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Abstract. A class of operators on a tensor product of separable Hilbert spaces is
considered. It contains various traditional operators. Invertibility, positive invertibility
conditions and estimates for the norm of the resolvents are established. In addition,
bounds for the spectrum are suggested. Applications to partial integral and integro-
differential operators are discussed.
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1. Introduction and statement of the main result. Operators on tensor products
of Hilbert spaces arise in various problems of pure and applied mathematics ([3], [11],
and references therein). In many applications, for example in numerical mathematics
and stability analysis, conditions for the invertibility and bounds for the spectra of
operators on tensor products are very important. But to the best of our knowledge,
they have not been investigated in the literature.

In the present paper we consider a class of linear operators on tensor products of
Hilbert spaces. It contains various traditional operators. We derive the norm of the
resolvent, conditions for the invertibility and positive invertibility, as well as bounds
for the spectra. In particular, we suggest estimates for the spectral radius.

A few words about the contents. In this section we formulate the main result of the
paper on the invertibility conditions of considered operators. The proof of this result
is divided into a series of lemmas which are presented in Sections 2 and 3.

In Section 4, an estimate for the norm of the resolvent is established. By that
estimate we investigate bounds for the spectrum. In Sections 5 and 6 we specialize
our results in the cases of Hilbert-Schmidt operators and Neumann-Schatten ones,
respectively. In Section 7 we suggest the conditions that provide the positive invertibility.
In Section 8 we discuss applications of our results to partial integral operators and
integro-differential operators.

Let E1 and E2 be separable Hilbert spaces with the scalar products 〈. , .〉1 and
〈. , .〉2, respectively and norms ‖.‖j = √〈. , .〉j (j = 1, 2). Let H = E1 ⊗ E2 be a tensor
product of E1 and E2 with the scalar product

〈h, h〉H = 〈h1, h1〉1 〈h2, h2〉2 (h = h1 ⊗ h2; h1 ∈ E1, h2 ∈ E1).
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For a linear operator A, σ (A) is the spectrum, Dom (A) is the domain, rs(A) denotes
the spectral radius, α (A) = sup Re σ (A) and

ρ(A, λ) := inf
t∈σ (A)

|t − λ|

is the distance between σ (A) and a λ ∈ C.
A linear operator V is said to be quasinilpotent if σ (V ) = {0}. V is called a Volterra

operator if it is quasinilpotent and compact. In addition, I = IH and Ij mean the unit
operator in H and Ej, respectively.

Recall that a maximal resolution of the identity (m.r.i.) P̃(t) (−∞ ≤ t ≤ ∞) is a left
continuous orthogonal resolution of the identity, such that any gap P̃(t0 + 0) − P̃(t0)
of P̃(t) (if it exists) is one-dimensional (cf. the books by Brodskii [2], Gohberg and
Krein [7] and Gil’ [4, p. 69]).

Let us consider operators of the type

A = D + (V+
1 + V−

1 ) ⊗ I2 + I1 ⊗ (V+
2 + V−

2 ) (1.1)

where D is a normal generally unbounded operator and V±
j are Volterra operators

acting in Ej and having the properties

Pj(t)V+
j Pj(t) = V+

j Pj(t); Pj(t)V−
j Pj(t) = Pj(t)V−

j (t ∈ R) (1.2)

for m.r.i. Pj(t) in Ej (j = 1, 2). In addition,

D =
∫ ∞

−∞

∫ ∞

−∞
w(t, s)dP(t, s) (1.3)

where

P(t, s) := P1(t) ⊗ P2(s) (t, s ∈ R)

and w is a P-measurable scalar-valued function defined on R2.
Recall that a norm ideal Yj (j = 1, 2) of compact operators acting in a Ej is

algebraically a two-sided ideal, which is complete in an auxiliary norm | · |Yj for which
|CB|Yj and |BC|Yj are both dominated by ‖C‖j|B|Yj for a bounded operator C in Ej

and a B ∈ Yj, cf. [7]. Assume, in addition, that there are positive constants θ
(j)
k (k ∈ N),

with

k
√

θ
(j)
k → 0,

for which, for an arbitrary Volterra operator V ∈ Yj

‖Vk‖j ≤ θ
(j)
k |V |kYj

(k = 1, 2, . . . ; j = 1, 2). (1.4)

Below we will check that the Neumann-Schatten ideal has property (1.4).
Denote by ni(V ) the nilpotency index of a nilpotent operator V , so that Vni(V ) =

0 
= Vni(V )−1; if V is quasinilpotent but not nilpotent we write ni(V ) = ∞.
Furthermore, put

ψj := min{‖V+
j ‖j, ‖V−

j ‖j} (j = 1, 2)
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and

Ṽ j =
{

V+
j if ‖V−

j ‖j ≤ ‖V+
j ‖j

V−
j if ‖V+

j ‖j < ‖V−
j ‖j.

