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SUMMARY

Self excited vibrations of helicopters on the ground have been the cause
of several accidents It is, therefore, essential that the means of ensuring
freedom from such phenomena should receive serious attention

The theory of R P COLEMAN2, IS briefly reviewed and compared with
results obtained from model rotor tests This comparison affords general
confirmation of the theoretical results

The theory of a rotor on idealised supports is applied to a single rotor
helicopter of known hub impedance Then experimental methods for
determining this impedance are described

Finally, the influence of Ground Resonance on undercarriage design is
reviewed The influence of shock absorber struts and tyres on the coupled
rigid body modes of the helicopter is discussed and three undercarriage
schemes representing alternative approaches to ground resonance elimination
are examined It is found that, with respect to ground resonance, the most
advantageous system for land based operations is one in which all the heli-
copter-undercarriage modes have very low frequencies

An Appendix indicates the application of the theory to a twin rotor
helicopter of any configuration

" GROUND RESONANCE " OF THE HELICOPTER

Let us start by defining what we mean by " Ground Resonance " of a
helicopter

We refer to a divergent oscillation of the helicopter on its undercarriage,
in which the rotor hubs move cyclically in the plane of rotation , it may
occur when a helicopter rests on the ground with its rotor running or, more
probably, when taxying, landing or taking-off

We are to consider a problem in which energy may be interchanged
between that of the helicopter oscillation and the kinetic energy of rotor
rotation Self excited or divergent oscillations occur if the coupling between
the rotor freedom and one or more degrees of freedom of the helicopter
allow energy to be transferred from the stored kinetic energy of rotation to
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the hehcopter oscillation at a greater rate than energy is dissipated at the
undercarriage and at the drag hinge dampers The problem is analogous in
some respects to the flutter of a wing

It has been shown that self excitation can only occur at rotor speeds
in the vicinity of a natural frequency of the helicopter, so we shall confine
our attention to these lower frequencies

The equations of motion relating to the vibration of a rotor in its plane
of rotation, and the dynamic system on which it is mounted, apply for any
frequencies and are of use in the study of flight vibrations However, it is
general practice to ensure that the lowest natural frequencies of the helicopter,
when airborne, should be well above 1 x rotor This confines the pheno-
menon of self excitation to modes of vibration of the hehcopter on its under-
carriage—hence the title of this paper

Those of you, who like ourselves, have witnessed instances of this
phenomenon will not need to be reminded of its possibly disastrous conse-
quences Fortunately, the instances at Bristol have not been of an explosive
nature , other Firms have not been so lucky and some helicopters have
been wrecked in a matter of a very few seconds after the onset of " ground
resonance "

We would like, now, to show you a film of " ground resonance " of our
Type 173 Mk 1 Helicopter The instance you will see marked the beginning
of our real interest in the problem Parts of this film were shown at a

DYNAMIC SYSTEM FOR A SINGLE n BLAOED ROTOR

FIG I
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previous1 meeting of this Association by our Chief Helicopter Test Pilot,
" Sox " HOSEGOOD

Theory of Coupled Drag Hinge Oscillations

Instances of instability occurred with Rotaplanes before World War II
Such instances were thought to be whirling problems, and a simple theory
was formulated which gave the whirling speed of an articulated rotor on
isotropic supports With the arrival of the helicopter, however, numerous
incidents occurred which could not be attributed to whirling—the frequency
of this oscillation was not the same as that of rotor rotation and, sometimes,
the motion was violent in the extreme

In 1943, R P COLEMAN2 produced his paper " The Theory of Self
Excited Mechanical Oscillations of Hinged Rotor Blades " This paper has
been for a long time the standard work on the subject

We propose now, to give a brief outline of the Theory for a single rotor
on idealised supports This is a resume of Coleman's Theory

Theory of Drag Hinge Oscillation

Notation With reference to Fig 1, we define

x,
X1,
z
n
a
b

Pn,
mx,

Y
Y1

Pb Pa.

my

= Fixed axes
=- Rotating axes

== x + ly relative to fixed axes

= number of blades

— drag hinge offset

= - distance from drag hinge to
blade

= drag hmge deflections

== masses in x and y directions

K x , Ky, Kg =- stiffness at hub and about drag hinge

B x , By - damping at hub and about drag hinge

M — n(mi -J- m2) + ' ( m x + my) A M = ^(mx — m y )

K =- i (K x 4- K y ) A K = 1(KX - K y )

