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Abstract
As the queue becomes exhausted, different maintenance tasks can be performed according to the fatigue load
and wear degree of the service equipment. At the same time, considering the customer’s sensitivity to time
delay, the service facility will not completely remain inactive during the maintenance period. To describe this
objectively existing phenomenon arising in the waiting line system, we consider a hyper-exponential working
vacation queue with a batch renewal arrival process. Through the calculation of the well-structured roots of
the associated characteristic equation, the shift operator method in the theory of difference equations and the
supplementary variable technique for stochastic modeling plays a central role in the queue-length distribution
analysis. Comparison with other ways to analyze queueing models, the advantage of our approach is that we can
avoid deriving the complex transition probability matrix of the queue-length process embedded at input points. The
feasibility of this approach is verified by extensive numerical examples.

1. Introduction

The queueing system with server vacations is useful to model a system in which the server has an
additional task during its idle period. The additional task may represent the server’s working on some
supplementary jobs, performing service equipment maintenance inspections and repairs, or server’s
rest after queue exhaustion. Since such a queue has broad applicability in analyzing the performance
of industrial production systems and data communication networks, it has attracted many researchers’
attention over the past several decades. Various vacation policies provide more flexibility for optimal
design and operating control of the systems. The working vacation policy introduced by Servi and
Finn [23] is a kind of semi-vacation policy. It is characterized by the feature that the service facility
works at a lower service rate rather than completely stopping service during the vacation period. At
first glance, the concept of working vacation is a bit of an oxymoron because work and vacation are
essentially two different things. But when we combine them into a waiting line system arising from
the manufacturing environment, it might be a perfect way to reduce customer service response time
because we can maintain the production equipment during the vacation period without suspending
production completely. In the last twenty years, numerous researchers, including Wu and Takagi [26],
Liu et al. [19], Li et al. [18], Zhang and Hou [28,29] , Selvaraju and Goswami [22], Gao and Yao
[11], Lee and Kim [16], Ma et al. [20], used different methods to study this kind of queue under the
assumption that customers arrive at a service facility according to a Poisson stream. Since our research
is mainly concerned with the general renewal input working vacation queue, we only give a brief
literature review in this area and point out the limitations of the current study to clarify our work’s
motivation.
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So far, the matrix-geometric approach and the embedded Markov Chain technique are the mainstream
methods to study the GI/M/1 type queue, and there is no exception for the working vacation queue.
Baba [1] applied the matrix-geometric method to investigate a GI/M/1 queue with multiple exponential
working vacations. Li et al. [17] used the same way to study the discrete-time version of the above
model. Furthermore, both in continuous and discrete-time cases, Chae et al. [7] discussed general input
queues with a single working vacation using the embedded Markov chain. Considering the fact that
customers arrive in batches instead of individually, Guha and Banik [14] and Guha et al. [15] also
analyzed the renewal input batch arrival queue under single and multiple exponential working vacation
policies. Recently, Yu [27] extended the above work so that the bulk service rule is included. After
carefully reading these papers mentioned above, we may note that each one contains a more complex
transition probability analysis for the queue-length process embedded at the pre-arrival epoch. The
corresponding probabilistic arguments involved in these studies are cumbersome to implement and
error-prone. Additionally, for the general input working vacation queue, except for the work done by
Chen et al. [9], nearly all other authors assume that the server’s vacation time is exponentially distributed.
We think that this is not a very reasonable assumption for many cases in the industrial environment.
Under such a situation, when the waiting line system becomes exhausted, we usually decide what
maintenance needs to be done according to the fatigue state of service equipment. Maintenance may
represent the actions of replacement, repair, adjustment, overhaul, improvement, and checking of the
service equipment. Since each action corresponds to a degree of complexity, the maintenance time
cannot be assumed to follow a common exponential distribution. Thus, to give a more realistic model
assumption, we intend to extend the exponential vacation time to hyper-exponential vacation time in this
research. Moreover, to provide an alternative yet simple problem-solving methodology, we try to use an
approach based on the theory of difference equations to carry out a comprehensive analysis of GI𝑋 /M/1
single working vacation queue. Here, we must admit that the recent work done by Barbhuiya and Gupta
[2–5] gives us some basic ideas to complete the model analysis. We will see that the method adopted in
this paper can make us get rid of the chain matrix analysis. So for most people, this is an easy to accept
method.

The rest of this paper is organized as follows. In Section 2, we describe the mathematical queueing
model in detail. A set of differential-difference equations that represent the dynamics of the queue-
length process is developed in Section 3. In Section 4, queue-length probabilities at different epochs are
derived explicitly by solving simultaneous nonhomogeneous difference equations. Section 5 is devoted
to the sojourn time of a randomly selected customer in an arriving batch. A three-step algorithm for
computing the queue-length distribution is summarized in Section 6. To validate our computational
algorithm, we further provide several typical numerical examples in this section. Finally, conclusions
and future scopes are presented in Section 7.

2. Model formulation

The model is defined by making the following assumptions.

(1) Consider a single-station queueing system where customers arrive in batches according to a
renewal process with independent identically distributed (i.i.d.) inter-batch arrival times having a
common cumulative distribution function 𝐴(𝑡), and probability density function 𝑎(𝑡). Let
𝑎∗ (𝑠) =

∫ ∞
0 𝑒−𝑠𝑡 d𝐴(𝑡) be the Laplace–Stieltjes transform (L.S.T.) of 𝐴(𝑡) and let the mean

inter-batch arrival time be denoted by 1/𝜆. Differentiation of the L.S.T. with respect to 𝑠 is
justified and yields 1/𝜆 = −(d/d𝑠)𝑎∗ (𝑠) |𝑠=0 < ∞.

(2) At every arrival epoch, a batch of 𝑘 customers arrives with probability 𝑔𝑘 . For mathematical
convenience and from a more realistic point of view, we assume that the maximum batch size is
equal to 𝑏. Consequently, the probability generating function of the sequence {𝑔𝑘 , 𝑘 = 1, 2, . . . , 𝑏}
is 𝐺 (𝑧) = ∑𝑏

𝑘=1 𝑔𝑘 𝑧
𝑘 with the first moment 𝑔 =

∑𝑏
𝑘=1 𝑘𝑔𝑘 .
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(3) In a normal busy period, the service times are i.i.d. exponential random variables with mean 1/𝜇0.
When the system becomes empty, the server goes on vacation for a random duration, where the
vacation time has an ℎ-phase hyper-exponential distribution, which can be properly represented by
a probabilistic mixture of exponential distributions. The distribution function of the vacation time
𝑉 is defined as Pr{𝑉 ≤ 𝑡} = 𝑉 (𝑡) = ∑ℎ

𝑗=1 𝛼 𝑗 (1 − 𝑒−𝜃 𝑗 𝑡 ). In other words, at the end of a service, if
no customer is left in the system, the server takes type 𝑗 vacation with probability 𝛼 𝑗 , then the
vacation time distribution is Exp(𝜃 𝑗 ), 𝑗 = 1, 2, . . . , ℎ.

(4) Customers arriving during a type 𝑗 vacation will be served at a lower service rate, where the
service time obeys the exponential distribution with rate 𝜇 𝑗 (𝜇 𝑗 < 𝜇0, 𝑗 = 1, 2, . . . , ℎ). Upon
completion of service at a lower rate, if the vacation is not over, and no customer is waiting for
service, the server will continue the current vacation. On the contrary, if there is at least one
customer in the system, the server will keep this service mode.

(5) As this type of 𝑗 vacation gets over, the server turns to the normal working mode immediately. The
service of a customer being served will be interrupted and restarted from the beginning in the
normal busy period. Alternatively, if no customers are found in the queue at the end of a vacation,
the server remains idle and is ready to serve new arrivals at a normal service rate 𝜇0.

(6) We further assume that the inter-batch arrival times, service times, and vacation times are mutually
independent. A necessary and sufficient condition for model stability is 𝜌 = 𝜆𝑔/𝜇0 < 1 (see the
proofs of Lemma 1 and the analysis of Eq. (35)).

3. Governing difference equation

Queueing systems with general inter-batch arrival time distribution and hyper-exponential vacation time
are difficult to analyze mathematically due to the queueing process being non-Markovian. To enable
the system to be characterized as a Markov system, the following random variables will be used for the
development of our model. Let 𝑁 (𝑡) and 𝜉 (𝑡) denote the number of customers in the system (including
the one in service) and the state of the server at time 𝑡, respectively. Here

𝜉 (𝑡) =
{

0, if the server is in normal busy period at time 𝑡,
𝑗 , if the server is on type 𝑗 vacation at time 𝑡, 𝑗 = 1, 2, . . . , ℎ.

With the inclusion of the supplementary variable technique, and together with the remaining inter-batch
arrival time 𝐴̃(𝑡) at time 𝑡, we may obtain a tri-variate Markov process {𝑁 (𝑡), 𝜉 (𝑡), 𝐴̃(𝑡)}. Furthermore,
to establish the dynamic model of the above Markov process, let us define some probabilities as below

𝑃𝑖 (𝑥, 𝑡) d𝑥 = Pr{𝑁 (𝑡) = 𝑖, 𝜉 (𝑡) = 0, 𝑥 < 𝐴̃(𝑡) ≤ 𝑥 + d𝑥}, 𝑖 = 0, 1, 2 . . . ,
𝑄𝑖, 𝑗 (𝑥, 𝑡) d𝑥 = Pr{𝑁 (𝑡) = 𝑖, 𝜉 (𝑡) = 𝑗 , 𝑥 < 𝐴̃(𝑡) ≤ 𝑥 + d𝑥}, 𝑖 = 0, 1, 2 . . . , 𝑗 = 1, . . . , ℎ.

Employing the above-stated probabilities, and considering the state transitions between time 𝑡 and 𝑡 +Δ𝑡
like the usual arguments as in the birth and death model, we can have the following partial differential
equations (1) to (6) for the tri-variate Markov process.(

𝜕

𝜕𝑡
− 𝜕

𝜕𝑥

)
𝑃0(𝑥, 𝑡) =

ℎ∑
𝑗=1
𝜃 𝑗𝑄0, 𝑗 (𝑥, 𝑡), (1)(

𝜕

𝜕𝑡
− 𝜕

𝜕𝑥

)
𝑃𝑛 (𝑥, 𝑡) = −𝜇0𝑃𝑛 (𝑥, 𝑡) + 𝜇0𝑃𝑛+1 (𝑥, 𝑡) + 𝑎(𝑥)

𝑛∑
𝑘=1
𝑔𝑘𝑃𝑛−𝑘 (0, 𝑡)

+
ℎ∑
𝑗=1
𝜃 𝑗𝑄𝑛, 𝑗 (𝑥, 𝑡), 𝑛 = 1, 2, . . . , 𝑏 − 1, (2)
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(
𝜕

𝜕𝑡
− 𝜕

𝜕𝑥

)
𝑃𝑛 (𝑥, 𝑡) = −𝜇0𝑃𝑛 (𝑥, 𝑡) + 𝜇0𝑃𝑛+1 (𝑥, 𝑡) + 𝑎(𝑥)

𝑏∑
𝑘=1
𝑔𝑘𝑃𝑛−𝑘 (0, 𝑡)

+
ℎ∑
𝑗=1
𝜃 𝑗𝑄𝑛, 𝑗 (𝑥, 𝑡), 𝑛 ≥ 𝑏, (3)(

𝜕

𝜕𝑡
− 𝜕

𝜕𝑥

)
𝑄0, 𝑗 (𝑥, 𝑡) = −𝜃 𝑗𝑄0, 𝑗 (𝑥, 𝑡) + 𝜇 𝑗𝑄1, 𝑗 (𝑥, 𝑡) + 𝜇0𝛼 𝑗𝑃1(𝑥, 𝑡), 𝑗 = 1, 2, . . . , ℎ, (4)(

𝜕

𝜕𝑡
− 𝜕

𝜕𝑥

)
𝑄𝑛, 𝑗 (𝑥, 𝑡) = −(𝜃 𝑗 + 𝜇 𝑗 )𝑄𝑛, 𝑗 (𝑥, 𝑡) + 𝜇 𝑗𝑄𝑛+1, 𝑗 (𝑥, 𝑡)

+ 𝑎(𝑥)
𝑛∑

𝑘=1
𝑔𝑘𝑄𝑛−𝑘, 𝑗 (0, 𝑡), 𝑛 = 1, . . . , 𝑏 − 1, 𝑗 = 1, . . . , ℎ, (5)(

𝜕

𝜕𝑡
− 𝜕

𝜕𝑥

)
𝑄𝑛, 𝑗 (𝑥, 𝑡) = −(𝜃 𝑗 + 𝜇 𝑗 )𝑄𝑛, 𝑗 (𝑥, 𝑡) + 𝜇 𝑗𝑄𝑛+1, 𝑗 (𝑥, 𝑡)

+ 𝑎(𝑥)
𝑏∑

𝑘=1
𝑔𝑘𝑄𝑛−𝑘, 𝑗 (0, 𝑡), 𝑛 ≥ 𝑏, 𝑗 = 1, . . . , ℎ. (6)

As many articles have pointed out, some probabilistic interpretations will be helpful to understand how
these equations are derived. For example, Eq. (6) is obtained at time 𝑡 + Δ𝑡 considering all possibilities.
Note that when time 𝑡 is increased by Δ𝑡, the remaining inter-batch arrival time will be reduced by
𝑥 − Δ𝑡. Thus, we have

𝑄𝑛, 𝑗 (𝑥 − Δ𝑡, 𝑡 + Δ𝑡) = 𝑄𝑛, 𝑗 (𝑥, 𝑡)(1 − 𝜃 𝑗Δ𝑡 + 𝑜(Δ𝑡))(1 − 𝜇 𝑗Δ𝑡 + 𝑜(Δ𝑡)) + 𝜇 𝑗Δ𝑡𝑄𝑛+1, 𝑗 (𝑥, 𝑡)

+ 𝑎(𝑥)Δ𝑡
𝑏∑

𝑘=1
𝑔𝑘𝑄𝑛−𝑘, 𝑗 (0, 𝑡), 𝑛 ≥ 𝑏, 𝑗 = 1, . . . , ℎ.