Let us suppose that

Ṽ j ∈ Yj (j = 1, 2). (1.5)

Without any loss of generality, assume that

ni(Ṽ1) ≥ ni(Ṽ2)

and put

bm(Ṽ1, Ṽ2) :=
m1∑

k=m2

(m
k

)
θ

(1)
k θ

(2)
m−k|Ṽ1|kY1

|Ṽ2|m−k
Y2

, (1.6)

where (m
k ) = m!/k!(m − k)! are the binomial coefficients,

m1 = min{m, ni(Ṽ1) − 1} and m2 = max{0, m − ni(Ṽ2) + 1}. (1.7)

Finally, put

ψ0 := ψ1 + ψ2

and

J(Ṽ1, Ṽ2, y) :=
ni(Ṽ1)−1∑

k=0

bk(Ṽ1, Ṽ2)
yk+1

(y > 0).

Everywhere below one can replace ni(Ṽ j) by ∞, bm(Ṽ1, Ṽ2) by

b̃m(Ṽ1, Ṽ2) :=
m∑

k=0

(m
k

)
θ

(1)
k θ

(2)
m−k|Ṽ1|kY1

|Ṽ2|m−k
Y2

and J(Ṽ1, Ṽ2, y) by

J̃(Ṽ1, Ṽ2, y) =
∞∑

k=0

b̃k(Ṽ1, Ṽ2)
yk+1

(y > 0). (1.8)

Now we are in a position to formulate the main result of the paper.

THEOREM 1.1. Let the conditions (1.2), (1.3), (1.5),

d0 := inf |σ (D)| > 0 (1.9)

and

ψ0J(Ṽ1, Ṽ2, d0) < 1 (1.10)
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hold. Then the operator defined by (1.1) is invertible. Moreover,

‖A−1‖H ≤ J(Ṽ1, Ṽ2, d0)

1 − ψ0J(Ṽ1, Ṽ2, d0)
. (1.11)

2. Powers of quasi-nilpotent operators. Let W1, W2 be commuting operators in
H. Then, clearly,

(W1 + W2)n =
n∑

k=0

(n
k

)
W k

1 W n−k
2 . (2.1)

Let cjk := ‖W k
j ‖ and

k
√

cjk → 0 (j = 1, 2; k = 1, 2, . . .).

So W1, W2 are quasinilpotent operators. Then W1 + W2 is a quasinilpotent operator.
Indeed, due to (2.1),

‖(W1 + W2)n‖ ≤ c3n :=
n∑

k=0

(n
k

)
c1kc2,n−k

since W1, W2 commute. Since, c1k, c2,k are coefficients of some entire functions f1(z)
and f2(z), and

n∑
k=0

c1kc2,n−k

are coefficients of the entire function f1(z)f2(z), taking into account that (n
k) ≤ 2n, we

can assert that n
√

c3n → 0. So W1 + W2 is indeed a quasinilpotent operator.
Let us suppose that

W1 = V1 ⊗ I2 and W2 = I1 ⊗ V2 (2.2)

where Vj are Volterra operators satisfying the condition

Vj ∈ Yj (j = 1, 2) (2.3)

and where Yj has the property (1.4). Then

‖W k
j ‖H = ‖Vk

j ‖j ≤ θ
(j)
k |Vj|kYj

(k = 1, 2, . . . , ni(Vj) − 1; j = 1, 2).

Without any loss of the generality, assume that ni(V1) ≥ ni(V2). Thus,

‖(W1 + W2)n‖H ≤ bn(V1, V2) :=
n1∑

k=n2

(n
k

)
θ

(1)
k θ

(2)
n−k|V1|kY1

|V2|n−k
Y2

(2.4)

where

n1 = min{n, ni(V1) − 1} and n2 = max{0, n − ni(V2) + 1}.
We thus have proved the following lemma.
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LEMMA 2.1. Let W1 and W2 be quasinilpotent and commuting operators. Then the
operator W1 + W2 is quasinilpotent. Moreover, conditions (2.2) and (2.3) imply inequality
(2.4).

