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Abstract

This paper demonstrates how learning the structure of a Bayesian network, often used to predict and represent causal
pathways, can be used to inform policy decision-making.
We show that Bayesian networks are a rigorous and interpretable representation of interconnected factors that affect
the complex environment in which policy decisions aremade. Furthermore, Bayesian structure learning differentiates
between proximal or immediate factors and upstream or root causes, offering a comprehensive set of potential causal
pathways leading to specific outcomes.
We show how these causal pathways can provide critical insights into the impact of a policy intervention on an
outcome. Central to our approach is the integration of causal discoverywithin aBayesian framework, which considers
the relative likelihood of possible causal pathways rather than only the most probable pathway.
We argue this is an essential part of causal discovery in policy making because the complexity of the decision
landscape inevitably means that there are many near equally probable causal pathways. While this methodology is
broadly applicable across various policy domains, we demonstrate its valuewithin the context of educational policy in
Australia. Here, we identify pathways influencing educational outcomes, such as student attendance, and examine the
effects of social disadvantage on these pathways. We demonstrate the methodology’s performance using synthetic
data and its usefulness by applying it to real-world data. Our findings in the real example highlight the usefulness of
Bayesian networks as a policy decision tool and show how data science techniques can be used for practical policy
development.

Policy Significance Statement

This research shows how the latest advances in data science, which focus on identifying causal pathways and
assessing the relative likelihood of those causal pathways, can be useful in policymaking across a range of
policy domains. By representing the set of complex factors that impact an outcome as an easy-to-interpret
network of stratified factors, policymakers can judge how a policy intervention will impact not only a single
outcome but the entire network of factors. This will provide policymakers with a more comprehensive
understanding of complex issues at play and enable the identification of optimal policies for specific social
challenges.
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1. Introduction

The policymaking landscape is inherently complex, particularly in high-stakes situations such as
education, healthcare, and environmental policy, where decisions have profound and far-reaching
consequences (Mueller, 2020). These high-stakes situations are characterised by multifaceted, inter-
related factors and ambiguous futures. Accounting for complexity and the associated uncertainty is key to
good policy setting and decision-making in such situations, (Cripps and Durrant-Whyte, 2023).

An example of this complexity can be seen in education, where policymakers face the challenge of
improving student attendance and learning outcomes, especially in disadvantaged communities. This
issue is influenced by complex, interrelated factors such as socio-economic status and access to
healthcare. These factors are often difficult to disentangle using traditional data science techniques.

Traditional techniques like linear regression reduce complex policy issues to a single outcome and a
limited set of inputs, often resulting in oversimplifiedmodels that overlook key interrelationships between
variables. These models assume linearity and independence among variables, limiting their ability to
capture the intricate dynamics of real-world policy challenges. In contrast, more advanced methods, such
as random forests and neural networks, better handle complexity and nonlinear relationships. However,
random forests, while robust, lack the interpretability needed in policy contexts, and neural networks,
though powerful, function as “black boxes” with limited transparency. Despite their ability to model
complexity, these methods often fail to deliver the causal insights and clarity essential for effective
decision-making in policy.

Recent advancements in causal machine learning have provided valuable new tools for policymaking,
particularly through the use of probabilistic graphical models like Bayesian networks, which offer a more
nuanced understanding of complex causal relationships (Scholköpf, 2022; Lechner, 2023; Kaddour et al.,
2022; Moreira 2021). A Bayesian network (BN) is a graphical model that is commonly used to represent
causal pathways (Schölkopf, 2022; Kaddour et al., 2022). A BN shows the dependencies that exist
between factors, whereby factors, we mean variables or features of an environment that may impact
outcomes. A BN consists of nodes representing factors and directed edges, indicating dependencies
between factors. Arrows are attached to edges, and the factor from which an arrow originates is called a
parent of the factor to which the arrow points, known as a child. This notion of a parent leading to a child
gives BNs a causal interpretation. To allow this causal interpretation, a BN is constructed so that the flow
of arrows does not permit a cycle (which would imply a self-causality is challenging to interpret), and a
BN is therefore also known as a Directed Acyclical Graph (DAG) (Friedman and Koller, 2003).

One use of DAGs in policy setting, and many other applications, is that the ancestors of a child can be
separated into those which are directly linked and are therefore immediate causes, referred to as parents
and those ancestors that are indirectly linked, via an intermediate factor, often referred to as root or
upstream causes (Zhu et al., 2023). This distinction between immediate and upstream causes has
implications for policy setting. An intervention on an immediate cause may not have the desired impact
on an outcome if upstream or root causes are not addressed. We illustrate this with a simulated example in
Section 3, as well as with a real application in Section 4. An active area of research in machine learning,
commonly known as causal discovery (Glymour et al., 2019), involves learning the structure of a DAG.
This process of causal discovery consists of identifying which edges exist and the direction of arrows
connecting those edges, which may suggest a causal relationship.

Several methods have been proposed to learn the structure of a DAG using observational data. These
methods aremostly divided into constraint-based and scoring approaches. Constraint approaches focus on
statistical tests to determine causal dependencies between factors (for example, PC-algorithm (Spirtes
et al., 2000)). On the other hand, scoring approaches focus on maximising scoring metrics (for instance,
theK2 algorithm (Cooper andHerskovits, 1992) and greedy hill climbing (Tsamardinos et al., 2006)). The
recent works of Vowels et al. (2022) and Kitson et al. (2023) provide a comprehensive survey of causal
discovery methods and their applications.

Understanding these causal relationships is crucial for accurately quantifying the outcomes of
interventions, such as policy changes (Cordero et al., 2018) or medical treatments (Matthay andGlymour,
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2022). This has wide-ranging implications across various fields, from improving public health strategies
(Chiolero, 2018; Zhu et al., 2023) to optimising business processes (Bozorgi et al., 2023) and shaping
effective government policies (Brock et al., 2007).