The above equation explains possible cases for the probability that there are 𝑛(𝑛 ≥ 𝑏) customers in the
system and the server is on type 𝑗 vacation when the remaining inter-batch arrival time is 𝑥 −Δ𝑡 at time
𝑡 + Δ𝑡. In a similar way, Eqs. (1)–(5) can be also obtained.

Let lim𝑡→∞ 𝑃𝑛 (𝑥, 𝑡) = 𝑃𝑛 (𝑥) and lim𝑡→∞𝑄𝑛, 𝑗 (𝑥, 𝑡) = 𝑄𝑛, 𝑗 (𝑥), the Kolmogorov forward equations
governing the system in steady-state for the proposed model is:

− d
d𝑥
𝑃0(𝑥) =

ℎ∑
𝑗=1
𝜃 𝑗𝑄0, 𝑗 (𝑥), (7)

− d
d𝑥
𝑃𝑛 (𝑥) = −𝜇0𝑃𝑛 (𝑥) + 𝜇0𝑃𝑛+1 (𝑥) + 𝑎(𝑥)

𝑛∑
𝑘=1
𝑔𝑘𝑃𝑛−𝑘 (0)

+
ℎ∑
𝑗=1
𝜃 𝑗𝑄𝑛, 𝑗 (𝑥), 𝑛 = 1, . . . , 𝑏 − 1, (8)

− d
d𝑥
𝑃𝑛 (𝑥) = −𝜇0𝑃𝑛 (𝑥) + 𝜇0𝑃𝑛+1 (𝑥) + 𝑎(𝑥)

𝑏∑
𝑘=1
𝑔𝑘𝑃𝑛−𝑘 (0)

+
ℎ∑
𝑗=1
𝜃 𝑗𝑄𝑛, 𝑗 (𝑥), 𝑛 ≥ 𝑏, (9)
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− d
d𝑥
𝑄0, 𝑗 (𝑥) = −𝜃 𝑗𝑄0, 𝑗 (𝑥) + 𝜇 𝑗𝑄1, 𝑗 (𝑥) + 𝜇0𝛼 𝑗𝑃1 (𝑥), 𝑗 = 1, 2, . . . , ℎ, (10)

− d
d𝑥
𝑄𝑛, 𝑗 (𝑥) = −(𝜃 𝑗 + 𝜇 𝑗 )𝑄𝑛, 𝑗 (𝑥) + 𝜇 𝑗𝑄𝑛+1, 𝑗 (𝑥)

+ 𝑎(𝑥)
𝑛∑

𝑘=1
𝑔𝑘𝑄𝑛−𝑘, 𝑗 (0), 𝑛 = 1, . . . , 𝑏 − 1, 𝑗 = 1, . . . , ℎ, (11)

− d
d𝑥
𝑄𝑛, 𝑗 (𝑥) = −(𝜃 𝑗 + 𝜇 𝑗 )𝑄𝑛, 𝑗 (𝑥) + 𝜇 𝑗𝑄𝑛+1, 𝑗 (𝑥)

+ 𝑎(𝑥)
𝑏∑

𝑘=1
𝑔𝑘𝑄𝑛−𝑘, 𝑗 (0), 𝑛 ≥ 𝑏, 𝑗 = 1, . . . , ℎ. (12)

Since the Laplace transform turns the operation of differentiation into the algebraic operation in 𝑠-
domain, and can greatly simplify the solution of problems involving differential equations, we further
define the Laplace transforms of 𝑃𝑛 (𝑥) and 𝑄𝑛, 𝑗 (𝑥) as follows

𝑃∗
𝑛 (𝑠) =

∫ ∞

0
𝑒−𝑠𝑥𝑃𝑛 (𝑥) d𝑥, 𝑛 ≥ 0, 𝑄∗

𝑛, 𝑗 (𝑠) =
∫ ∞

0
𝑒−𝑠𝑥𝑄𝑛, 𝑗 (𝑥) d𝑥, 𝑛 ≥ 0, 𝑗 = 1, . . . , ℎ.

Additionally, for 𝑠 = 0, we define

𝑃∗
𝑛 (0) ≡ 𝑃𝑛 =

∫ ∞

0
𝑃𝑛 (𝑥) d𝑥, 𝑛 ≥ 0, 𝑄∗

𝑛, 𝑗 (0) ≡ 𝑄𝑛, 𝑗 =
∫ ∞

0
𝑄𝑛, 𝑗 (𝑥) d𝑥, 𝑛 ≥ 0, 𝑗 = 1, . . . , ℎ.

Thus, 𝑃𝑛 is the probability that there are 𝑛 customers in the system when the server is in a normal
busy period. Similarly, 𝑄𝑛, 𝑗 is the probability that there are 𝑛 customers in the system while the server
is on type 𝑗 vacation. Taking the Laplace transform on both sides of Eqs. (7)–(12), the corresponding
algebraic equations are given by

𝑠𝑃∗
0(𝑠) = 𝑃0(0) −

ℎ∑
𝑗=1
𝜃 𝑗𝑄

∗
0, 𝑗 (𝑠), (13)

(𝑠 − 𝜇0)𝑃∗
𝑛 (𝑠) + 𝜇0𝑃

∗
𝑛+1 (𝑠) = 𝑃𝑛 (0) − 𝑎∗ (𝑠)

𝑛∑
𝑘=1
𝑔𝑘𝑃𝑛−𝑘 (0)

−
ℎ∑
𝑗=1
𝜃 𝑗𝑄

∗
𝑛, 𝑗 (𝑠), 𝑛 = 1, . . . , 𝑏 − 1, (14)

(𝑠 − 𝜇0)𝑃∗
𝑛 (𝑠) + 𝜇0𝑃

∗
𝑛+1 (𝑠) = 𝑃𝑛 (0) − 𝑎∗ (𝑠)

𝑏∑
𝑘=1
𝑔𝑘𝑃𝑛−𝑘 (0) −

ℎ∑
𝑗=1
𝜃 𝑗𝑄

∗
𝑛, 𝑗 (𝑠), 𝑛 ≥ 𝑏, (15)

(𝑠 − 𝜃 𝑗 )𝑄∗
0, 𝑗 (𝑠) + 𝜇 𝑗𝑄

∗
1, 𝑗 (𝑠) = 𝑄0, 𝑗 (0) − 𝜇0𝛼 𝑗𝑃

∗
1(𝑠), 𝑗 = 1, . . . , ℎ, (16)

[𝑠 − (𝜃 𝑗 + 𝜇 𝑗 )]𝑄∗
𝑛, 𝑗 (𝑠) + 𝜇 𝑗𝑄

∗
𝑛+1, 𝑗 (𝑠) = 𝑄𝑛, 𝑗 (0) − 𝑎∗ (𝑠)

𝑛∑
𝑘=1
𝑔𝑘𝑄𝑛−𝑘, 𝑗 (0),

𝑛 = 1, . . . , 𝑏 − 1, 𝑗 = 1, . . . , ℎ, (17)

[𝑠 − (𝜃 𝑗 + 𝜇 𝑗 )]𝑄∗
𝑛, 𝑗 (𝑠) + 𝜇 𝑗𝑄

∗
𝑛+1, 𝑗 (𝑠) = 𝑄𝑛, 𝑗 (0) − 𝑎∗ (𝑠)

𝑏∑
𝑘=1
𝑔𝑘𝑄𝑛−𝑘, 𝑗 (0),

𝑛 ≥ 𝑏, 𝑗 = 1, . . . , ℎ. (18)
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Adding Eqs. (13) to (18), term by term on both sides, it yields

∞∑
𝑛=0
𝑃∗
𝑛 (𝑠) +

∞∑
𝑛=0

ℎ∑
𝑗=1
𝑄∗

𝑛, 𝑗 (𝑠) =
1 − 𝑎∗ (𝑠)

𝑠

( ∞∑
𝑛=0
𝑃𝑛 (0) +

∞∑
𝑛=0

ℎ∑
𝑗=1
𝑄𝑛, 𝑗 (0)

)
.

Notice that 𝑃∗
𝑛 (𝑠) → 𝑃𝑛, 𝑄∗

𝑛, 𝑗 (𝑠) → 𝑄𝑛, 𝑗 and 1 − 𝑎∗ (𝑠) → 0 as 𝑠 → 0, so L’Hôspital’s Rule and the
normalization condition give

1 =
∞∑
𝑛=0
𝑃𝑛 +

∞∑
𝑛=0

ℎ∑
𝑗=1
𝑄𝑛, 𝑗 =

1
𝜆

( ∞∑
𝑛=0
𝑃𝑛 (0) +

∞∑
𝑛=0

ℎ∑
𝑗=1
𝑄𝑛, 𝑗 (0)

)
.

Let 𝑃−
𝑛 denote the probability that an arriving batch finds the server in a normal working mode and sees

𝑛 customers in the system, and𝑄−
𝑛, 𝑗 is defined as the probability that an incoming batch of the customers

also finds 𝑛 customers in the system and the server is on type 𝑗 vacation. According to Bayes’ theorem,
the following formulas are obtained:

𝑃−
𝑛 = Pr{𝑛 customers in the system prior to an arrival of a batch when the server

is in normal working mode | a group of customers will arrive soon}

=
𝑃𝑛 (0)∑∞

𝑛=0 𝑃𝑛 (0) +
∑∞

𝑛=0
∑ℎ

𝑗=1𝑄𝑛, 𝑗 (0)
=

1
𝜆
𝑃𝑛 (0), 𝑛 = 0, 1, . . . , (19)

𝑄−
𝑛, 𝑗 = Pr{𝑛 customers in the system prior to an arrival of a batch when the server

is on type 𝑗 vacation | a group of customers will arrive soon}

=
𝑄𝑛, 𝑗 (0)∑∞

𝑛=0 𝑃𝑛 (0) +
∑∞

𝑛=0
∑ℎ

𝑗=1𝑄𝑛, 𝑗 (0)
=

1
𝜆
𝑄𝑛, 𝑗 (0), 𝑛 = 0, 1, . . . , 𝑗 = 1, . . . , ℎ. (20)

Clearly, it may be seen that once the expressions of 𝑃𝑛 (0), 𝑃∗
𝑛 (𝑠), 𝑄𝑛, 𝑗 (0), and 𝑄∗

𝑛, 𝑗 (𝑠) are given, the
queue-length distribution both at pre-arrival (𝑃−

𝑛 and 𝑄−
𝑛, 𝑗 ) and arbitrary epochs (𝑃𝑛 and 𝑄𝑛, 𝑗 ) can be

determined from these quantities. We will address this topic in the following section by using the shift
operator method for solving the sets of difference equations (see (13)–(18)) that arise in analyzing such
a queue.

