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ABSTRACT: This paper outlines the details of astrometric parameter determi­
nation of double stars from HIPPARCOS observations as prepared in the FAST con­
sortium. Methods of parameter estimation are developed for relative astrometry and 
absolute astrometry. The capability of the procedures will be demonstrated using simu­
lated observations, in describing the particular steps of a Monte Carlo simulation which 
have been executed at the Istituto di Astrofisica Spaziale (IAS) and at the Astronomis­
ches Rechen-Institut (ARI). 

1. I N T R O D U C T I O N 

The aim of ESA's astrometry satellite HIPPARCOS is the determination of 
positions, proper motions and trigonometric parallaxes of about 120,000 stars. 
About 40% of all stars are double or multiple systems. Double stars with sep­
arations Q in the range of 0"2 and 5" and magnitude differences Am less than 
3™5 are subject of our analysis (see Dommanget 1985). 

Measuring a large basic angle between two different stars by means of two 
combined telescopes and using a grid in the joint focal plain during the satellite's 
scanning of the sky yields the star intensity versus a field coordinate per slit. 
Depending on the geometry of scanning, one observes two or more maxima of 
the intensity registration as shown in Figure 1. 

For each star and each scan a harmonic analysis of the intensity registration 
(light curve) is performed. In general, the results of this analysis for scans are 
summarized in the great circle reduction and the spherical coordinates ip and ( 
(named abscissa and ordinate) are obtained on a corresponding reference great 
circle (RGC). After fixing all these RGC's on the sky (sphere solution), the 
determination of the astrometric parameters of each star is the last task in the 
HIPPARCOS reduction chain. More details of this data reduction are given 
by Kovalevsky (1980) and Bernacca (1985). A variation of the ratio of the 
amplitudes of the first and second harmonic of the light curve as well as their 
phase differences lead to the special treatment of double and multiple stars in the 
FAST consortium. Here the results of the harmonic analysis of the light curve 
are supplied to the data condensation and the determination of the parameters 
of the relative astrometry, whereas the last task of this chain is focused on the 
absolute astrometry. 
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FIGURE 1. The intensity registration of e Lyrae versus a field coordinate and the 
corresponding geometry of scanning (by courtesy of Bastian 1990). 

2. T H E A L G O R I T H M FOR D O U B L E STAR ANALYSIS . 

Here we present only the main steps of the algorithm which, starting from the 
HIPPARCOS measured signal, gives the relative astrometry parameters for each 
observed double star system, as well as it's abscissae corrections on each RGC. 

2.1. Data Compression: 
When a double star crosses the field of view, the resulting signal is given by the 
superposition of the intensities of two single-star signals: 

5(i) = Si(t) + S9(t) (1) 

with Si(t) = U + IiMi cos(wt + <f>i) + IiNicos(2w* + ?fc) where i=l,2 is the star 
index (the quantities of the compound signal have no index), and where J is 
the total intensity, M and N are the modulation coefficients of the 1*' and 2nd 

harmonics respectively, <j> and t] are the phases of the two harmonics. 
Assuming for each component TJ,- = 2<fo, the equation (1) leads to the basic 

relationships: 

IM cos 4> 

IM sin <j> 

IN cos 2/3 

7iVsin2/? 

I\M\ COS </>! + J 2 ^ 2 COS <j>2, 

I\M\ sin </>! + /2M2 sin fa, 

IiNi cos2<f>i + I2N2 cos 2</>2, 

Ji JVi sin 2<£i + I2N2 sin 2<fo, 

(2) 

with / = h + h, 13 = <£/2. 
On the left hand side of Equations (2) there are the observed quantities 

(IM, IN, <f), /?). So, for each frame a set of four values is available. There 
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are nine or ten frames per transit across the grid, where a frame is a period 
of constant satellite attitude. The four phases on the right hand side of eqs. 
(2) change from one frame to the following as the star moves across the grid. 
However, the differences fa — fa, 4>—fa and 2/3 —fa depend only on the structure 
of the double star and do not change over the transit. By using this fact and by 
referring the eqs. (2) to the phases of the 1*' harmonic <j>, it is possible to write 
the equations as follows: 

