
1

Introduction to cryptography, codes, Boolean,
and vectorial functions

1.1 Cryptography

A fundamental objective of cryptography is to enable two persons to communicate over an
insecure channel (a public channel such as the internet) in such a way that any other person
is unable to recover their messages (constituting the plaintext) from what is sent in its place
over the channel (the ciphertext). The transformation of the plaintext into the ciphertext is
called encryption, or enciphering. It is ensured by a cryptosystem. Encryption–decryption is
the most ancient cryptographic activity (ciphers already existed in the fourth century bc) but
its nature has deeply changed with the invention of computers, because the cryptanalysis
(the activity of the third person, the eavesdropper, who aims at recovering the message, or
better, the secret data used by the algorithm – which is assumed to be public) can use their
power. Another important change will occur (see e.g., [70, 360, 832]), at least for public-key
cryptography (see the definition below), when quantum computers become operational.

The encryption algorithm takes as input the plaintext and an encryption key KE , and
it outputs the ciphertext. The decryption (or deciphering) algorithm takes as input the
ciphertext and a private1 decryption key KD . It outputs the plaintext.

DecryptionEncryption
Plaintext Ciphertext Plaintext

Public

channel

KE KD

For being considered robust, a cryptosystem should not be cryptanalyzed by an attack
needing less than 280 elementary operations (which represent thousands of centuries of
computation with a modern computer) and less than billions of plaintext–ciphertext pairs. In
particular, an exhaustive search of the secret parameters of the cryptosystem (consisting in
trying every possible value of them until the data given to the attacker match the computed
data) should not be feasible in less than 280 elementary operations. In fact, we most often
even want that there is no faster cryptanalysis than exhaustive search.

1 According to principles already stated in 1883 by A. Kerckhoffs [688], who cited a still more ancient
manuscript by R. du Carlet [207], only the key(s) need absolutely to be kept secret – the confidentiality should
not rely on the secrecy of the encryption method – and a cipher cannot be considered secure if it can be
decrypted by the designer himself without using the decryption key.

1

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

2 Introduction to cryptography, codes, Boolean, and vectorial functions

Note that the term of cryptography is often used indifferently for naming the two activities
of designing cryptosystems and of cryptanalyzing them, while the correct term when dealing
with both is cryptology.

1.1.1 Symmetric versus public-key cryptosystems

If the encryption key is supposed to be secret, then we speak of conventional cryptography
or of private-key cryptography. We also speak of symmetric cryptography since the same
key can then be used for KE and KD . In practice, the principle of conventional cryptography
relies then on the sharing of a private key between the sender of a message (often called
Alice) and its receiver (often called Bob). Until the late 1970s, only symmetric ciphers
existed.

If the encryption key can be public, then we speak of public-key cryptography (or
asymmetric cryptography), which is preferable to conventional cryptography, since it makes
it possible to securely communicate without having previously shared keys in a secure
way: every person who wants to receive secret messages can keep secret a decryption
key and publish an encryption key; if n persons want to secretly communicate pairwise
using a public-key cryptosystem, they need n encryption keys and n decryption keys, when
conventional cryptosystems will need

(
n
2

) = n(n−1)
2 keys. Of course, it must be impossible

to deduce in reasonable time, even with huge computational power, the private decryption
key from the public encryption key. Such requirement is related to the problem of building
one-way functions, that is, functions such that computing the image of an element is fast
(i.e., is a problem of polynomial complexity), while the problem of computing the preimage
of an element has exponential complexity.

All known public-key cryptosystems, such as RSA, which uses operations in large
rings [846], allow a much lower data throughput; they also need keys of sizes 10 times
larger than symmetric ciphers for ensuring the same level of security. Some public-key
cryptosystems, such as those of McEliece and Niederreiter (based on codes) [846], are
faster, but have drawbacks, because the ciphertext and the plaintext have quite different
lengths, and the keys are still larger than for other public-key cryptosystems.2 Private-
key cryptosystems are then still needed nowadays for ensuring the confidential transfer of
large data. In practice, they are widely used for confidentiality in the internet, banking,
mobile communications, etc., and their study and design are still an active domain of
research. Thanks to public-key cryptosystems, the share-out of the necessary secret keys
for the symmetric cipher can be done without using a secure channel (the secret keys for
conventional cryptosystems are strings of a few hundreds of bits only and can then be
encrypted by public-key cryptosystems). The protagonists can then exchange safely, over a
public channel such as the internet, their common private encryption–decryption key, called
a session key. Protocols specially devoted to key exchange can also be used.