4. Stationary queue-length distributions at two different epochs

For the purpose of analysis, the discrete variable 𝑛 which takes on values in nonnegative integers will be
viewed as the independent variable while 𝑃𝑛 (0), 𝑃∗

𝑛 (𝑠), 𝑄𝑛, 𝑗 (0), and 𝑄∗
𝑛, 𝑗 (𝑠) (whose value “depends”

on the value of 𝑛) can be viewed as functions of 𝑛. The forward shift operator D acting on the sequences
{𝑃𝑛 (0), 𝑛 ≥ 0}, {𝑃∗

𝑛 (𝑠), 𝑛 ≥ 0}, {𝑄𝑛, 𝑗 (0), 𝑛 ≥ 0}, and {𝑄∗
𝑛, 𝑗 (𝑠), 𝑛 ≥ 0} is defined by

D𝑙𝑃𝑛 (0) = 𝑃𝑛+𝑙 (0), D𝑙𝑃∗
𝑛 (𝑠) = 𝑃∗

𝑛+𝑙 (𝑠), 𝑙 ≥ 1,
D𝑙𝑄𝑛, 𝑗 (0) = 𝑄𝑛+𝑙, 𝑗 (0), D𝑙𝑄∗

𝑛, 𝑗 (𝑠) = 𝑄∗
𝑛+𝑙, 𝑗 (𝑠), 𝑙 ≥ 1, 𝑗 = 1, . . . , ℎ.

With the aid of the notation of the forward shift operator D, the difference equation (18) can be written as

[𝑠 − (𝜃 𝑗 + 𝜇 𝑗) + 𝜇 𝑗D]𝑄∗
𝑛, 𝑗 (𝑠) =

(
D𝑏 − 𝑎∗ (𝑠)

𝑏∑
𝑘=1
𝑔𝑘D𝑏−𝑘

)
𝑄𝑛−𝑏, 𝑗 (0), 𝑛 ≥ 𝑏, 𝑗 = 1, . . . , ℎ. (21)
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Re-indexing the variable of 𝑄𝑛−𝑏, 𝑗 (0) as 𝑛 − 𝑏 → 𝑛, and setting 𝑠 = 𝜃 𝑗 + 𝜇 𝑗 − 𝜇 𝑗D for 𝑗 = 1, . . . , ℎ,
Eq. (21) can be reduced to a homogeneous difference equation with constant coefficients(

D𝑏 − 𝑎∗ (𝜃 𝑗 + 𝜇 𝑗 − 𝜇 𝑗D)
𝑏∑

𝑘=1
𝑔𝑘D𝑏−𝑘

)
𝑄𝑛, 𝑗 (0) = 0, 𝑛 ≥ 0, 𝑗 = 1, . . . , ℎ. (22)

According to the basic theory of difference equation, for a fixed 𝑗 , the characteristic equation associated
with Eq. (22) is

𝑧𝑏 − 𝑎∗ (𝜃 𝑗 + 𝜇 𝑗 − 𝜇 𝑗 𝑧)
𝑏∑

𝑘=1
𝑔𝑘 𝑧

𝑏−𝑘 = 0, 𝑗 = 1, . . . , ℎ. (23)

Next, we use Rouché’s theorem to find the number of zeros of the function 𝑝(𝑧) = 𝑧𝑏 − 𝑎∗ (𝜃 𝑗 + 𝜇 𝑗 −
𝜇 𝑗 𝑧)

∑𝑏
𝑘=1 𝑔𝑘 𝑧

𝑏−𝑘 that lies inside the unit circle. Our results will be presented in the form of the following
lemma.

Lemma 1. If 𝜆𝑔/𝜇 𝑗 < 1, then 𝑝(𝑧) has 𝑏 zeros (counted with multiplicity) in the disk {|𝑧 | < 1}.

Proof. To apply Rouché’s theorem, we seek to express 𝑝(𝑧) in the form 𝑝(𝑧) = 𝑓 (𝑧) + ℎ(𝑧), where the
function 𝑓 (𝑧) dominates ℎ(𝑧) on the unit circle, and where it is apparent how many zeros has inside the
unit circle. Thus, our choice for 𝑓 (𝑧) in this case is 𝑓 (𝑧) = 𝑧𝑏, which has 𝑏 zeros inside the unit circle, all at
the origin. Furthermore, we take ℎ(𝑧) = −𝑎∗ (𝜃 𝑗 +𝜇 𝑗 −𝜇 𝑗 𝑧)

∑𝑏
𝑘=1 𝑔𝑘 𝑧

𝑏−𝑘 . For notational convenience, let
𝑈 (𝑧) = 𝑎∗ (𝜃 𝑗+𝜇 𝑗−𝜇 𝑗 𝑧). When 𝜖 > 0 is sufficiently small,𝑈 (𝑧) is analytic in |𝑧 | ≤ 1+𝜖 . Thus, according
to the Taylor’s theorem for analytic function,𝑈 (𝑧) can be represented as a power series

∑∞
𝑙=0 𝑢𝑙 (𝑧 − 1)𝑙 .

Also, we have formulas for the coefficients 𝑢𝑙 = 𝑈 (𝑙) (1)/𝑙! = (1/2𝜋i)
∮
Γ
(𝑈 (𝑧)/(𝑧 − 1)𝑙+1) d𝑧, where i

is a square root of −1, and Γ is any simple closed curve in |𝑧 | ≤ 1 + 𝜖 around 1. Now, employing the
Taylor expansion for 𝑈 (𝑧), we may estimate |ℎ(𝑧) | and | 𝑓 (𝑧) | on the simple closed curve |𝑧 | = 1 − 𝛿,
where 𝛿 is a small positive real number. Since

|ℎ(𝑧) |𝑧=1−𝛿 = |𝑈 (𝑧) |
����� 𝑏∑
𝑘=1
𝑔𝑘 𝑧

𝑏−𝑘
�����
𝑧=1−𝛿

≤ 𝑈 (|𝑧 |)
𝑏∑

𝑘=1
𝑔𝑘 |𝑧 |𝑏−𝑘𝑧=1−𝛿 = 𝑈 (1 − 𝛿)

𝑏∑
𝑘=1
𝑔𝑘 (1 − 𝛿)𝑏−𝑘

=

[
𝑈 (1) + 𝑈

′(1)
1!

(1 − 𝛿 − 1) +
∞∑
𝑙=2

𝑈 (𝑙) (1)
𝑙!

(1 − 𝛿 − 1)𝑙
]

𝑏∑
𝑘=1
𝑔𝑘 [1 − (𝑏 − 𝑘)𝛿 + o(𝛿)]

=

[∫ ∞

0
𝑒−𝜃 𝑗 𝑡 d𝐴(𝑡) − 𝛿

∫ ∞

0
𝑒−𝜃 𝑗 𝑡𝜇 𝑗 𝑡 d𝐴(𝑡) + o(𝛿)

] 𝑏∑
𝑘=1
𝑔𝑘 [1 − (𝑏 − 𝑘)𝛿 + o(𝛿)]

=

[∫ ∞

0
𝑒−𝜃 𝑗 𝑡 (1 − 𝛿𝜇 𝑗 𝑡) d𝐴(𝑡) + o(𝛿)

] 𝑏∑
𝑘=1
𝑔𝑘 [1 − (𝑏 − 𝑘)𝛿 + o(𝛿)]

≤
[∫ ∞

0
(1 − 𝛿𝜇 𝑗 𝑡) d𝐴(𝑡) + o(𝛿)

] 𝑏∑
𝑘=1
𝑔𝑘 [1 − (𝑏 − 𝑘)𝛿 + o(𝛿)]

=
[
1 − 𝛿 𝜇 𝑗

𝜆
+ o(𝛿)

]
[1 − 𝑏𝛿 + 𝑔𝛿 + o(𝛿)] = 1 − 𝑏𝛿 −

( 𝜇 𝑗

𝜆
− 𝑔

)
𝛿 + o(𝛿)

< | 𝑓 (𝑧) |𝑧=1−𝛿 = (1 − 𝛿)𝑏 = 1 − 𝑏𝛿 + o(𝛿),

and both 𝑓 (𝑧) and ℎ(𝑧) are analytic for |𝑧 | ≤ 1− 𝛿, letting 𝛿 tend to zero, Rouché’s theorem tells us that
𝑓 (𝑧) and 𝑝(𝑧) = 𝑓 (𝑧) + ℎ(𝑧) have the same number of zeros in |𝑧 | < 1, which is 𝑏. �

On the other hand, in the existing literature, authors like Chaudhry [8] and Tĳms [25] have emphasized
that root-finding in queueing theory is well structured, in the sense that the roots of the characteristic
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equation are distinct for most queueing models. Therefore, based on the above point of view, we
assume that the 𝑏 roots of the characteristic equation (23) are distinct, denoted by 𝑟𝑚, 𝑗 , 𝑚 = 1, . . . , 𝑏,
𝑗 = 1, . . . , ℎ. Then, an immediate consequence for this particular case is that the general solution of the
homogeneous equation (22) is as follows

𝑄𝑛, 𝑗 (0) =
𝑏∑

𝑚=1
𝑐𝑚, 𝑗𝑟

𝑛
𝑚, 𝑗 , 𝑛 ≥ 0, 𝑗 = 1, . . . , ℎ, (24)

where for fixed 𝑗 , 𝑐1, 𝑗 , 𝑐2, 𝑗 , . . ., and 𝑐𝑏, 𝑗 are real or complex constants whose values can be determined
by a system of linear equations (see subsequent discussions). Substitution of Eq. (24) into Eq. (21) gives

[𝑠 − (𝜃 𝑗 + 𝜇 𝑗 ) + 𝜇 𝑗D]𝑄∗
𝑛, 𝑗 (𝑠) =

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝑟
𝑛
𝑚, 𝑗 − 𝑎∗ (𝑠)

𝑏∑
𝑘=1
𝑔𝑘

(
𝑏∑

𝑚=1
𝑐𝑚, 𝑗𝑟

𝑛−𝑘
𝑚, 𝑗

)
=

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝑟
𝑛
𝑚, 𝑗 − 𝑎∗ (𝑠)

𝑏∑
𝑚=1

𝑐𝑚, 𝑗

𝑏∑
𝑘=1
𝑔𝑘𝑟

𝑛−𝑘
𝑚, 𝑗 , 𝑛 ≥ 𝑏, 𝑗 = 1, . . . , ℎ. (25)

Any solution 𝑄∗
𝑛, 𝑗 (𝑠) of Eq. (25) may be written as

𝑄∗
𝑛, 𝑗 (𝑠) = 𝑄∗(par)

𝑛, 𝑗 (𝑠) +𝑄∗(hom)
𝑛, 𝑗 (𝑠) = 𝑄∗(par)

𝑛, 𝑗 (𝑠) + C1

(
1 + 𝜃 𝑗 − 𝑠

𝜇 𝑗

)𝑛
, 𝑛 ≥ 𝑏,

where 𝑄∗(par)
𝑛, 𝑗 (𝑠) is a particular solution of the nonhomogeneous equation (25), and 𝑄∗(hom)

𝑛, 𝑗 (𝑠) =
C1 (1+ (𝜃 𝑗 − 𝑠)/𝜇 𝑗 )𝑛 is the general solution of the corresponding homogenous equation [𝑠− (𝜃 𝑗 + 𝜇 𝑗 ) +
𝜇 𝑗D]𝑄∗

𝑛, 𝑗 (𝑠) = 0. It is easy to verify that the undetermined constant C1 = 0 because of the condition∑∞
𝑛=𝑏 𝑄

∗
𝑛, 𝑗 (0) =

∑∞
𝑛=𝑏 𝑄𝑛, 𝑗 < ∞. Thus, for 𝑛 ≥ 𝑏, we finally have 𝑄∗

𝑛, 𝑗 (𝑠) = 𝑄∗(par)
𝑛, 𝑗 (𝑠).