A = IM = I\Mx cos £i + I2M2 cos £2, 

B = 0 = I\M\ sin £1 + I2M2 sin £2, (3) 

C = IN cos 2(/3 -<j>) = I\Ni cos 2ex + I2N2 cos e2, 

D = JJV sin 2(/3-<£) = JiiV! sin 2£1 + J2iV2 sin £2, 

where ei = fa - fa £2 = fa - <A-
In this form, the equations are invariant over one transit and a compression 

of data is possible by combining the ten frames into a unique set of parameters, 
using a minimum x2 method (Mignard et al. 1989). 

2.2. Solution on the Grid: 
The problem is to invert eqs. (3) from A, B, C, D to the parameters of each 
component. There are six unknowns and four equations. We can eliminate two 
unknowns by using the fact that the ratios (IM)i/(IN)i are practically constant. 
There remains a system of four non-linear equations and four unknowns, which is 
solved by two iterative methods in sequence: the Newton-Raphson method and 
the method of steepest descent. This solution is given for each transit separately 
(Mignard et al. 1986). 

Since each transit supplies four new equations, but only two new unknowns 
£1 and £2, after n transits we get An equations and 4 + 2n unknowns. It is 
possible to fit the whole system of An observations to the 4 + 2ra unknowns 
by a least-squares minimization, using the solutions found at each transit as a 
starting point to the fitting process. As a result we obtain optimized solutions. 

The phase differences on the grid £1 and £2, corresponding to some abscissae 
corrections AV> on the sky, are necessary to compute both the relative and 
absolute astrometry parameters. 

2.3. Reconstruction on the Sky: 
Taking into account a double star model on the sky, with a "true" separation g 
and a "true" position angle 1?, we have on the tangent plane 

x = gs'md, y = gcosd. (4) 

The projected separation on a scan circle is AS = x sin 7 + y cos 7, where 
7 is the scan angle. Speaking in terms of phase differences A<j> = £2 — £1 the 
projected separation is given by 

A<A/2TT = AS + k, (5) 

where k is any integer number, accounting for the grid step ambiguity. 
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The last equation is equivalent to the following two relationships: cos( A<£) = 
cos(2?rA5), sin(A<£) = sin(27rA5) that with (4) lead to 

cos(A^) = cos(ax + by), (6) 

sin(A<£) = sin(ax + by), 

where a = 27rsin7 and 6 = 2TTCOS7. 

When n observations with different values of 7 are available, one searches 
the values x and y that are best fitted to the observations by using the deepest 
hole method (Mignard et al. 1989). The computation takes into account different 
possible models of relative motions of the two components. 

2.4. Relative Astrometry Optimization: 
This step is also a fitting process between a double star model and the observed 
signal. It works also for multiple star systems as an independent algorithm. In 
the case of double stars, the solution achieved by the above described process 
can be used as a good starting point. In the new fitting process the phases are 
related to the phase fa of the primary star, as follows: 

V = IM cos((£ -4>i) = I Mi + I2M2 cos(<j>2 -(h), 
W = IMsm(<f>-<t>1) = 0 + l2M2sm(<fo -fa), (7) 

Q = INcos2(l3-<t>i) = IN1 + l2N2cos2(<t>2-<j>i), 
R = INsm2(f3-fa) = 0 + I2N2sm2(<l>2-fa). 

