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1. Introduction. In this paper, X will always denote a local class of locally finite
groups, which is closed with respect to subgroups, homomorphic images, extensions, and
with respect to cartesian powers of finite X-groups. Examples for X are the classes L, of
all locally finite sm-groups and L(F, N S) of all locally soluble z-groups (where 7 is a
fixed set of primes). In [4], a wreath product construction was used in the study of
existentially closed X-groups (=e.c. X-groups); the restrictive type of construction
available in [4] permitted results for only countable groups. This drawback was then
removed partially in [S] with the help of permutational products. Nevertheless, the
techniques essentially only permitted amalgamation of X-groups with locally nilpotent
m-groups. Thus, satisfactory results could be obtained for L,-groups (resp. locally
nilpotent z-groups) [6], while the theory remained incomplete in all other cases.

It is the purpose of the present note to close this gap. We can do so by using a new
construction, which is related to both Krasner—Kaloujnine embeddings and permutational
products. It is derived from the observation that, whenever N < G, then the right regular
representation G — Sym(G) coincides with a Krasner—Kaloujnine embedding, if we
regard N Wr G/N as a permutation group on N X T (where T is a transversal of N in G)
and identify N X T canonically with G. Thus, if G € X, then the image of the right regular
representation lies in the intersection of N Wr G/N with the constricted symmetric group
on G [3, p. 180]. The latter is locally finite, and so our assumptions about X ensure that
the intersection is an X-group. Therefore, in the construction, we basically just try to find
enough elements in this intersection in order to obtain appropriate X-supergroups of
given GeX. This is accomplished by a certain choice of T and some further
modifications.

The basic construction is given in Section 2. It turns out to be much easier than the
previous ones, and it allows us to reprove all previous theorems in full generality for
X-groups. In this paper, we will just fill the remaining gaps. In Section 3, we remove
the countability assumption from the theorems of [4,§4]. The results of [5, §4]
about complements in countable e.c. X-groups are generalized in Section 4 to results about
partial complements in e.c. X-groups. We also supplement our theorems about
algebraically closed (a.c.) L(%, N ®)-groups [8]. Finally, Section 5 contains a treatment
of amalgamation in L(%, N &) which is in line with [7].

Note that it remains open whether the restriction to splitting groups in H. Ensel’s
results [1] about e.c. Sylow tower groups is redundant.

2. The construction. Let 7: G — H be a homomorphism of X-groups with kernel N.
Fix U=V =G such that V is finite. Choose left transversals R of UNN in U (or
equivalently of N in UN with Rc U), and § of UN in G, and T of G in H. Then
H=TSR. Put Q=G x H, and regard the unrestricted regular wreath product W =
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G Wr H as a permutation group on 2 in the usual way, i.e.,
(g, h'Y"=(g' - (h")f, h'h) forall f:H—G, heH.

Note that W={f-h|f:H—G and heH} where fih fih,=ff¥ " hh, and
(R)(fif$77) = (h)fy + (hhy)f, for all h € H. Define embeddings

ocH—-W and 1:G—->W
via :
(80 toSof0)"* = (81, 115:171) Wwhere 1,57 =1toSofoh and g, =goSos7;
and

(80> toSoF0)’™ = (g1, 115171) Where £,5,F,=1to5oFog and g =goSorog * r1's7".
Observe that 7 is a standard embedding with respect to ~ in the sense of [2] (the
countermap -*:H— G has to be defined via (&57)* =sr here). Finally, define an
embedding
wVWro—-w
via
(f-a)u=f-a where (Br)f=s-@F)f s forallteT,seS, reR.

Obviously, Inp <A - U where A={f:H—> G | (6r)f esVs ' forallte T, seS, reR}.

THeoREM 2.1. (a) Wy = (Ho, Gt, AU) € %.

(b) Ho is a complement to the base group of W, and o |U=p|U=idy.

(©) If x:U>(UNN)WrU=<=VWrU denotes the Krasner—Kaloujnine embedding
with respect to the transversal R (i.e., ux=f,-a for all uelU, where (a')f,=
@) u-@a)! for all u'eU, and where * :U— U is given by 7*=r for all re R),
then the diagram

U—>VWro

\ ln
A 4

w
commutes.