Now, we focus our attention on finding a particular solution of Eq. (25). Since the nonhomogeneous
term is a finite linear combination of the function 𝑟𝑛𝑚, 𝑗 , the method of undetermined coefficient is used
to find 𝑄∗(par)

𝑛, 𝑗 (𝑠). Here, we can guess the trial solutions with undetermined coefficients, plug them into
the difference equation (25), and then solve for the unknown coefficients to obtain the particular solution
as below

𝑄∗
𝑛, 𝑗 (𝑠) = 𝑄∗(par)

𝑛, 𝑗 (𝑠) =
𝑏∑

𝑚=1
𝑐𝑚, 𝑗

𝑟𝑛𝑚, 𝑗 − 𝑎∗ (𝑠)
∑𝑏

𝑘=1 𝑔𝑘𝑟
𝑛−𝑘
𝑚, 𝑗

𝑠 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )
, 𝑛 ≥ 𝑏, 𝑗 = 1, . . . , ℎ. (26)

Since Eqs. (17) and (18) have almost exactly the same form, we now seek the suitable conditions under
which 𝑄∗

𝑛, 𝑗 (𝑠) |𝑠=0 has the same expression as in Eq. (26) for 1 ≤ 𝑛 ≤ 𝑏 − 1, when 𝑠 = 0. This point can
be justified by the matrix geometric algorithm (see Neuts [21]), and is not our intuitive guess. Actually,
by assuming that the size of an arriving batch is bounded, the jumps to the right of the embedded Markov
chain are bounded (although our approach can avoid discussion of the embedded Markov chain). This
implies that the Markov chain fits into the standard matrix-geometric framework by appropriately
defining the levels, and its stationary distribution is readily available in matrix-geometric form. In other
words, for 𝑛 = 0, 1, 2, . . ., if we let 𝝅𝑛 = (𝑃−

𝑛 , 𝑄
−
𝑛,1, 𝑄

−
𝑛,2, . . . , 𝑄

−
𝑛,ℎ), Neuts has shown that there exists

a positive matrix 𝑹 such that 𝝅𝑛 = 𝝅0𝑹
𝑛. Furthermore, from the results regarding the steady-state

queue-length distributions immediately before batch arrival, we can derive the stationary queue-length
distribution at arbitrary epochs by employing the classical arguments based on renewal theory and
semi-Markov process. For the above reasons, and noting that 𝑃∗

𝑛 (𝑠) |𝑠=0 = 𝑃𝑛 and 𝑄∗
𝑛, 𝑗 (𝑠) |𝑠=0 = 𝑄𝑛, 𝑗 ,

we think the expressions of 𝑄∗
𝑛, 𝑗 (0) and 𝑃∗

𝑛 (0) can necessarily be unified regardless of 𝑛 ≥ 𝑏 or not.
Hence, by putting Eq. (24) into Eqs. (18) and (17), and comparing the last term of the right-hand side
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of Eqs. (18) and (17) gives the following relation, which the 𝑐𝑚, 𝑗 must satisfy:

𝑛∑
𝑘=1
𝑔𝑘

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝑟
𝑛−𝑘
𝑚, 𝑗 =

𝑏∑
𝑘=1
𝑔𝑘

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝑟
𝑛−𝑘
𝑚, 𝑗 ⇒

𝑏∑
𝑚=1

𝑐𝑚, 𝑗

𝑛∑
𝑘=1
𝑔𝑘𝑟

𝑛−𝑘
𝑚, 𝑗 =

𝑏∑
𝑚=1

𝑐𝑚, 𝑗

𝑏∑
𝑘=1
𝑔𝑘𝑟

𝑛−𝑘
𝑚, 𝑗

⇒
𝑏∑

𝑚=1
𝑐𝑚, 𝑗

𝑏∑
𝑘=𝑛+1

𝑔𝑘𝑟
𝑛−𝑘
𝑚, 𝑗 = 0, 𝑛 = 𝑏 − 1, 𝑏 − 2, . . . , 1, 𝑗 = 1, 2, . . . , ℎ. (27)

Notice that for 𝑔𝑏 ≠ 0, setting 𝑛 = 𝑏 − 1, 𝑏 − 2, . . ., 1 in Eq. (27), respectively, allows us to conclude
that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏∑
𝑚=1

𝑐𝑚,1

𝑟𝑚,1
= 0

𝑏∑
𝑚=1

𝑐𝑚,1

𝑟2
𝑚,1

= 0

...
𝑏∑

𝑚=1

𝑐𝑚,1

𝑟𝑏−2
𝑚,1

= 0

𝑏∑
𝑚=1

𝑐𝑚,1

𝑟𝑏−1
𝑚,1

= 0

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏∑
𝑚=1

𝑐𝑚,2

𝑟𝑚,2
= 0

𝑏∑
𝑚=1

𝑐𝑚,2

𝑟2
𝑚,2

= 0

...
𝑏∑

𝑚=1

𝑐𝑚,2

𝑟𝑏−2
𝑚,2

= 0

𝑏∑
𝑚=1

𝑐𝑚,2

𝑟𝑏−1
𝑚,2

= 0

, . . . . . . ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏∑
𝑚=1

𝑐𝑚,ℎ−1

𝑟𝑚,ℎ−1
= 0

𝑏∑
𝑚=1

𝑐𝑚,ℎ−1

𝑟2
𝑚,ℎ−1

= 0

...
𝑏∑

𝑚=1

𝑐𝑚,ℎ−1

𝑟𝑏−2
𝑚,ℎ−1

= 0

𝑏∑
𝑚=1

𝑐𝑚,ℎ−1

𝑟𝑏−1
𝑚,ℎ−1

= 0

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏∑
𝑚=1

𝑐𝑚,ℎ

𝑟𝑚,ℎ
= 0

𝑏∑
𝑚=1

𝑐𝑚,ℎ

𝑟2
𝑚,ℎ

= 0

...
𝑏∑

𝑚=1

𝑐𝑚,ℎ

𝑟𝑏−2
𝑚,ℎ

= 0

𝑏∑
𝑚=1

𝑐𝑚,ℎ

𝑟𝑏−1
𝑚,ℎ

= 0

. (28)

For 𝑗 = 1, 2, . . . , ℎ, let 𝒄 𝑗 = (𝑐1, 𝑗 , 𝑐2, 𝑗 , . . . , 𝑐𝑏, 𝑗 )T and

𝑹 𝑗 =

���������

𝑟−1
1, 𝑗 𝑟−1

2, 𝑗 · · · 𝑟−1
𝑏−1, 𝑗 𝑟−1

𝑏, 𝑗

𝑟−2
1, 𝑗 𝑟−2

2, 𝑗 · · · 𝑟−2
𝑏−1, 𝑗 𝑟−2

𝑏, 𝑗
...

...
...

...
...

𝑟−(𝑏−2)
1, 𝑗 𝑟−(𝑏−2)

2, 𝑗 · · · 𝑟−(𝑏−2)
𝑏−1, 𝑗 𝑟−(𝑏−2)

𝑏, 𝑗

𝑟−(𝑏−1)
1, 𝑗 𝑟−(𝑏−1)

2, 𝑗 · · · 𝑟−(𝑏−1)
𝑏−1, 𝑗 𝑟−(𝑏−1)

𝑏, 𝑗

���������
,

where “T” represents the transpose operation on a vector or a matrix. With these notations, Eq. (27)
may be written in matrix form as

����������

𝑹1 0 0 · · · 0 0
0 𝑹2 0 · · · 0 0
0 0 𝑹3 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 𝑹ℎ−1 0
0 0 0 · · · 0 𝑹ℎ

����������

����������

𝒄1
𝒄2
𝒄3
...

𝒄ℎ−1
𝒄ℎ

����������
=

����������

0
0
0
...
0
0

����������
, (29)

where 0 denotes a zero matrix or a zero column vector of appropriate dimension. If the constants 𝑐1,1,
. . ., 𝑐𝑏,1, . . ., 𝑐1,ℎ , . . ., 𝑐𝑏,ℎ satisfy Eq. (28), the same expression for 𝑄∗

𝑛, 𝑗 (𝑠) can be derived from Eqs.
(17) and (18). This also means that for any 𝑛 ≥ 1, we have

𝑄∗
𝑛, 𝑗 (𝑠) =

𝑏∑
𝑚=1

𝑐𝑚, 𝑗

𝑟𝑛𝑚, 𝑗 − 𝑎∗ (𝑠)
∑𝑏

𝑘=1 𝑔𝑘𝑟
𝑛−𝑘
𝑚, 𝑗

𝑠 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )
, 𝑗 = 1, . . . , ℎ. (30)
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However, since the number of unknowns is greater than the number of equations, the constants 𝑐𝑚, 𝑗 ,
𝑚 = 1, . . . , 𝑏, 𝑗 = 1, . . . , ℎ can not be uniquely determined by Eq. (29). So we need to find more
conditions to get 𝑐𝑚, 𝑗 .

Again, as in Eq. (18) treated above, Eq. (15) can also be expressed in terms of the forward shift
operator D as below

(𝑠 − 𝜇0 + 𝜇0D)𝑃∗
𝑛 (𝑠) =

(
D𝑏 − 𝑎∗ (𝑠)

𝑏∑
𝑘=1
𝑔𝑘D𝑏−𝑘

)
𝑃𝑛−𝑏 (0) −

ℎ∑
𝑗=1
𝜃 𝑗𝑄

∗
𝑛, 𝑗 (𝑠), 𝑛 ≥ 𝑏. (31)

Letting 𝑠 = 𝜇0 − 𝜇0D on both sides of Eq. (30) gives(
D𝑏 − 𝑎∗ (𝜇0 − 𝜇0D)

𝑏∑
𝑘=1
𝑔𝑘D𝑏−𝑘

)
𝑃𝑛−𝑏 (0) =

ℎ∑
𝑗=1
𝜃 𝑗𝑄

∗
𝑛, 𝑗 (𝜇0 − 𝜇0D), 𝑛 ≥ 𝑏. (32)

Similarly, by setting 𝑛 ≥ 0 instead of 𝑛 ≥ 𝑏 and substituting Eq. (30) into Eq. (32) yields(
D𝑏 − 𝑎∗ (𝜇0 − 𝜇0D)

𝑏∑
𝑘=1
𝑔𝑘D𝑏−𝑘

)
𝑃𝑛 (0) =

ℎ∑
𝑗=1
𝜃 𝑗𝑄

∗
𝑛+𝑏, 𝑗 (𝜇0 − 𝜇0D)

=
ℎ∑
𝑗=1
𝜃 𝑗

𝑏∑
𝑚=1

𝑐𝑚, 𝑗

{
𝑟𝑏𝑚, 𝑗 − 𝑎∗ (𝜇0 − 𝜇0D)∑𝑏

𝑘=1 𝑔𝑘𝑟
𝑏−𝑘
𝑚, 𝑗

𝜇0 − 𝜇0D − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )

}
𝑟𝑛𝑚, 𝑗 , 𝑛 ≥ 0. (33)

Eq. (33) is a nonhomogeneous equation for 𝑃𝑛 (0) as a function of 𝑛. The general solution of Eq. (33)
consists of the sum of the solution to the homogeneous equation(

D𝑏 − 𝑎∗ (𝜇0 − 𝜇0D)
𝑏∑

𝑘=1
𝑔𝑘D𝑏−𝑘

)
𝑃𝑛 (0) = 0, 𝑛 ≥ 0, (34)

and any particular solution of Eq. (33). Notice that the characteristic equation associated with Eq. (34) is

𝑧𝑏 − 𝑎∗ (𝜇0 − 𝜇0𝑧)
𝑏∑

𝑘=1
𝑔𝑘 𝑧

𝑏−𝑘 = 0. (35)

If we start with Eq. (35) and still choose 𝑓 (𝑧) = 𝑧𝑏 and 𝑞(𝑧) = −𝑎∗ (𝜇0 − 𝜇0𝑧)
∑𝑏

𝑘=1 𝑔𝑘 𝑧
𝑏−𝑘 , analogous

to the proof of Lemma 1, we can prove the characteristic equation (35) has exactly 𝑏 roots inside the unit
disk under the assumption that 𝑔𝜆 < 𝜇0. Let these roots be denoted by 𝜔1, 𝜔2, . . ., 𝜔𝑏 , and also assume
that they are distinct. Then the general solution to the homogeneous equation (34) is

∑𝑏
𝑚=1 𝑓𝑚𝜔

𝑛
𝑚, where

𝑓1, 𝑓2, . . ., and 𝑓𝑏 are 𝑏 arbitrary constants that need to be determined. Next, to find a particular solution
of Eq. (33), we observe the structure of the nonhomogeneous term, and guess that it has to have the form

𝑃
(par)
𝑛 (0) =

ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑑𝑚, 𝑗𝑟
𝑛
𝑚, 𝑗 , 𝑛 ≥ 0, (36)

where 𝑑𝑚, 𝑗 can be expressed in terms of 𝑐𝑚, 𝑗 and 𝑟𝑚, 𝑗 by substituting Eq. (36) into Eq. (33). Doing this
gives

𝑑𝑚, 𝑗 =
𝑐𝑚, 𝑗𝜃 𝑗

(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗
, 𝑚 = 1, . . . , 𝑏, 𝑗 = 1, . . . , ℎ.
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Hence final general solution to the nonhomogeneous equation (32) is given by