The change caused by the intervention of quantum computers will be probably much less
important for symmetric than for public-key cryptography. Most current symmetric ciphers

2 Code-based, lattice-based, and other “postquantum” cryptosystems are, however, actively studied, mainly
because they would be alternatives to RSA and to the cryptosystems based on the discrete logarithm, in case
an efficient quantum computer could be built in the future, which would break them.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.1 Cryptography 3

seem secure against attacks by quantum computers (Grover’s algorithm [576], which, given
a black box with N possible inputs and some output, deduces with high probability from
the results of O(

√
N) evaluations the supposedly unique input,3 will probably have as an

impact the necessity to double the length of the keys).

1.1.2 Block ciphers versus stream ciphers

The encryption in a symmetric cipher can be treated block by block in a so-called block
cipher (such as the Advanced Encryption Standard, AES [403, 404]). The binary plaintext
is then divided into blocks of the same size, several blocks being encrypted with the same
key (and a public data called initial vector being changed more often). It can also be treated
in a stream cipher [463], through the addition, most often mod 2, of a keystream of the
same size as the plaintext, output by a pseudorandom generator (PRG) parameterized by a
secret key (the keystream can be produced symbol by symbol, or block by block when the
PRG uses a block cipher in a proper mode4). A quality of stream ciphers is to avoid error
propagation, which gives them an advantage in applications where errors may occur during
the transmission.

The ciphertext can be decrypted in the case of block ciphers by inverting the process and
in the case of stream ciphers by the same bitwise addition of the keystream, which gives back
the plaintext. Stream ciphers are also meant to be faster and to consume less electric power
(which makes them adapted to cheap embedded devices). The triple constraint of being
lightweight and fast while ensuring security is a difficult challenge for stream ciphers, all
the more since they do not have the advantage of involving several rounds like block ciphers
(their security is dependent on the PRG only). And the situation is nowadays still more
difficult because modern block ciphers such as the AES are very fast. This difficulty has
been illustrated by the failure of all six stream ciphers submitted to the 2000–2003 NESSIE
project (New European Schemes for Signatures, Integrity and Encryption) [901], whose
purpose was to identify secure cryptographic primitives. NESSIE has then been followed
by the contest eSTREAM [495] organized later, between 2004 and 2008, by the European
Union (EU) ECRYPT network.

As mentioned in [242], the price to pay for these three constraints described above is that
security proofs hardly exist for efficient stream ciphers as they do for block ciphers. This
is a drawback of stream ciphers, compared to block ciphers.5 The only practical possibility
for verifying the security of efficient stream ciphers (in particular, the unpredictability of the
keystream they generate) is to prove that they resist the known attacks. It is then advisable
to include some amount of randomness in them, so as to increase the probability of resisting
future attacks.6

3 Or equivalently finds with high probability a specific entry in an unsorted database of N entries.
4 Note, however, that stream ciphers are often supposed to be used on lighter devices than block ciphers

(typically not needing cryptoprocessors, for instance).
5 However, the security of block ciphers is actually proved under simplifying hypotheses, and it has been said by

Lars Knudsen that “what is provably secure is probably not.”
6 Some stream cipher proposals, such as the Toyocrypt, LILI-128 and SFINKS ciphers, learned this at their own

expense; see [387].

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

4 Introduction to cryptography, codes, Boolean, and vectorial functions

Proving the security of a cipher consists of reducing it to the intractability of a hard
problem (a problem that has been extensively addressed by the academic community, and
for which only algorithms of exponential or subexponential complexity could be found),
implying that any potential attack on it could be used for designing an efficient algorithm
(whose worst-case complexity would be polynomial in the size of its input) solving the
hard problem.

Note that provably secure stream ciphers do exist (some proposals are even uncondition-
ally secure, that is, are secure even if the attacker has unlimited computational power, but
limited storage or access); see for instance the proposals by Alexi–Chor–Goldreich–Schnorr
(whose security is reducible to the intractability of the RSA problem) or Blum–Blum–
Shub [98] (whose security is reducible to the intractability of the quadratic residue problem
modulo pq, where p and q are large primes), or the stream cipher QUAD [61] (based on the
iteration of a multivariate quadratic system over a finite field, and whose security is reducible
to the intractability of the so-called multivariate quadratic (MQ) polynomial problem). But
they are too slow and too heavy for being used in practice. Even in the case of QUAD, which
is the fastest, the encryption speed is lower than for the AES. And this is still worse when
security is ensured unconditionally. This is why the stream ciphers using Boolean functions
(see below) are still much used and studied.

