⎢⎣a + sin (α +
2πr

n )⎤⎥⎦
2

.

In a similar manner, 

∑
n − 1

r = 0

OB2
r = ∑

n − 1

r = 0

⎡
⎢
⎣
a2 + (cos (α +

2πr
n ) +

1
tan θ (a + sin (α +

2πr
n )))2⎤

⎥
⎦

= n2a2 + ∑
n − 1

r = 0

cos2 (α +
2πr

n ) +
1

tan2 θ ∑
n − 1

r = 0
(a + sin (α +

2πr
n ))2

.
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Subtracting these two gives

∑
n− 1

r =0

OB2
r − ∑

n− 1

r =0

AB2
r = ∑

n− 1

r =0

cos2(α +
2πr

n ) − ∑
n− 1

r =0

sin2(α +
2πr

n )
= ∑

n− 1

r =0

cos2(α +
2πr

n )
using identity (2) above, this sums to 0 and the equality is thus proved.

The identity, as mentioned previously, has the following physical
interpretation. In Figure 1, we have a system of pendulums of mass m
pivoted at the vertices of the polygon, and in Figure 2 we have the masses
connected with rigid, weightless rods, and the system is allowed to oscillate
about the centre of the polygon. The moment of inertia of the first system is

, and the moment of inertia of the second system is
. The identity then shows that these two systems are

physically equivalent.

∑ mr2
i = m ∑ AiB2

i
∑ md2

i = m ∑ OB2
i

O1

O2

O3

O4

O5

O6

r1r2r3r4r5r6

m m m m m m m m m m m m

Opivot

d1d2d3d4d5d6

FIGURE 1 FIGURE 2

Correct solutions were received from: N. Curwen, S. Dolan, M. G. Elliot, M. Hennings, P.F.
Johnson, J. A. Mundie, Z. Retkes, S. Riccarelli and the proposers Luc Duc Binh and Dau Ann
Hung.

108.C  (George Stoica)
Find all continuous functions  with the property that, for

any , the function  is constant on the interval .
f : [0, ∞) → �

a > 0 x �f (x) .f (a − x) [0,  a]

Answer: The zero function or the function .f (0) ekx

Most solvers employed a similar strategy to deal with the case
, as in the following based on the solution offered by Stan Dolan.f (x) = 0

Let  for some . If we substitute  and  into the
function, and remember from the definition that  is constant
on the interval , we obtain , therefore

f (a) = 0 a ∈ [0,  ∞) a 1
2a

f (x) ·f (a − x)
[0, a] f (1

2a) = f (a) ·f (0) = 0
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. Repeating this argument, we obtain the series of roots , ,
 of roots of  which converge to 0. So, by continuity, . But

then, for any , , and .  Hence,
 is identically zero.

f (1
2a) = 0 1

2a 1
4a

1
8a, … f f (0) = 0

y ∈ [0,  ∞) f (y)2 = f (2y) ·f (0) = 0 f (y) = 0
f

Solvers used careful reasoning to deal with the case . The
proposer, George Stoica, offered this solution.

f (x) ≠ 0

Using , , then ,  in the definition
of the function, we obtain

a = x1 + x2 x = x3 a = x1 + x2 x = 0

f (x1) ·f (x2) = f (0) ·f (x1 + x2) .
Consider the function . This function is well-
defined and continuous on  since . We also have 

g (x) = ln |f (x)| − ln |f (0)|
[0, ∞) f (x) ≠ 0

g (x1) + g (x2) = ln |f (x1)| + ln |f (x2)| − 2 ln |f (0)|

≡ ln | f (x1) f (x2)
f (0) | − ln |f (0)| = ln |f (x1 + x2)| − ln |f (0)| = g (x1 + x2) .

Therefore, by a well-known result of Cauchy, we have  for some
real . Therefore we must have  or . If
we let  in this equation we obtain , meaning the
solution is  as stated.

g (x) = kx
k |f (x)| = |f (0)| ekx f (x) = ± |f (0)| ekx

x = 0 f (0) = ± |f (0)|
f (x) = f (0) ekx

Correct solutions were received from: U. Abel, N. Curwen, S. Dolan, M. Ecker, M. G. Elliot,
M. Hennings, P. F. Johnson,  R. Mortini, J.A. Mundie, Z. Retkes, A. Sasane, and the proposer
G. Stoica.