𝑃𝑛 (0) =
𝑏∑

𝑚=1
𝑓𝑚𝜔

𝑛
𝑚 +

ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗

(𝜇0 − 𝜇 𝑗)(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗
𝑟𝑛𝑚, 𝑗 , 𝑛 ≥ 0. (37)

The task now is to find the expression of 𝑃∗
𝑛 (𝑠). Plugging Eqs. (30) and (37) into Eq. (31), and after

some algebraic manipulation, we get

(𝑠 − 𝜇0 + 𝜇0D)𝑃∗
𝑛 (𝑠)

=

(
D𝑏 − 𝑎∗ (𝑠)

𝑏∑
𝑘=1
𝑔𝑘D𝑏−𝑘

) (
𝑏∑

𝑚=1
𝑓𝑚𝜔

𝑛−𝑏
𝑚 +

ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗𝑟
𝑛−𝑏
𝑚, 𝑗

(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗

)
−

ℎ∑
𝑗=1
𝜃 𝑗

𝑏∑
𝑚=1

𝑐𝑚, 𝑗

𝑟𝑛𝑚, 𝑗 − 𝑎∗ (𝑠)
∑𝑏

𝑘=1 𝑔𝑘𝑟
𝑛−𝑘
𝑚, 𝑗

𝑠 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )

=
𝑏∑

𝑚=1
𝑓𝑚

(
𝜔𝑛

𝑚 − 𝑎∗ (𝑠)
𝑏∑

𝑘=1
𝑔𝑘𝜔

𝑛−𝑘
𝑚

)
+

ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗 (𝑟𝑛𝑚, 𝑗 − 𝑎∗ (𝑠)
∑𝑏

𝑘=1 𝑔𝑘𝑟
𝑛−𝑘
𝑚, 𝑗 )

(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗

−
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗

{
𝑟𝑛𝑚, 𝑗 − 𝑎∗ (𝑠)

∑𝑏
𝑘=1 𝑔𝑘𝑟

𝑛−𝑘
𝑚, 𝑗

𝑠 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )

}
=

𝑏∑
𝑚=1

𝑓𝑚

(
1 − 𝑎∗ (𝑠)

𝑏∑
𝑘=1
𝑔𝑘𝜔

−𝑘
𝑚

)
𝜔𝑛

𝑚

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗 (1 − 𝑎∗ (𝑠)∑𝑏
𝑘=1 𝑔𝑘𝑟

−𝑘
𝑚, 𝑗 ) [𝑠 − 𝜇0(1 − 𝑟𝑚, 𝑗 )]

[(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗] [𝑠 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )]
𝑟𝑛𝑚, 𝑗 , 𝑛 ≥ 𝑏. (38)

This indicates that the sequence {𝑃∗
𝑛 (𝑠), 𝑛 ≥ 𝑏} satisfies the first-order nonhomogeneous difference

equation (38). Similar to our previous discussion, we of course first find the general solution to the
corresponding homogeneous equation of Eq. (38). Here, the general solution is given as 𝑃∗(hom)

𝑛 (𝑠) =
C2 (1 − 𝑠/𝜇0)𝑛, and C2 is an undetermined constant. Notice also that the nonhomogeneous term is a
linear combination of 𝜔𝑛

𝑚 and 𝑟𝑛𝑚, 𝑗 , a particular solution of Eq. (38) can be given by

𝑃
∗(par)
𝑛 (𝑠) =

𝑏∑
𝑚=1

𝑓𝑚 [1 − 𝑎∗ (𝑠)𝐺 (𝜔−1
𝑚 )]

𝑠 − 𝜇0(1 − 𝜔𝑚)
𝜔𝑛

𝑚

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗 [1 − 𝑎∗ (𝑠)𝐺 (𝑟−1
𝑚, 𝑗 )]𝑟𝑛𝑚, 𝑗

[(𝜇0 − 𝜇 𝑗)(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗 ] [𝑠 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )]
, 𝑛 ≥ 𝑏. (39)

Thus, for 𝑛 ≥ 𝑏, the general solution to Eq. (38) is the sum of the homogeneous solution and the
particular solution (see Eq. (39)),

𝑃∗
𝑛 (𝑠) = C2

(
1 − 𝑠

𝜇

)𝑛
+

𝑏∑
𝑚=1

𝑓𝑚 [1 − 𝑎∗ (𝑠)𝐺 (𝜔−1
𝑚 )]

𝑠 − 𝜇0(1 − 𝜔𝑚)
𝜔𝑛

𝑚

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗 [1 − 𝑎∗ (𝑠)𝐺 (𝑟−1
𝑚, 𝑗 )]

[(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗 ] [𝑠 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )]
𝑟𝑛𝑚, 𝑗 , 𝑛 ≥ 𝑏. (40)
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Since
∑∞

𝑛=𝑏 𝑃
∗
𝑛 (0) =

∑∞
𝑛=𝑏 𝑃𝑛 < ∞, we must have C2 = 0. Hence, Eq. (40) reduces to

𝑃∗
𝑛 (𝑠) =

𝑏∑
𝑚=1

𝑓𝑚 [1 − 𝑎∗ (𝑠)𝐺 (𝜔−1
𝑚 )]

𝑠 − 𝜇0(1 − 𝜔𝑚)
𝜔𝑛

𝑚

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗 [1 − 𝑎∗ (𝑠)𝐺 (𝑟−1
𝑚, 𝑗 )]𝑟𝑛𝑚, 𝑗

[(𝜇0 − 𝜇 𝑗)(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗 ] [𝑠 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )]
, 𝑛 ≥ 𝑏. (41)

Then, we do wish to find the right conditions such that the expression for 𝑃∗
𝑛 (𝑠) |𝑠=0 presented in Eq.

(41) still holds when 1 ≤ 𝑛 ≤ 𝑏 − 1 and 𝑠 = 0. We compare the second term on the right-hand side of
Eqs. (14) and (15) and conclude that 𝑓𝑚 and 𝑐𝑚, 𝑗 satisfy the relation

𝑏∑
𝑚=1

𝑓𝑚

𝑏∑
𝑘=𝑛+1

𝑔𝑘𝜔
𝑛−𝑘
𝑚 +

ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗

𝑏∑
𝑘=𝑛+1

𝑔𝑘

×
𝜃 𝑗𝑟

𝑛−𝑘
𝑚, 𝑗

(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗
= 0, 𝑛 = 𝑏 − 1, 𝑏 − 2, . . . , 1. (42)

Let us take 𝑛 = 𝑏 − 1, 𝑏 − 2, . . ., and 1 in Eq. (42), respectively, and note that for 𝑔𝑏 ≠ 0, a system of
linear equations in 𝑏 + ℎ𝑏 variables can be derived from Eq. (42)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏∑
𝑚=1

𝑓𝑚
𝜔𝑚

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗

[(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗]𝑟𝑚, 𝑗
= 0

𝑏∑
𝑚=1

𝑓𝑚
𝜔2

𝑚

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗

[(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗]𝑟2
𝑚, 𝑗

= 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
𝑏∑

𝑚=1

𝑓𝑚
𝜔𝑏−1

𝑚

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗

[(𝜇0 − 𝜇 𝑗)(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗 ]𝑟𝑏−1
𝑚, 𝑗

= 0

. (43)

In other words, when 1 ≤ 𝑛 ≤ 𝑏 − 1, if the above Eq. (43) holds, then 𝑃∗
𝑛 (𝑠) has the following uniform

expression

𝑃∗
𝑛 (𝑠) =

𝑏∑
𝑚=1

𝑓𝑚 [1 − 𝑎∗ (𝑠)𝐺 (𝜔−1
𝑚 )]

𝑠 − 𝜇0 (1 − 𝜔𝑚)
𝜔𝑛

𝑚

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗 [1 − 𝑎∗ (𝑠)𝐺 (𝑟−1
𝑚, 𝑗 )]𝑟𝑛𝑚, 𝑗

[(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗 ] [𝑠 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )]
, 𝑛 ≥ 1. (44)
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Furthermore, letting 𝑠 = 𝜃 𝑗 in Eq. (16) and substituting Eqs. (24), (30), and (44) into Eq. (16) gives
another linear system with ℎ equations and ℎ𝑏 + 𝑏 variables.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏∑
𝑚=1

𝑐𝑚,1

(
1 − 𝑎∗ (𝜃1)𝐺 (𝑟−1

𝑚,1)𝑟𝑚,1

𝑟𝑚,1 − 1
+

𝛼1𝜇0𝜃1 [1 − 𝑎∗ (𝜃1)𝐺 (𝑟−1
𝑚,1)]𝑟𝑚,1

[(𝜇0 − 𝜇1)(1 − 𝑟𝑚,1) − 𝜃1]𝜇1(𝑟𝑚,1 − 1)

)
+

ℎ∑
𝑙=2

𝑏∑
𝑚=1

𝛼1𝜇0𝑐𝑚,𝑙𝜃𝑙 [1 − 𝑎∗ (𝜃1)𝐺 (𝑟−1
𝑚,𝑙)]𝑟𝑚,𝑙

[(𝜇0 − 𝜇𝑙)(1 − 𝑟𝑚,𝑙) − 𝜃𝑙] [𝜃1 − 𝜃𝑙 − 𝜇𝑙 (1 − 𝑟𝑚,𝑙)]

+
𝑏∑

𝑚=1

𝛼1𝜇0 𝑓𝑚 [1 − 𝑎∗ (𝜃1)𝐺 (𝜔−1
𝑚 )]𝜔𝑚

𝜃1 − 𝜇0(1 − 𝜔𝑚)
= 0

𝑏∑
𝑚=1

𝑐𝑚,2

(
1 − 𝑎∗ (𝜃2)𝐺 (𝑟−1

𝑚,2)𝑟𝑚,2

𝑟𝑚,2 − 1
+

𝛼2𝜇0𝜃2 [1 − 𝑎∗ (𝜃2)𝐺 (𝑟−1
𝑚,2)]𝑟𝑚,2

[(𝜇0 − 𝜇2)(1 − 𝑟𝑚,2) − 𝜃2]𝜇2(𝑟𝑚,2 − 1)

)
+

ℎ∑
𝑙=1
𝑙≠2

𝑏∑
𝑚=1

𝛼2𝜇0𝑐𝑚,𝑙𝜃𝑙 [1 − 𝑎∗ (𝜃2)𝐺 (𝑟−1
𝑚,𝑙)]𝑟𝑚,𝑙

[(𝜇0 − 𝜇𝑙)(1 − 𝑟𝑚,𝑙) − 𝜃𝑙] [𝜃2 − 𝜃𝑙 − 𝜇𝑙 (1 − 𝑟𝑚,𝑙)]

+
𝑏∑

𝑚=1

𝛼2𝜇0 𝑓𝑚 [1 − 𝑎∗ (𝜃2)𝐺 (𝜔−1
𝑚 )]𝜔𝑚

𝜃2 − 𝜇0(1 − 𝜔𝑚)
= 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
𝑏∑

𝑚=1
𝑐𝑚,ℎ

(
1 − 𝑎∗ (𝜃ℎ)𝐺 (𝑟−1

𝑚,ℎ)𝑟𝑚,ℎ

𝑟𝑚,ℎ − 1
+

𝛼ℎ𝜇0𝜃ℎ [1 − 𝑎∗ (𝜃ℎ)𝐺 (𝑟−1
𝑚,ℎ)]𝑟𝑚,ℎ

[(𝜇0 − 𝜇ℎ)(1 − 𝑟𝑚,ℎ) − 𝜃ℎ]𝜇ℎ (𝑟𝑚,ℎ − 1)

)
+

ℎ−1∑
𝑙=1

𝑏∑
𝑚=1

𝛼ℎ𝜇0𝑐𝑚,𝑙𝜃𝑙 [1 − 𝑎∗ (𝜃ℎ)𝐺 (𝑟−1
𝑚,𝑙)]𝑟𝑚,𝑙

[(𝜇0 − 𝜇𝑙)(1 − 𝑟𝑚,𝑙) − 𝜃𝑙] [𝜃ℎ − 𝜃𝑙 − 𝜇𝑙 (1 − 𝑟𝑚,𝑙)]

+
𝑏∑

𝑚=1

𝛼ℎ𝜇0 𝑓𝑚 [1 − 𝑎∗ (𝜃ℎ)𝐺 (𝜔−1
𝑚 )]𝜔𝑚

𝜃ℎ − 𝜇0(1 − 𝜔𝑚)
= 0

. (45)

To enhance the calculation and simplify the programs coded in Matlab, we rewrite Eqs. (43) and (45)
in the matrix form as below

(
𝑯1 𝑯2 · · · 𝑯ℎ 𝑾
𝚲1 𝚲2 · · · 𝚲ℎ 𝑩

) ������
𝒄1
...
𝒄ℎ
𝒇

������
=

������
0
...
0
0

������(𝑏−1+ℎ)×1

, (46)

where 𝒇 = ( 𝑓1, 𝑓2, . . . , 𝑓𝑏)T,

𝑯 𝑗 =

�������
𝜁1, 𝑗𝑟

−1
1, 𝑗 𝜁2, 𝑗𝑟

−1
2, 𝑗 · · · 𝜁𝑏, 𝑗𝑟

−1
𝑏, 𝑗

𝜁1, 𝑗𝑟
−2
1, 𝑗 𝜁2, 𝑗𝑟

−2
2, 𝑗 · · · 𝜁𝑏, 𝑗𝑟

−2
𝑏, 𝑗

...
...