1.2 Error-correcting codes

The objective of error-detecting/-correcting codes in coding theory is to enable digital
communication over a noisy channel, in such a way that the errors of transmission can
be detected by the receiver and, in the case of error correcting codes, corrected. General
references are [63, 780, 809]. Shannon’s paper [1033] is also prominent.

Without correction, when an error is detected, the information needs to be requested again
by the receiver and sent again by the sender (such procedure is called an Automatic Repeat
reQuest, ARQ). This is what happened with the first computers: working with binary words,
they could detect only one error (one bit) in the transmission of (x1, . . . , xk), by adding a
parity bit xk+1 =

⊕k
i=1 xi (this transformed the word of length k into a word of length k+1

having even Hamming weight, i.e., an even number of nonzero coordinates, which was then
sent over the noisy channel; if an error occurred in the transmission, then, assuming that
only one could occur, this was detected by the fact that the received word had odd Hamming
weight).

With correction, the ARQ is not necessary, but this requires in practice that fewer errors
have occurred than for detection (see below). Hybrid coding techniques exist then that make
a trade-off between the two approaches.

The aim of error detection/correction is achieved by using an encoding algorithm that
transforms the information (assumed to be a sequence over some alphabet A) before sending
it over the channel. In the case of block coding,7 the original sequence (the message) is
treated as a list of vectors (words) of the same length – say k – called source vectors which
are encoded into codewords of a larger length – say8 n. If the alphabet with which the words

7 We shall not address convolutional coding here.
8 When dealing with Boolean functions, the symbol n will be often devoted to their number of variables; the

length of the codes they will constitute will then not be n but N = 2n. See Section 1.3.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.2 Error-correcting codes 5

are built is the field F2 of order 2, we say that the code is binary. If the code is not binary,
then the symbols of the alphabet will have to be transformed into binary vectors before being
sent over a binary channel.

Thanks to the length extension, called redundancy, the codewords sent over the channel
are some of all possible vectors of length n. The set C of all codewords is called the code
(for instance, in the case of the detecting codes using a parity bit as indicated above, the
code is made of all binary words of length n = k + 1 and of even Hamming weights; it is
called the parity code). The only information the receiver has, concerning the sent word, is
that it belongs to C.

DecodingEncoding
Message Codeword Message

Noisy

channel

1.2.1 Detecting and correcting capacities of a code

The decoding algorithm of an error-detecting code is able to recognize if a received vector
is a codeword. This makes possible to detect errors of transmission if (see [585]) denoting
by d the minimum Hamming distance between codewords, i.e., the minimum number of
positions at which codewords differ (called the minimum distance of the code), no more
than d − 1 coordinates of the received vector differ from those of the sent codeword
(condition for having no risk that a codeword different from the sent one can be received
and then accepted). In the case of an error-correcting code, the decoding algorithm can
additionally correct the errors of transmission, if their number is smaller than or equal to

the so-called correction capacity of the code. This capacity equals e =
⌊

d−1
2

⌋
, where “� �”

denotes the integer part (and so, roughly, a code can detect twice as many errors than it can
correct), since the condition for having no risk that a vector corresponds, as received vector,
to more than one sent codeword with at most t errors of transmission in each case is that
2t < d. Indeed, in order to be always able (theoretically) to recover the correct codeword,
we need that, for every word y at distance at most t from a codeword x, there does not exist
another codeword x′ at distance at most t from y, and this is equivalent to saying that the
Hamming distance between any two different codewords is larger than or equal to 2t + 1:

• If there exist a vector y and two codewords x and x′ at Hamming distance at most t

from y, then we have d ≤ 2t by the triangular inequality on distances.
• Conversely, if there exist two codewords x and x′ at Hamming distance δ ≤ 2t from

each other, then there exists a vector y such that dH (x, y) ≤ t and dH (x′, y) ≤ t (let I

be the set of positions where x and x′ coincide; take yi = xi when i ∈ I and among the
δ others, take for instance � δ2� coordinates of y equal to those of x and the � δ2� others
equal to those of x′).

In practice, determining d and then e =
⌊

d−1
2

⌋
and showing that they are large is not

sufficient. We still need to have an efficient decoding algorithm to recover the sent codeword.
The naive method consisting in visiting all codewords and keeping the nearest one from the
received word is inefficient because the number 2k of codewords is too large, in general.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

6 Introduction to cryptography, codes, Boolean, and vectorial functions

Determining the nearest codeword from a received vector is called maximum likelihood
decoding.