B = i ( B x + By) A B =- *(BX - By)

oi = rotor angular velocity

Cf — angular frequency of hub oscillation

OIQ = angular frequency of drag hinge oscillation

corx, wIV = natural frequencies in x and y directions, if masses m, are

considered concentrated at the hub
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Other quantities will be defined in the text, as they arise
In general, the rotor has n degrees of freedom in the plane of rotation,

if we treat each blade as a rigid body We wish to find which of these n
freedoms can couple with motion of the hub

Torsional displacement of the " tip mass " nm2 may be expressed

0o = ib (pn + p, + p2 + ) (1)

Also, we can express the coordinates of the C G of the " tip masses "
with respect to rotating axes

k = l

1 n T ' n k i (ft, + n k ) 1

- N [a e + b e ^k ' J
k l

(2)

Performing the summation and making the usual assumptions for small
oscillations

lb /

. - -n (/3n + ft e + P2e + ) (3)

By analogy, the remaining n — 2 modes become

2-t_ in

l b / ' n k » ^~ k \

k̂ =- n ( ^ + fte + P2e + J (4)

and, in particular,

0n-l = — ©1 (5)
From an examination of these n modes it can be seen that the mode 0i

and its complex conjugate alone are able to couple with lateral hub displace-
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ments All other modes than Qo, ©i, in fact, concern symmetrical oscillations
within the disc The mode 0O represents the only mode which will couple
with transmission torsional modes

Now, by symmetry, the phase displacement between the kth and
(k + l)th blade must be constant for a given mode, thus, for the n modes
of vibration of the blades, the blade motion may be expressed

ft =- ft sin ^t = ~ 1

Pi - Pu sin (co.t + i i m ) = — *1± (e —e )
\ P n / 2 ^

ft = ftsin(^t4 |Lmk) = - ' ^ ( e - e )

(6)

where m is any integer + ve or — ve and a = —
n

Substituting into (3)

e' = 2n [e ^e ~~e i e J ^

It can be shown that 0X = o for any value of the integer m other than
— 1 or + 1, and that

0! = '^~ e if m - —1 (8)

Sub ~"V
6, = ~?~; e if m = 4 1 (9)

The symbol 0 b used up to now, defines two modes corresponding to
m = —1 and m — + 1 We now limit the mode 0i to that obtained from
m --—1

From equations (8) and (9) the mode obtained by putting m = + 1 is
minus the complex conjugate of that from m = —1 and hence is —6i, as
now denned, t e, Qnl from equation (5)

pn, Pi, are given by equations (6) substituting the appropriate value of m
It is seen, that the only mode which can couple with hub motion in

the plane of rotation is one m which the blades move about their drag hinges

17^! J lie Journal of the Helicopter

https://doi.org/10.1017/S2753447200002055 Published online by Cambridge University Press

https://doi.org/10.1017/S2753447200002055


with a phase displacement of ^ between each pair of adjacent blades , the
C G of the tip mass rotates in a circle relative to the rotor shaft at an angular
velocity oirf the frequency of the drag hinge oscillations

Thus if cof is the frequency of hub lateral oscillations, we must have
ttlf = CO CU,j (10)

The equations of Motion
The variable %l may be expressed with respect to fixed axes by means

of the relation

£j = 6, e ->(«"+/') (11)

Putting, / = x + ly, we can write expressions for the kinetic energy,
T, of the blades and of the masses in terms of M, A M, and m2 and variables
£p z Similarly the potential energy, V, may be expressed in terms of
K, AK, K_, z and £: and a dissipation function, F, for damping may be
expressed in terms of B, AB, B/J3 z, ^

The Lagrangean Equations of Motion may now be written, and lead to
equations of motion

(m f- nm2)z + Bz + Kz -f- Am^+ ABz + AKz + nm2^ = 0 (12)

z f- d 2io> d — a>% -\ X^d ~ Mi) + w2Ai£i + A^fa = 0 (13)

Let the solution of equations (12) and (13) be expressed as an elliptic whirling
motion

z = C, e "°ft + C,e
(14)

[i = C e ""ft

Substituting equations (14) in equations (12) and (13) and eliminating the
arbitrary constants, a frequency equation is formed This is a complex
equation , thus the solution requires both the real part and the imaginary
part to be satisfied at once Both the real and the imaginary equations are
cubic in a)2 and quadratic in w