3. Proof of Theorem 1.1. Let us consider the operator

A0 = D + V1 ⊗ I2 + I1 ⊗ V2 (3.1)

where D is a normal operator defined by (1.3), V1 ∈ Y1 and V2 ∈ Y2 are Volterra
operators in E1 and E2, respectively, such that

Pj(t)VjPj(t) = VPj(t) (j = 1, 2; −∞ ≤ t ≤ ∞). (3.2)

Besides, (1.4) holds. Due to Lemma 2.1

VA := V1 ⊗ I2 + I1 ⊗ V2

is a quasinilpotent operator.
In the sequel, P(t, s), D and VA will be called the spectral measure, diagonal part

and nilpotent part of A0, respectively. In addition, the equality

A0 = D + VA (3.3)

is said to be the triangular representation of A0 .

LEMMA 3.1. Let conditions (3.1) and (3.2) hold. Then

‖(A0 − λI)−1‖ ≤
∞∑

n=0

bn(V1, V2)
ρn+1(D, λ)

(λ 
∈ σ (D)) (3.4)

where bn(V1, V2) are defined by (2.4).

Proof. Due to the triangular representation (3.3) we have

(A0 − λI)−1 = (D + VA − λI)−1 = (I + Qλ)−1(D − λI)−1 (λ 
∈ σ (A0)), (3.5)

where

Qλ = (D − λI)−1VA.

According to (1.4),

(D − Iλ)−1 =
∫ ∞

−∞

∫ ∞

−∞
(w(t, s) − λ)−1dP(t, s) (λ 
∈ σ (D)).

Thus

(D − Iλ)−1 =
∫ ∞

−∞
dP1(t) ⊗ T2(t, λ) =

∫ ∞

−∞
T1(s, λ) ⊗ dP2(s)

where

T1(s, λ) =
∫ ∞

−∞
(w(t, s) − λ)−1dP1(t)
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and

T2(t, λ) =
∫ ∞

−∞
(w(t, s) − λ)−1dP2(s).

Then Qλ = B1(λ) + B2(λ), where

B1(λ) := (D − λ)−1(V1 ⊗ I2) =
∫ ∞

−∞
T1(s, λ)V1 ⊗ dP2(s)

and

B2(λ) := (D − λ)−1(I1 ⊗ V2) =
∫ ∞

−∞
dP1(t) ⊗ T2(t, λ)V2.

It can be directly checked that the operators B1(λ) and B2(λ) commute and that

Bn
1(λ) =

∫ ∞

−∞
(T1(s, λ)V1)n ⊗ dP2(s) (n = 1, 2, . . .).

Hence,

‖Bn
1(λ)h‖2

H =
∫ ∞

−∞
‖(T1(s, λ)V1)nh1‖2

1d〈P2(s)h2, h2〉2

(h = h1 ⊗ h2, hj ∈ Ej).

Let us use the following result: let a quasinilpotent operator V and a bounded operator
A in H have the same m.r.i.. Then the operators AV and VA are quasinilpotent
([4, Lemma 3.2.4]).

Since Tj(s, λ) and Vj have the same m.r.i. Pj, due to this result Tj(s, λ)Vj (j = 1, 2)
are quasinilpotent operators. So

‖(Tj(s, λ)Vj)n‖j ≤ θ (j)
n |Vj|nYj

‖Tj(s, λ)‖n
j ≤

θ
(j)
n |Vj|nYj

ρn(D, λ)
.

Consequently,

‖Bn
1(λ)h‖H =

[ ∫ ∞

−∞
‖(T(s, λ)V1)nh1‖2

1d〈P2(s)h2, h2〉2

]1/2

≤ θ
(1)
n |V1|nY1

ρn(D, λ)
(h = h1 ⊗ h2, ‖h‖H = 1).

Therefore,

‖Bn
1(λ)‖H ≤ θ

(1)
n |V1|nY1

ρn(D, λ)
.

