
AN EXTENDED WORK INTEGRAL FOR PULSATING STARS 

Norman R. Simon 
Behlen Laboratory of Physics, University of Nebraska-Lincoln 

This paper contains a preliminary report on research aimed at 
extending the pulsational work integral to next highest order beyond 
the linear regime. 

We begin by writing the integral in fully nonlinear form 
Giuli 1968), normalized by the stellar luminosity L 
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To evaluate F in the linear theory, one expands P and p in a 
of small perturbations, discarding terms higher than first order, 
the fundamental mode with the frequency w0> one obtains 

series 
For 

0 a0 X0 

while for the first overtone, frequency ul 5 the result is 

F] = a] A1 . 

Here a0 and aj represent integrals over the star. The scale factors A0 

and Aj have been explicitly inserted to indicate that the linear results 
are arbitrary to within a multiplicative constant for each mode. These 
scale factors enter quadratically since the P and p expansions each 
carry the arbitrary constant. 

The work integral (1) may be extended in a straightforward way by 
keeping higher order terms in P and p. These terms are in turn eval­
uated using the iterative theory of Simon (1980). Following consider­
able algebraic and trigonometric manipulation, to be described else­
where, one obtains 

a0A0 
a l V booxo 

bnV b01A0 V (2) 
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The first two terms on the RHS of (2) are just the linear expressions 
given above; the remaining terms represent nonlinear corrections, all 
of which scale quartically, as indicated. The coefficients b0 0, b n 

and b0 1 are again integrals over the star. We shall take them to be 
strictly negative, meaning that they always produce a damping effect. 
Such a choice is supported by the lack of any observational or theoret­
ical evidence for hard self-excited pulsations. The coefficients b0 0 

and b n are self-damping terms for the fundamental and first overtone 
modes respectively. All of the interaction between the two modes is 
subsumed in the coefficient b0 1. 

Equation (2) may be written in simpler form by setting 

2 2 

x = XQ y = X] 

we then have 

F = aQx + a ^ + b0Qx + b^y + b^xy . (3) 
The work integral (1) is defined such that for F > 0 energy is fed 

into the pulsation with the result that, in a crude sense, the ampli­
tudes x and/or y must grow. Conversely, if F < 0, x and/or y ought to 
decline. If one considers an amplitude-amplitude diagram (y vs. x) it 
is convenient to think of F as a "force" which, when positive, pushes 
system points away from the origin and, when negative, tends to restore 
them. 

In such a scheme the curve F = 0 represents an equilibrium locus. 
According to Eq. (3) such curves are conic sections, i.e., ellipses or 
hyperboli. Figure 1 gives some typical examples of the former while 
Figures 2 and 3 illustrate the latter. In all of these illustrations 
we have plotted y against x. Since both quantities are defined so as 
to be positive, only the first quadrant of our diagrams is physically 
meaningful. , ,,, 

Figure 1. Some elliptic configurations for F = 0. 
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Figure 2. Some 
hyperbolic configurations 

for F = 0. 

Figure 3. Further 
hyperbolic configurations 

for F = 0. 

Consider Figure 1. Given the assumption of strictly negative b-
coefficients, it is easy to show that F is positive everywhere inside 
the ellipses and negative everywhere outside. This means that system 
points must eventually gravitate to the F = 0 curve. The same holds 
true for the physically real portions of the hyperboli shown in Figs. 2 
and 3. 

However, because in the language of our scheme, the F = 0 locus is 
"force-free," a system point may seemingly move along the curve at'will. 
Thus our analysis must be broadened in order to treat the stability of 
individual points on the F = 0 locus. In this regard it turns out to be 
instructive to discuss a special case—namely that which arises by 
setting b 0 1 = 0 in Eq. (3). The corresponding F = 0 curve is an ellipse, 
illustrated in Figure 4. Because there is no interaction in this case, 
physical intuition easily predicts the outcome. Provided there is 
linear driving at both frequencies (i.e., a0, ai > 0 ) , each mode must 
separately attain its limiting amplitude, viz. y = -ai/bu, x = -a0/b00. 
The final state is thus a superposition of the individual oscillations, 
its (x,y) location indicated in Figure 4 by the intersection of two 
dashed lines. 

With this result in mind we shall treat the general case by per­
forming on Eq. (3) a rotation of coordinates into a new system, (x',y'). 
The primed coordinates are defined so that b0 1 = 0. Such a transforma­
tion is always possible. In the new frame, we have 

F' = F . + F . , (4) 
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Figure 41 F = 0 for the 
special case b 0 1 = 0. 