2
f, though the imaginary equation is also

satisfied by Coi — 0 It is usual to solve for w for various values of oif

The Nature of Coupled Drag Hinge—Hub oscillations

Fig 2 taken from COLEMAN'S report shows the real and imaginary
equations, plotted for a special case of Polar symmetry It will be seen
that in general, there are three real roots, for each value of <> There is a
range of <» in which only one real root exists , there will then be one real
root and a complex root and its conjugate One of the latter pair has a
negative imaginary part, indicating instability
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Now the assumed solution (equation (14)) was a solution appropriate
to a boundary condition, i e, one of neutral stability where an oscillation
would persist without increase or decay Thus, a condition of neutral
stability exists only when both the real and the imaginary equations are
satisfied, i e, at points A, B and E , no other complete solution of the form

50

PLOT OF REAL AND IMAGINARY EQUATIONS

r » w r , m x = m y , A , = 07 , A , = 22 A , - 2 0

F I G Z

of equation (14) exists if damping is present, either in the drag hinges or
at the hub mounting, thus the motion is always damped except in the range
from A to B The point E, may be of interest with respect to propellers or
tail rotors, since it is the point at which an oscillation can be excited by a
steady force, e g, gravity

If there is no damping either in the drag hinges or laterally at the hub,
then there is no imaginary equation The real equation then gives the
natural frequencies of the system

Two other points of interest , it will be seen that the centre of the
unstable range, C, occurs at the intersection of lines representing the un-
coupled natural frequency of the rotor mounting, (the frequency of the
helicopter, if the " tip mass," nm2 were concentrated at the hub), and of the
natural frequency of a blade whose drag hinge rotates at constant angular
velocity about a fixed axis

The point D, where cof = <x> is known as " shaft critical" or the
critical whirling speed of the rotor , here, the frequency of drag hinge
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oscillation is zero, since oif = w — a>g, and the blades rotate with uneven
spacing

As far as purely lateral motion of the hub is concerned, this is not a
condition of instability and will be positively damped if there is damping
at the rotor mounting (Bx and B ) However, large excitation at 1 x rotor
frequency is almost invariably present due to rotor unbalance, errors in drag
hinge spacing and blade track The resulting forced oscillation may reach
a dangerous amplitude The oscillation once started will inevitably lead to
progressive lack of track and possibly to instability on this account

The Influence of Damping
It is found from the frequency equation that if damping is included,

then in general terms, the product of damping at the hub and at the drag
hinge A) Â  exerts a powerful influence in drawing the two loops of the real
equation together and so reducing the extent of the unstable range Damping
at the drag hinge alone, Â  has a small effect m modifying the real equation ,
whereas, hub damping, A modifies the imaginary equation

Neither \ nor A on their own appear to have a significant influence
on the extent or seventy of instability

Coleman has proposed a criterion for determining the product —-
A3

necessary to eliminate instability He assumes that the motion is stable
if the real equation is made to pass through the point of intersection of the
uncoupled drag hinge frequency of the blades and uncoupled hub lateral
frequency

It appears that this criterion must be slightly pessimistic and that
instability may, in fact, be achieved at a lower value of AA/S/A3 when the real
equation passes some distance to the right of the common uncoupled fre-
quency

The effect of lack of symmetry of the rotor mounting

Fig 3 illustrates the coupling effect between freedom in the x and y
directions In general there must be as many unstable ranges as there are
natural frequencies of the hub mounting As two natural frequencies
converge, the two unstable ranges merge, until at the condition of polar
symmetry, one unstable range remains, and is very similar to that for KN =
oo

Fig 3 does serve to give warning of the wide separation of natural
frequencies which is necessary, if one hopes to operate a helicopter with
one natural frequency above and another below the operating range of rotor
angular frequency

Experiments with a Model Rotor
At this point we would like to mention some experiments conducted at

Bristol with a model rotor3

The model was built to represent the dynamic system of Fig 1 without
the freedom in the y direction
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I UNSTABLE RANGE

FOR ZERO D A M P I N G

T H E E F F E C T OF C O U P L I N G B E T W E E N x & y F R E E P O M S

F I G 3

-WIRE S U S P E N S I O N

- U P P E R SHAFT GUIDE

- S H A F T

FLAP H I N G E '

- L A T E R A L MASS

ROTOR BEARING

DRAG HINGE

DIAGRAM OF MODEL ROTOR

FIG
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Fig 4 shows the mechanism of the model in diagrammatic form The
rotor diameter was 6 feet, and the scales employed, from Model Helicopter
were

Frequency 1 1
Mass 014 1
Length 125 1

The mass at the rotor bearing was given freedom in one direction, but
restrained by tensioned piano wires in the other, great pains were taken to
avoid unwanted friction, and in fact, the model behaved particularly well
at zero damping