Proof. (a) It suffices to show that W, is locally finite, since the argument of [§, p.
1999] will then ensure that Wye X. Let Go<G and Hy=<H be finite with V <G, and
Gy<H, By [9, Lemma 5.3] it suffices to show that the transitivity systems of
Q = (H,0, Got, AU) are boundedly finite. Fix w, = (go, toSoFo) € Q. We will show that

w§ = Qo= {(g, 57) | &7 € to5oFoHy and g € gosoGos ™'},

whence |0f| =< |Qq| < |Hy| - |G-

To this end, let w, =(g,, 1;,5,F,) € Qy. Then 1,57, = t,5o7ox and g, =geSey - 57" for
suitable x e H,, y € Gy,. Suppose that w{=w,=(g,, ,5,%). If g=ho for some
h e H,, then 1,5,F, = 1,8, F1h = toSoFoxh € tySoFgHy, and g, =g,5155"' = goSoy . ST 8155 =
goSoy - 55 € 8o50Gys;. If g=gt for some geG,, then 15,7, = tls,r,g tosoroxg €
toSoToHy (observe that GosHo) and g,=g51ng 17’57 =goSoy - ST'S1ng - r2 Isyt=
goSoY “ & * 1757 € gosoGosz ' (observe that Rc U<V <G,y). If g=f-deA. U, then
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5,7, = 1,5\ Pyl = tySoFoxil € toSoFgH, (observe that U <V =< G, =< H); in particular s, =s,
and thus g, =g, - (6;5,7))f €80y - s7'5;V - 57 = gosoGoss"' (observe that V = G,). This
shows that w{ e &, for all g € Q.

(b) is obvious.

(c) Fix uelU. Let wg™=w, with w,=(g, t;5;7)e€ Q. Then 5§ F =t,5,Fsi.
In particular s,=s,, and we obtain g, =go" (teSeFo)f. = goSo - (Fo)fs s ' =
goSorolt + (Fold)* ~'sg " = gosorou - ri'sy!. This shows that uku = ur.

The following technical lemma, which can be verified by straightforward calculations,
will be essential in our proofs.

LemMA 2.2. Let f-be W =AWrB where f:B—A and beB—-1. If f,,,:B—>A
satisfy supp(f;) c T for a fixed left transversal T of (b) in B, then [f;, £]1=([f - b, fil, il €
((f-b)").

3. Filling some gaps. In this section we will complete the generalization of the
results of [4, §4] to uncountable e.c. X-groups (a project begun in [S, §2]). The reader
should be familiar with the results in [§, §2]. In particular, note that every e.c. X-group G
has a unique chief series by [5, Theorem 2.3], and that there are three kinds of normal
subgroups in G: the groups M and N occurring in the chief factors M/N of G (here, the
M’s are precisely the normal closures (g“), ge G—1), and the remaining normal
subgroups (which can be obtained as intersections of N’s or as unions of M’s).

THeoREM 3.1. ([4, Theorem 4.8], [5, Theorem 2.4]). If M/N is a chief factor of an
e.c. X-group G, then every finite system of equations and inequalities with coefficients from
N, which is solvable in some X-supergroup of G, has already a solution in every verbal
subgroup of M. Moreover, for every K 2 G such that K has no maximal normal subgroup,
the following statements hold.

(a) Every finite system of equations and inequalities with coefficients from K, which is
solvable in some X-supergroup of G, already has a solution in K.

(b) Every normal subgroup of K is a normal subgroup in G. In particular, K has a
unique chief series, and the normal subgroups of K form a chain.

(c) Each automorphism of K, which is induced by conjugation with some element
from G, is locally inner.

Proof. Let & be a finite system of equations and inequalities with coefficients
ny,...,n, €N, which is solvable in some X-supergroup of G. Since G is e.c. in X, there
exists a solution gy, ..., g in G. Choose ge M — N and a word w(x,, ..., x,)# 1. Put
U={n,...,n,g). Since G is verbally complete [4, Theorem 2.1}, there exists a finite
subgroup V = G such that U=V and

g1, ---,8€Q(V"), 3.1)

where Q(X) = (w(x,, ..., x,)|x; e X) for any group X.