Similarly,

‖Bn
2(λ)‖H ≤ θ

(2)
n |V2|nY2

ρn(D, λ)
.
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Now (2.1) implies

‖(B1(λ) + B2(λ))n‖H = ‖Qn
λ‖H ≤ bn(V1, V2)

ρn(D, λ)
. (3.6)

Relations (3.5) imply

‖(A − λI)−1‖H ≤ ‖(D − λI)−1‖H

∞∑
n=0

‖Qn
λ‖H .

According to (3.6) we get the required result. �

Proof of Theorem 1.1. First assume that

ψj := min{‖V+
j ‖j, ‖V−

j ‖j} = ‖V+
j ‖j, (3.7)

so that Ṽ j = V−
j . Rewrite A as A = D + V−

1 ⊗ I2 + I1 ⊗ V−
2 + Z, where

Z = V+
1 ⊗ I2 + I1 ⊗ V+

2 .

Then ‖Z‖ = ψ0. Due to the previous lemma, taking A0 = D + V−
1 ⊗ I2 + I1 ⊗ V−

2 , we
have

‖A−1
0 ‖ ≤ J(Ṽ1, Ṽ2, d0).

Hence condition (1.10) implies the inequality ‖Z‖‖A−1
0 ‖ < 1 and

‖A−1‖ ≤ ‖A−1
0 ‖(1 − ‖Z‖‖A−1

0 ‖)−1.

Hence, the required inequality (1.11) follows. Similar reasoning is valid if instead of
(3.7) we consider the general case. This finishes the proof. �

4. Localization of the spectrum. We begin with the following result.

LEMMA 4.1. Under conditions (1.2), (1.3) and (1.5) for any λ 
∈ σ (D), let

ψ0J(Ṽ1, Ṽ2, ρ(λ, D)) < 1. (4.1)

Then λ is a regular point of operator A represented by (1.1). Moreover, its resolvent
satisfies the inequality

‖Rλ(A)‖ ≤ J(Ṽ1, Ṽ2, ρ(λ, D))

1 − ψ0J(Ṽ1, Ṽ2, ρ(λ, D))
. (4.2)

Proof. Considering the operator A − λI instead of A and taking into account that
‖Rλ(D)‖H = ρ−1(λ, D), we arrive at the required result, due to Theorem 1.1. �

Lemma 4.1 implies the validity of the following.
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COROLLARY 4.2. Under conditions (1.1)–(1.3) and (1.5), for any µ ∈ σ (A), there is
a µ0 ∈ σ (D), such that, either µ = µ0, or

ψ0J(Ṽ1, Ṽ2, |µ − µ0|) ≥ 1. (4.3)

THEOREM 4.3. Under conditions (1.1)–(1.3) and (1.5), let at least one of the relations
Ṽ1 
= 0 or Ṽ2 
= 0 hold. Then the equation

ψ0J(Ṽ1, Ṽ2, y) = 1 (4.4)

has a unique non-negative root z(Y1, Y2, Ṽ1, Ṽ2). Moreover, for any µ ∈ σ (A), there is a
µ0 ∈ σ (D), such that |µ − µ0| ≤ z(Y1, Y2, Ṽ1, Ṽ2).

Proof. Comparing equations (4.4) with inequalities (4.3), we arrive at the result. �

Note that if Ṽ1 = Ṽ2 = 0, then A = D. Consider the case ni (V1) = ∞. Note that

J(Ṽ1, Ṽ2, 1/z) = f1(z)f2(z),

where

fj(z) =
∞∑

k=0

zkθ
(j)
k |Ṽ j|kYj

(z ∈ C; j = 1, 2)

are entire functions. But the product of entire functions is an entire function, whose
Taylor series always converges. This proves that the series, which defines J(Ṽ1, Ṽ2, y)
converges.

To estimate z(Y1, Y2, Ṽ1, Ṽ2), let us consider the equation

∞∑
k=1

akzk = 1, (4.5)

where the coefficients ak, k = 1, 2, . . . are nonnegative, at least one of them is positive,
and they have the property

γ0 ≡ 2 max
k

k
√

ak < ∞.

LEMMA 4.4. The unique nonnegative root z0 of equation (4.5) satisfies the estimate
z0 ≥ 1/γ0.

For the proof see [6, Lemma 3.4]. Lemma 4.4 gives us the inequality

z(Y1, Y2, Ṽ1, Ṽ2) ≤ δ(ψ0, Ṽ1, Ṽ2) := 2 max
j=1,2,...

j+1

√
ψ0bj(Ṽ1, Ṽ2).