...
...

𝜁1, 𝑗𝑟
−(𝑏−1)
1, 𝑗 𝜁2, 𝑗𝑟

−(𝑏−1)
2, 𝑗 · · · 𝜁𝑏, 𝑗𝑟−(𝑏−1)

𝑏, 𝑗

�������
, 𝑗 = 1, 2, . . . , ℎ,

𝚲 𝑗 = 𝑗 th row

������������

𝜂 (1)1, 𝑗 𝜂
(1)
2, 𝑗 · · · 𝜂 (1)𝑏−1, 𝑗 𝜂

(1)
𝑏, 𝑗

𝜂 (2)1, 𝑗 𝜂
(2)
2, 𝑗 · · · 𝜂 (2)𝑏−1, 𝑗 𝜂

(2)
𝑏, 𝑗

...
...

...
...

...
𝜓1, 𝑗 𝜓2, 𝑗 · · · 𝜓𝑏−1, 𝑗 𝜓𝑏, 𝑗

...
...

...
...

...

𝜂 (ℎ)1, 𝑗 𝜂
(ℎ)
2, 𝑗 · · · 𝜂 (ℎ)𝑏−1, 𝑗 𝜂

(ℎ)
𝑏, 𝑗

������������
, 𝑗 = 1, 2, . . . , ℎ,
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𝑾 =

������
𝜔−1

1 𝜔−1
2 · · · 𝜔−1

𝑏
𝜔−2

1 𝜔−2
2 · · · 𝜔−2

𝑏
...

...
...

...

𝜔−(𝑏−1)
1 𝜔−(𝑏−1)

2 · · · 𝜔−(𝑏−1)
𝑏

������
, 𝑩 =

������
𝛽1,1 𝛽2,1 · · · 𝛽𝑏,1
𝛽1,2 𝛽2,2 · · · 𝛽𝑏,2
...

...
...

...
𝛽1,ℎ 𝛽2,ℎ · · · 𝛽𝑏,ℎ

������
.

The elements in matrices 𝑯 𝑗 , 𝚲 𝑗 , and 𝑩 are given, respectively, by

𝜁𝑚, 𝑗 =
𝜃 𝑗

(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗
, 𝑚 = 1, . . . , 𝑏, 𝑗 = 1, . . . , ℎ,

𝜂 (𝑖)𝑚, 𝑗 =
𝛼𝑖𝜇0𝜃 𝑗 [1 − 𝑎∗ (𝜃𝑖)𝐺 (𝑟−1

𝑚, 𝑗 )]𝑟𝑚, 𝑗

[(𝜇0 − 𝜇 𝑗)(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗 ] [𝜃𝑖 − 𝜃 𝑗 − 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )]
, 𝑚 = 1, . . . , 𝑏, 𝑖, 𝑗 = 1, . . . , ℎ, 𝑖 ≠ 𝑗 ,

𝜓𝑚, 𝑗 =
1 − 𝑎∗ (𝜃 𝑗)𝐺 (𝑟−1

𝑚, 𝑗 )𝑟𝑚, 𝑗

𝑟𝑚, 𝑗 − 1
+

𝛼 𝑗𝜇0𝜃 𝑗 [1 − 𝑎∗ (𝜃 𝑗)𝐺 (𝑟−1
𝑚, 𝑗 )]𝑟𝑚, 𝑗

[(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗]𝜇 𝑗 (𝑟𝑚, 𝑗 − 1) , 𝑚 = 1, . . . , 𝑏, 𝑗 = 1, . . . , ℎ,

𝛽𝑚, 𝑗 =
𝛼 𝑗𝜇0 [1 − 𝑎∗ (𝜃 𝑗)𝐺 (𝜔−1

𝑚 )]𝜔𝑚

𝜃 𝑗 − 𝜇0(1 − 𝜔𝑚)
, 𝑚 = 1, . . . , 𝑏, 𝑗 = 1, . . . , ℎ.

Since
∑∞

𝑛=0 𝑃𝑛 (0) +
∑∞

𝑛=0
∑ℎ

𝑗=1𝑄𝑛, 𝑗 (0) = 𝜆, for 𝑚 = 1, . . . , 𝑏 and 𝑗 = 1, . . . , ℎ, we can further derive a
relationship for 𝑐𝑚, 𝑗 and 𝑓𝑚

𝑏∑
𝑚=1

𝑓𝑚
1 − 𝜔𝑚

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗 (𝜇0 − 𝜇 𝑗 )
(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗

= 𝜆. (47)

Obviously, Eqs. (29), (46) and (47) constitute a system of ℎ𝑏+𝑏 linear equations with ℎ𝑏+𝑏 unknowns to
compute the undetermined constants. Having found 𝑐𝑚, 𝑗 and 𝑓𝑚, we are now able to give the stationary
queue-length distributions at pre-arrival and arbitrary epochs. According to Eqs. (19) and (20), we have

𝑃−
𝑛=

1
𝜆
𝑃𝑛 (0) = 1

𝜆

(
𝑏∑

𝑚=1
𝑓𝑚𝜔

𝑛
𝑚 +

ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗

(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗
𝑟𝑛𝑚, 𝑗

)
, 𝑛 ≥ 0, (48)

𝑄−
𝑛, 𝑗=

1
𝜆
𝑄𝑛, 𝑗 (0) = 1

𝜆

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝑟
𝑛
𝑚, 𝑗 , 𝑛 ≥ 0, 𝑗 = 1, . . . , ℎ. (49)

Taking 𝑠 = 0 in Eqs. (30) and (44), we further have

𝑃𝑛 = 𝑃∗
𝑛 (0) =

𝑏∑
𝑚=1

𝑓𝑚 [𝐺 (𝜔−1
𝑚 ) − 1]𝜔𝑛

𝑚

𝜇0(1 − 𝜔𝑚)

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗 [𝐺 (𝑟−1
𝑚, 𝑗 ) − 1]𝑟𝑛𝑚, 𝑗

[(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗 ] [𝜃 𝑗 + 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )]
, 𝑛 ≥ 1 (50)

𝑄𝑛, 𝑗 = 𝑄
∗
𝑛, 𝑗 (0) =

𝑏∑
𝑚=1

𝑐𝑚, 𝑗 [𝐺 (𝑟−1
𝑚, 𝑗 ) − 1]𝑟𝑛𝑚, 𝑗

𝜃 𝑗 + 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )
, 𝑛 ≥ 1, 𝑗 = 1, . . . , ℎ. (51)
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For 𝑛 = 0, 𝑄0, 𝑗 can be derived from Eq. (16) by making the substitution 𝑠 = 0. With some algebraic
manipulation, it can be shown that

𝑄0, 𝑗 = 𝑄
∗
0, 𝑗 (0) =

1
𝜃 𝑗

[
𝜇 𝑗

𝑏∑
𝑚=1

𝑐𝑚, 𝑗 [𝐺 (𝑟−1
𝑚, 𝑗 ) − 1]𝑟𝑚, 𝑗

𝜃 𝑗 + 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )
−

𝑏∑
𝑚=1

𝑐𝑚, 𝑗

+ 𝜇0𝛼 𝑗

(
𝑏∑

𝑚=1

𝑓𝑚 [𝐺 (𝜔−1
𝑚 ) − 1]𝜔𝑚

𝜇0(1 − 𝜔𝑚)

+
ℎ∑
𝑙=1

𝑏∑
𝑚=1

𝑐𝑚,𝑙𝜃𝑙 [𝐺 (𝑟−1
𝑚,𝑙) − 1]𝑟𝑚,𝑙

[(𝜇0 − 𝜇𝑙)(1 − 𝑟𝑚,𝑙) − 𝜃𝑙] [𝜃𝑙 + 𝜇𝑙 (1 − 𝑟𝑚,𝑙)]

)]
, 𝑗 = 1, . . . , ℎ. (52)

As for the stationary probability 𝑃0, it may be determined from the normalization equation

𝑃0 = 1 −
∞∑
𝑛=1
𝑃𝑛 −

∞∑
𝑛=1

ℎ∑
𝑗=1
𝑄𝑛, 𝑗 −

ℎ∑
𝑗=1
𝑄0, 𝑗

= 1 −
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗 [𝐺 (𝑟−1
𝑚, 𝑗 ) − 1] (𝜇0 − 𝜇 𝑗 )𝑟𝑚, 𝑗

[(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗] [𝜃 𝑗 + 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )]
−

𝑏∑
𝑚=1

𝑓𝑚 [𝐺 (𝜔−1
𝑚 ) − 1]𝜔𝑚

𝜇0(1 − 𝜔𝑚)2

−
ℎ∑
𝑗=1

1
𝜃 𝑗

[
𝜇 𝑗

𝑏∑
𝑚=1

𝑐𝑚, 𝑗 [𝐺 (𝑟−1
𝑚, 𝑗 ) − 1]𝑟𝑚, 𝑗

𝜃 𝑗 + 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )
−

𝑏∑
𝑚=1

𝑐𝑚, 𝑗 + 𝜇0𝛼 𝑗

(
𝑏∑

𝑚=1

𝑓𝑚 [𝐺 (𝜔−1
𝑚 ) − 1]𝜔𝑚

𝜇0(1 − 𝜔𝑚)

+
ℎ∑
𝑗=1

𝑏∑
𝑚=1

𝑐𝑚, 𝑗𝜃 𝑗 [𝐺 (𝑟−1
𝑚, 𝑗 ) − 1]𝑟𝑚, 𝑗

[(𝜇0 − 𝜇 𝑗 )(1 − 𝑟𝑚, 𝑗 ) − 𝜃 𝑗] [𝜃 𝑗 + 𝜇 𝑗 (1 − 𝑟𝑚, 𝑗 )]

)]
. (53)

It is not difficult to see that the most critical step in the above queueing analysis is to construct a set of
linear algebraic equations based on a discrete dynamic system and its roots of the characteristic equation.
After solving the system of linear equations, we may combine Eqs. (48) and (49) to compute the sojourn
time of an arbitrary customer. Moreover, the expected queue length can also be numerically obtained to
verify that whether the expected queue length and the average sojourn time satisfy Little’s Law.

5. Sojourn time distribution in the system

Here, the main purpose of studying the sojourn time of an arbitrary customer is to provide a way to
verify the correctness of the algorithm for computing the queue-length distribution.

The time that a customer spends in the system, from the instant of its arrival to the queue to the instant
of its departure from the server, is called the sojourn time. Denote the random variable that describes
the quantity mentioned above by 𝑊𝑅, and its mean value by E[𝑊𝑅]. At the time of an arbitrary test
customer’s arrival, it sees all the customers that were already in the system plus all other customers in
front of it arriving in the same batch. Let 𝑔−𝑘 (𝑘 = 0, 1, . . . , 𝑏 − 1) be the probability of 𝑘 number of
customers ahead of a randomly selected test customer within the batch. Following Burke [6], we have
𝑔−𝑘 = (1/𝑔̄)∑∞

𝜏=𝑘+1 𝑔𝜏 . Next, we obtain the probability distribution function of 𝑊𝑅 by conditioning
on the fact that at a batch arrival epoch, the server is serving in vacation mode or in normal mode.
Specifically, we need to consider two cases:

(1) Suppose the number of customers that arrive in the same bulk as the test customer, but enter
service before the test customer is 𝑘 (𝑘 = 0, 1, . . . , 𝑏 − 1). Additionally, we further assume that the test
customer finds 𝑛 (𝑛 ≥ 0) customers already in the system, and the server is on type 𝑗 vacation upon its
arrival. Thus, if 𝑛 + 𝑘 + 1 customers are served before the single ongoing vacation ends, then the test
customer’s sojourn time is the sum of 𝑛 + 𝑘 + 1 independent exponential service times with common
mean 1/𝜇 𝑗 . On the other hand, if 𝑖 (𝑖 = 0, 1, . . . , 𝑛 + 𝑘) customers are served before the single ongoing
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vacation ends, and the rest are served in a normal busy period, then the sojourn time of the test customer
is the sum of the remaining vacation time and 𝑛 + 𝑘 + 1 − 𝑖 exponential service times with intensity 𝜇0.