A damper for lateral motion was lashed-up in which a flat plate connected
to the lateral mass moved in a narrow gap between the two static plates
immersed in oil Provision of a viscous damper for the drag hinges proved
a very much more difficult problem After some abortive attempts to make
hydraulic viscous dampers, it was decided to make multi-plate stepped friction
dampers These dampers had 12 moving plates each and gave a character-
istic work diagram whose area was proportional to (amplitude)2

The damper was considered to represent a viscuos damper, the equiva-
lent viscous damping coefficient, was proportional to

clamping load across the plates
frequency of drag hinge oscillation

Test Results for Zero Damping
Experimental results are compared in Fig 5 with theoretical frequencies

OF U^

FROM MODEL

TESTS O, eo

20

NATURAL FREQUENCIES OF A TYPICAL ROTOR

ZERO DAMPING

A , 052 A , 0 A , 058 m x - m, n - 3

FIG 5
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for a particular case The model indicates too small an unstable range for
the case Ky = oo, though the pattern of the measured frequencies is in
agreement with the case Ky = o We think the explanation is that we did
not achieve a high positive impedance in the y direction This was due partly
to the flexibility of the overhung rotor shaft, partly due to too low a stiffness
at the end attachments for the restraining wires

This discrepancy emphasises the importance of finding the actual
impedance of a rotor mounting in both directions rather than yield to the
temptation of assuming that the equivalent stiffness in the fore and aft
direction is either zero or infinite

Test results with damping
It was established with the model that neither drag hinge damping nor

hub damping alone had any significant effect on the unstable range How-
ever, the range was closed at a value of the parameter AA»/A3 only 14%
of the value obtained from the criterion at K = co or 28% of the crtienon
at Kv = o

This discrepancy has been a puzzle for some time we think perhaps the
explanation is, two-fold The effective drag hinge damping was probably
greater than we thought , this was due partly to friction effects at the hinge
and partly to aerodynamic damping due to flapping of the blades in sympathy
with precession of the shaft

We also believe that the Coleman criterion is a little pessimistic and
that the unstable range closes less and less rapidly with increase in damping,
so that the range is extremely small and the divergence very gentle some
time before one achieves the damping required theoretically

The model tests in retrospect
Looking back on these tests, we feel glad to have this independent check

on the theory It was the acid test ' Furthermore, we were very impressed
with the desirability of preserving low natural coupled frequencies of the
rotor mounting The reason for this was that the self excited range occurred
at lower rotor r p m , when the kinetic energy of rotation was less For
instance, when the natural frequency of the mounting, o>r, was halved, the
rate of divergence in the centre of the self excited range was relatively gentle ,
at the higher frequency it had been explosive

This effect may be illustrated from Coleman's stability criterion
Assuming viscous damping, the value of the product of the actual damping
constants Bx B, is proportional to o>r

2 , whereas, if multi-plate friction
dampers are used, Bx B^ is approximately proportional to o>r

3

Thus, with Type 173 Mk 1, when the frequency of the mainly rolling
mode was halved, the product Bx, B̂ , required was only \ the original
requirement We found that this lower quantity could be achieved without
overstressing the blades

Application to a Single Rotor Helicopter
An actual helicopter has 6 degrees of freedom as a rigid body on a

flexible undercarriage Of these, the freedoms of lateral displacement,
rolling and yawing must always be considered , furthermore, we have
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already seen that it is unwise to assume that infinite impedance exists in
the fore and aft direction, thus the rigid body fore and aft and pitching
freedom must be allowed

The conception of mass, stiffness and damping properties in each
direction at the hub is now inconvenient Instead, it is necessary to know
the impedance at the rotor hub in both x and y directions Our real interest
is to determine the boundaries between stable and unstable oscillations, so
we do not need to know the total energy the complete dynamic system
may be represented by equivalent stiffness and damping in the x and y
directions and by the articulated tip masses, m2, with their drag hinge
stiffness and damping

In the general case, equations (12) and (13) are rewritten putting
nirij + mx - nmx + m — o
and

A, = !

/Kx_\I / K y V
VnmJ > Wr> = \nmj

The procedure is to calculate or measure the helicopter impedance at
the lotor, i e, the constants K , K , B , B

x y x y

The real and imaginary equations are both quadratic in o>2 and may be
solved using the appropriate constants for each frequency W{ As before,
boundary conditions are determined by intersections of the real and imaginary
equations

The analysis of a tandem helicopter is indicated in an Appendix to this
paper

Impedance Tests
It is unfortunate that the oscillatory properties of undercarriages are

very difficult to assess with accuracy, thus even if a helicopter may be shown
to be stable on a basis of calculated impedance at the rotor hub, an impedance
test should still be made