Figure 5. Rotation of an 
ellipse into the primed system. 

where 
x'(a^ + b ^ x 1 ) , Fyl = y'(aj + b^y') (5) 

From Eqs. (4) and (5) one sees that the terms Fx' and Fy' are uncoupled, 
the former depending only on x', the latter on y1. 

In the spirit of our previous analysis, we shall now think of Fx' 
and Fy1 as "orthogonal forces" operating in the primed frame. Since 
the new coordinates are no longer restricted to positive values, it 
becomes necessary to modify our description of how Fx' and Fy• act. 
This we shall do by analogy with elementary mechanics. Thus a positive 
Fx' (Fy1) will tend to push the system away from the y'(x') axis, while 
a negative Fx•(Fy<) will restore the system toward the y'(x') axis. 

With these definitions in hand, it becomes clear that, in the 
primed system, two necessary conditions for equilibrium are 

= 0 and 
y 

0 (6) 

Any point satisfying Eq. (6) must of course lie on the equilibrium 
locus F=0. However, the conditions (6) are not sufficient: one must 
also guarantee that points satisfying Eq. (6) are stable against small 
displacements. 

https://doi.org/10.1017/S0252921100081884 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100081884


AN EXTENDED WORK INTEGRAL FOR PULSATING STARS 441 

Figure 5a repeats the ellipse already pictured in Figure lb. In 
Figure 5b this ellipse is shown rotated into the primed coordinate sys­
tem. The original axes are indicated. An inspection of this figure 
yields, after some reflection, the following requirements for the sta­
bility against'small perturbations of points satisfying Eq. (6): 

3F , 3F , 
x' I F - < ° • y -#- < ° • (7) 

Eqs. (6) and (7) together constitute a necessary and sufficient 
condition for the existence of a point of stable double mode pulsation 
in the primed frame. It is not difficult to show that for the elliptic 
configuration there is always one and only one point satisfying (6) and 
(7), while in the hyperbolic case no point ever satisfies both these 
requirements. If the configuration is an ellipse a double-mode state 
will exist provided that the stable point in question lies on the phys­
ically real part of the curve (shown in Figure 5b as the heavy arc PQ). 
After considerable algebraic and trigonometric manipulation one may 
establish that this will be the case if and only if two simple param­
eters, U and V, satisfy the following conditions 

U > 0 , V > 0 , (8) 

where 
U E b o i a i " 2 b n a o ( 9 ) 

V = bQ 1a 0 - 2boo a i . (10) 

If Eq. (8) is not satisfied no stable points exist along the phys­
ically real portion of the curve F = 0. However, either or both of the 
endpoints P and Q may still be stable. To see this one notes that, in 
primed space, the x and y axes form impenetrable boundaries through 
which no system point may pass. Thus if the Fx' and Fy> forces are 
such as to jam the system up against these barriers at P and/or Q, 
either or both of these points may be stable. A further examination of 
Figure 5b shows that this will happen provided that 

F , < 0 and F , > 0 (11) 
x y 

at the points in question. 

Manipulating the conditions (11) one may demonstrate that they can 
be expressed in terms of the same two parameters, U and V, given by 
Eqs. (9) and (10). The table which follows summarizes all possible 
outcomes for the system governed by Eq. (3): 

Final state _U V̂  Configuration* 

x only + - E or H 
y only - + E or H 

x or y - - H 
x and y + + E 

* 
E = ellipse; H = hyperbola 
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We note that the final states given above are equivalent to those 
found by Stellingwerf (1975) and Simon, Cox and Hodson (1980). Since 
the signs of U and V determine limiting amplitude behavior, the curves 
U = 0 and V = 0, plotted on, say, the H-R diagram, will form modal selec­
tion boundaries. Unfortunately, space limitations preclude further 
treatment of this question in the present contribution. A continuation 
of the discussion, as well as details of the calculations we have out­
lined, will be provided shortly in another place. 
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DISCUSSION 

J. COX: This is very interesting. Can you predict where the double 
mode pulsators should be? 

SIMON: According to my analysis the two transition lines on the H-R 
diagram must cross. 

J. COX: If I remember correctly, the intersection of the first over­
tone and fundamental blue edges is kind of bright and you need to go 
down from that somewhat. 

SIMON: You can get some hint from the periods at which double mode 
pulsators appear, but I don't know, can you get transition lines to 
cross? 
A. COX: Who says those lines have to meet at the intersection of the 

blue edges? 
SIMON: Stellingwerf is the only one who actually said that. Accord­

ing to my theory, they also have to meet at the intersection of the 
blue edges. 
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