Apply the construction of Section 2 to the canonical epimorphism *: G — G/N. This
yields embeddings 7:G— W, and u:V Wr U— W, (where W, € X is as in Theorem 2.1)
such that ku=1|U for some Krasner-Kaloujnine embedding k:U—V Wr U with
respect to a transversal R. Now nx =f, where (F)f, =r nr~" for all re R. Hence a
solution to ¥k in Z=VWrUisgiven by f,,... » fo, Where (F)fg, =r - gir~'forall reR.

https://doi.org/10.1017/50017089500009174 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500009174

156 FELIX LEINEN

Because of (3.1) and Lemma 2.2 we have fg € Q((gx?)), whence fou,...,fouis a
solution to ¥z in Q({gt™)). Since G is e.c. in X and Gt <W,, there already exists a
solution to & in Q({(g%)) = Q(M).

The assertions (a), (b) and (c) now follow as in the proof of [4, Theorem 4.8].

A counterpart to Theorem 3.1 for factor groups is given by

TueoREM 3.2. Let G be an e.c. X-group, and let K 2 G such that G/K has no minimal
normal subgroup. If & is a finite system of equations and inequalities with coefficients
€y --.,¢ €G and a solution in some X-supergroup of G, and if KN{c,,...,c,)=1,
then the system YK /K has a solution in G/K.

Proof. Put C={cy,...,c,). Since C is finite, and since G/K has no minimal normal
subgroup, there exists a chief factor M/Nin G with K=Nand MNC=1. FixgeM - N,
and let U= (C, g). Choose R = C and a finite V <G such that U<V and g€ V'. Apply
the construction of Section 2 to the canonical epimorphism 6:G— G/M. This yields
embeddings 0:G/M—W, and t:G—W, and u:VWrU0—W,, where W, is an
X-subgroup of G Wr G/M as in Theorem 2.1. Apply the construction of Section 2 to the
composition *:G—>W, of 8:G—>G/M and o0:G/M—W,. This yields embeddings
. Wy— W, and :G— W, and a:vVwr U— W,, where W, is an X-subgroup of G Wr W,
as in Theorem 2.1.

From Theorem 2.1 we have o|Uf8=p|U6 and xu=t|U for the Krasner-
Kaloujnine embedding x:U— V Wr U8 with respect to R. Observe also, that k | C =
6| C by choice of R. Correspondingly, §|U=f|U and &ji=%|U for the Krasner—
Kaloujnine embedding k:U— V Wr U with respect to R, and & | C =~ | C. Therefore,
Ct=cKkfi=Cil=C0=c000=cOud=cxkud=ctdforall ceC.

Since G is e.c. in X, there exists a solution g, ... ,8 to ¥ in G. Put D=
(C,g1,...,8). Then g,16, . .., g,7G is a solution to %% in W, and g% € (dr6"™) for all
deD -1 (Lemma 2.2). Since G is e.c. in X, there does already exist a solution
hy,...,hs to ¥ in G such that g e (h®) for all he H—1, where H=(C, hy, ..., h,).
The latter implies that HNK<H NN =1, whence h,K, ..., h,K is a solution to K/K
in G/K.

Let M/N be a chief factor of the e.c. X-group G. If G satisfies the additional
assumption

for every g € G — 1 there exists a verbal subgroup of (g©) different from (g®), (3.2)

then it follows from [5, Theorem 2.6(b)] that Theorem 3.1 holds with N in place of K,
while Theorem 3.2 holds with M in place of K.

THeoREM 3.3. ([4, Theorem 4.9]). Let M/N be a chief factor of an e.c. X-group G.

(a) If M/N is not central, then C;p{M/N)=Z(M/N), and M/N is infinite.

(b) Denote by y:G/Cs(M/N)— Aut(M/N) the canonical embedding and assume the
existence of x,, x,€ Nm (m e M — N) with o(x;) = o(Nm). If there exists o € Aut(M/N)
with Nx,a = Nx, such that the subgroup (a, Imy) =< Aut(M/N) is an X-group, then x,
and x, are conjugate in G.

(c) Any two elements from Nm (m € M — N) of order o(Nm) are conjugate in G.
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Proof. (a) follows from Theorem 3.1 as in the proof of [4, Theorem 4.9(a)].

