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A COMPLETE CLASSIFICATION OF DYNAMICAL
SYMMETRIES IN CLASSICAL MECHANICS

GEOFF PRINCE

This paper deals with the interaction between the invariance
group of a second order differential equation and its
variational formulation. 1In particular I construct equivalent
Lagrangians from all such group actions, thereby successfully
completing an earlier attempt of mine which dealt with some

traditionally important classes of actions.
0. Introduction

In a recent paper in this journal (Prince [5]) I attempted a
classification of one parameter group actions which permute the integral
curves of the Euler-Lagrange field of a mechanical system. The
approach was to determine whether the corresponding Lie derivative of the
Cartan 2-form was also a Cartan 2-form. I showed that this was the case
for those actions satisfying a certain simple symmetry condition and
indeed that those dynamical symmetries distinguished by other important
criteria satisfied the condition. In this paper I will complete the
classification by showing that those actions which fail the symmetry
condition do in fact produce Cartan 2-forms for the mechanics but not in
a global sense. Specifically, the image of a reqgular Lagrangian for the
system under such actions depends on the arbitrary choice of a family of
integral curves of the Euler-Lagrange field, and once this choice is made
the image is a Lagrangian for the corresponding orbits but, in general,

for no others.
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1. Review

I will use as far as possible the notation of Prince [5], Crampin,
Prince and Thompson [4] and Crampin and Prince [3]. The orbits of the

mechanical system are curves on the n-dimensional configuration space M

(taken as a C® manifold) with local co-ordinates (xa). To obtain a

corresponding global vector field one needs to go to evolution space,

E = RxTM, with local co-ordinates (¢, .'z:a, ua). This vector field is
the so-called Euler-Lagrange field T € X(E), a second order vector field
the projection under 1 : F + M of whose integral curves are the orbits
of the system. Locally it is
_2 ., a8 a3
r at+uaxa+A aua.

As the name implies I represents the Euler-Lagrange equations,
for a regular Lagrangian L € F(E) (F(E) denotes the ring of smooth
functions on E):

3°L b _ 3L 3% b
—‘_b A = - u - >

2 au 2% 2l adb 0% st

Aa are the accelerations.
These equations can be replaced by
<, dt>=1 I'_IdeL=0

where 6, € X*(E) is the Cartan l-form:

o +L dt +2 (@® - 5at) .
L aua

deL is called the Cartan 2-form for T .

Now I describe the various symmetries of the system. A one

parameter group action {¢S} on R x M which permutes the parametrised
orbits is called a Lie symmetry of the system. It {¢s} is generated by

a vector field X e X(R xM ) then the corresponding infinitesimal
condition is

LX(l)I‘ =hl , he F(E) ;

here X(l) € XE) is the first prolongation of X, see for example

Crampin, Prince and Thompson [4]. A one parameter group action {ws}
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on E which permutes the integral curves of T satisfies
LZI‘=fI‘ 5 f e F(E) ,

where Z € X(E) generates {ws}. Such group actions are called dynamical

symmetries. The Lie symmetries form a finite dimensional Lie group which
is a subgroup of the infinite dimensional Lie group of dynamical
symmetries.

Now the Noether—Cartan Theorem relates the first integrals of the

system to vector fields on E via dOL :if F ¢ F(E) is a first

integral, that is TI(F) = 0, then there exists a unique dynamical symmetry
Z, with LZI' = 0, such that

dF = Z | deL .
This property of Z means that
L, de; = 0.
Indeed Z + gT satisfies both these last conditions for any

g € F(E) and conversely any such class of dynamical symmetries Z with

L 7 deL = 0 produces a unique first integral via dF = Z deL . These

dynamical symmetries are called Cartan symmetries and the finite
dimensional subgroup which are also Lie symmetries are called Noether
symmetries.

In the earlier paper I calculated Ly dGL for dynamical symmetries

and showed that
I.YdeL = deLl ’

where L' is a Lagrangian for the same system, if and only if

2 2
3L 8 (b _ by 8L 3 b _ by

21 3 2u° 1% 38 3.2

Here
y:oit+ 5“—%+na%
d 3x du

with o, ga s na e F(E) .