More recent advances in structure learning take a Bayesian approach and focus on attaching relative
probabilities to multiple possible causal pathways, in contrast to the previously mentioned constraint-
based and score-based approaches that focus on learning a DAG with the single most likely causal
pathway. Bayesian structure learning attempts to learn the relative probabilities of all possible causal
pathways and typically uses Markov Chain Monte Carlo (MCMC) methods such as structure MCMC
(Madigan et al., 1995), order MCMC (Friedman and Koller, 2003) or partition MCMC (PMCMC)
(Kuipers and Moffa, 2017), to obtain sampling-based estimates of these relative probabilities. These
techniques, which consider a suite of possible causal pathways over those that focus on a single most
likely causal pathway, are of particular relevance in policy settings, where the complexity of the issue
inevitably results in the probability of multiple possible causal pathways.

A further advantage of Bayesian structure learning is that prior knowledge from experts or commu-
nities can be incorporated into the process (Hassall et al., 2019). In ecology, for example, Carriger et al.
(2016) suggests that the use of Bayesian structure learning improves evidence-based assessments in areas
such as environmental policy by integrating prior knowledge with new evidence. The intersection of
policymaking and advanced machine-learning methods has also been a focus of increasing interest in the
academic community. For instance, Carriger et al. (2016) emphasises the importance of a DAG in
significantly improving environmental assessments for evidence-based policy by merging probabilistic
calculus with causal knowledge (Pearl et al., 2000; Pearl and Mackenzie, 2018).

The integration of Bayesian causal discovery methodologies together with Bayesian reasoning,
specifically Bayesian adaptive learning (Cripps et al., 2024), into the policymaking cycle provides a
coherent and logically consistent approach for policymakers wishing to make evidenced-based decisions
and learn what policies work and why in an adaptive and agile fashion. Bayesian causal discovery
provides a useful tool for policymakers seeking to untangle which factors impact outcomes and
distinguish proximal or immediate causes from upstream and root causes to identify potential inventions.
When coupled with Bayesian reasoning, the impact of an intervention, suggested by the Bayesian causal
discovery, can be evaluated so that a continuous and iterative learning cycle is created (Cripps et al., 2024).
This topic is the subject of current research in the machine-learning community (Toth et al., 2022).

This paper demonstrates how Bayesian Structure learning can be used to inform policy decision-
making in three specific ways.

1. We show howDAGs can used to quantify and represent causal pathways, in a statistically rigorous
yet readily interpretable manner, making them a useful tool for policymakers to represent how
factors affect outcomes in complex social phenomena. These representations stratify factors into
those directly connected to an outcome and those indirectly connected to an outcome via
intermediate factors. This stratification is suggestive of causal pathways, thereby providing
policymakers with an understanding of how multiple factors affect multiple outcomes for targeted
policy settings. We give a simple synthetic example of this representation in Section 3.

2. We show that estimating a DAG in a Bayesian framework allows us to attach probabilities to many
possible causal pathways rather than only estimating the single most likely pathway. This is critical
for policymaking in complex environments because it is likely that there are several probable causal
pathways.We show, in Sections 2 and 4, that the uncertainty surrounding causal pathways needs to
be taken into consideration by policymakers because near equally probable causal pathways are
often different and hence would suggest different potential interventions.

3. We demonstrate the technique on a real application, where the goal is to find the possible casual
pathways for school attendance, which occur beyond the school gate. We use the data from the
Longitudinal Study of Australian Children (LSAC) (Mohal et al., 2021) and show how financial
stability affects health-related factors which ultimately drive school attendance.
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2. Bayesian networks

Bayesian networks (BNs) are a useful tool for modelling complex relationships between factors. ABN, or
DAG consists of a graph,G , and conditional on G , a set of parameters,Θ. The graph G is defined by a set of
nodes or vertices, V and directed edges ℰ, so that G ¼ V ,ℰf g. The parameters Θ describe the conditional
distributions of the nodes, V in the graph, where the conditioning is w.r.t the parents of that node; see
Appendix B for further details.

Structure learning involves determining the optimal arrangement of nodes and edges in a BN from
data. Learning the structure of a graph from data is difficult for two main reasons. First, the number of
possible graph structures increases super exponentially with the number of nodes, making an exhaustive
search over all possible graphs computationally infeasible, even for a modest number of nodes1. Second,
the space of graph structures is discrete, meaning that optimization methods that rely on gradients are not
appropriate. In Bayesian structure learning, the problem becomes evenmore challenging because the goal
is not only to find the optimal or most likely graph but also to attach probabilities to all possible graphs.
Within this context, the term ‘prediction’ is specifically used when referring to the output of models, and
‘causation’ is used in interpreting these outputs within policy decisions.

An example of a BN is given in Figure 1a with nodes depicting factors and directed edges indicating
dependencies. For a given set of observations, which are a realization of factors generated from some
underlying process, a BN or DAG encodes a set of conditional independencies. We note that the
conditional independence structure of a set of factors does not uniquely define a causal path (Dawid,
2010). However, they do provide a set of possible causal pathways, known as Markov equivalence
classes, which can be causally distinguished from each other either by imposing prior knowledge or via
intervention (Pearl et al., 2000).

2.1. Motivation

We motivate the use of BNs as a tool for policymakers wishing to understand the complex interaction
between factors in a socioeconomic system by illustrating the limitations of linear regression, often used
for the same purpose.

Figure 1a presents a hypothetical Bayesian Network representing a socioeconomic system. The
variables in this network include family structure (Single Parent, SP), income levels (Low Income,
LI), educational attainment (Not Completed Year 12, NC12), employment status (Unemployed,UE), and
mental health (Mental Health, MH). The network illustrates the following relationships: being a single
parent (SP) influences both low-income (LI) and incomplete educational attainment (NC12). Subse-
quently, these factors impact employment status (UE) and mental health (MH).

Figure 1b shows a BN representation of a linear regression model with the same factors. A linear
regression model is a special case of a BN; one which has only one child and all the other factors are
possible parents. In this instance, we assume that incomplete educational attainment is the response
variable or child.To show the limitations of linear regression tomodel a network of interconnected factors,
we generated data based on the relationships shown in Figure 1a and then analysed the impact of all the
other factors on incomplete educational attainment, using backward variable selection for inference
regarding the impact of factors on the outcome. The red lines in Figure 1b indicate relationships that were
found to be statistically significant.