(b) Denote epimorphic images modulo N by bars and put C = Cg(M). At first we
will embed G into an X-group H, in which the images of &, and %, are conjugate. In the
case when C=N, we choose H= (&, Imy) and the embedding y:G— H; then
(F7)*=xv. ) )

Now, suppose that C = M. The group Aut(M) acts on M Wr G/M via

(f-Mg)P=fF-Mg  forall BeAut(M), f:G/M— M, g € G, where
(MR)f# = ((MR)f)?  forall heG.

Since M is elementary abelian, the split extension H of M Wr G/M by {(a, Imy) is an
X-group. Choose * :G/M— G such that (Mg)* € Mg for all g € G. Then an embedding
6:G - H is given by

g§6=(f;- Mg)-(Cg)y for all g e G, where
(Mh)f;=N(g-(Mhg)*"' -Mh*) forallheG.

(Note that (Cg)y = C(Mh*~". (Mhg)*)y.) Moreover, (¥,8)* = %,8, since f; =%..

Now choose U = (x,, x,), and apply the construction of Section 2 to the composition
*:G= H of the canonical epimorphism G — G/N and the above embedding G/N— H.
This yields embeddings o:H— W, and 1:G— W, and u:(UNN)WrU—W, (where
Woe X is as in Theorem 2.1) such that 0| U=p| U and xu=1| U for some Krasner—
Kaloujnine embedding x:U—> (U N N) Wr U. Because of o(x;) =o(r) and [4, Lemma
4.2], the element x;x is conjugate in (UNN)WrU to % e U. Moreover, we have
(%,4)%° = (¥)0 = %,u. Hence x,7 and x,T are conjugate in W, e X. Since G is e.c. in X,
we conclude that x, and x, are already conjugate in G.

(c) See proof of [4, Theorem 4.9(c)].

In the case when X = L(§, N &), we can even describe the automorphisms between
finite subgroups of an e.c. X-group G, which are induced by conjugation in G. This
generalizes [6, Theorem 6.1] (see also [4, Theorem 5.3]).

THEOREM 3.4. Let G be an e.c. L(F, N &)-group.

(a) An isomorphism y:A— B between finite subgroups of G is induced by
conjugation in G, if and only if, for each chief factor M/N in G,

1) y(MNA)Y=MNBand y(NNA)=NNB, and

(2) there exists an elementary-abelian group E =M/N such that the isomorphism
(MNA)N/N— (M NB)N/N induced by vy can be extended to some « € Aut(E), such
that—for every g € G—conjugation on M/N with Ng can be extended to some Ng* e
Aut(E), and such that {a, Ng* | g € G) € L(F,. N G).

(b) The group of all @ € Aut(G), which leave every chief factor M/N of G invariant
and induce a power sw-automorphism on M/N (i.e., an automorphism, which raises each
element of M/N to a fixed power, and whose order is a m-number), is contained in the
group of all locally inner automorphisms of G.

Proof. (a) The necessity of the conditions (1) and (2) is obvious. Now suppose that
(1) and (2) hold. Let M/N be the unique chief factor in G with X =ANN<ANM=A.
As in the proof of Theorem 3.3(b) there exists an L(F, N &)-group H = G/N such that
the isomorphism 9 : (M N A)N/N— (M N B)N/N induced by v is induced by conjugation

https://doi.org/10.1017/50017089500009174 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500009174

158 FELIX LEINEN

in H. Since G/N is a.c. in L(§, N &) (Theorem 4.3(b)), we conclude that ¥ is already
induced by conjugation in G/N. Thus, we may as well assume that § = id. By induction
over |A| we may assume that y | X is induced by conjugation in G. From Theorem 3.1(c)
we obtain that y | X is even induced by conjugation in N.