The purpose of the test is to find the equivalent dynamic stiffness and
equivalent damping constant at the rotor in the fore and aft and lateral
directions for a periodic force applied at the rotor axle m the plane of rotation
of the rotor

DEUTSCH-I has suggested that it is sufficient to run up the helicopter rotor
with cables attached to the rotor mounting, and fixed to posts driven into
the ground, so that if instability sets in, the motion may be arrested by
tightening the cables We believe this method to be both dangerous and
inconclusive , dangerous, because the cables themselves are flexible and may
well make an unstable condition even less stable , inconclusive, because we
know of several instances where ground running has been successfully
completed, but ground resonance has occurred on landing In fact we had
one instance with Type 173 where one landing was successfully made, but
the second was the subject of the film we saw earlier
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An impedance test must take account of the following variables
1 The frequency of unstable oscillations may be anywhere between,

say 4 and 1 2 x rotor frequency
2 Oleo stiffness and damping vary with amplitude frequency and total

mean load
3 Tyre stiffness varies with normal load on the tyre
4 Undercarriage geometry may change considerably with total wheel

reaction
5 Variation of all-up weight
Items 2, 3, 4 demand that the impedance test be made for various

magnitudes of periodic applied force and also over a range of atittudes and
wheel reactions corresponding to a complete take-off or landing cycle

To reduce the magnitude of the test, it is usual to test for one all-up
weight condition only—that which is expected to be least stable

L0NGIIJOIN»l DISPLACEMENT PICK UP

UTEKAl DISPLACEMENT PICK UP

Fig 6 shows a tandem helicopter mounted for impedance test The
machine is supported from jacking points by a suspension which has very
low pendular stiffness, low vertical stiffness and zero rolling stiffness The
load m the suspension may be varied as required and is measured by proving
rings, thus a complete cycle of landing or take-off may be represented

Each rotor is now replaced by a mass equal to the total rotor mass less
the tip mass

The mass is bolted to the rotor mounting and carries out of balance
masses Up to the present time, we have used one of the helicopter engines
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to drive the out of balance blade mass This has the advantage of simplicity
and of adding no extra restraint, however it limits the possible range of
excitation from the frequency of clutch engagement to that corresponding
to maximum permissible engine r p m

Impedance is measured by displacement pick-ups at the rotor in the
x and y directions and by a phasing mark relating the position of the out of
balance weight to the displacement

The frequency of oscillation lies within the useful range of a pen recorder,
thus the pick up response is at once evident and frequencies at which the
phase lag between force and displacement passes through 90° may be seen

I Such regions may then be explored more thoroughly
' For a tandem helicopter the displacements at both hubs must be recorded
t for excitation separately at each hub
t
( Undercarriage Design
| It will be assumed m this discussion that the modes of the helicopter
1 which have frequencies of the 1 x rotor order can be treated as rigid body

modes of the helicopter on its undercarriage
The modes which are of most trouble with a single rotor machine are

mainly lateral and mainly rolling modes , to these, the mainly torsion mode
must be added for a tandem helicopter It will often be impossible to
arrange for the torsional mode to be uncoupled from the lateral Thus, in
the design stage, it is necessary to calculate the coupled modes m these three
degrees of freedom

Tyre and Shock Absorber Leg Characteristics
As far as ground vibrations of a helicopter are concerned, it is an un-

fortunate circumstance that, if we represent a shock absorber leg by a spring
K2, and damper, B2 in parallel, the values of K, and B2 are functions of
mean axial load, frequency and amplitude

Let us consider the characteristics of the familiar oleo-pneumatic strut,
for example

I The axial load in the strut must reach a certain value before any move-
ment takes place This load is the fnctional resistance of the glands plus
the product of piston area and air pressure in the fully extended position

When the strut is partly compressed under a constant mean load, no
periodic change of length will result unless the periodic applied force exceeds
the static friction force The strut has " infinite " stiffness

Further increase in the periodic applied force will cause periodic
telescoping The strut will have a stiffness, K2, which is virtually that of
its air column and is a function of mean axial load

Let B2 be the equivalent viscous damping constant giving the same rate
of energy dissipation as the strut for a given frequency and amplitude

The part of B2 due to friction is inversely proportional to the product
of amplitude and frequency , that is to the maximum sliding velocity of the
cycle Whereas, that part of B2, due to the orifices is directly proportional
to the maximum sliding velocity

Thus, as the maximum sliding velocity per cycle increases from zero,
Bs falls from infinity to a minimum and then rises again We should at this
stage also briefly review the influence of the tyre-oleo combination
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We have attempted m Fig 7 to indicate the range over which the
equivalent stiffness Kv and damping Bv of a combined tyre and " oleo "
system may operate The curves are intended to represent the following
cases, for a representative tyre-oleo combination