Crampin [2] has indicated the geometric content of this condition
and Crampin and Prince [ 3] have given a manifestly geometric proof of the
result. The condition essentially states that deL must vanish on the

images under the symmetry of the fibres of R x TM. We also gave the

https://doi.org/10.1017/50004972700009977 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009977

302 Geoff Prince

details of the relation between LY deL and q;; deL where Y generates

{\Ps}.
Briefly
vt de = de_ + Sl de, + s? L23e. +
s 48, = a8, Y40, + 37 Lyde £ ...

by exponentiation of the vector field, so that UJ; deL is a Cartan

2-form for a particular Lagrangian if and only if

L’; de, =de, , m=1,2,...
m

is a Cartan 2—-form, possibly degenerate. On the hand ‘P; deL is a
Cartan 2-form for all Lagrangians L if and only if LYdeL is a

Cartan 2-form for all Lagrangians L (then L’; dGL is always such a

2-form). Lie symmetries are clearly in this last category.

2. Completing the Classification

The object here is to take a dynamical symmetry, Z say, which
fails the symmetry condition and construct from it one which does satisfy
it. This is done in the following way: take an integral curve p of T
and its images under the group action of Z and project these integral
curves down to ¥ along with the corresponding restriction of Z. Then
this vector field on M acts as a Lie symmetry for the given family and

also automatically satisfies the symmetry condition (its components are

independent of ua) . The action of this Lie symmetry on deL thus
produces another Cartan 2-form on the images of p.

Now to the formalities, beginning with some prefatory definitions
and lemmas to the main theorem. In what follows the horizontal component
of T (see Crampin, Prince and Thompson [4]) is nowhere zero on the
integral curve p or its images under the group action. This ensures
that the corresponding congruence of orbits have nowhere zero tangent
field. Further the images of p are assumed to have distinct
projections, that is the group action does not locally entail a mere
change of parametrisation of an orbit.

By analogy with the definition of Jacobi fields in Riemannian

geometry, consider an orbit vy : t2>Y(t) ¢ M of the mechanical system, then:
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DEFINITION. A vector field X along an orbit y is called a Lie
field for Y if it satisfies the equation
(1) _

LFX 0
along the integral curve op(t) = (¢, v(t), v(t})) of T. O
In co—ordinates with X = Ea 2
axa
a a
x =y
this is just
a :b3 b _af _
£ -8 =3 -& T =0
% 1 p b 3@ | b _ b
Uu =y X =Yy
where
PEC R + P
axa U
a b _.b
X =y u =y

is the prolongation of X from a vector field on an orbit on M to a
vector field on the corresponding integral curve on E£. It is important

to realise that X need only be defined on the orbit, not necessarily on

some open region of M. This means, for example, what while X(l) (g)

is defined for ¢ ¢ F(E), L is not.

r
x (D
LEMMA. Suppose o is an integral curve of T and that 2 1is a

vector field defined along o such that LFZ = 0. Then the vector
field +tZ along the orbit y= 1 op 118 a Lie field for « .

Proof. Firstly chcose Z with no T' component in the basis

d 3
P, —, —l: clearly 2 +2 - <2, dt> T does not affect [ Z = 0.
a a r
9x u
Now (T*Z)(l) = Z because the condition LFZ =0 forces Z to be of
the form
7 = @ 3 + i@ 3
ax? aua
a a a a
r =Y u =y
Thus 7,2 is a Lie field for y = 1 o0p . (I refer the reader to Prince

and Crampin [6] for a similar and extended approach to Jacobi fields.) (]
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Now one takes a dynamical symmetry Z of T (with LI‘Z =0 and

its corresponding one-parameter group action {ws} on E. The action of
{ws} on an integral curve p of I generates a submanifold S of

co~dimension 2n.

The previous lemma then gives

LEMMA. The projection of the restriction of 2 to S 1is a Lie

field X for the ovbits {y_ =1 o(p_opl} . Moreover L, 6 T =0
s 5 ¥

on the submanifold &.

Proof. The earlier lemma guarantees that the vector field

Xs = T*(Zlq’s"p) is a Lie field for y_ . The union X over {yg} of
+
these fields is a vector field on the projection, S , of S and

1 . . +
consequently X( ) exists in the usual way on R x IS and so

g () _
LX (yF = L 0. g

One now has a field X € X{S+) and a prolongation X(l) on

Rx TS+ which agrees with Z on S (and is tangent to S as is T).

x (1 clearly satisfies the symmetry condition and, since L (l}‘ = 0 on
X

S, the 2-form on K x TS+ S deL » is a Cartan 2-form on S but not

L
in general elsewhere.
This constitutes the proof of the main theorem:

is a Cartan 2-form for T on the

THEOREM. The 2-form LX(l)deL

integral curves ws °op. ]

REMARKS. (i) It is evident from the derivations of the symmetry

conditions in Prince [5] or Crampin and Prince [3] that

L &b, =d
¥ L K

for some K ¢ F(E), however in general T deK =0 only on S. Thus

. +
deK will be a Cartan 2-form on Rx IS , possibly degenerate, for some

mechanical system T which coincides with ' on S, that is, both
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systems share the orbits {YS} .