Let *:G— G/N be the canonical epimorphism. Fix y,,...,y,€ A — X such that
M N A is the direct product of the (§;). Inductively, we will now find elements h; € N such
that y | (X, y1, ...,y is induced by conjugation with h; for 1 =i =<r. Suppose that k;_,

has been found for some i. Let Ag= (X, y;, ..., y;—,). Then we may as well assume that
P=id and ¢ | Ap=id. Let U= (Ao, y;, y¥) and p = o(3;). Choose a finite V <G such
that U<V". Put R=R,R, where R,={1,y,...,y?"'} and where R, is a left

transversal of X in Ag. Apply the construction of Section 2 to 7. This yields embeddings
1:G—>W, and pu:V Wr U— W, where W, is an L(&, N ®)-subgroup of G WrG as in
Theorem 2.1.

Since G is e.c. in L(F,N®), and since N=(yF)’, it suffices to find some
f e (ya™)' satisfying y;t/ =yt and [Agt, f]=1. From Theorem 2.1 we have that
xu = 1 | U for the Krasner—Kaloujnine embedding x: U— Z = V Wr U with respect to R.
It remains to show the existence of f e (y,x*)’ satisfying y,x’ = yyk and [Aok, f]=1.
Define f:U—>U=<V" via (ry}))f =r-(yip)*-y7¥-r~ for all reR, and 0=v=p—1.
Then f € (y,x?)’ by Lemma 2.2, and straightforward calculations yield that y;x’ = yy«.
Now, regard some a € A,. Clearly, ak =f,.a where f,: U— X. Because of y | A,=id,
conjugation with y; induces the same automorphism on A, as conjugation with (y,y)".
This implies that [f,, f]=1, and that (ry})f = (§})f forallre R, and 0<v=p—1. But U
is abelian, and thus our choice of R ensures that [a, f] =1 too.

(b) Observe that the power automorphisms of M/N are contained in the centre of
Aut(M/N).

In the case when || =2 it remains open, whether every e.c. L(§, N ®)-group G acts
via conjugation transitively on M/N — 1 for each chief factor M/N in G. (Chief factors of
locally finite p-groups are central [3, 1.B.8].)

TueoreM 3.5. ([4, Theorem 4.11(f)]) If the e.c. X-group G satisfies (3.2), then there
exists for every proper subnormal subgroup S of G a chief factor M/N in G such that
N=S=M.

Proof. Choose m minimal with respect to § =S, <S,,_;<...<5,<G. Then §,=M
for some chief factor M/N in G by Theorem 3.1. Assume by induction that N < S, for
some k =<m — 1. By Theorem 3.1 there exists x € S;,, — N. Fix g € N. Choose U = (x, g)
and a finite subgroup V = G such that U=V and g € (Q(V"))’, where Q(M) is a verbal
subgroup different from M, which is given from (3.2). Apply the construction of Section 2
to the canonical epimorphism *:G— G/N. This yields embeddings t:G— W, and
p:VWrU—W, (where WyeX is as in Theorem 2.1) such that ku=1|U for some
Krasner-Kaloujnine embedding x:U— Z =V Wr U. From Lemma 2.2 we obtain that
gk € [[xx, Q((xk?))], Q({xk?))], whence g7 € [[xT, Q({xT™))], Q({xT™))]. Since G is
e.c. in X, we already have g € [[x, Q((x°))], QUxN] =[x, N], NI =[[Sc+1, Sk}, Si] =
Si¢+1. This shows that N =S, ;.

4. Partial complements and algebraically closed groups. Let G be a countable e.c.
X-group satisfying (3.2). In 5] we have shown that, if K= G with K# (g€) for all
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g € G —1, then every finite F <G with FN K =1 is contained in a complement to K in
G. This can be generalized as follows.

THEOREM 4.1. ([S, Theorem 4.2]). Let M/N be a chief factor of the e.c. X-group G
such that Q(M) = N for some verbal subgroup Q(M) of M. If F is a finite subgroup of G
with NNF=1, and if N - F < Gy = G where |G,: N| is countable, then F is contained in a
complement to N in G,.