Case 1 Helicopter almost airborne, i e, low air stiffness, oleo still
partly compressed, and small maximum velocity of sliding,
representing small amplitude of oscillation

Case 2 Helicopter almost airborne, oleo still partly compressed and
high maximum velocity of sliding, representing high amplitude
of oscillation

Case 3 Small rotor'thrust, i e, high air stiffness, otherwise as Case 1
Case 4 Small rotor thrust, i e, higher air stiffness, otherwise as Case 3
The vertical stiffness will become equal to Ki before the helicopter

becomes airborne, in fact a helicopter may often remain at this condition
for some time

Fig 7 illustrates the large variation in K and B during a take-off cycle

EQUIVALENT

SYSTEM

K E Y

I ALMOST ATRBORNE LOW SLIOIKG VELOCITY

Z ALMOST AIRBORNE HIGH SLICING VELOCITY

3 ZERO THRUST LOW SLIDING VELOCITY

4 ZERO THRUST HIGH SLIDING VELOCITY

•

/

/ /

/A

\

^ 3

1

50

O L E O - T Y R E C H A R A C T E R I S T I C S

FIG 7

For small amplitudes of oscillation (low sliding velocity) _ v drops from

curve (3) to (1), then rises to 1 0 as the oleos reach their full extension If
the amplitude is large, however, the stiffness Kv increases almost linearly
with frequency
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Damping By falls with increasing frequency and falls further still with
increasing amplitude, both undesirable effects

Thus, we see that the shock absorber strut in series with a tyre provides
a very troublesome system for analytical treatment The designer must,
however, endeavour to ensure that his helicopter will not suffer self-excited
vibration whatever the oleo characteristics may be

The influence of coupling between pure lateral and pure roll modes

For simplicity, we have ignored coupling with yawing and have plotted
in Fig 8 the frequencies of the coupled lateral and rolling modes for a range
of values of the ratio of pure rolling frequency to pure lateral frequency,

vJvL for various values of coupling coefficient t = , —p~r for conven-
U + )

tional designs t is about 0 7

, —p

M =MASS

Mr
2 =M OF I ABOUT CG

30

FREQUENCIES OF COUPLED LATERAL

CUM ROLLING MODES
FIG 8

The curves of Fig 8 show that the coupled frequencies diverge rapidly
as the ratio uJvL increases It may also be noticed that if the pure rolling
frequency „ is reduced to zero, the frequency of the mainly rolling mode
is conventionally well above the uncoupled lateral frequency , L

Designing for avoidance of " Ground Resonance "
We have already noticed that it is most unlikely that sufficient damping

Association of Gt Britain 183

https://doi.org/10.1017/S2753447200002055 Published online by Cambridge University Press

https://doi.org/10.1017/S2753447200002055


could be provided to eliminate self-excitation, if this occurs at rotor r p m
within the operational range , that is the r p m range within which the
operations of taxying, landing or take-off may be performed In this range,
we must depend for stability on a suitable selection of the frequencies of
coupled modes

Three schemes will be considered representing some of the alternatives
open to the designer In the first two schemes, freedom from ground
resonance is achieved irrespective of the characteristics of the device for
absorbing energy of the vertical drop landing design cases We shall also
consider the behaviour of these schematic units in relation to

(a) Heavy one-wheeled landings (c) Punctures
(b) Taxying (d) Burst Tyres

SCHEME 1
We will take the undercarriage of Type 173 Mk 1 as an example of

this scheme The undercarriage structure of this machine is relatively
flexible in the lateral direction , this feature, together with the use of high
pressure tyres with a high overall diameter/hub diameter ratio gives a low KL,
hence the yawing frequency and the pure lateral frequency are low, about
80 and 60 c p m respectively

Fig 9 shows the mechanism of the unit Each telescopic leg (1) is
partly filled with oil and connected by large bore pipe (2) to the chamber (3)

UNDERCARRIAGE SCHEME I

FIC 9
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The two chambers (3) are then connected by a small bore pipe (4) Each
chamber (3) is virtually an oleo-pneumatic cylinder in which a piston (5) is
preloaded by air pressure in the space (6) When oil pressure in the pipe (2)
exceeds air pressure in space (6) the piston (5) moves, and oil passes into the
chamber (3) via an orifice (7) The orifice (7) is the usual double orifice
m which the area is reduced for flow out of the chamber

