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A COMPLETE CLASSIFICATION OF DYNAMICAL

SYMMETRIES IN CLASSICAL MECHANICS

GEOFF PRINCE

This paper deals with the interaction between the invariance

group of a second order differential equation and its

variational formulation. In particular I construct equivalent

Lagrangians from all such group actions, thereby successfully

completing an earlier attempt of mine which dealt with some

traditionally important classes of actions.

0. Introduction

In a recent paper in this journal (Prince [5]) I attempted a

classification of one parameter group actions which permute the integral

curves of the Euler-Lagrange field of a mechanical system. The

approach was to determine whether the corresponding Lie derivative of the

Cartan 2-form was also a Cartan 2-form. I showed that this was the case

for those actions satisfying a certain simple symmetry condition and

indeed that those dynamical symmetries distinguished by other important

criteria satisfied the condition. In this paper I will complete the

classification by showing that those actions which fail the symmetry

condition do in fact produce Cartan 2-forms for the mechanics but not in

a global sense. Specifically, the image of a regular Lagrangian for the

system under such actions depends on the arbitrary choice of a family of

integral curves of the Euler-Lagrange field, and once this choice is made

the image is a Lagrangian for the corresponding orbits but, in general,

for no others.
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1. Review

I will use as far as possible the notation of Prince [5 ] , Crampin,

Prince and Thompson [4] and Crampin and Prince [3 ] , The orbits of the

mechanical system are curves on the n-dimensional configuration space M

(taken as a C°° manifold) with local co-ordinates (xa). To obtain a

corresponding global vector field one needs to go to evolution space,

E = J? x TM} with local co-ordinates (t, x , u ) . This vector field i s

the so-called Euler-Lagrange field T e XCE), a second order vector field

the projection under T : E •*• M of whose integral curves are the orbits

of the system. Locally i t is

As the name implies Y represents the Euler-Lagrange equations,

for a regular Lagrangian L e F(E) (F(E) denotes the ring of smooth

functions on E):

32£ hb _ 5L 32£ b Z2L

duU %u Sxa tua 3x 3wa it

A are the accelerations.

These equations can be replaced by

<r 3 dt> = l v J d&L = o

where 6r e X*(E) i s the Cartan 1-form:
Li

QT + L dt +— (dxa - uadb) .
3u

dQr i s called the Cartan 2-form for r .

Li

Now I describe the various symmetries of the system. A one

parameter group action {cj> } on J? x M which permutes the parametrised
s

orbits i s called a Lie symmetry of the system. I t {<(> } i s generated by

a vector field X e. K(JR x M ) then the corresponding infinitesimalcondition i s

I ( 1 ) r = hT J he ¥(E) ;
X

here .£ e X(E) i s the f i r s t prolongation of X, see for example

Crampin, Prince and Thompson L41 - A one parameter group action {ty }
s
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on E which permutes the in t eg ra l curves of T s a t i s f i e s

where Z £ X.(E) generates {i|> }. Such group actions are cal led dynamical

s

symmetries. The Lie symmetries form a f i n i t e dimensional Lie group which

i s a subgroup of the i n f i n i t e dimensional Lie group of dynamical

symmetries.

Now the Noether-Cartan Theorem re l a t e s the f i r s t i n t eg ra l s of the

system to vector f ie lds on E via dBr . ' i f F e ¥(E) i s a f i r s t

it

i n t e g r a l , tha t i s T(F) = 03 then there e x i s t s a unique dynamical symmetry

Zj with LT = 0} such tha t

dF = Z J <2er .

This property of Z means t ha t

Indeed Z + gT s a t i s f i e s both these l a s t conditions for any

g £ T(E) and conversely any such class of dynamical symmetries Z with

L n dQj. = 0 produces a unique f i r s t i n t eg ra l via dF = Z J dQT . These

dynamical symmetries are cal led Cartan symmetries and the f i n i t e

dimensional subgroup which are also Lie symmetries are called Noether

symmetries.

In the e a r l i e r paper I calculated L dd. for dynamical symmetries

and showed tha t

LydeL = deLl ,

where L' is a Lagrangian for the same system, if and only if

32£ 3 ,b b , 32L 3 ,J> b .
— r — - (C - u a) = — j- — - (C - u a).