Figure 1b shows that linear regression fails to identify the true drivers (LI!NC12) and (SP!NC12).
This is not surprising because linear regression constrains the graph space,G, to those graphs where there
is only one child,NC12 and all the other are possible direct parents as opposed to upstream ancestors.This
constraint often results in misleading interpretations if one uses these techniques to infer dependencies
between factors and perhaps explains why policies aimed at altering immediate causes, identified by
regression analysis, for example, have not been successful in addressing societal issues. In contrast, BNs

1 For 25 factors that are more possible DAGs than atoms in the universe
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separate upstream dependencies from more immediate dependencies so that more nuanced and targeted
interventions can be identified and implemented. In Section 3.2, Figure 3 shows how structure learning
methods can recover the true data-generating process.

2.2. Learning the structure of a BN

Learning the structure of a BN from observational data is often referred to as causal discovery. Structure
learning involves determining the optimal arrangement of nodes and edges in a BN from data. While the
structure of a BN can provide valuable insights into the processes that generated that data and holds
promise as a tool for policy formation, the task of learning the structure is proportionally difficult. There
are two main reasons for this. First, the number of possible graph structures increases super exponentially
with the number of nodes, making an exhaustive search over all possible graphs computationally
infeasible, even for a modest number of nodes. Second, the space of graph structures is discrete, meaning
that optimization methods that rely on gradients are not appropriate. In Bayesian structure learning, the
problem becomes evenmore challenging because the goal is not only to find the optimal or most probable
graph but also to attach probabilities to possible graphs. See Appendix B for technical details.

The structure of a graph encodes conditional independencies that exist among factors in a network, and
Bayesian structure learning attaches probabilities to these conditional independence structures. However,
graphs with the same conditional independence structures can have different causal interpretations,
making predicting the impact of an intervention on an outcome problematic. To compute the likely
impact of an intervention on an outcome, we can compute the impact of that intervention on all possible
causal paths associated with an equivalence class, see Nandy et al. (2017).2

3. Simulation study

This section builds upon the motivation example presented in Section 2.1, where we generated a dataset
from a known DAG structure and applied a Linear Regression model to analyse the data. Synthetic data
generation provides a controlled scenario where the causal structure is known, allowing us to systemat-
ically evaluate the performance of different modelling approaches. In that example, the Linear Regression
failed to accurately identify the key relationships influencing the variable NotCompletedYear12,

Figure 1. (a) Bayesian network of a synthetic socioeconomic scenario. The factors of interest specify the
nodes in the network, while the directed edges (arcs) indicate conditional dependence relationships
between the nodes. (b) Linear regression model. The red edges indicate that the relationship between

factors is found to be statistically significant using backwards variable selection.

2 if causality is defined in terms of the outcome of an intervention
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demonstrating the limitations of traditional regression models in capturing complex causal interactions
and indirect effects. In this section, we are interested in understanding what factors influence the year 12
completion. To answer this question, present a simulated example to demonstrate the advantages of
Bayesian structure learning over traditional optimization approaches that typically focus on identifying a
single “best”DAG from observed data. By using Bayesian structure learning to represent uncertainty and
multiple causally plausible models, we offer a more robust framework for policymaking that equips
decision-makers with a richer set of potential causal explanations. These methods can enhance their
ability to make more informed decisions in complex scenarios.

3.1. Learning the best graph - PC algorithm

To understand the effectiveness of traditional optimization approaches that typically focus on identifying
a single “best” DAG, we applied the PC Algorithm (Spirtes et al., 2000) to learn the relationships among
variables in the same synthetic dataset used in our Linear Regression example. The resulting graph is
presented in Figure 2 together with an edge matrix that shows all the edges that the PC algorithm failed to
identify when compared to the data generation DAG. Like other similar structure learning methods, the
PC Algorithm demonstrated its limitations in accurately recovering the original data-generating graph.
Specifically, it failed to identify four critical sets of relationships: LI !NC12,NC12!UE, SP!NC12,
and SP!NC12. This inability to capture the true causal structure highlights a fundamental challenge in
structure learning models that commit to a single graph estimate.

The PC Algorithm solely relies on conditional independence tests and assumes that the underlying
graph is acyclic and faithful to the distribution of the data. However, its effectiveness is constrained by
these assumptions and the quality of the conditional independence tests. As illustrated in our results, this
often leads to incomplete or incorrect causal inferences, particularly in complex datasets where hidden
variables and feedback loops may exist.

This limitation of the PC Algorithm underscores the necessity for more sophisticated inference
methods that are capable of quantifying uncertainties both in the graph structure and its parameters.
Such methods are important for developing robust and reliable policymaking tools that can adapt to the
complexities and variabilities inherent in real-world data.

Probabilistic approaches, such as Bayesian structure learning, explore a range of possible graphs,
providing a more nuanced and comprehensive understanding of potential causal connections. The
reliance of the PC Algorithm on identifying a single, most likely graph overlooks other feasible—and
potentially correct—outcomes, including those that more accurately reflect the true data-generating
structure.

3.2. True posterior distribution analysis

Bayesian structure learning aims to quantify uncertainty by estimating the posterior probability distri-
bution over all plausible DAGs. This posterior distribution encapsulates the degree of uncertainty
regarding the various DAGs that could potentially explain the observed data. The primary objective of
Bayesian structure learning is to quantify uncertainties by computing an approximate posterior distribu-
tion across all plausible DAGs rather than pinpointing a single ‘best’ graph.

An important concept in this context is that of equivalence classes. An equivalence class comprises
multiple DAGs that encode the same set of conditional independencies. This means these equivalent
classes cannot be distinguished from the data alone, as they represent statistically equivalent causal
structures. Recognizing equivalence classes is important because different DAGs within the same class
can suggest different causal interpretations, potentially leading to varying policy implications.

Figure 3 illustrates the posterior probability distribution for our synthetic data example. We generated
this distribution by enumerating all possible DAGs for a five-node graph and evaluating each with a score
function, specifically the BGe score (Heckerman et al., 1995). The results show that while the true data-
generating DAG is among those with the highest probabilities, there are 19 other DAGs with similar
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probabilities. These DAGs often feature reversed edges compared to the true graph, illustrating the
variations in causal structures that can similarly explain the data.