Proof. Since G, is the union of an ascending chain of groups C satisfying
N -F=C=G;and |C:N|<x, we may as well assume that G, is finite. Let D be a finite
subgroup of G, with F< D and Gy=N - D. Fixx e M — N. Put U = (D, x), and choose a
finite V =< G such that U = Q(V"’). Furthermore, let R = R - F where R is a left transversal
of UNNF in U. Apply the construction of Section 2 to the canonical epimorphism
*:G— G/N. This yields embeddings 0:G—W, and 1:G—>W, and u:VWrU—W,
(where Wye X is as in Theorem 2.1) such that 0 |U=p|U and xu=t|U for the
Krasner-Kaloujnine embedding kx: U— V Wr U with respect to R. By choice of R,

YT =YKU =yu =yo for every y e F.
For every u € U, we obtain
ut=ukp=fu-au=fu-iao for suitable f,: U— U N N, where
fuin e QA =Q((xt™)) by Lemma 2.2.

Moreover, . i
xt=fu-goeA’ - (d°o=(de™) whenever d e D — N.

Since G is e.c. in X, there does already exist an embedding &: D — G such that & = y for
all y € F, and such that d € Q({x¢)) - dé for all d e D and x € (d5°) for all d € D — N.
Now Im & is the desired complement, since the above properties ensure that F =<Im g,
thatde N -doforallde D, and that NNIm & =1.

THEOREM 4.2. ([8, Theorem 4.1]). Let K be a normal subgroup of the e.c. X-group G
which does not occur in any chief factor of G. If F is a finite subgroup of G with
KNF=1, and if K:-F =Gy=G where |Gy:K| is countable, then F is contained in a
complement to K in G,.

Proof. Again we may assume that |Gy: K| is finite. Let D be a finite subgroup of G,
with F = D and G, = K - D. Then there exist chief factors M,/N, and M,/N, in G such that
M,<=K=N, and DNN,=DNK=DNN,. Denote by 8:G— G/N, and ~:G/N,—
G/N, the canonical epimorphisms. Fix x; e M; — N,. Put U= (D, x,, x,), and choose a
finite V < G such that U=<V"'. Let R, be a left transversal of (U N N,D)8 in UB. Then
R,=R,-D8 is a left transversal of (UNN,)8 in UB (because of D NN, =D NN,).
Apply the construction of Section 2 to =, with R, in place of R. This yields embeddings
0,:G/N,—> W, and t,:G/N,— W,, where W, is an X-subgroup of G/N, Wr G/N, as in
Theorem 2.1. Denote by ¢ :G— W, the composition of 8 and 7,. As in the proof of
Theorem 4.1 we have

X,y =x,07, € (d80™)  for everyde D — N,, and
dy =dOt, = dbo, for every d € D.
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In particular,
xp e {dy™)  foreverydeD —N;.

Now let R,=R,-F, where R, is a left transversal of UNN,F in U. Apply the
construction of Section 2 to 1, with R, in place of R. This yields embeddings 0,: Wo— W,
and 7,:G— W, and u,:V Wr Uy — W,, where W, is an X-subgroup of G Wr W, as in
Theorem 2.1. As in the proof of Theorem 4.1 we have

VI, =yyYo, for every y € F.

For every u € U, we obtain

Ut = fully - UPo, for suitable f,: Uy — U N N,, where
fultr € (x,T50) by Lemma 2.2.
Moreover,
X1 Ty = fo o X190, € (dyoy®)  foreveryde D —Ny=D —N,.

Since G is e.c. in X, there does already exist an embedding &:Dw— G such that
yé | F=idr, and such that d e (x5)-dys for all deD and x, e (dys®) for all
de D — N,. It follows that F=<Im &, that d e M, - dyé c K - dyé for all d € D, and that
KNIma=N,NIm & =1, whence Im & is the desired complement.

The above results can be used to characterize the a.c. X-groups as in [8]. This
removes the countability assumption from [8, Theorems C(c) and D(c)].

THeOREM 4.3. ([S, Theorem 4.3(a)]). Let G be an e.c. X-group.

(a) If K 1 G such that K does not occur in any chief factor of G, then G/K is e.c.
in X.

(b) If M/N is a chief factor in G such that N = Q(M) for some verbal subgroup Q(M)
of M, then G/N is a.c. in X, but G/M is not a.c. in X.