Here

with Oj ?a ^ na £

Crampin C2] has indicated the geometric content of t h i s condition

and Crampin and Prince [3] have given a manifestly geometric proof of the

resu l t . The condition e s sen t i a l l y s t a t e s t ha t dQT must vanish on the

images under the symmetry of the f ibres of J? x TM. We also gave the
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de ta i l s of the relation between Lv de and I(J* dQT where Y generates
JL JL/ S Lj

Briefly

by exponentiation of the vector field, so that i>* d&T is a Cartan
S Lt

2-form for a particular Lagrangian if and only if

L™ deL = deL 3 m = i,2}...
m

is a Cartan 2-form, possibly degenerate. On the hand i|i* dQr is a
S Lt

Cartan 2-form for al l Lagrangians L if and only if ^V^r i s a

Cartan 2-form for al l Lagrangians L (then Lv dQT is always such a

2-form). Lie symmetries are clearly in this last category.

2. Completing the Classification

The object here i s to take a dynamical symmetry, Z say, which

fa i l s the symmetry condition and construct from i t one which does satisfy

i t . This i s done in the following way: take an integral curve p of r

and i t s images under the group action of Z and project these integral

curves down to U along with the corresponding restr ict ion of Z. Then

this vector field on M acts as a Lie symmetry for the given family and

also automatically sa t is f ies the symmetry condition ( i ts components are

independent of U ) . The action of this Lie symmetry on dQj- thus

produces another Cartan 2-form on the images of p .

Now to the formalities, beginning with some prefatory definitions

and lemmas to the main theorem. In what follows the horizontal component

of F (see Crampin, Prince and Thompson [4]) i s nowhere zero on the

integral curve p or i t s images under the group action. This ensures

that the corresponding congruence of orbits have nowhere zero tangent

field. Further the images of p are assumed to have distinct

projections, that i s the group action does not locally entai l a mere

change of parametrisation of an orbit.

By analogy with the definition of Jacobi fields in Riemannian

geometry, consider an orbit y : t~*y(t) e M of the mechanical system,then:
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DEFINITION. A vector field X along an orbit y is called a Lie

field for Y if it satisfies the equation

along the integral curve pit) = it, yit), yit)) of T. Q

a
., aIn co-ordinates with X = E,

a a
x = y

this is just

where

= e
8a;

b b
U = y

a a
x = y

= 0

b b
x = y

b .b
U = y

is the prolongation of X from a vector field on an orbit on M to a

vector field on the corresponding integral curve on E. It is important

to realise that X need only be defined on the orbit, not necessarily on

(1)some open region of M. This means, for example, what while X (g)

is defined for g e HE), L r is not.

XU)

LEMMA. Suppose p is an integral curve of r and that Z is a

vector field defined along p such that LJ> = 0. Then the vector

field TyZ along the orbit y = T O p is a Lie field for y .

Proof. F i r s t l y choose Z with no V component in the bas is

, 1 .- c lear ly Z + Z - <Z, dt> T does not affect / Z = 0.

Now (T*Z) = Z because the condition LJL = 0 forces Z to be of

the form

Z =

a a
x = y a .au = y

Thus T^Z is a Lie field for y = T o p , (I refer the reader to Prince

and Crampin [6] for a similar and extended approach to Jacobi fields.) Q
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Now one takes a dynamical symmetry Z of T (with L Z = 0 and

i t s corresponding one-parameter group action {ty } on E. The action of
s

{ty } on an integral curve p of F generates a submanifold S of
&

co—dimension 2n.

The previous lemma then gives

LEMMA. The projection of the restriction of Z to S is a Lie

field X for the orbits {y = T »fi|i o p j } . Moreover I r = 0

s s ,̂(1)

on the submanifold S.

Proof. The earlier lemma guarantees that the vector field
X = i^(Z | , ̂  ) is a Lie field for y • The union X over {y } of

s

these fields is a vector field on the projection, S s of S and

consequently X """ exists in the usual way on JR x TS and so

One now has a field X e X(S ) and a prolongation X on

JR x TS which agrees with Z on S (and i s tangent to S as i s r ) .

X clearly satisfies the symmetry condition and, since L T = 0 on
X

S, the 2-form on H x TS , L , .der , i s a Cartan 2-form on 5 but not
X{1) L

in general elsewhere.