(2) Suppose a randomly selected test customer’s position in an arrival group is 𝑘+1 (𝑘 = 0, 1, . . . , 𝑏−
1), and it finds the server has got back to normal service mode. Further, if there are 𝑛 customers already
in the system when the test customer arrives, then the test customer’s sojourn time is equal to the sum
of 𝑛 + 𝑘 + 1 regular service times. Let 𝑆𝑣, 𝑗 denote the service time of the 𝑣th customer in the type 𝑗
vacation, and 𝑉 𝑗 represents the remaining vacation time of type 𝑗 . Taking into account every scenario
mentioned above, we can conclude

𝑊𝑅 (𝑡) = Pr{𝑊𝑅 ≤ 𝑡}

=
ℎ∑
𝑗=1

∞∑
𝑛=0
𝑄−

𝑛, 𝑗

𝑏−1∑
𝑘=0
𝑔−𝑘

[
Pr

{
𝑛+𝑘+1∑
𝑣=1

𝑆𝑣, 𝑗 ≤ 𝑡
�����𝑉 𝑗 ≥

𝑛+𝑘+1∑
𝑣=1

𝑆𝑣, 𝑗

}
Pr

{
𝑉 𝑗 ≥

𝑛+𝑘+1∑
𝑣=1

𝑆𝑣, 𝑗

}
+

𝑛+𝑘∑
𝑖=0

Pr

{
𝑉 𝑗 +

𝑛+𝑘+1∑
𝑣=𝑖+1

𝑆𝑣,0 ≤ 𝑡
����� 𝑖∑
𝑣=1
𝑆𝑣, 𝑗 ≤ 𝑉 𝑗 <

𝑖+1∑
𝑣=1
𝑆𝑣, 𝑗

}
Pr

{
𝑖∑

𝑣=1
𝑆𝑣, 𝑗 ≤ 𝑉 𝑗 <

𝑖+1∑
𝑣=1
𝑆𝑣, 𝑗

}]
+

∞∑
𝑛=0
𝑃−
𝑛

𝑏−1∑
𝑘=0
𝑔−𝑘 Pr

{
𝑛+𝑘+1∑
𝑣=1

𝑆𝑣,0 ≤ 𝑡
}

=
ℎ∑
𝑗=1

∞∑
𝑛=0
𝑄−

𝑛, 𝑗

𝑏−1∑
𝑘=0
𝑔−𝑘

[∫ 𝑡

0

𝜇 𝑗 (𝜇 𝑗𝑥)𝑛+𝑘
(𝑛 + 𝑘)! 𝑒−(𝜇 𝑗+𝜃)𝑥 d𝑥

+
𝑛+𝑘∑
𝑖=0

∫ 𝑡

0
𝜃 𝑗 𝑒

−(𝜃 𝑗+𝜇 𝑗 )𝑥 (𝜇 𝑗𝑥)𝑖
𝑖!

[
1 − 𝑒−𝜇0 (𝑡−𝑥)

𝑛+𝑘−𝑖∑
𝑣=0

(𝜇0(𝑡 − 𝑥))𝑣
𝑣!

]
d𝑥

]
+

∞∑
𝑛=0
𝑃−
𝑛

𝑏−1∑
𝑘=0
𝑔−𝑘

∫ 𝑡

0

𝜇0(𝜇0𝑥)𝑛+𝑘
(𝑛 + 𝑘)! 𝑒−𝜇0𝑥 d𝑥. (54)

Let 𝑊∗
𝑅 (𝑠) =

∫ ∞
0 𝑒−𝑠𝑡d𝑊𝑅 (𝑡) be the L.S.T. of 𝑊𝑅 (𝑡). From the convolution property of the Laplace

transform, we have

𝑊∗
𝑅 (𝑠) =

ℎ∑
𝑗=1

∞∑
𝑛=0
𝑄−

𝑛, 𝑗

𝑏−1∑
𝑘=0
𝑔−𝑘

[(
𝜇 𝑗

𝑠 + 𝜇 𝑗 + 𝜃 𝑗

)𝑛+𝑘+1

+
𝑛+𝑘∑
𝑖=0

𝜃 𝑗𝜇
𝑖
𝑗

(𝑠 + 𝜇 𝑗 + 𝜃 𝑗)𝑖+1

(
𝜇0

𝑠 + 𝜇0

)𝑛+𝑘+1−𝑖]
+

∞∑
𝑛=0
𝑃−
𝑛

𝑏−1∑
𝑘=0
𝑔−𝑘

(
𝜇0

𝑠 + 𝜇0

)𝑛+𝑘+1

. (55)

By differentiation Eq. (55) with respect to 𝑠, and setting 𝑠 = 0, the expectation of𝑊𝑅 is given by

E[𝑊𝑅] =
ℎ∑
𝑗=1

∞∑
𝑛=0
𝑄−

𝑛, 𝑗

𝑏−1∑
𝑘=0
𝑔−𝑘

[ (𝑛 + 𝑘 + 1)𝜇𝑛+𝑘+1
𝑗

(𝜇 𝑗 + 𝜃 𝑗 )𝑛+𝑘+2 +
𝑛+𝑘∑
𝑖=0

( (𝑖 + 1)𝜇𝑖𝑗𝜃 𝑗
(𝜇 𝑗 + 𝜃 𝑗)𝑖+2 +

𝜇𝑖𝑗𝜃 𝑗 (𝑛 + 𝑘 + 1 − 𝑖)
𝜇0(𝜇 𝑗 + 𝜃 𝑗 )𝑖+1

)]
+

∞∑
𝑛=0
𝑃−
𝑛

𝑏−1∑
𝑘=0
𝑔−𝑘
𝑛 + 𝑘 + 1
𝜇0

. (56)

It is well known that after obtaining the average queue length 𝐿𝑠 , the mean sojourn time of an arbitrary
customer can be evaluated by Little’s Law, E[𝑊𝑅] = 𝐿𝑠/𝜆𝑔. However, Eq. (56) provides us with another
semi-analytical way to get this performance measure. Therefore, we say that comparing the consistency
of the calculation results of Eq. (56) and Little’s Law is an effective means to test the feasibility of this
method.
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Figure 1. All the roots of the characteristic equations (23) and (35) lie inside the unit circle for different
cases. (a) Exponential inter-batch arrival time and uniformly distributed batch size. (b) PH inter-batch
arrival time and normalized Poisson distributed batch size. (c) Deterministic inter-batch arrival time
and 1–3–6–9 distributed batch size. (d) Inverse Gaussian inter-batch arrival time and normalized
geometrically distributed batch size.
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Table 1. Queue-length distributions at two different epochs for M𝑋 /M/1 queue with single hyper-
exponential working vacation.

Normal busy period Working vacation
𝑛 𝑃𝑛 𝑃−

𝑛 𝑄𝑛,1 𝑄−
𝑛,1 𝑄𝑛,2 𝑄−

𝑛,2

0 0.012457 0.012457 0.052550 0.052550 0.008877 0.008877
1 0.006826 0.006826 0.004741 0.004741 0.000575 0.000575
2 0.007397 0.007397 0.005086 0.005086 0.000612 0.000612
3 0.007960 0.007960 0.005434 0.005434 0.000649 0.000649
4 0.008507 0.008507 0.005776 0.005776 0.000688 0.000688
5 0.009031 0.009031 0.006103 0.006103 0.000728 0.000728
6 0.009525 0.009525 0.006399 0.006399 0.000766 0.000766
7 0.009980 0.009980 0.006646 0.006646 0.000802 0.000802
8 0.010388 0.010388 0.006820 0.006820 0.000832 0.000832
9 0.010739 0.010739 0.006889 0.006889 0.000850 0.000850
...

...
...

...
...

...
...

21 0.011497 0.011497 0.004095 0.004095 0.000367 0.000367
22 0.011404 0.011404 0.003922 0.003922 0.000340 0.000340
23 0.011297 0.011297 0.003759 0.003759 0.000315 0.000315
24 0.011178 0.011178 0.003610 0.003610 0.000292 0.000292
...

...
...

...
...

...
...

60 0.004932 0.004932 0.000926 0.000926 0.000031 0.000031
61 0.004789 0.004789 0.000892 0.000892 0.000029 0.000029
62 0.004649 0.004649 0.000858 0.000858 0.000027 0.000027
63 0.004513 0.004513 0.000826 0.000826 0.000025 0.000025
...

...
...

...
...

...
...

Sum 0.699653 0.699653 0.273042 0.273042 0.027304 0.027304

E[𝑊𝑅] = 8.897022, E[𝑊𝑅]Little = 8.897022.

6. Numerical illustrations

To summarize, the procedure for the calculation of the queue-length distribution adopted here consists
of the following three-step algorithm.

Step 1. Set the values for the parameters of the system based on the stability condition, and find the
roots of the characteristic equations (23) and (35), respectively.

Step 2. Combining Eqs. (29), (46), and (47) gives a system of 𝑏ℎ + 𝑏 linear equations in 𝑏ℎ + 𝑏
unknowns. Since Eq. (29) does not contain the unknown vector 𝒇 , we have to expand the coefficient
matrix of Eq. (29) as follows

����������

𝑹1 0 0 · · · 0 0 0
0 𝑹2 0 · · · 0 0 0
0 0 𝑹3 · · · 0 0 0
...

...
...
. . .

...
...
...

0 0 0 · · · 𝑹ℎ−1 0 0
0 0 0 · · · 0 𝑹ℎ 0

����������
.

Step 3. Solve the above system of linear equations and obtain the stationary queue-length distributions
at different epochs by using Eqs. (48), (49), (50), (51), (52), and (53).
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Table 2. Queue-length distributions at two different epochs for PH𝑋 /M/1 queue with single hyper-
exponential working vacation.

Normal busy period Working vacation
𝑛 𝑃𝑛 𝑃−

𝑛 𝑄𝑛,1 𝑄−
𝑛,1 𝑄𝑛,2 𝑄−

𝑛,2

0 0.001343 0.001173 0.022091 0.019392 0.003824 0.003361
1 0.007579 0.006822 0.012116 0.012182 0.001958 0.001985
2 0.010509 0.009875 0.012079 0.012187 0.001901 0.001932
3 0.012934 0.012426 0.011564 0.011669 0.001758 0.001787
4 0.014836 0.014437 0.011040 0.011140 0.001621 0.001648
5 0.016292 0.015983 0.010542 0.010638 0.001495 0.001520
6 0.017372 0.017140 0.010068 0.010160 0.001379 0.001402
7 0.018137 0.017969 0.009615 0.009703 0.001272 0.001293
8 0.018640 0.018525 0.009182 0.009266 0.001173 0.001192
9 0.018924 0.018854 0.008769 0.008849 0.001082 0.001100
...

...
...

...
...

...
...

21 0.014747 0.014851 0.005047 0.005093 0.000410 0.000417
22 0.014202 0.014306 0.004820 0.004864 0.000378 0.000385
23 0.013660 0.013763 0.004603 0.004645 0.000349 0.000355
24 0.013125 0.013227 0.004396 0.004436 0.000322 0.000327
...

...
...

...
...

...
...

60 0.002494 0.002518 0.000838 0.000846 0.000018 0.000018
61 0.002379 0.002401 0.000800 0.000807 0.000016 0.000016
62 0.002269 0.002291 0.000764 0.000771 0.000015 0.000015
63 0.002165 0.002185 0.000730 0.000736 0.000014 0.000014
...

...
...

...
...

...
...

Sum 0.666505 0.666719 0.303177 0.302995 0.030318 0.030286

E[𝑊𝑅] = 6.215603, E[𝑊𝑅]Little = 6.215603.