108.D  (Toyesh Prakash Sharma)

(a) Show that ∫
∞

0
(1 − e−2x) sin2 x

x3
=

π
2

(b) Show that .∫
∞

−∞
cos2(tanx) sin2x

x2
dx =

π
2 (1 +

1
e2) = ∫

∞

−∞
sin2(tanx) cos2x

x2
dx

Solution:
These integrals certainly provided a challenge, and solvers were

ingenious in their varied approaches. By substituting  for  and employing
half-angle formulae, the proposer established that the integral  can be
rewritten in the form 

x 2x
I

I = 2 ∫
∞

0

(1 − e−x)
x

 
(1 − cosx)

x2
dx = 2 ∫

∞

0 ∫
1

0
e−tx 

(1 − cosx)
x2

dt dx

= 2 ∫
1

0
�⎡⎢⎣

1 − cost
t2

⎤⎥⎦dx

where  represents the Laplace transform.�[f (t)]
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Since , then an application of the division

property gives 

�[1 − cost] =
1
s

−
s

1 + s2

� ⎡⎢⎣
1 − cos t

t
⎤⎥⎦ = ∫

∞

t (1
s

−
s

1 + s2) ds =
1
2

log (1 +
1
t2) .

A second application of the division property gives

� ⎡⎢⎣
1 − cos t

t2
⎤⎥⎦ = ∫

∞

t

1
2

log (1 +
1
s2) ds =

1
2

t log (1 +
1
t2) + cot−1 t

by using integration by parts. Finally, 

I = 2 ∫
1

0
(1
2

t log (1 +
1
t2) + cot−1 t) dt.

The second part of this integral is a standard result, and the first part may be
tackled easily by integration by parts. The details are omitted, but we obtain

I = 2⎡⎢⎣−
1
4

t2 log(1 + t2) +
1
2

log(1 + t2) −
1
2

t2 logt + t cot−1 t −
1
4

log(1 + t2)⎤⎥⎦
1

0

which is indeed equal to .1
2π

For part (b), the equivalence of the two integrals was established in a
very neat way by Nick Lord. First, define 

I = ∫
∞

−∞
sin2 (tan x) sin2 x

x2
dx and J = ∫

∞

−∞
cos2 (tan x) cos2 x

x2
dx.

Then by a simple application of Pythagorean identities, it can be proved that

J = ∫
∞

−∞

sin2 x − sin2 (tan x)
x2

dx + I.

Therefore, equivalence can be established if it can be proved that 

∫
∞

−∞

sin2 x
x2

dx = ∫
∞

−∞

sin2 (tan x)
x2

dx.

We have 

∫
∞

−∞

sin2 (tan x)
x2

dx = ∫
∞

−∞

sin2 x
x2

 · 
sin2 (tan x)

sin2 x
dx = ∫

π
2

−π
2

sin2 (tan x)
sin2 x

dx

by Lobachewsky’s Theorem.

If we now substitute  and recall that , then

the integral may be rewritten as 

t = tan x sin2 x =
tan2 x

1 + tan2 x

∫
∞

−∞

sin2 t
t2

1 + t2

 · 
1

1 + t2
 dt = ∫

∞

−∞

sin2 t
t2

  dt,

thus proving equivalence.
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In order to evaluate the integral, apply Lobachewsky's theorem to  to
obtain  and then substitute  and a double
angle formula to get 

J
J = ∫

π/2
−π/2 cos2 (tan x) dx t = tan x

J =
1
2 ∫

∞

−∞ ( 1
1 + t2

+
cos 2t
1 + t2) dt.

The first part of this integral is  using standard results, and the second part
was attempted through some deft manipulation involving differentiating
under the integral sign. However, contour integration can be used efficiently
by considering the function  and the closed semicircular contour

 centre  extending from  to  on the real axis. We then have simple
poles at , with only  within the contour, and the residue is

 by the “  rule”. The contribution to the integral of the circular arc
can be estimated thus:

1
2π

f (z) = e2iz

1 + z2

Γ O −R R
z = ±i z = i

e−2 / 2i g / h

|∫π

0

e−2R sin θ + 2iR cos θ

R2e2iθ + 1
iReiθ dθ| ≤ ∫

π

0

R
R2 − 1

dθ → 0 as R → ∞,

since  on .sin θ ≥ 0 [0, π]
So, using the residue theorem, we have ,

and evaluating real parts gives the result .

Combining this with the other result gives the answer .

∫Γ

e2iz

1 + z2
dz = 2πi 

e−2

2i
=

π
e2

1
2 ∫

∞

−∞

cos 2x
1 + x2

dx =
π

2e2
π
2 (1 +

1
e2)

Correct solutions were received from: M. Hennings, N. Lord, R. Mortini, J. A. Mundie,
Z. Retkes and R. Rupp and the proposer Toyesh Prakash Sharma.
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