Unlike eqs. (3), here the left-hand side contains the unknowns fa and 
is not fully determined by the observed signal. But, taking into account the 
relationship with the quantities A, C and D from (3) IM = A = y/V2 + W2; 
IN — y/C2 + D2 = y/R2 + Q2, and the expression for the phase difference 

1 ([R(V2-W2)-2QVW}\ 

P-fa = - ^™{[Q{V2_W2)_2WW]} 
it is possible to search the best fit of the sky model with the observed data by an 
iterative process. The result is an optimized solution of the relative astrometry 
parameters with respect to the solution obtained at the last step (Mignard et 
al. 1989). The relative astrometry parameters, as well as the phase differences, 
are stored in the DSR. file. DSR contains the separation and position angle of the 
secondary component with respect to the primary, respectively the rectangular 
coordinates and some possible time derivatives or orbital elements are given. All 
observed quantities are given with their covariance matrix. 

3. P A R A M E T E R D E T E R M I N A T I O N OF T H E A B S O L U T E 
A S T R O M E T R Y . 

Starting from the measurements, the first step of the absolute astrometry task is 
to look for a solution of the relative and absolute grid step ambiguity problem. 
Due to uncertainties of the astrometric parameters of the given input catalogue, 
all abscissae could be polluted by missing grid steps. Owing to the methods of 
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reconstruction on the sky, the relative coordinates show no grid step ambiguities. 
This fact is used to solve the relative grid step ambiguity problem in the abscissae 
differences (AV>) by a comparison with the separation projected on the RGC. 
This transformation will be done by using the scan angle of the RGC and the 
position angle of the star. At first we correct the abscissae of the secondary 
component. After that we use the grid step procedure of Bastian (1985) for 
the solution of the absolute grid step problem and we correct the abscissae of 
the primary component. If we supply these corrections to the corresponding 
abscissae of the secondary the ambiguity problem is solved. As uncertainties in 
the star position are responsible for the absolute grid step problem, the above 
mentioned method of Bastian (1985) deals with the comparison of the observed 
abscissae with a set of synthesized sine curves. In doing so the best fitted set of 
grid step corrected abscissae solves this problem by a trial and error iteration. 

Taking advantage of the symmetry of the satellite's scanning law to the 
ecliptic, the unknowns are estimated in the ecliptical coordinate system. In 
general one determines the position, the proper motion, the parallax and, if ca­
sually, the acceleration of each component. The parametrization of the absolute 
astrometry depends on different double star models. According to these different 
models, introduced by the relative astrometry task, a model one double star is 
determined by the individual positions of the components, the common proper 
motion, the common parallax without any acceleration. A model two double 
star differs from model one by the introducing individual proper motions for the 
components and for a model three double star we estimate two accelerations 
additionally. In the case of orbital double stars we estimate the classical five 
parameters for the gravity centre and the masses of each component. 

Due to the statistical nature of the data, the estimation procedure should 
be an adjustment process with correlated observations. In principle, both sets 
of abscissae carry information about the absolute astrometry. Especially when 
Am - » 0 n o component should be preferred but for large Am the primary pre­
dominates. So the adjustment procedure should be a symmetric approach for 
Am —• 0 and becomes more one-sided when Am increases. As the development 
of Aij) does not need actually the knowledge of the parameters of the relative 
astrometry, the third Kepler law is not considered when the masses should be 
determined dynamically. So, for orbital double stars, we add the third Kepler 
law as a constraint to our adjustment procedure. HIPPARCOS measurements 
results in an observational catalogue of stars. So no external measurements 
should enter the estimation procedure. But for some critical points as the grid 
step problem, it could be very helpful to regard external direct measured un­
knowns during our adjustment to overcome such a problem and to re-adjust the 
HIPPARCOS data afterwards without these external quantities. In particular 
we have 

m equations of improvements 
for all abscissae: v = A x —1 with Qj, 

n equations of improvements 
for direct measured unknowns: v , = R x - 1, with Q x and 

c constraints between the unknowns: 0 = C x + w. 