The main challenge lies in the vast number of possible DAGs that the algorithm needs to explore, even
for relatively small datasets, which makes the computation impractical for large datasets (for a graph with
only five variables, the space of DAGs is 29,281; for a six-node graph, this number explodes to
3,781,503). This means that we can no longer manually enumerate all possible DAGs in scenarios with
more than five variables. For this, we will need advanced Bayesian structure learning algorithms, such as
Partition MCMC (PMCMC), to approximate the true posterior distribution.

3.3. Bayesian structure learning

In this section, we demonstrate the effectiveness of Bayesian structure learning algorithms by applying
Partition MCMC (Kuipers and Moffa, 2017) for 300,000 iterations to our synthetic data example, which
aligns with other works in the literature where 300,000 iterations are typically used for MCMC in similar
causal discovery tasks (Cundy et al., 2021). Figure 4 presents the recovered approximate posterior
distribution, highlighting the graph structures most frequently visited by the algorithm. This distribution
underscores the algorithm’s ability to explore a wide range of plausible graph structures, thus enhancing
our understanding of the potential causal relationships within the data. Such understanding is important
for making informed inferences about causal links in high-dimensional datasets, enabling researchers and
policymakers to make decisions that are grounded in a detailed comprehension of the inherent uncer-
tainties in the causal framework.

In Figure 4, the approximate posterior distribution shows a diverse set of DAGs, each suggesting
different potential causal pathwayswithin our dataset. This variety highlights the algorithm’s capability to
explore the complex landscape of causal structures, suggesting that no single model dominates the
posterior. This is particularly evident in the varied probabilities associated with the different DAGs
shown, reflecting a significant level of uncertainty about the exact causal relationships. The edge
occurrence probabilities. For example, the edge from UE!NC12 exhibits a probability of 0.53,
signifying a potential influence of unemployment on educational completion. Similarly, MH is shown
to be influenced byNC12with a probability of 0.59, suggesting that educational attainment might impact
mental health outcomes. Note that the relationships with stronger probabilities align with those in the true
data-generating DAG, indicating that the most frequently visited edges during the Bayesian learning
process coincide with the actual data-generation DAG. This matrix enables us to quantify both the

Figure 2. Comparison highlighting specific limitations in the PC algorithm’s ability to capture certain
key relationships within the data. (left) Graph learned using the PC algorithm. (right) The difference

between the edges in the predicted PC graph and the true graph.
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Figure 4. Comparative visualisation of Bayesian network structures inferred from PMCMC simulation.
The bar chart displays the probability distribution of sampled networks, with the true network denoted in
red, indicating the highest probability. Adjacency matrices compare edge occurrence probabilities from
sampledDAGs against the true data generation graph, highlighting variances in edge predictions. Below,
the predicted graphs with the highest scores are depicted, and the true graph is shown for reference.

Figure 3. This figure illustrates the probability distribution of Bayesian network structures as compared
to the true graph. Among the networks analysed, there are 19 equivalent classes, each representing
structures that exhibit identical conditional independencies. Four of these equivalent classes are

emphasized, showcasing how their structures align with or differ from the true graph, providing insight
into the robustness and variability within the network interpretations.
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uncertainty and strength of each potential causal link, offering a detailed perspective on how various
factors may interact within the system.

To analyse the convergence of the PMCMC algorithm, we employed the Jensen-Shannon Divergence
(JSD) as a metric to measure the difference between the true posterior distribution, derived directly from
the synthetic data and the PMCMC approximate distribution. The JSD is particularly useful in this context
as it quantifies the similarity between two probability distributions, where a lower value indicates a closer
match, thus reflecting a more accurate approximation by the algorithm (for mathematical details, refer to
Appendix C). Additionally, to assess the robustness of our findings and quantify the uncertainty related to
the generated dataset, we sampled five different datasets from the same true data-generating DAG and
applied the PMCMC algorithm to each. This procedure allowed us to calculate the JSD across different
samples for varying numbers of iterations. The consistent reduction in JSD across all samples further
corroborates the efficacy of the PMCMC algorithm in diverse scenarios, enhancing our confidence in its
use for exploring complex causal structures within high-dimensional datasets.

Figure 5 presents the JSD comparison between the true posterior probability distribution and the
approximate posterior distribution obtained through PMCMC. In the figure, the red squares overlaying
the blue bars indicate the posterior probabilities estimated by the PMCMC algorithm. These values are the
algorithm’s approximation of how likely each DAG is to be the correct model based on the data. The
analysis indicates that PMCMC performs well in approximating the true probabilities for the most likely
DAGs. The performance appears to be particularly strong where the true probabilities are highest. As the
index increases, both the true and approximated probabilities decline. This is typical in scenarios where a
few models are much more likely than others, leading to a long tail of less likely models.

This empirical evidence reinforces the value of Bayesian structure learning, particularly using
advanced algorithms like PMCMC, in uncovering the underlying causal dynamics within data. Such
methods not only aid in achieving a deep understanding of the causal mechanisms but also provide a
reliable foundation for making well-informed policy decisions that are crucial in dynamic and uncertain
environments.

3.4. Discussion: towards policy decision-making using uncertainty quantification

Bayesian structure learning can enrich the understanding of policymakers who face the complex task of
understanding andmanipulating systems characterized by intricate and often conflicting causal structures
by identifying and attaching probabilities to different causal pathways. This allows policymakers to better
navigate the decision-making lifecycle, which typically includes agenda setting, policy formulation,
adoption, implementation, and evaluation (Manski, 2012). In addition, this process is able to adapt to new
information and changing conditions so that policy decisions are both robust and timely.