(ii) The foregoing construction does not rely on the
failure of the symmetry condition by 2. If Z does fail the symmetry
condition it is because it fails to map the fibres of 7TM to Lagrange

subspaces of deL . Consequently LZ deL is not a Cartan 2-form for T
on S Dbecause LZ dGL depends on the components of deL in F of S.

X(l) has the same effect as Z on the orbits on S and moreover

satisfies the symmetry condition trivially by preserving the fibres of M.

(iii) By virtue of the last remark in the previous

section ¢; deL is a Cartan 2-form for T on S for all Lagrangians

£ (1)

where generates {¢s}. Indeed for a dynamical symmetry satisfying

the symmetry condition but for which ¢; deL may neither be a Cartan

2-form for a particular Lagrangian nor a generic one, the construction
presented guarantees such Cartan 2-forms at least on a one-parameter

family of orbits.

EXAMPLE. &as an illustration of the features described above I

consider the two dimensional free particle for which

Lt , z, u =% 5abuaubJ

o, = % 8 yutla + sy (aPlar)

do, = 8 b A (af - JLat)
and

B ,,a_3
at+u a’
ax

T =
It is simple to check that

7 = uz(xl - ule)? 2 ¢ X(E)
azl

is a dynamical symmetry of T with LZF = ( which fails the symmetry

condition.

The generic integral curve p of T is
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p(t) = (t, at +b, et + d, a, b).

The one parameter group {tps} generated by Z can be shown to give

b
Do +at, et +d, a, b) ;

by (o(t)) = (t, =

. + ..
taking ¢, b non-zero § is just a half plane depending on the

constants a, b, ¢ and d(only the branch of f(s) = 1——bc_bg
continuously connected to & = 0 1is allowed).
Then
X= 2], )= ela - at)® 25

] dx

and

1 1 2
M 2ozt - at)® 254 sl - at) (- @) %

dx ou

which co-incides with Z on S. Also

L r=-2¢(ud - a)2—i-

,X(‘l) aul

which vanishes on the submanifold ul = @ containing &S.

A little straightforward computation gives

- - 1_ 1_ 1 1_,1
LX(,l)deL = dGK = de(x at) (du AT dt) A (dx wdt)

where
K(t, g, w) = 2e(at - at)ulut - a)
is a degenerate Lagrangian for mechanical systems whose :cl component

of acceleration is Al. Clearly the restriction of L (l)deL to S is
X

just a multiple of deL (the multiple is a first integral on &S),

however the degenerate Lagrangian K leads to the equation of motion
20z - at)il= - (21- a)?

which has orbits with the two parameter z! component on S+ of

(z' - at) = (4 + Bt)*/3,
The orbits TO(U)S o p) are obviously included in the family.
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4, Final Remarks

In demonstrating this construction of altermative Lagrangians for
any dynamical symmetry and in showing that the symmetry condition of my
earlier paper is satisfies when this can be performed without reference
to a particular integral curve, I have answered the remaining open
question posed in that paper. The other two, namely "does a pair of
equivalent Lagrangians lead to a dynamical symmetry satisfying the
condition?” and "does a pair of Lagrangians so related lead to a closed
form first integral?" where resolved in the affirmative by Sarlet [7]
and Crampin [7] respectively. Along with the gecmetric interpretation
and proof of the condition in Crampin and Prince [3] this present paper
provides a clearer picture of the interaction of symmetries of the second
order differential equation field with the variational aspects of the
mechanics. This may be of some use in unravelling the Helmholtz condition
for the inverse prablem in Lagrangian mechanics. These are the conditions
that must be satisfied by a second order ordinary differential equation
admi tting a variational formulation. They can be regarded as equations
whose solutions are equivalent Lagrangians for the mechanics, and as such
their relation to the results here is obviously close but unclear. Indeed,
in Crampin and Prince [3] we derived the symmetry condition by invariance
considerations on these equations, however the actual business of using
dynamical symmetries to solve the Helmholtz conditions is not yet

established. I hope this will be the subject of subsequent papers.
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