If ψ0 = 0, then δ(ψ0, Ṽ1, Ṽ2) = 0. Now Theorem 4.3 implies the following corollary.

COROLLARY 4.5. Under conditions (1.1)–(1.3) and (1.5) for any µ ∈ σ (A) there is a
µ0 ∈ σ (D), such that |µ − µ0| ≤ δ(ψ0, Ṽ1, Ṽ2). In particular,

α (A) ≤ α (D) + δ(ψ0, Ṽ1, Ṽ2)
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and the spectral radius of operator A represented by (1.1) satisfies the inequality

rs(A) ≤ rs(D) + δ(ψ0, Ṽ1, Ṽ2)

provided D is bounded.

We will say that a linear operator A is stable if α (A) < 0.
So under the hypothesis of Corollary 4.5, operator A represented by (1.1) is stable

provided α(D) + δ(ψ0, Ṽ1, Ṽ2) < 0.

5. Operators with Hilbert-Schmidt off-diagonals. Recall that Ṽ j (j = 1, 2) are
defined in Section 1. In this section we assume that Ṽ j are Hilbert-Schmidt
quasinilpotent operators:

Ṽ j ∈ C̃2 (j = 1, 2) (5.1)

where C̃2 = C2(Ej) is the ideal of Hilbert-Schmidt operators in Ej with the Hilbert-
Schmidt norm

N2(K) ≡ [Trace K∗K ]1/2 (K ∈ C̃2).

The asterisk means the adjointness.
We need also the following result: for an arbitrary quasinilpotent Hilbert-Schmidt

operator V0 in H, the inequality

‖Vk
0 ‖H ≤ Nk

2 (V0)√
k!

(k = 1, 2, . . .) (5.2)

is true ([4, Lemma 2.3.1]).
Let W1, W2 be defined by (2.2), again. Lemma 2.1 and (5.2) imply the following.

COROLLARY 5.1. Under conditions (2.2) and (5.1), we have ‖(W1 + W2)n‖H ≤
bn(A, C̃2) where

bn(A, C̃2) :=
n∑

k=0

(
n
k

)
Nk

2 (Ṽ1)Nn−k
2 (Ṽ2)√

(n − k)!k!
. (5.3)

Under conditions (5.1) put

J2(Ṽ1, Ṽ2, y) :=
∞∑

n=0

bn(A, C̃2)
yn+1

(y > 0). (5.4)

Now Theorem 1.1 implies the following result.

THEOREM 5.2. Let the conditions (1.2), (1.3), (5.1), and

ψ0J2(Ṽ1, Ṽ2, d0) < 1

hold. Then the operator defined by (1.1) is invertible. Moreover,

‖A−1‖H ≤ J2(Ṽ1, Ṽ2, d0)

1 − ψ0J2(Ṽ1, Ṽ2, d0)
.
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Since Cn
k ≤ 2n (k ≤ n), due to Lemma 5.1 we have

‖(W1 + W2)n‖H ≤ 1√
n!

n∑
k=0

(n
k

)√(n
k

)
Nk

2 (Ṽ1)Nn−k
2 (Ṽ2)

≤ 2n/2

√
n!

n∑
k=0

(n
k

)
Nk

2 (Ṽ1)Nn−k
2 (Ṽ2)

= [
√

2n(N2(Ṽ1) + N2(Ṽ2))]n√
n!

.

Hence,

J2(Ṽ1, Ṽ2, y) ≤
∞∑

n=0

[
√

2(N2(Ṽ1) + N2(Ṽ2))]n√
n!yn+1

(y > 0). (5.5)

By the Schwarz inequality

∞∑
n=0

bn

√
n!yn

=
∞∑

n=0

(
√

2b)n

√
2nn!yn

≤
[ ∞∑

n=0

2nb2n

n!y2n

]1/2 [ ∞∑
n=0

2−n

]1/2

=
√

2 exp
[

b2

y2

]
(b, y > 0).

This relation and (5.5) imply J2(Ṽ1, Ṽ2, y) ≤ θ2(Ṽ1, Ṽ2, y) where

θ2(Ṽ1, Ṽ2, y) :=
√

2
y

exp
[

2(N2(Ṽ1) + N2(Ṽ2))2

y2

]
(y > 0). (5.6)

Now Theorem 5.2 implies the following result.