3.4.1. Policy formulation
Bayesian structure learning can enable policymakers to identify the most relevant variables and their
probable interconnections within a policy issue. For instance, in the context of unemployment and
educational completion, understanding the strength and direction of influence can help prioritize areas
that might benefit most from intervention. By presenting a range of plausible causal models, Bayesian
methods allow for the definition of an agenda-setting process where multiple scenarios and their
implications can be considered. The education data analysis from Section 3 illustrates this by highlighting
how financial stability influences both health-related factors and school attendance. This allows policy-
makers to consider multiple pathways and potential interventions, such as addressing socio-economic
disparities or improving health services, that can have ripple effects on educational outcomes.

3.4.2. Policy adoption and implementation
The detailed understanding of causal dynamics, provided by Bayesian structure learning, aids in the
formation of policies that are most likely to achieve desired outcomes. For example, if data suggests a
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strong causal link between UE!NC12, interventions aimed at reducing unemployment can be priori-
tized in educational policy strategies. Furthermore, the ability to quantify uncertainty helps to identify
information gaps and, therefore, can be used as an optimal real-time data acquisition strategy. In our
education data analysis, for instance, quantifying the uncertainty in the relationship between LI andNC12
provides insights into areas where additional data could strengthen policy decisions, such as targeted
interventions for financially vulnerable populations.

3.4.3. Policy evaluation
One of the main advantages of Bayesian structure learning in policymaking is its use in evaluating the
effectiveness of a policy. In particular, Bayesian structure learning allows policymakers to evaluate the
effect of a policy not only on a few outcomes but on the entire network of interconnected factors in a
statistically rigorousmanner. This is crucial for iterative policy processes, where ongoing evaluation feeds
back into agenda-setting and policy formulation. In our example, we show how school attendance is
influenced by education policies by factors such as mental health and financial stability. This allows for a
comprehensive evaluation of how a policy, like supporting mental health services, indirectly impacts
educational outcomes, helping policymakers adapt their strategies based on real-time evaluations.

3.4.4. Enhancing robustness and resilience
Utilizing Bayesian structure learning also enhances the robustness and resilience of policies by preparing
policymakers to handle various potential future scenarios. The method’s ability to provide a comprehen-
sive view of possible outcomes and their probabilities supports the development of contingency plans and
adaptive strategies, ensuring policies remain effective under different future conditions. Our case study on
school attendance demonstrates how interventions focused solely on educational inputs may fail if
upstream factors, such as health or financial challenges, are not addressed. By considering multiple
causal pathways and their associated probabilities, policymakers can develop more resilient strategies
adaptable to changing conditions.

Figure 5. Comparison of True Posterior and PMCMC Approximate Posterior Distributions. This figure
displays the true posterior probabilities (blue bars) and the PMCMC approximated probabilities (red

squares) for a range of DAGs.
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In conclusion, Bayesian structure learning enhances policymaking by providing a more data-informed
and adaptive process. It empowers policymakers with a toolkit for rigorous analysis and decision-making,
capable of handling the uncertainties and complexities inherent in modern policy environments. This
approach can potentially enhance the effectiveness of policies and increase transparency and account-
ability in decision-making processes (Alzubaidi et al. 2023; Chou 2022; Velmurugan 2021), fostering a
deeper trust in public institutions.

4. Application: student school attendance

This case study shows how causal discovery for BNs can be employed to unpack complex dependencies
and suggest likely causal relationships between frequent school absence and student and family charac-
teristics. It illustrates how causal discovery stratifies the dependencies between factors that may impact
school attendance into proximal and upstream causes and, by doing so, offers insights into which policies
are optimal in order to address the issue. We also show how to estimate the effect of various interventions
while accounting for the uncertainty over possible causal pathways, which can help inform decisions.

4.1. Dataset description

The dataset is derived from ‘Growing Up in Australia: The Longitudinal Study of Australian Children
(LSAC) (Mohal et al., 2021), a nationwide longitudinal project that examines social, economic, physical,
and cultural factors influencing children’s health, learning, and overall developmental trajectories. The study
tracks the growth and developmental milestones of two primary cohorts: a birth (B) cohort, which contains
information on 5107 children who were aged less than 1 year in 2004, and the kindergarten (K) cohort,
consisting of 4983 children who were between the ages of four and five in 2004. Spanning from 2004
through 2016, the LSAC contains data across seven biennial waves. Informed by discussions with domain
experts in education, we constructed 12 binary variables based on the extensive LSAC questionnaires:

1. Financial Stability (FS): Families financial position covered by item fn06a from the LSAC data
asset. All responses above “Reasonably comfortable” are labelled as positive in the binary setting.

2. Parents Not Employed (NE): When both parents are not employed for dual-parent families or
when one parent is not employed for single-parent families. Based on items aemp and bemp
of LSAC.

3. Parent 1 Alcohol Abuse (AA): Defined as having heavy daily alcohol consumption (>4 drinks
for men >2 for women) or frequent binge drinking (7+ drinks in a sitting for men 5+ for women 2
to 3 times a month or more often). Based on item aalcp of LSAC.

4. Parent Communication (COMM): Arising from the construct of parental involvement and
defined as positivewhen there is daily communication between the parent(s) study child. Based on
item he11a1a of LSAC.

5. Sleep Problems (SP) Defined as having a sleep problem, such as wheezing, coughing, not
sleeping alone, night-walking, or restless sleep, for 4 or more nights a week. Based on item hs20b
of LSAC.

6. General Health (GH) Based on item hs13c of LSAC, it is a measure of global health reported by
the parents and identified as positive when responses are above “Very Good.”

7. Watches TV (TV)Ameasure of the amount of time spent watching TV constructed from variable
he06b2 in LSAC and considered as positive when the watching time exceeds 1 hour per day.

8. Ongoing Medical Condition (OMC) Depicts if the child has any ongoing health condition
(no need for them to be diagnosed) that is present for some period of time or re-occur regularly.
These include hearing problems, developmental delay, eczema, diarrhoea, infections and other
illnesses. Based on variable hs17 from LSAC.

9. Learning Disability (LD) Reported by the parents and identified as a specific difficulty learning
or understanding things by the child. Based on variable f17em1 of LSAC.
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10. Physical Condition (PC)Reported by the parents as any condition restricting physical activity or
work. Based on variable f17im1 in LSAC.