Thus, for rolling oscillations of the helicopter, under constant mean
wheel reaction, oil passes from one leg to the other, giving zero stiffness, but
substantially viscous damping

In the event of simultaneous impulsive loading at a pair of wheels, viz
symmetrical landing, the system acts very much as though normal ' oleos '
were fitted

Rolling stiffness is achieved m two complementary ways
(a) by low rate, steel coil springs external to the legs ,
(b) a small stiffness exists due to gravity, since, by virtue of the under-

carriage geometry, the C G rises if the helicopter is displaced in
roll

This stiffness is proportional to wheel reaction and therefore drops to zero
when the helicopter is on the point of leaving the ground

By this means the coupled mainly rolling frequency remains at about
120 c p m throughout the take-off or landing cycle Moreover, the product
of undercarriage damping and drag hinge damping is more than enough to
eliminate instability when the rotor is run up

We should mention here that a stepped friction damper similar in
principle to that used in model rotor tests, is fitted to each drag hinge on
Type 173

One must note that on the run up, the blades will usually remain on the
trailing drag hinge stop, so that the A2

 1S greatly increased , the frequencies
of the unstable range are increased and, in fact, the lower fringe of instability
is well above the value of w at which the blades leave their drag stops A
similar state of affairs exists on the run down , if the rotor brake is applied,
the blades then swing forward to the leading drag hinge stop

If the oscillation is of sufficiently small amplitude friction will prevent
any telescoping of the legs (1) Thus, the mainly rolling frequency is very
high, due to the high IM of the high pressure tyre and the infinite K3 of the
leg However, the transition from high rolling frequency to low rolling
frequency is completed at very small vibration amplitude and gives no
trouble

We also observe that, m a one wheel landing the wheel making contact
must give a lower reaction, due to flow through the cross pipe, than would
occur without cross coupling, i e , in a normal tyre-oleo system

Furthermore, the second wheel moves downwards towards the ground,
thereby reducing the time which must elapse before the two wheels share
load

The great advantage of this system is that the helicopter will receive
relatively small angular acceleration and the tendency to bounce from one
wheel to the other will be reduced If bouncing does occur, the funda-
mental frequency of the resulting oscillating must be lower than that of the
mainly rolling mode , hence, the condition is stable and becomes more
stable still, should bouncing occur
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When the helicopter is taxied, the effective lateral stiffness of the tyres
will be reduced, thereby making the helicopter more stable dynamically
Shimmy of castonng wheels is not a low frequency phenomenon, so we may
assume that this, too, will not affect rotor stability

From similar arguments, one concludes that a slow puncture will not
be dangerous However, a tyre burst may lead to high lateral stiffness and
cause " ground resonance " to set m

SCHEME 2

In this case, a high rolling stiffness is employed , the frequencies of
coupled modes are separated so that the mainly rolling frequency is well
above the 1 x rotor range, whilst the mainly lateral frequency must be well
below the ] x rotor range, say

Fig 10 shows an example of this scheme in which a torsion bar is used
to give high mechanical stiffness in roll The frequency separation possible
in such a scheme is limited by the ratio of vertical to lateral tyre stiffness

Such an undercarriage will become less stable with increase of taxymg
speed, because the frequency of the mainly roll mode must depend, in part,
on tyre lateral stiffness

More serious are the results of a puncture giving a soft tyre , the mainly
rolling frequency is then reduced due to reduction in both lateral and vertical
stiffness at the wheel However, the system is safe m the event of a burst
tyre, provided lateral structure stiffness is not too great
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One observes that, in a one wheel landing, two ' oleos ' virtually operate
on one wheel, thus the rolling accelerations are high There appears to be a
possibility of " bouncing resonance " in the event of a heavy enough rolled
landing

This scheme does not appear to have the docility of Scheme 1, though
it may be that for certain operational roles, e g, ship board use, a high
rolling stiffness will be imperative

SCHEME 3
This scheme is in use in most of the successful smaller helicopters

The Bristol Type 171, Sycamore is a typical example In this case, reliance
is placed in the lateral tyre stiffness and the vertical stiffness of an oleo, tyre
combination to achieve high enough mainly rolling and low enough mainly
lateral frequencies

Not only is the system likely to give trouble in the event of a tyre punc-
ture or burst, and particularly, following very heavy rolled landings, but
careful matching of tyre and oleo characteristics are necessary if a decrease
in stability with amplitude is not to occur

One should observe that in these smaller helicopters, the pilot is closer
to the wheels and can, generally, make better landings than he could with,
say, a tandem