Here 1 is the vector of observed minus computed abscissae, A is the ma­
trix of coefficients containing all partial derivatives of ij) with respect to the 
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unknowns, v is the vector of improvements and Qj denotes the corresponding 
covariance matrix. Furthermore, x is the vector of solution, lx is the vector of 
direct observed minus a priori computed unknowns, R is the coefficient matrix 
connecting 1* and x, vB contains the improvements of these measurements and 
Qx is the covariance matrix of lx. At last, for the linearized constraint w is the 
vector of inconsistancies and C contains the partial derivatives of w with respect 
to the unknowns in question. Following Lagrange we have the condition: 

vTQr1v+v^Q-1v.+2k?(Ax-l-v)+2k£(Rx-l„-v.)-2kT(Cx+w) _ n _ Min> 

see Wolf (1975). k, ki and kj are the Lagrange factors. Applying some algebra 
we get the normal equations which solves our estimation problem: 

/ A^Q^A + R ^ R -CT \ + / ATQrM + RTQXMX \ 

In general the normal equation matrix is positive definite but especially the 
acceleration terms could be poor measurable for a model three double star. In 
order to handle the current definiteness we use the Moore Penrose inverse in the 
normal equations, which minimizes the trace of the normal equation matrix, in 
the case of non-positive definiteness, otherwise we get the same result as using 
Cholesky or Gauss decomposition. The Moore Penrose inverse is calculated from 
the spectral representation of the matrix and the eigenvalues are computed using 
the QL method which shows good numerical stability. 

An error budget is given by the inverse normal equation matrix and the rms 
of unit weight, estimated from v, vx with Q/ and Qx. Escpecially the rms of 
the unknowns x and the corresponding correlation matrix are given. For small 
degrees of freedom, the error propagation is considered to give more reliable rms 
of the adjustment results. 

For comparisons with external catalogues we change the basic coordinate 
system to the equatorial system during the adjustment procedure and the clas­
sical quantities g and 0 are given with their error budget. 

The adjustment is embedded in an iteration loop of up to 30 passages, which 
enables us to consider possible nonlinearities or to handle external information 
for undetected grid steps. For every passage a T-test checks whether a significant 
difference is detected or not. In each passage a test of discordant measurements 
is performed using the procedure of Forstner (1986). A x2 test applied to the 
residuals of each double star system points out whether a model deviation is 
detectable or not. 

4. THE DATA SIMULATION CHAIN. 

In order to test the capability of these procedures, a Monte Carlo simulation 
was performed including both tasks at IAS and ARI. The basic data sets are 
taken from Froeschle (1986) and consist in following files: 

1. The location of all RGC's, part of a file called mission control general. 
2. The origins of these RGC's obtained in sphere solution. 
3. A file containing the a priori known astrometric parameters of every star. 
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4. The file supplying with abscissae •$> and the ordinate C o n e a c h RGC on 
which the star in question was observed. In the case of double or multiple 
stars, it contains ij) and ( of a reference point, which is defined in the 
harmonic analysis of the light curve. 

5. In order to determine the astrometric parameters of the star's components, 
one needs the abscissae differences Â > of these components with respect 
to the reference point. The AV> on each RGC are obtained from the phase 
differences contained in the DSR file. 

The following steps outline the double star simulation: 

1. Generation of double star configurations in the true sky. They are charac­
terized by the position, proper motion and parallax of both components. 

2. Simulation of the phases as an input for the harmonic analysis. 
3. Generation of the coefficients A,B,C and D using the relative astrometric 

parameters deduced from the quantities given in (1), perhaps some noise 
could be added. 

4. Derivation of the offsets of the components on instantaneous scan circles. 
5. Projection of these offsets on the RGC's. 
6. Derivation of the double star model from the coefficients A,B,C and D. 
7. Construction of the result file (DSR). Essentially, it is supplied by the 

quantities created in (4) and (5). 
8. Reconstruction of astrometric parameters and comparison with the true 

sky. 

5. RESULTS OF THE RELATIVE ASTROMETRY. 

The set of simulated stars have been processed by the algorithms of automatic 
analysis leading to relative astrometry results. The evaluation of the results 
has been performed by comparing the input simulated astrometric parameters 
with the ones obtained from the analysis, as well as by evaluating some internal 
indexes of goodness of the employed procedures. Namely, these indexes are: 

1. a x3 estimating the goodness of the fitting procedure which reconstructs 
the position of the components on the sky; 

2. a global index of goodness which is given by the weighted sum of the mean 
square differences between the observed data and the computed ones. 