11. School Enjoyment (SE) Defined as positive when the study child reports looking forward to
going to school most days and based on pc29a of LSAC.

12. School Absence Frequent (SAF)Reported by the child’s teacher as a binary measure of frequent
school absences. Based on variable pc48t1b of LSAC.

We have selected all observations across waves and cohorts where these variables are measured to
obtain awider view of the relationships between these. A data pre-processing stage consisted of binarising
originally ordinal variables and deleting records with missing data, resulting in 20,890 observations from
all 10,090 unique individuals for this sample.We stress that this real example is used as a proof of concept
only and note that the causal pathways which lead to school absence are likely to be heterogeneous, both
with respect to time and with respect to sub-population characteristics.

4.2. Results

Similar to Section 3.3, we adopt a Bayesian approach and use PartitionMCMC to infer the structure of a BN
from observational data while quantifying the uncertainty over possible structures.We allowed the estimation
algorithm to run for 100,000 iterations and utilised the BDe score (Heckerman and Geiger, 2013).

Figure 6 shows theMaximumAPosteriori (MAP) structure, most likely the structure given the data. A key
advantage of DAGs is that they can be used to represent causal diagrams, where causal relationships among
variables can be suggested and inferred.We emphasise suggested since it iswell known that observational data
alone cannot distinguish causality from association (Spirtes et al., 2000). TheMAPgraph estimates in Figure 6
depict the relationships among many factors. This structure shows many complex relationships and inter-
actions to analyse and reason about, which becomes the main point of collaboration and discussion between
mathematicians, computer scientists and policymakers.We first start by highlighting general insights from this
graph and later move into a comparison with other techniques, such as logistic regression.

Figure 6 shows the network of factors that contribute directly or indirectly to frequent school absence
(SAF), which is highlighted as a red node with a diamond shape. The nodes that are ancestors of SAF, that is,
those that are connected directly or indirectly to the outcome, are coloured in orange.At the top of the hierarchy
is employment, represented by the variable Not in Employment (NE), which is negatively linked with the
Financial Stability (FS) of the family and positively related to Sleep Problems (SP) and SAF. Both NE and FS
are the main factors that affect the child’s Sleep Problems (SP) and impact many areas, including Ongoing
Medical Condition (OMC), Learning Disability (LD), School Enjoyment (SE) and General Health (GH). GH
is not surprisingly negatively related to OMC. GH is also positively related to SE, which is directly connected
to school absence, with an increase in SE associated with a decrease in SAF.

Following Section 3, we compare the inference regarding the factors that impact school absence
obtained using a BNwith that obtained using logistic regression. As noted previously, a regression model
is a special case of a BN - one in which there is only one child and all other factors are potential direct
parents, and this constraint can lead to different inferences. The coefficients for the resulting logistic
regression model are presented in Appendix D, Table D1. There are interesting similarities between both
techniques. Specifically, the two most important factors associated with school absence are GH and
SE. Logistic regression also identifies the statistically significant dependencies on school absence from
SP, FS and NE. However, due to the constraints implicit in regression models, inference from this logistic
regression model can be very misleading. It particularly presents statistically significant relationships
between school absence and AA and TV, which might co-vary if assumed independent, but our approach,
which considers and explores possible interactions, deems these not part of the causal pathways towards
school absence. Further evidence of the limitations of logistic regressionmodels in this setting is exposing
those relationships that are missed, such as the influence of learning disabilities (LD), which is flagged as
non-statistically significant by logistic regression but that when using Bayesian inference over DAGs is
recognised as an influencing factor for school enjoyment which in turn decreases school absence.
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4.3. Implications for policymaking

As discussed in Section 2.1, a key advantage of BNs over other data-driven techniques used for
policymaking is the ability to represent a set of complex factors as an easy-to-interpret network of
stratified factors. This stratification has important implications for policymakers. In this example, one of
the proximal causes of school absence is school enjoyment, which, in turn, depends upon a child’s general
health and sleeping patterns. Both health and sleep, in turn, depend upon the family’s financial stability.
There are many current programs with the goal of increasing school enjoyment and, therefore, increasing
attendance. However, this simple example shows that while such programs may help, impacts from these
programs are likely to be unsustainable if upstream causes such as financial stability, sleep, and health are
not addressed. Indeed, this analysis partially explains why policies aimed at altering immediate causes
alone, leaving the root causes untouched, have failed to address entrenched societal issues, such as lack of
school engagement. From an education-specific perspective, this analysis shows that policies that target
the “in-school” causes will not be enough if causes “outside school” are not also tackled. For example
while Figure 6, shows that the proximate causes of frequent school absence are school enjoyment and
general health, these are affected by the financial stability and employment of the family as well as the
child’s quality of sleep. This suggests that any policy aimed at targeting school enjoyment is unlikely to
have a sustained effect on school attendance if upstream causes are not also addressed.

GH

OMC

PC

SAF

SE

LD

SP TV

COMM

FS AA

NE

Figure 6. The Maximum A Posteriori (MAP) DAG, based on the LSAC dataset, features the ‘School
Absence Frequent’ node emphasised with a red diamond. The edge coefficients are derived from the data
according to the most probable DAG obtained with Partition MCMC. Blue edges represent positive
correlations, while orange edges signify negative correlations. Ancestor nodes of ‘School Absence

Frequent’ are marked with orange ellipses.
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Appendix E shows the next four most probable graphs (after the MAP graph in Figure 6). These five
most probable graphs account for 80% of the probability mass and are remarkably similar. All show that
financial stability, parental employment and sleep are the upstream causes of frequent school absence.
These upstream factors lead to adverse health outcomes which in turn effect school enjoyment and
attendance. The concordance of these graphs indicates that the uncertainty surrounding the causal factors
behind school attendance, for this dataset, is low.

Ensuring data privacy can be addressed through careful data management and the application of
anonymisation techniques, ensuring that sensitive information is protected while still enabling the
extraction of valuable insights.