Proof. (a) Let & be a finite system of equations and inequalities with coefficients
Kg,,..., Kg, € G/K and a solution in some X-supergroup H of G/K. By Theorem 4.2
there exist ¢; € Kg; such that (¢;,...,c,) NK=1. Let J be the system obtained from
replacing Kg; by ¢; in &. Choose U= (cy,...,c,) =R, and apply the construction of
Section 2 to the canonical epimorphism *:G-—> G/K=H. This yields embeddings
0:H— W, and t:G— W, (where W, € X is as in Theorem 2.1) with (Kg;)o = ¢;0 = ¢;T for
1=i=r. Hence W, contains a solution to Jt. Since G is e.c. in X, there already exists a
solution to J in G. Now it follows from Theorem 3.2 that ¥ = FK/K has a solution in
G/K.

(b) Let & be a finite system of equations with coefficients Ng,, ..., Ng,€ G/N and a
solution in some X-supergroup H of G/N. By Theorem 4.1 there exist ¢; € Ng; such that
(¢y,...,¢,)NN=1. Let J be the system obtained from replacing Ng; by ¢; in &.
Proceed as in (a) to find a solution h,, .. ., h, to J in G. Because J consists of equations
only, and because (c;,...,c)NN=1, the system ¥=JN/N has the solution
Nhy, ..., Nhgin G/N. This shows that G/N is a.c. in X. The remaining assertion follows
as in the proof of [5, Theorem 4.3(b)] from the remark at the end of Section S.

TueoreM 4.4. ([8, Theorem C(c)}). If the non-trivial a.c. X-group G has no minimal
normal subgroups, then G is e.c. in X.
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Proof. Let & be a finite system of equations and inequalities with coefficients from G
and a solution in some X-supergroup H of G. We may assume that H is e.c. in X. Let
K=U{N|N 2 H and NN G =1)}. Assume that there exists a minimal normal subgroup
M/Kin H/K. If ge (M N G)—1, then M = (g") by [5, Theorem 2.3]; and since G is a.c.
in X, we conclude that M NG = (g®). Thus, M N G is a minimal normal subgroup in G,
in contradiction to our assumption. Therefore, H/K has no minimal normal subgroup.
Because of GNK =1 we may identify G canonically with GK/K =<H/K. Then the
system ¥ = $K/K has a solution in H/K by Theorem 3.2. But GNL#1 for every
non-trivial normal subgroup L of H/K, whence G is e.c. in X by 8, Lemma 3].

THEOREM 4.5. ([8, Theorem D(c)]). If every e.c. X-group satisfies (3.2), then the a.c.
X-groups are precisely the factor groups H/N of the e.c. X-groups H by their normal
subgroups N satisfying N # (h") forall he H — 1.

Proof. By Theorem 4.3 it suffices to show that every a.c. X-group G occurs as a
suitable factor of some e.c. X-group H. If G has no minimal normal subgroup, we may
apply Theorem 4.4 and choose H = G. If there exists a minimal normal subgroup M of G,
we may follow the proof of [8, Theorem D(a)], provided that the following can be shown.

IfG=He %, and if K/Lisa chief factor in H such that K — L contains some
ceM, then LNG=1<M=RNG. (4.1)

However, since the normal subgroups of G are totally ordered under inclusion by (8,
Proposition (b)], we immediately obtain that LN G < M, whence LN G = 1. Moreover,
M = (c®) = KN G (thus (4.1) obtains and this completes the proof of Theorem 4.5).

5. Amalgamation in L(F, N &). In [7] we gave a necessary and sufficient condition
for an amalgam of finite soluble z-groups to be contained in a finite soluble 7-group.
Combining the construction of Section 2 with the technique of [7] we are able to extend
this result to amalgams of L(F, N &)-groups over a finite common subgroup.

TueoreM 5.1. ([7, Theorem 2}, [5, Theorem 2.1]). An amalgan GUH|U of
L(F, N G)-groups G and H over a finite common subgroup U is contained in an
L(&. N &)-group, if and only if there exist normal series Z5 in G and Z; in H with
elementary-abelian factors, such that Z;NU=24NU, and such that the following
condition holds:

(*) whenever M/N and K/L are factors of Z; resp. Zy satisfying MNU=KNU>
LNU=NNU, then there exists an elementary-abelian group E containing the amalgam

M/NUK/L|(UNM)N/N=(UNK)L/L

(where (UNM)N/N and (UNK)L/L are identified via uN =uL for all ue UNM =
UNK), and there exist homomorphisms «:G/M— Aut(E) and B:H/K— Aut(E) such
that every (Mg)a acts on UN/N as conjugation with Ng, such that every (Kh)p acts on
UL/L as conjugation with Lh, and such that A = (Im a, Im B) is an L(F, N &)-subgroup
of Aut(E).

