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Abstract. We consider lattice-free simplices, simplices with vertices on the l&tficie R¢ andno
other integral points; we show, by elementary methods, that there exist such simplices in dimension
d with width (see Definition 2) going to infinity with.
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1. Introduction

Integral polytopes (see [Br, K] for the basic definitions) are of interest in com-
binatorics, linear programming, algebraic geometry-toric varieties [D,O], number
theory [K-L.].

We study here lattice-free simplices, i.e., simplices intersecting the lattice only
at their vertices.

A natural question is to measure the ‘flatness’ of these polytopes, with respect
to integral dual vectors. This (arithmetical) notion plays a crucial role in:

e the classification (up to affine unimodular maps) of lattice-free simplices in
dimension 3 (see [O,MMM]) and

e the construction of a polynomial-time algorithm for integral linear program-
ming (flatness permits induction on the dimension [K-L]).

Unfortunately, there were no known examples (in any dimension) of lattice-free
polytopes with width greater than 2. We prove here the following theorem:

THEOREM. Given any positive numbet strictly inferior to 1/e, for d large
enough, there exists a lattice-free simplex of dimengi@nd width superior to
ad.

The proof is nonconstructive and involves replacing the search for lattice-free
simplices inZ¢ by the search for ‘lattice-free lattices’ containir#f (‘turning
the problem inside out’, see Section 1.3), specializing in the next step to lattices
of a simple kind, depending on a prime numberThe existence of lattice-free
simplices of large width is then deduced by elementary computations, through a
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sufficient inequality involving the dimensiaf, the widthk and the primep (see

(12)).

2. Notations

P4 The set of integral polytopes iR¢; if P is such a polytopep is a convex
compact set, the set VER) of vertices ofP is a subset oZ¢.

84: The set of integral simplices iR“. In particular,o; will denote the canonical
simplex with vertices at the origin and = (0,...,0,1,0,...,0) — 1 at the
ith coordinate

G4: The group of affine unimodular mags, = Z¢ x GL(d, Z) acts onR? (pre-
servingZ?), £,;, and§,. A d-lattice M is a lattice withZ¢ c M c (1/m)Z?
for somem € N*.

2.1. LATTICE-FREE SIMPLICES AND THEIR WIDTH

Recall the following definition [K].
DEFINITION 1. An integral polytopeP in R? is lattice-freeif P NZ¢ = Vert(P).

DEFINITION 2. Given an integral nonzero vectorin (Z¢)*, the u-width of the
polytope P of £, is defined by

w, (P) = max{u, x — y). Q)
x,yeP

Thewidth of P is

w(P) = min w,(P). (2)
ueu(i‘é)*

Remark The width is the minimal length of all integral projectionsP) for
nonzerou.

2.2. KNOWN RESULTS ON THE WIDTH OF LATTICEFREE POLYTOPES IN
DIMENSION d

d = 2: Lattice-free simplices are all integral triangles of a%eehey are equivalent
to o,. This is elementary.

d = 3: Lattice-free polytopes have width one; in the case of simplices, this res-
ult has various proofs and applications (it is sometimes known as the ‘terminal
lemma’, see [F, MS, O, Wh)).

d = 4: All lattice-free simplices have at least one basic facet (face with codimen-
sion one) [W] — this fact is not true in higher dimensions.
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EXAMPLES. There exist some interesting examples:

e L. Schlafli’'s polytope, studied by Coxeter [C];

e A recent example given by H. Scarf [private communication]: the simplex
in dimension 5 with vertices, the first five unit vectassand for last vertex
(23,29, 31, 43,57), has width 3.

e We have found with the help of a computer, some examples of widths 2, 3 and
4 in dimensions 4 and 5.

No other results seem to be known, apart from the following asymptotic result.

PROPOSITION 1There exists a universal constatitsuch that for any lattice-free
polytope of dimensiod

w(P) < Cd>. (3)

Proof. The ‘Flatness Theorem’ of [K-L] asserts that there existuch that any
convex compact set in RY with K N Z¢ = ¢ satisfies

w(K) < Cd?, (4)

wherew is defined as in 2.2.

If P is any lattice-free polytope, take a pointn the relative interior of? and
apply the previous Flatness Theorem to the homothetaf P with respect taz
and fixed ratiax strictly less than one. Then formula (4) shows that the width of
which is proportional to the width aP, is also bounded by a function of type (6).

Remark Recent results of [Ba] show that (3) is true with a right-hand side
proportional tad log d.

2.3. TURNING THE WIDTH INSIDE OUT

Let us define a new norm oR’: If & = (&) is a vector inR?, take ||€]| =

DEFINITION 3. Let

w(M) = min |§]l. (5)
§7#0

It is easy to show that the existence of an integral lattice-free simplex of di-
mensiond, volumev/d! and width at least is equivalent with the existence of a
d-lattice M, containingZ¢, with

1
M Noy; = Vertoy, w(M) >k, detM) = =. (6)
v
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3. In Search of Lattice-Free Simplices (Asymptotically)
3.1.