COROLLARY 5.3. Let the conditions (1.2), (1.3), (5.1) and

ψ0θ2(Ṽ1, Ṽ2, d0) < 1 (5.7)

hold. Then the operator defined by (1.1) is invertible. Moreover,

‖A−1‖H ≤ θ2(Ṽ1, Ṽ2, d0)

1 − ψ0θ2(Ṽ1, Ṽ2, d0)
. (5.8)

Theorem 4.3 and relation (5.2) yield the next theorem.

THEOREM 5.4. Under conditions (1.1)–(1.3) and (5.1), the equation

ψ0J2(Ṽ1, Ṽ2, y) = 1 (5.9)

has a unique non-negative root z(C̃2). Moreover, for any µ ∈ σ (A), there is a µ0 ∈ σ (D)
such that |µ − µ0| ≤ z(C̃2).

According to Lemma 4.4,

z(C̃2) ≤ 2 max
j=1,2,...

j+1

√
ψ0bj(A, C̃2) (ψ0 
= 0).

If ψ0 = 0, then z(C̃2) = 0. We need the following simple lemma.
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LEMMA 5.5. The unique positive root z0 of the equation

zez = a(a = const. > 0) (5.10)

satisfies the estimate

z0 ≥ ln[1/2 +
√

1/4 + a].

If, in addition, the condition a ≥ e holds, then z0 ≥ ln a − ln ln a.

For the proof see [6, Lemma 4.6].
According to (5.5), we have z(C̃2) ≤ z0(C̃2) where z0(C̃2) is the unique positive

root of the equation

ψ0
√

2
y

exp
[

2[N2(Ṽ1) + N2(Ṽ2)]2

y2

]
= 1. (5.11)

Clearly, this equation is equivalent to the following one:

2ψ2
0

y2
exp

[
4(N2(Ṽ1) + N2(Ṽ2))2

y2

]
= 1.

Write

z = 4(N2(Ṽ1) + N2(Ṽ2))2

y2
.

Then we have equation (5.10). Now Lemma 5.5 gives us the inequality

z0(C̃2) ≤ δ2 (A) (5.12)

where

δ2 (A) ≡ 2(N2(Ṽ1) + N2(Ṽ2))

ln1/2
[
1/2 +

√
1/4 + 2(N2(Ṽ1) + N2(Ṽ2))2

ψ2
0

] . (5.13)

Furthermore, Theorem 5.4 implies the following corollary.

COROLLARY 5.6. Under conditions (1.1)–(1.3), and (5.1), for any µ ∈ σ (A), there is
a µ0 ∈ σ (D), such that, |µ − µ0| ≤ δ2(A).

So operator A is stable, provided α(D) + δ2(A) < 0.
If, in addition, D is bounded, then rs(A) ≤ δ2(A) + rs(D).

6. Operators with Neumann-Schatten off diagonals. Suppose now for some
integer p > 1,

Ṽ j ∈ C̃2p = C2p(Ej) (j = 1, 2) (6.1)

where C̃2p is the Neumann-Schatten ideal in Ej. That is,

N2p(K) := [Trace (K∗K)p]1/2p < ∞ (K ∈ C̃2p).
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According to (5.2), for any quasinilpotent operator V ∈ C̃2p in Ej,

‖Vmp‖j ≤ Nm
2 (Vp)√

m!
≤ Npm

2p (V )√
m!

(m = 1, 2, . . .).

Take into account that, for an arbitrary operator K ∈ C2p(Ej),

‖K‖2
j = max

k
|λk(K∗K)| ≤ N2p(K) := [Trace (K∗K)p]1/p,

where λk(K∗K), k = 1, 2, . . . are the eigenvalues of K∗K .
Hence, for any k = i + mp(i = 0, . . . , p − 1; m = 0, 1, 2, . . .), we have

‖Vk‖j = ‖Vi+pm‖j ≤ ‖Vi‖jNm
2 (Vp)√

m!
≤ Ni+pm

2p (V )√
m!

.

This inequality can be written as

‖Vk‖j ≤ Nk
2p(V )√
[k/p]!

(V ∈ C̃2p; k = 1, 2, . . .), (6.2)

where [x] means the integer part of a number x > 0. Under conditions (2.2) and (6.1),
by Lemma 2.1 we have

‖(W1 + W2)n‖H ≤
n∑

k=0

(n
k

) Nk
2p(Ṽ1)Nn−k

2p (Ṽ2)√
[k/p]![(n − k)/p]!