The following numerical examples are presented to illustrate the application of our analysis. Consider
a GI𝑋 /M/1 queue in which the exponential service distribution in a normal busy period has mean
service time equal to 0.2 (i.e., 𝜇0 = 5), and in which the server’s vacation time has a hyper-exponential
distribution function 𝑉 (𝑡) = 0.8(1 − 𝑒−0.1𝑡 ) + 0.2(1 − 𝑒−0.25𝑡 ). If such a distribution is used to model
a server’s vacation, then a server entering a maintenance phase will, with probability 80%, receive
imperfect preventive repair that is exponentially distributed with parameter 𝜃1 = 0.1 and then exit the
type 1 vacation mode, or else, with probability 20% receive a preventive replacement of a specific
component that is exponentially distributed with parameter 𝜃2 = 0.25 and then exit the type 2 vacation
mode. Furthermore, the exponential service time distributions have an average service time of 0.5 in
type 1 vacation, and 0.8 in type 2 vacation, i.e., 𝜇1 = 2 and 𝜇2 = 1.25. For the batch arrival process, we
consider four different cases listed below:

Case 1. Investigate a batch arrival Poisson queue. We fix the value of arrival rate𝜆 = 0.6, and illustrate
a numerical example by assuming that the p.m.f. of batch size 𝑋 has the constant value 1/12 for all
possible values 𝑘 of 𝑋 , 𝑘 = 1, 2, . . . , 12. This leads to 𝑔 = 6.5, 𝜌 = 0.78 and 𝑎∗ (𝑠) = 0.6/(𝑠 + 0.6).

Case 2. The numerical results in this case were obtained by assuming that the group size distribution
is normalized Poisson with p.m.f. 𝑔𝑘 = 𝑒−0.8(0.8)𝑘/

(
𝑘!
∑13

𝑛=1 𝑒
−0.8(0.8)𝑛/𝑛!

)
, 𝑘 = 1, 2, . . . , 13, and
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Table 3. Queue-length distributions at two different epochs for D𝑋 /M/1 queue with single hyper-
exponential working vacation.

Normal busy period Working vacation
𝑛 𝑃𝑛 𝑃−

𝑛 𝑄𝑛,1 𝑄−
𝑛,1 𝑄𝑛,2 𝑄−

𝑛,2

0 0.000544 0.001518 0.008405 0.032911 0.001496 0.006830
1 0.005175 0.006069 0.003235 0.003960 0.000531 0.000520
2 0.006030 0.010547 0.003665 0.004761 0.000533 0.000631
3 0.007521 0.013397 0.005593 0.005601 0.001010 0.000728
4 0.009272 0.015483 0.004632 0.006435 0.000545 0.000823
5 0.011173 0.017082 0.006818 0.006835 0.001051 0.001095
6 0.013047 0.018284 0.009159 0.006341 0.001808 0.001003
7 0.014781 0.019182 0.005396 0.006010 0.000658 0.000733
8 0.016360 0.019816 0.006460 0.006051 0.000913 0.000851
9 0.017606 0.020185 0.007422 0.005554 0.001237 0.000776
...

...
...

...
...

...
...

21 0.017748 0.016373 0.003773 0.003362 0.000351 0.000282
22 0.017239 0.015822 0.003621 0.003225 0.000327 0.000262
23 0.016715 0.015273 0.003473 0.003094 0.000304 0.000243
24 0.016181 0.014727 0.003331 0.002969 0.000280 0.000224
...

...
...

...
...

...
...

60 0.003684 0.003271 0.000753 0.000671 0.000018 0.000014
61 0.003530 0.003134 0.000723 0.000644 0.000016 0.000013
62 0.003383 0.003004 0.000694 0.000618 0.000015 0.000012
63 0.003242 0.002879 0.000666 0.000593 0.000014 0.000011
...

...
...

...
...

...
...

Sum 0.772308 0.762065 0.206993 0.215128 0.020699 0.022807

E[𝑊𝑅] = 6.941437, E[𝑊𝑅]Little = 6.941437.

the inter-batch arrival time follows a phase-type distribution with an irreducible representation (𝝈, 𝑳)
of order two, where 𝝈 = (0.7, 0.3), 𝑳 =

( −3 2.7
4.5 −21

)
. This leads to 𝜆 = 2.699045, 𝑔 = 1.452773,

𝜌 = 0.784220, and 𝑎∗ (𝑠) = (516𝑠 + 5085)/5(20𝑠2 + 480𝑠 + 1017).
Case 3. Suppose that the inter-batch arrival time distribution obeys a deterministic distribution with

mean 1.25, and the arriving batch size follows a 1–3–6–9 distribution with p.m.f. 𝑔1 = 0.1, 𝑔3 = 0.25,
𝑔6 = 0.45, 𝑔9 = 0.2. This leads to 𝜆 = 0.8, 𝑔 = 5.35, 𝜌 = 0.856, and 𝑎∗ (𝑠) = 𝑒−1.25𝑠 .

Case 4. Model the batch arrival process by inverse Gaussian distribution with p.d.f.
𝑎(𝑡) = (0.75/

√
2𝜋𝑡3)𝑒−(𝑡−0.75)2/2𝑡 , 𝑡 > 0, and for which the p.m.f. of bulk size is 𝑔𝑘 =

0.35(1 − 0.35)𝑘−1/(1 − (1 − 0.35)10), 𝑘 = 1, . . . , 10. This leads to 𝜆 = 4/3, 𝑔 = 2.720678, 𝜌 =
0.725514, and 𝑎∗ (𝑠) = 𝑒0.75−0.75

√
1+2𝑠.

We have found that in the above cases not all of the distribution functions for the inter-batch arrival time
have rational Laplace–Stieltjes transforms. This makes it hard or even impossible to use mathematical
software to get the roots of the characteristic equations. To overcome this difficulty, the classical
technique of Padé approximation is employed to approximate a given Laplace–Stieltjes transform by a
suitable rational function R(𝑠). In the numerical experiments, the MATHEMATICA build-in command
“PadeApproximant” can be used to easily generate the Padé approximants. Thus, the Laplace–Stieltjes
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Table 4. Queue-length distributions at two different epochs for Inverse Gaussian𝑋 /M/1 queue with
single hyper-exponential working vacation.

Normal busy period Working vacation
𝑛 𝑃𝑛 𝑃−

𝑛 𝑄𝑛,1 𝑄−
𝑛,1 𝑄𝑛,2 𝑄−

𝑛,2

0 0.008249 0.005487 0.052040 0.043229 0.008448 0.007005
1 0.009011 0.008744 0.013399 0.013621 0.001953 0.002001
2 0.010458 0.010262 0.012925 0.013141 0.001827 0.001873
3 0.011680 0.011549 0.012464 0.012675 0.001709 0.001752
4 0.012697 0.012623 0.012016 0.012221 0.001599 0.001639
5 0.013528 0.013504 0.011576 0.011777 0.001496 0.001533
6 0.014188 0.014208 0.011145 0.011341 0.001399 0.001434
7 0.014694 0.014751 0.010717 0.010909 0.001307 0.001341
8 0.015060 0.015148 0.010288 0.010476 0.001221 0.001252
9 0.015300 0.015413 0.009852 0.010031 0.001137 0.001166
...

...
...

...
...

...
...

21 0.012871 0.013062 0.005579 0.005679 0.000443 0.000455
22 0.012484 0.012673 0.005324 0.005419 0.000410 0.000421
23 0.012092 0.012278 0.005080 0.005170 0.000380 0.000389
24 0.011697 0.011879 0.004847 0.004934 0.000351 0.000360
...

...
...

...
...

...
...

60 0.002477 0.002521 0.000896 0.000912 0.000021 0.000022
61 0.002364 0.002406 0.000855 0.000870 0.000020 0.000020
62 0.002255 0.002295 0.000816 0.000830 0.000018 0.000019
63 0.002152 0.002190 0.000778 0.000792 0.000017 0.000017
...

...
...

...
...

...
...

Sum 0.603497 0.607617 0.360458 0.357082 0.036045 0.035301

E[𝑊𝑅] = 6.538318, E[𝑊𝑅]Little = 6.538318.

transforms of the inter-batch arrival time distributions in Case 3 and Case 4 can be approximated as

𝑒−1.25𝑠 ≈
1 − 0.588235𝑠 + 0.160846𝑠2 − 0.026808𝑠3 + 0.002992𝑠4 − 0.000230𝑠5

+0.000012𝑠6 − 3.89184 × 10−7𝑠7 + 6.08099 × 10−9𝑠8

1 + 0.661765𝑠 + 0.206801𝑠2 + 0.040211𝑠3 + 0.005385𝑠4 + 0.000518𝑠5
+0.000036𝑠6 + 1.75133 × 10−6𝑠7 + 5.4729 × 10−8𝑠8 + 8.44583 × 10−10𝑠9

, (57)

𝑒0.75−0.75
√

1+2𝑠 ≈ 1 + 4.95748𝑠 + 8.70859𝑠2 + 6.32864𝑠3 + 1.57069𝑠4

1 + 5.70748𝑠 + 12.333𝑠2 + 12.5594𝑠3 + 6.1046𝑠4 + 1.27288𝑠5
+0.092802𝑠6 + 0.003849𝑠7

. (58)

As for the issues on choosing the best Padé approximant, readers may refer to the work done by Singh
et al. [24]. Substituting the values of parameters into Eqs. (23) and (35), and using the Padé approximants
for 𝑎∗ (𝑠), we may successfully obtain all roots of the characteristic equations inside the unit circle. For
a visual illustration, we plot these roots in Figure 1(a–d). We may observe that the imaginary roots of
the characteristic equations always exist in complex conjugate pairs. If 𝑏 is an odd number, there are
(𝑏 − 1)/2 pairs of complex conjugate roots for each characteristic equation. In contrast, if 𝑏 is an even
number, there are (𝑏 − 2)/2 pairs of complex conjugate roots for each characteristic equation. Using
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these roots, we establish the coefficient matrix of the system of 𝑏ℎ + 𝑏 linear equations that determines
the unknown constants 𝑐𝑚, 𝑗 and 𝑓𝑚.

Once 𝑐𝑚, 𝑗 and 𝑓𝑚 are obtained, the queue-length distributions can be computed by some basic
algebraic operations. Due to lack of space, the queue-length distributions at different epochs presented
in Tables 1–4 are reported to six decimal places. The main objective of presenting such results in tabular
form is to show that the semi-analytical method has good numerical tractability. Furthermore, we know
an important property of the batch Poisson arrival process is that the distribution of customers seen by a
batch arrival to a queueing facility is, stochastically, the same as the limiting distribution of customers at
that facility (i.e., PASTA property, see Gross and Harris [13]). In other words, once the queueing system
has reached a steady-state, the distribution of customers at batch arrival instants is also the same as the
distribution of customers at any time instant. There is no doubt that the data in Table 1 confirm this fact.
We may also use this property as one of the effective ways to check the accuracy of numerical solutions.
Additionally, at the bottom of each table, we show the mean sojourn time of an arbitrary customer
calculated by Eq. (56) and Little’s Law, respectively. We may find that E[𝑊𝑅] evaluated through Eq.
(56) exactly matches the one obtained from Little’s Law, namely E[𝑊𝑅] = E[𝑊𝑅]Little.

7. Conclusions

This paper has studied a more realistic working vacation queue that has never been considered in
queueing literature. Using the supplementary variable technique and the shift operator method in the
theory of difference equations, we obtain the queue-length distributions at the pre-arrival and arbitrary
epochs simultaneously in terms of roots of the associated characteristic equation. Since the root-
finding procedure is no more difficult with the help of MATHEMATICA software package, the core of
computing the queue-length distribution is to solve a nonhomogeneous system of linear equations in our
algorithm. We may see that characteristic roots serve as a bridge in our analysis. During the development
of queueing theory, several authors have positively evaluated the advantages of the methods based on the
characteristic roots. In comparison with the matrix-geometric method, Daigle and Lucantoni [10] stated
that whenever the roots method works, it works blindingly fast and is insensitive to traffic intensity 𝜌,
whereas the matrix-geometric method is not. Gouweleeuw [12] also stated that using the roots method to
obtain the numerical results for the stationary queue-length probabilities will be more efficient. In fact,
the method presented in this paper is straightforward in terms of analysis, notation, and computation.
Additionally, this method can effectively avoid discussing the transition probability matrix for the
embedded Markov chain, so we do not need to focus our attention on the minimal nonnegative solution
to a nonlinear matrix equation arising in many queueing problems. Further, through the extensive
numerical experiments, we also see that this algorithm can address many different arrival patterns and is
no longer limited to the class of phase-type distributions that have rational Laplace–Stieltjes transform.
Finally, incorporating a randomize working vacation policy into a renewal input batch arrival queue is
worthy of investigation in our future research.
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