5. Challenges and considerations

Several barriers may impede the adoption of Bayesian approaches in policymaking. One significant
challenge is the complexity of Bayesian models, which can be difficult for non-experts to understand and
implement. This complexity necessitates a level of statistical literacy and familiarity with Bayesian
principles that may not be common among policymakers. Additionally, the computational demands of
Bayesian structure learning, especially in large-scale applications, can be substantial. High computational
costs and the need for specialized software and expertise may limit the practical implementation of these
methods in policy environments with constrained resources.

Data quality and availability also pose challenges. Bayesian methods rely heavily on high-quality,
comprehensive data to generate accurate models. In many policy domains, data may be incomplete, biased,
or outdated,which canundermine the reliability of the resultingmodels, and thepolicydecisions basedon them.
Ensuring data privacy and security while integrating diverse data sources adds another layer of complexity.

An additional consideration for policymakers is the concept of equivalence classes in Bayesian
structure learning. Different DAGs within the same equivalence class encode the same set of conditional
independencies but have different causal interpretations. Therefore, it is crucial for policymakers to
recognize that the data alone may not uniquely determine the directionality of some causal relationships.
This ambiguity can potentially lead to incorrect conclusions and misguided policy decisions if not
properly addressed. To mitigate this risk, policymakers need to incorporate expert knowledge or
interventional data to more precisely identify the true causal structures.

Incorporating probabilistic frameworks into policymaking requires a significant shift in mindset for
politicians, civil servants, and the voting public. This shift involvesmoving from deterministic thinking to
an understanding that policy decisions should be based on the likelihood of various outcomes and their
potential impacts. Embracing this probabilistic approach allows more informed and flexible decision-
making, particularly in complex and uncertain environments. However, effectively interpreting and
utilising probabilistic models requires technical knowledge. Policymakers and their advisors must be
equippedwith the necessary skills to understand and apply thesemodels. This underscores the importance
of capacity building and education in statistical concepts, probability theory, and data interpretation.

Despite these barriers, adopting Bayesian approaches in policymaking equips policymakers with
powerful tools to navigate the complexities and uncertainties inherent in socioeconomic systems.
Bayesian methods foster more informed, transparent, and accountable decisions by providing clear,
interpretable models that incorporate uncertainty and multiple causal pathways. This leads to more
effective and adaptive policies that can better meet the needs of society, even in the face of changing
conditions and unforeseen challenges. Embracing Bayesian networks and causal discovery represents a
significant step forward in the quest for evidence-based, resilient policymaking.

6. Conclusion

This paper presented an approach to integrate structure learning and causal discovery into policy decision-
making. Through our case studies— one using synthetic data and the other applying these methodologies
to educational data, we demonstrated the potential of these advanced statistical machine-learning
techniques in addressing complex policy issues, particularly for education. By leveraging the power of
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Bayesian methods, policymakers can gain a more comprehensive understanding of the policy landscape,
which is crucial for developing strategies that are both effective and adaptable to changing conditions.

Our approach integrates causal discovery within a Bayesian framework, which allows for the
consideration of multiple possible causal pathways rather than focusing solely on the most likely one.
This is particularly relevant in complex decision landscapes where multiple near-equally likely pathways
may exist. The application of Bayesian networks in this context helps quantify uncertainty, providing
policymakers with a probabilistic understanding of potential outcomes and the risks associated with
different policy interventions.

Ultimately, the adoption of Bayesian approaches in policymaking equips policymakers with a
powerful set of tools to navigate the complexities and uncertainties inherent in socioeconomic systems.
By providing clear, interpretable models that incorporate uncertainty and multiple causal pathways,
Bayesian methods foster more informed, transparent, and accountable decisions. This leads to more
effective and adaptive policies that can better meet the needs of society, even in the face of changing
conditions and unforeseen challenges. Embracing Bayesian networks and causal discovery represents a
significant step forward in the quest for evidence-based, resilient policymaking.

Abbreviations.
BN Bayesian Network
MCMC Markov Chain Monte Carlo
DAG Directed Acyclical Graph
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A. Linear regression output

B. Bayesian structure learning
This appendix section outlines the fundamental concepts of structure learning. It begins with an introduction to Bayesian networks,
covering the foundational theory and their advantages for decision-making over other machine learning algorithms. It then explores
the structure learning process within these networks, detailing the mathematical methods used to estimate network structures
from data.

B.1. Bayesian networks
Bayesian Networks (BNs), also known as Bayes nets, belief networks, or decision networks, are probabilistic graphical models that
provide an effective framework for multivariate statistical modelling, allowing for better representation and understanding of
complex relationships amongst variables of interest. A BN is defined by a graph G , which is a tuple of V ,ℰf g, where V is a set of n
nodes, where node i in the graph represents a randomvariableX i; andwhereℰ is the set of edges that connect two nodes, indicating a
causal relationship between these two nodes with the strength of this relationship characterised by a parameter for each edge. G is a
DAG, where all edges have directions, and no cycles are present. The directional property in edges allows us to define a hierarchical
relationship between nodes, e.g., an edge from a node i to node j, X i !X j, means that X i belongs to the parent set of node j, Paj; and
X j is a child of node i.

One important feature of a BN is that each variable is conditionally independent of the set of all its predecessors, given the states
of its parents. Therefore, the joint probability distribution of the nodes can be written as a product of the conditional distributions,
each of which only depends on its parents in the graph,

P X 1,…,XnjGð Þ¼
Yn
i¼1

P X ijXPaið Þ: (1)

For discrete random variables, the dependencies can be quantified using Conditional Probability Tables (CPTs), which specify
the probability of each variable value given its parents’ values and reflect the strength of the relationships between the variables in the
network Koller and Friedman (2009); Pearl (1988).

BNs offer several advantages for decision-making compared to classical machine learning methods such as neural networks,
support vector machines, regressions, and so forth They offer rich semantic meaning and can be readily comprehended by users
without extensive statistical expertise. They facilitate effective learning from data to construct a model that provides a good
approximation to our past experience, exploring connections between variables, and providing novel insights about a domain that
can be utilised to assist informed decision-making, which can be particularly useful in areas such as educational and institutional
research Fernández et al. (2011).