A correct reconstruction of the double star in the sky has been obtained for 
94 systems. In the remaining 6 cases, generally characterized by high magnitudes 
of both components, the results were far from the input data and the indexes of 
goodness showed bad values. 

Considering the 94 successful results, one can say that the achieved preci­
sion is satisfactory. The average errors in separation and in position angle are 
respectively 2.6 mas and 0°.37. The precision, both in terms of residuals and 
of internal indexes of goodness, decreases with the growth of the magnitudes of 
the components and with the growth of the magnitude difference between the 
components. 
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magnitude of the primary magnitude of the primary 

FIGURE 2. Deviations of relative astrometry parameters versus the magnitude of 
the primary. 

In the figures for each star the differences are plotted between quantities 
(separation on the left and position angles on the right) used as an input in the 
simulation process and the corresponding results of the analysis. The growth of 
the error is well visible with the growth of the magnitude. Within the considered 
ranges of values of other parameters, slighter dependencies were found from the 
magnitude difference between the components and from the separation. 

6. R E S U L T S O F T H E A B S O L U T E A S T R O M E T R Y . 

The output of the absolute astrometry comprises the positions of the individual 
double star components, the proper motion of these components or of the star 
system, the parallax of the system and, if measureable, the acceleration terms of 
both components. In the case of orbital double stars the classical 5 parameters 
are given for the gravity centre and for an optical double we give these 5 pa­
rameters for both different stars. Additionally we derive the polar coordinates 
of the secondary with respect to the primary. In accordance to the single star 
output, the detailed output is expressed in ecliptic coordinates. All quantities 
are provided with their rms (a priori definition and a posteriori estimation of 
the error of unit weight) and the corresponding correlation matrix. Details of 
numerical stability and statistical test results are also part of the output. 

In general, the capability of all procedures can be shown by the comparison 
of the obtained results with the true sky which was the starting point of our 
simulation loop. 
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A\P/S(mas) [•/+] A/3P/S(mas) [•/+] 
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FIGURE 3. Deviations of astrometric parameters versus separation. 

The table on the right side contains 
the mean deviations of the astrometric 
parameters of double stars with fixed 
components, obtained from the adjust­
ment procedure, to the corresponding 
values of the true sky with their rms. 
Considering the double stars' error bud­
get and using the rms ratio of the mea­
surements, the adjustment results agree 
with the true sky within the well known 
limits of the FAST single star treatment 
(see Lenhardt et al. 1991), so the capa­
bility of the shown method is confirmed. 

Figures 3 and 4 show the deviations AA and A/3 versus g and Am for both 
components ([•]': primary and [+]: secondary component). The growth of devi­
ations in both coordinates per component is similar to the relative astrometry 
result but the values of the particular deviations seem to be larger by a factor 
of 2 than those in Ag. Apparently the scatter is larger for quantities of the 
secondary component than those of the primary. Additionally to the effect of 
lower intensities of the secondaries on these results a scatter is introduced in the 
data simulation chain (RGC reduction), so this behavior is not unexpected. 

True Sky - Adjustment Results 
(based on 90 star systems) 

Par. 

XP 

UP 
fiX 
H(3 

•K 

AS 

0s 

Mean Deviation 

-2.47 ± 0.14 mas 
+ 1.71 ± 0.09 mas 
+2.11 ± 0.12 mas/y 
-7.56 ± 0.12 mas/y 
+5.43 ± 0.11 mas 
-0.77 ± 0.25 mas 
-0.92 ± 0.16 mas 
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A\P/S(mas) [•/+] Aj3P/s(mas) [•/+] 

Am(mag) Am(mag) 

FIGURE 4. Deviations of astrometric parameters versus magnitude difference. 
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