. (6.3)

Under (6.1), put

J2p(Ṽ1, Ṽ2, y) :=
∞∑

n=0

bn(A, C̃2p)
yn+1

(y > 0)

with

bn(A, C̃2p) :=
n∑

k=0

(
n
k

)
Nk

2p(Ṽ1)Nn−k
2p (Ṽ2)√

[(n − k)/p]![k/p]!
.

Now Theorem 1.1 implies the following result.

THEOREM 6.1. Let the conditions (1.2), (1.3), (6.1), and

ψ0J2p(Ṽ1, Ṽ2, d0) < 1 (6.4)

hold. Then the operator defined by (1.1) is invertible. Moreover,

‖A−1‖H ≤ J2p(Ṽ1, Ṽ2, d0)

1 − ψ0J2p(Ṽ1, Ṽ2, d0)
. (6.5)

Theorem 4.3 and relation (6.3) yield the following result.
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THEOREM 6.2. Under conditions (1.1)–(1.3) and (6.1), the equation

ψ0J2p(Ṽ1, Ṽ2, y) = 1

has a unique non-negative root z(C̃2p). Moreover, for any µ ∈ σ (A), there is a µ0 ∈ σ (D),
such that |µ − µ0| ≤ z(C̃2p).

According to Lemma 4.4,

z(C̃2) ≤ 2 max
j=1,2,...

j+1

√
ψ0bj(A, C̃2p).

7. Positive invertibility. Let E1, E2 be Hilbert lattices (cf. [9]). Again consider
operators of the type (1.1). It is assumed that D is invertible and the operator

D−1 is positive and V±
1 , V±

2 are non-negative operators . (7.1)

THEOREM 7.1. Under conditions (1.2), (1.3), (1.5), operator A defined by (1.1) is
positively invertible and the inequalities (1.11) and

A−1 ≥ D−1 > 0 (7.2)

are true, provided relations (1.10) and (7.1) hold.

Proof. Inequality (1.11) follows from Theorem 1.1. Put

T± = −V±
1 ⊗ I2 − I1 ⊗ V±

2 .

Due to (1.10) and Lemma 3.1, at least one of the following relations:

‖(D − T−)−1T+‖ < 1 (7.3)

or ‖(D − T+)−1T−‖ < 1 is valid. Without loss of generality, assume that (7.3) holds.
Since V±

j ≤ 0, we have T± ≥ 0. According to (1.1),

A = D − T− − T+ = (D − T−)(I − (D − T−)−1T+).

Hence

A−1(I − (D − T−)−1T+)(D − T−)−1. (7.4)

But D − T− = D(I − D−1T−) and D−1T− is quasinilpotent and nonnegative. So

(D − T−)−1 =
∞∑

k=0

(D−1T−)kD−1 ≥ D−1.

Moreover, under condition (7.3), operator I(D − T−)−1T+ is invertible, and

(I − (D − T−)−1T+)−1 =
∞∑

k=0

((D − T−)−1T+)k ≥ I.

This and (7.4) proves the required inequality (7.2). �

https://doi.org/10.1017/S0017089503001575 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001575


114 M. I. GIL’

Now let Ṽ j be Hilbert-Schmidt quasinilpotent operators. Recall that θ2(Ṽ1, Ṽ2, d0)
is defined by (5.6). Theorem 7.1 and Corollary 5.3 imply the following corollary.

COROLLARY 7.2. Under conditions (1.2), (1.3), (5.1), (5.7) and (7.1), operator A
defined by (1.1) is positively invertible. Moreover the inequalities (5.8) and (7.2) are
true.

If Ṽ j are Neumann-Schatten as in Theorem 6.1, Theorem 7.1 implies the following.

COROLLARY 7.3. Under conditions (1.2), (1.3), (6.1), (6.4) and (7.1), operator A
defined by (1.1) is positively invertible. Moreover inequalities (6.5) and (7.2) are true.