We restrict our study td-lattices given by
d d 1 d
yez', M@y =1 +Z;y, M(y) # Z°, (7

where p is a prime number; this lattice clearly depends only on the classiof
(Z/pZ)*.

LEMMA 1. The set of latticeds (for a fixedp) can be identified with the space of
lines in(Z/ pZ)“.
In particular, the number of such lattices is

p—1

m(d, p) = P (8)

Let f(d, p) be the number of lattice® such as (7) satisfying

MNG&, # ¢, 9)

wheres,; = o,\Vert(oy).
(The latticeM intersectss, in other points than the vertices.)

LEMMA 2. The numbelrf (d, p) satisfies

P+D---(p+d)
fld,p) < I

—(d+1).

Proof. Supposex is a point inM(y) belonging tos,. Then it can be written as
x = z + my/p with m nondivisible byp.

Writing my/ p as the sum of an integral vector and a remainder, we get

x=z4+7+2, 0<y <p, yeN, xeoa,.
p
This implies
/ y - . 4
z4+7 =0, x ==, y € pog NZ".
p

The vectorsy, my, y define the same line iZ/pZ)?. This shows that the
number of latticeg/ (y) satisfying (9) is less than the number of pointgih,NZ?,
given by the right-hand side of Lemma 2 [ E].

Now letg(d, p, k) be the number of lattice® (y), as in (7), withw (M (y)) < k.
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LEMMA 3. The numbeg(d, p, k) satisfies
g(p.d, k) < 2[(k + D — kIt pd=2, (10)

Proof. The assumption on the lattice means the existence of a nonzero §ector
in Z4 with

y =01y, E=(...E&), ) &yi€pL

and we havelé || < k = [|§]l < k.

The number of integral points of norm less or equal té is n(k,d) = (k +
l)d-i-l _ kd-i—l‘

Proof. Letm = inf; (0, §;), M = sup(0, &).

The possible values @t arem = —k,... — 1,0.

(a) For all values except 0, one of thehas valuen, and the others can take
any value betweem andm + k. For eachn, the number of possibilities is equal
to Sy = [k + 119 — k9.

(b) Whenm = 0, all x/s are nonnegative, and the contributiorsis= [k + 1]¢.

Adding up the contributions, we get
nk,d) = k[(k + D¢ — k1 + (k + D = (k + )9t — k41,

Going back to the proof of Lemma 3, choose a vegtaith norm smaller than
k (strictly less tharp): this implies that the linear form defined by¢: (Z/pZ)? —
7./ pZ is surjective, and its kernel hag —! elements; the number of corresponding
lattices is

pdfl -1

r(p,d) = < 2p2.

We can choose at mostk, d) vectorst. Hence

g(p’ d, k) < 2[(]( + 1)d+1 _ kd+l]pd—2 < 2(k + l)d+lpd_2. (11)

3.2.

From Lemmas 2 and 3 we conclude that for laigendk, the condition

dd
+(P+ ) <pd_1

2(d + 1)(k + 1) p?—2 o

(12)

ensures the existence of a lattié®y) of width greater thart, dimensiond, and
M(y) C (1/p)Z°.
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The following is well known.

LEMMA 4. Given any sequence of numbéus) going to infinity, there exists an
equivalent sequendg,) of prime numbers

Proof. Given ¢ strictly positive, we know from the prime number theorem
that ford large enough there exists a prime numpgiin the interval[(1 — ¢)ay,
(1+ &)ay]. This implies| p; — a4 |< €a, for d large enough.

Choose now arbitrary (we will soon fix it) and a sequen¢g,) of primes with
pa ~ ad! and let us findr and a sequenag,) such that

2(d + kg + D pi~2 < Lpi~t, (13)
(pa + d)? _
dT < ipdt (14)

These two conditions imply (12).

The condition (14) is satisfied for large enoudif o < % Indeedp,+d ~ ad!;

sincea < 3.

Condition (14) follows if we can show th&l + d/p,)¢* — 1(d — oo). But
log(1+d/p)¥t < (d —1)d/p ~ d?/ad! — O.
Condition (13) becomes

1 ]1/d+1

k 1 _—
a+ <|:4(d+1)pd

This last expression is equivalent, because of Stirling’s formuld/¢oHence,
if we choose any sequence of integral numhkgg$ with k; < ad and

1
O<a< - (15)

e

then (13) and (14) are satisfied for large

THEOREM.For any« strictly less tharil/e, there exists for sufficiently largéa
sequence of lattice-free simplices of dimensiand widthw,, w,; > ad.

Definingw(d) = sup, w(o) supremum taken over all lattice-free simplices of
dimensiond, then the previous Theorem amounts to

d—oo d e

Final Remark.The study above raises the hope of improving the bounds on the
maximal width, by introducing more general lattices generated by a finite number
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of rational vectors, and replacing the primedy powers in (7) (Note the study of
general lattices of such type in [Sh].) Unfortunately (and rather mysteriously), our
computations in these new cases givegamebounds.
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