It is very interesting to note that many helicopters with undercarriages
of this type are known to have critical taxying speeds above which ground
resonance occurs This fact may serve to show how narrow a margin of
stability is often considered acceptable

CONCLUDING REMARKS

It is believed that the assumptions on which the theory rests are reason-
able and that, if the impedance of a rotor mounting is known, then the extent
of the unstable range may be determined with confidence

Non-linear characteristics of the undercarriage are responsible for the
principal difficulty, that of determining rotor mounting impedance Because
of this, the undercarriage design must be governed by its ground resonance
characteristics as much as by the vertical drop landing cases

The available data on the dynamic properties of shock absorber struts
and tyres is very slender More information on the dynamic stiffness of
tyres in all three directions, vertical, lateral and tangential, would be particu-
larly helpful

It is clear that as bigger and better helicopters come along—some with
wings, the problem of ground resonance will assume ever greater importance
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APPENDIX I

Application to a Tandem Hehcoptei

Let xij yi be co-ordinates of rotor hub (1) and let qi, ri be displacements
of hub (1) due to an exciting force at hub (1)

When hub (1) is excited by a periodic force, displacements will also
occur in hub (2) The helicopter will be symmetrical about its fore and
aft datum, so we may assume that, m the absence of the rotor, there is no
coupling between the x and y directions

For a boundary condition between stable and unstable motion, the
periodic motion is of constant amplitude and we may write for the displace-
ment of hub (2) due to excitation at hub (1)

X2i = a2i qi + b2 1 q! (Al)

then the i

y21 = c21 r! +

displacements at rotor

x i == qi "r a i 2

Yi = rx + c i a

and at rotor (2)

Let

Si and S,

Let

x2 = q2 + a21

y2 = r2 + c21

Z l = X l + iY l

Si = qx + irx

d2 1

(1)

q2

qi

> may now be regarded as

Uj = |(a12 + <; )

become

+ b 1 2 q2

t- d1B r2

+ b 2 1 qx

z2 =

s2 =
variables

3 A

= x2 + iy2

= q2 + ir2

for the fus

(A2)

(A3)

(A4)

—c12)
(A5)

Vi - |(b12 + d12) , AVX = l(b12 - d12), etc

Then displacements at the two hubs may be written

Zj = Sj + Uj S2 + AUj S2 + V, S2 + AVj S2

(A6)
Z2 = S2 + U2 Sx + AU2 Sx -1- V2 S1 + AV2 S2

Now let the impedance at rotor (1) due to excitation at rotor (1) be represented
by the stiffnesses Kxi, Kyi, and the dampers, Bxi, Byi
The reactive forces exerted at rotor (1) are

188 flic Journal of the Hehcopttr

https://doi.org/10.1017/S2753447200002055 Published online by Cambridge University Press

https://doi.org/10.1017/S2753447200002055


Pxj (- Qxx + qx Kxx + qx Bx15 etc

and, if Pi + Qi •= Px, {- 1 Pyx + Qxx + lQyj we obtain

Pt f Q2 =-- Kx Sj + AK, Sj; + BSi 4- AB St (A7)

The energy expressions for the helicopter complete with rotors may now be
written in terms of the variables

Su S2, £13 £2 and their complex conjugates where £15 £2

are variables, one for each rotor, representing the generalised co-ordinate
£1 of single rotor theory

One arrives at equations of motion relative to a final co-ordinate system
of the form

^ 2) -r K J S J + A K 1 S 1 + B1S1 + AB, S,

•+- A n So -+ A10Sn 4- A 1 3 S , +- A,4§2 -r A l 5 S 2 -»- A1 5S8 -= 0

for the variable S_ and a similar equation for the variable Sr 3 also, for the
variable £l5 one obtains

Sx + U j S ^ AV1S,^V1S, + AV1S2^ U + A8l«i ^ A3e d = 0
(A13)

and a similar equation for the variable £2
Where An, AL, etc, are constants depending on the constants Ui, X5{,

etc, and Aj15 Aj2, etc, are constants depending on the rotor parameters
\i, \ . , A,, and K,

The solution may be assumed to be an elliptic whirling motion for each
variable, leading to an 8th order frequency determinant It would be
necessary to solve this determinant separately for each value of <or and
plot the real and imaginary parts of the resulting frequency equation in
order to find points of intersection , 1 e , boundaries between stability and
instability

It will be appreciated that the amount of labour involved in this treatment
is very considerable , one has to consider the whole range of wheel loadings
and helicopter attitudes from zero rotor thrust to the airborne condition

Fquations A12 and A13 may be represented by an electronic analogue,
howevei, and the case for constructing such an analogue is obviously a
strong one
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