Proof. If GUH | U is contained in an L(§, N &)-group W, then any chief series Zy
in W induces normal series Z; and £, in G resp. H with elementary-abelian factors, and
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such that =5 N U =24 N U. Moreover (*) is satisfied, if we choose for E the correspond-
ing factor of Z,, and define o and B via action by conjugation.

For the proof of the converse, we proceed by induction over the length of Z5; N U. In
the case when U = 1, the amalgam is contained in G X H € L(&, N &). Assume now, that
there exist elementary-abelian factors M/N in G and K/L in H such that MNU=KN
U>LNU=NNU=1, and such that the amalgam

G/MUH/K|UM/M = UK/K

is contained in an L(F,N &)-group D. Let E, A, « and § be as in (*). Denote
epimorphic images modulo N resp. L by bars. As in the proof of [7, Theorem 2], we can
define an embedding 7 of the amalgam GUH | U into (E }{A) Wr D. Observe that
gn=f,-Mgand hn=f, - Khfor all ge G, h e H, where Imf, c E X ({g, U)YM/M)a and
Imf, c E X ({h, UYM/M)B. Thus,
ImncZ=\{(EXA)WrD|A,=<A finite} € L(F, N &).

In the following, we suppress 7 and regard Z as an L(F, N &)-supergroup of GUH | U.

Now, apply the construction of Section 2 to ¥:G— G/N = Z with R = U. This yields
embeddings 0:Z— W, and 7: G— W, where W, is an L(§, N &)-subgroup of G Wr Z as
in Theorem 2.1. From our choice of R, we have that o | U=t | U. Hence the above gives
an embedding of GUH |U=U into W,. A further application of the construction of
Section 2 yields an embedding of G U H | U into an L(§, N &)-group.

As in the proof of [7, Theorem 5] it can be deduced from Theorem 5.1, that an
amalgam GUH | U of L(&, N @)-groups G and H over a finite supersoluble common
subgroup U is contained in an L(&, N &)-group, if there exist chief series in G and H
which induce a common chief series in U. (This also generalizes [6, Theorem 3.1].) This
allows us to construct all kinds of embeddings of countable locally supersoluble 7w-groups
into e.c. L(&, N &)-groups (as in [5, §3]). Moreover, it can be shown as in [7, Theorem
6], that a finite supersoluble z-group is an amalgamation base in L(F,. N @), if and only if
it is either a cyclic p-group, or the split extension of a cyclic p-group P by a cyclic g-group
Q with Co(P)=1and q|p—1.

Note also that the results of [5, §3] about embeddings of countable locally nilpotent
z-groups into countable e.c. X-groups satisfying (3.2) carry over to uncountable e.c.
X-groups. This can be proved easily with the technique of proof of Theorem 5.1.

Added October 2, 1989. 1t recently occurred to the author, that the construction of
Section 2 is not limited to only locally finite groups. In fact, it may be used in the more
general set up of [4], i.e., for the study of e.c. LX-groups, where the class X is closed with
respect to subgroups, quotients, extensions, and with respect to cartesian powers of
finitely generated (f.g.) X-groups. This works, because the group W, of Theorem 2.1 is
contained in the union of split extensions Wy = Ay X4 Ho, where X ranges over all f.g.
subgroups of G, and where Ay = {f:H—> G | (6r)f esXs ' forallte T, s €S, re R}; the
above assumptions ensure that Wy € X. (The construction may even be simplified by
deleting S and choosing T as left transversal of U in H.) This allows it to remove the
countability assumptions from [4, Theorems 4.7-4.11 and 5.3]. Also, [S, Theorem 3.1]
can be extended to embeddings of f.g. nilpotent X-groups into e.c. LX-groups (and
correspondingly to embeddings of polycyclic X-groups into e.c. LX-groups with abelian
chief factors, provided that X contains all torsion-free divisible abelian groups).
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