This constitutes the proof of the main theorem:

THEOREM. The 2-form L ...ddT is a Cartan 2-form for V on the

XU) L
integral curves i)i op. g

s

REMARKS. (i ) I t i s evident from the derivations of the symmetry

conditions in Prince [5] or Crampin and Prince [3] that

for some K e F(E), however in general V J dQj. = 0 only on S. Thus

de wil l be a Cartan 2-form on JR x TS , possibly degenerate, for some

mechanical system T which coincides with T on S, that i s , both
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systems share the orbits {y } .
s

(ii) The foregoing construction does not rely on the

failure of the symmetry condition by Z. If Z does fail the symmetry

condition i t is because i t fails to map the fibres of TM to Lagrange

subspaces of dBT . Consequently Ln dQT is not a Cartan 2-form for F

on S because L d8 depends on the components of dQr in E of S.

X has the same effect as Z on the orbits on S and moreover

satisfies the symmetry condition tr ivially by preserving the fibres of TM.

( i i i ) By virtue of the last remark in the previous

section <f>* dQT i s a Cartan 2-form for F on S for a l l Lagrangians
S Li

where X generates {<f> }. Indeed for a dynamical symmetry satisfying

the symmetry condition but for which i>* dQ may neither be a Cartan
S L

2-form for a particular Lagrangian nor a generic one, the construction

presented guarantees such Cartan 2-forms at least on a one-parameter

family of orbits.

EXAMPLE. As an il lustration of the features described above I

consider the two dimensional free particle for which

Lit j x j u) = h ^ah
u u

 J

er = h « hu
aubdt + & hu

a(dxb-ubdt) ,
L ab OLD

deT = S -.du1
 A (dx - u dt) 3

L CLD

and

I t is simple to check that

Z = u2(xX - uh)2 -^y e X(E)

is a dynamical symmetry of F with L-Y = 0 which fails the symmetry

condition.

The generic integral curve p of F is
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p(t) = (t, at +bs at + d, a, b).
The one parameter group {iji } generated by Z can be shown to give

s

+ at, at + dy a, b) ;

taking C, b non-zero S i s just a half plane depending on the

constants a, b, o and <i(only the branch of f(s) = 7—

continuously connected to s = 0 is allowed).
Then

x= T^zl*scP
; = a(xl -at)2 ^ r

and

XL1) = oix1 - at)2 - ^ r + 2o(x1 - at) (u1 - a) —^

which co-incides with 2 on S. Also

which vanishes on the submanifold ur = a containing S.
A l i t t l e straightforward computation gives

L , , ,de , = dev = 4a(x1 - at) (du1 - A1 dt) A (dx1 - u~dt)

where

- at)u1(u1 - a)

i s a degenerate Lagrangian for mechanical systems whose x component

of acceleration i s A . Clearly the restriction of L dQT to S is
XU) L

jus t a multiple of dQT (the multiple is a f i r s t integral on S) ,
u

however the degenerate Lagrangian K leads to the equation of motion

2(xX - at)xl= - (x1- a)2

which has orbits with the two parameter x component on S of

(x1 - at) = (A + Bt)2/2.
The orbits T O (\j> •> p) are obviously included in the family.

6

https://doi.org/10.1017/S0004972700009977 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009977


Dynamical Symmetries 3 O 7

4. Final Remarks

In demonstrating this construction of alternative Lagrangians for

any dynamical symmetry and in showing that the symmetry condition of my

earlier paper is satisfies when this can be performed without reference

to a particular integral curve, I have answered the remaining open

question posed in that paper. The other two, namely "does a pair of

equivalent Lagrangians lead to a dynamical symmetry satisfying the

condition?" and "does a pair of Lagrangians so related lead to a closed

form first integral?" where resolved in the affirmative by Sarlet [7]

and Crampin [/] respectively. Along with the geometric interpretation

and proof of the condition in Crampin and Prince [3] this present paper

provides a clearer picture of the interaction of symmetries of the second

order differential equation field with the variational aspects of the

mechanics. This may be of some use in unravelling the Helmholtz condition

for the inverse problem in Lagrangian mechanics. These are the conditions

that must be satisfied by a second order ordinary differential equation

admitting a variational formulation. They can be regarded as equations

whose solutions are equivalent Lagrangians for the mechanics, and as such

their relation to the results here is obviously close but unclear. Indeed,

in Crampin and Prince [3] we derived the symmetry condition by invariance

considerations on these equations, however the actual business of using

dynamical symmetries to solve the Helmholtz conditions is not yet

established. I hope this will be the subject of subsequent papers.
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