B.2. Structure learning
Learning a BN involves both estimating the structure G (structure learning) and its associated set of parameters Θ (parameter
learning). While parameter learning is straightforward given the estimated structure since it can be treated as a standard regression
problem, structure learning of BNs is challenging due to (i) the super-exponential growth of possible graph structures with the
increasing number of nodes in the network and (ii) the discrete parameter space prohibiting gradient-based methods from being
utilised in solving this problem.

Table A1. OLS summarised results

Coefficient Std err t P < |t|

Intercept �0.0002 0.001 �0.47 0.64
Low_Income 0.036 0.069 0.52 0.60
SingleParent �0.031 0.065 �0.48 0.64
MentalHealth �0.055 0.002 �31.2 0
Unemployed 1.081 0.039 27.4 0
R-Square 1
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While traditional methods focus on recovering a single plausible graph or its Markov equivalence, the Bayesian approach to
structure learning aims to infer a full posterior distribution over graphs, enabling effective use of Bayesian model averaging for
inference in high dimensional domains with sparse data, where no single best model can be clearly identified. The posterior
probability of a DAG G given the data D is used as its score and can be derived from Bayes’ theorem

P G jDð Þ ∝ P DjGð ÞP Gð Þ, (2)

where P Gð Þ denotes a prior distribution over the graph structures and P DjGð Þ refers to the marginal likelihood derived by
marginalising out the parameter Θ. This can be achieved by integrating the parameters

P DjGð Þ¼
Z

P DjΘ,Gð ÞP jGð Þd, (3)

where P ΘjGð Þ is a prior distribution for the parameter Θ given the graph G .
A general Bayesian scoring metric can be decomposed when the data is complete, and the conditions of structure modularity,

parameter modularity, and parameter independence for the prior distributions are satisfied Heckerman and Geiger (2013):
P DjGð Þ¼Q

i S X i,Paið Þ, with S �ð Þ representing the score function that depends on the node X i and its corresponding parents. This
is essential for effective implementation, as it reduces the structure search in an iteration to only reevaluating the nodes with changes
in their parents compared to the previously scored structure. Since exhaustive search is impractical even with only a modest number
of nodes due to the space of all possible DAG structures as the number of variables increases, approximate solutions can be achieved
via Markov chain Monte Carlo (MCMC) (Kuipers and Moffa, 2017) or variational methods.

C. Metrics
Understanding the strengths and limitations ofMCMCand other inference tools is essential for practitioners and policymakers when
interpreting results and translating them into policy. To gain insight into the performance of the MCMC algorithm, we inspect its
algorithmic convergence by comparing the true posterior distribution with the approximate distribution using the Jensen-Shanon
Divergence (JSD).

The JSDmetric measures the similarity between two probability distributions.Mathematically, the JSD between two probability
distributions P and Q is defined as

JSD PkQð Þ¼ 1

2
KL PkMð Þ + 1

2
KL QkMð Þ where M ¼ 1

2
P +Qð Þ, (4)

and KL PkMð Þ and KL QkMð Þ are the Kullback–Leibler (KL) divergences of P and Q from M , respectively. The KL is given by

KL PkMð Þ¼
X
i

P ið Þ log P ið Þ
M ið Þ

� �
, (5)

with i indexes all possible DAGs for n nodes.
We also measured how the entropy of the true and approximate distributions varied with the amount of generated data points.

Entropy provides a measure of the uncertainty or unpredictability of the distribution. Higher entropy means the distribution is more
spread out and less certain, while lower entropy means the distribution is more peaked and predictable. The entropy H of a discrete
set of probabilities p1,p2,…,pnf g is defined as

H Pð Þ¼�
Xn
i¼1

pi log2 pið Þ: (6)

D. Logistic regression for frequent school absence
As part of the comparison with other baseline modelling strategies, we have also estimated a logistic regression model to the LSAC
data using the same variables as in Section 4. Table D1 presents a summary of the individual coefficients and their value, including
the p-value associated with individual variables.
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E. Uncertainty quantification over graph structures for school attendance
As explained in Section B.2, the resulting estimation of graphs is a posterior probability distribution in the space of DAGs, G . The
process of causal discovery using MCMC generates a Markov chain which approximates the full posterior distribution, where the
number of times each graph appears in the chain is proportional to its posterior probability. The variability in the graphs part of this
posterior distribution is a measure of uncertainty over the graph structures.

The results produced in Section 4.2, the 100,000 iterations result in 276 unique graph structures. The top 5 structures accumulate
80% of the full probability mass and are very similar. The next 4 most probable graph structures are shown in Figure E1.

Table D1. Expected value and standard deviation for coefficients of a logistic regression model which
assumes independent and direct influence of all factors over School Absence

Coefficients Estimate Std. error z value Pr(>|z|)

(Intercept) �1.72870 0.14322 �12.070 < 2 × 10�16 ***
General Health (GH) �0.72787 0.07309 �9.958 < 2 × 10�16 ***
Learning Disability (LD) 0.25555 0.14183 1.802 0.071571.
Ongoing Medical Condition (OMC) 0.31568 0.06356 4.966 6:82 × 10�7 ***
Sleep Problems (SP) 0.43696 0.06327 6.907 4:96 × 10�12 ***
Watches TV (TV) 0.22529 0.06370 3.536 0:000406 ***
Physical Condition (PC) 0.48828 0.21749 2.245 0.024763 *
Parent Communication (COMM) �0.05758 0.09235 �0.624 0.532938
School Enjoyment (SE) �0.97111 0.07467 �13.005 < 2 × 10�16 ***
Financial Stability (FS) �0.32312 0.06732 �4.800 1:59 × 10�6 ***
Parent Alcohol Abuse (AA) 0.23777 0.08384 2.836 0.004567 **
Parents Not in Employment (NE) 1.17270 0.08623 13.599 < 2 × 10�16 ***

Note. The significance codes indicate the level of statistical significance: ‘***’ indicates p < 0.001, ‘**’ indicates p < 0.01, ‘*’ indicates p < 0.05, ‘.’
indicates p < 0.1, and ‘’ (blank) indicates p ≥ 0.1
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Figure E1. Top graphs, following the MAP graph (Figure 6), in the posterior distribution.
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