8. Examples.

8.1. A partial integral operator. Let us consider in the complex space H ≡
L2([0, 1] × [0, 1]) the operator A defined by

(Au)(x, y) = a(x, y)u(x, y) +
∫ 1

0
K1(x, x1)u(x1, y) dx1 +

∫ 1

0
K2(y, y1)u(x, y1) dy1 (8.1)

where K1, K2 are scalar Hilbert-Schmidt kernels, and a(x, y) is a real bounded
measurable function defined on [0, 1]2. Such operators arise in various applications
([1], [8], [10]). In the considered case E1 = E2 = L2[0, 1].

For 0 ≤ t ≤ 1 and u ∈ L2[0, 1], define P1(t) and P2(t) by

(P1(t)u)(x) = (P2(t)u)(x) =
{

0 if t < x ≤ 1

u(x) for 0 ≤ x < t if 0 ≤ x < t.
(8.2)

In addition, put Pj(t) = Ij for t > 1 and Pj(t) = 0 for t < 0; j = 1, 2. Take (Dv)(x, y) =
a(x, y)v(x, y) (v ∈ H) ,

(V+
j u)(x, y) =

∫ x

0
Kj(x, x1)u(x1) dx1

and

(V−
j u)(x, y) =

∫ 1

x
Kj(x, x1)u(x1) dx1 (u ∈ L2[0, 1]).

Then condition (1.2) holds. Besides,

N2(V+
j ) =

[ ∫ 1

0

∫ x

0
|Kj(x, x1)|2 dx1 dx

]1/2

,

N2(V−
j ) =

[ ∫ 1

0

∫ 1

x
|Kj(x, x1)|2 dx1 dx

]1/2

, (8.3)

and

σ (D) = {z ∈ C : z = a(x, y), 0 ≤ x, y ≤ 1}.
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Recall that ψ0 and Ṽ±
j are defined in Section 1. Due to Theorem 5.4 and Corollary 5.6

σ (A) ⊂ {z ∈ C : |z − a(x, y)| ≤ z2(A) ≤ δ2(A), 0 ≤ x, y ≤ 1}
where z2(A) is the unique positive root of (5.9) and δ2(A) is defined by (5.13). Hence,

rs(A) ≤ max
x,y

|a(x, y)| + δ2(A) and α(A) ≤ max
x,y

a(x, y) + δ2(A).

Thus, the operator defined by (6.1) is stable, provided a(x, y) + δ2(A) < 0 for all x,

y ∈ [0, 1].
Suppose now

a(x, y) ≥ d0 > 0 and Kj(x, y) ≤ 0 (x, y ∈ [0, 1]).

In addition suppose condition (5.7) holds. Then the operator defined by (8.1) is
positively invertible. Moreover, the inequality

(A−1u)(x, y) ≥ u(x, y)
a(x, y)

(x, y ∈ [0, 1])

is valid for any non-negative function u ∈ H.

8.2. An integro-differential operator. Let us consider in H ≡ L2([0, 1] × [0, 1])
the operator

(Au)(x, y) := ∂2u(x, y)
∂y2

+
∫ 1

0
K1(x, x1)u(x1, y)dx1 (u ∈ Dom(A)) (8.4)

with

Dom (A) =
{

u ∈ H :
∂2u
∂y2

∈ H; u(x, 0) = u(x, 1) = 0
}
.

Here K1 is a Hilbert-Schmidt kernel.
In this case condition (1.2) holds with V±

1 defined as in the previous subsection,
V±

2 = 0 and

(Du)(x, y) = ∂2u(x, y)
∂y2

(u ∈ Dom (A)).

Take P1 as in (8.2) and

(P2(t)v)(y) = (P2(n)v))(y) = 2
n∑

k=1

sin(kπy)
∫ 1

0
v(y1) sin(kπy1)v(y1) dy1

(n = 1, 2, . . .). Then condition (1.2) holds. In this case

ψ0 = ψ1 = min{‖V+
1 ‖L2 , ‖V−

1 ‖L2} and ψ2 = 0.

Clearly, σ (D) = {−π2k2; k = 1, 2, . . .}. Then due to Corollary 5.6

σ (A) ⊂ {z ∈ C : |z + π2m2| ≤ z2(A) ≤ δ2(A), m = 1, 2, . . . .},
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z2(A) is the unique positive root of equation (5.9) and δ2(A) is defined by (5.13) with
(8.13) taken into account. In particular,

α(A) ≤ −π2 + z̃2(A) ≤ −π2 + δ2(A).

Thus, operator A defined by (8.4) is stable, provided −π2 + δ2(A) < 0.
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