The correction capacity e is limited by the Hamming bound (or sphere-packing bound):
since all the balls B(x, e) = {y ∈ An; dH (x, y) ≤ e}, of radius e and centered in
codewords are pairwise disjoint, and since there are |C| of them, the size of their union
equals |C| ∑e

i=0

(
n
i

)
(q − 1)i , where q is the size of the alphabet. This union is a subset of

An. This implies the following:

|C|
e∑

i=0

(
n

i

)
(q − 1)i ≤ qn.

The codes that achieve this bound with equality are called perfect codes.

Puncturing, shortening, and extending codes

The punctured code of a code C is the set of vectors obtained by deleting the coordinate at
some fixed position i in each codeword of C; we shall call such transformation puncturing
at position i. This operation can be iterated, and we shall still speak of puncturing a code
when deleting the codeword coordinates at several positions.

The shortened code of a code C is the set of vectors obtained by keeping only those
codewords whose ith coordinate is null and deleting this ith coordinate.

The extended code of a code C over an additive group is the set of vectors, say,
(c0, c1, . . . , cn), where (c1, . . . , cn) ∈ C and c0 = −(c1 + · · · + cn). Note that the extended
code of C equals the intersection of the code {(c0, c1, . . . , cn) ∈ Fq ; (c1, . . . , cn) ∈ C} and
of the parity code (c0, c1, . . . , cn) ∈ Fq ;

∑n
i=0 xi = 0}.

1.2.2 Parameters of a code

Sending words of length n over the channel instead of words of length k slows down the
transmission of information in the ratio of k

n
. This ratio, called the transmission rate, must

be as high as possible, for a given correction capacity, to make possible fast communication.
As we see, the three important parameters of a code C are n, k, d (or equivalently n, |C|, d
since if q is the alphabet’s size, we have |C| = qk), and the first aim9 of algebraic coding is to
find codes minimizing n, maximizing k, and maximizing d, for diverse ranges of parameters
corresponding to the needs of communication (see tables of best-known codes in [570]). It is
easily seen that k ≤ n−d+1 (this inequality, valid for any code over any alphabet, is called
the Singleton bound) since erasing the coordinates of all codewords at d − 1 fixed positions
gives a set of qk distinct vectors of length n− d + 1, where q is the size of the alphabet, and
the number of all vectors of length n− d + 1 equals qn−d+1. Codes achieving the Singleton
bound with equality are called maximum distance separable (MDS). In the case of binary
linear codes (see below), it can be shown by using the Pless identities (see, e.g., [348]) that
MDS codes have dimension at most 1 or at least n−1 and, except for such codes, the bound
becomes then k ≤ n− d.

Another important parameter is the covering radius, which is the smallest integer ρ such
that the spheres of (Hamming) radius ρ centered at the codewords cover the whole space. In

9 The second aim is to find decoding algorithms for the codes found.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.2 Error-correcting codes 7

other words, it is the minimal integer ρ such that every vector of length n lies at Hamming
distance at most ρ from at least one codeword, that is, the maximum number of errors to
be corrected when maximum likelihood decoding (see page 6) is used. The book [375] is
devoted to its study.

The sphere-covering bound is the lower bound on the covering radius ρ, which expresses
that, by definition, the balls B(x, ρ) = {y ∈ An; dH (x, y) ≤ ρ}, of radius ρ and centered in
codewords, cover the whole space An:

|C|
ρ∑

i=0

(
n

i

)
(q − 1)i ≥ qn.

1.2.3 Linear codes

The general class of linear codes gives a simple and wide example of codes and how they
can be used in error correction.

Definition 1 A code is called a linear code if its alphabet is a finite field Fq (where q is the
power of a prime) and if it has the structure of an Fq -linear subspace of Fn

q , where n is its
length (see [809]).

A code that is not necessarily linear is called an unrestricted code. The minimum
distance of a linear code equals the minimum Hamming weight of all nonzero codewords,
since the Hamming distance between two vectors equals the Hamming weight of their
difference. We shall write that a linear code10 over Fq is an [n, k, d]q -code (and if the value
of q is clear from the context, an [n, k, d]-code) if it has length n, dimension k, and minimum
distance d. The translates of a linear code are called its cosets and the elements of minimum
Hamming weights in these cosets are called coset leaders (there may exist several in some
cosets).

Generator matrix

Any linear code can be described by a generator matrix G, obtained by choosing a basis of
this vector space and writing its elements as the rows of this matrix. The code equals the set
of all the vectors of the form u ×G, where u ranges over Fk

q (and × is the matrix product)
and a possible encoding algorithm is therefore the mapping u ∈ Fk

q �→ u×G ∈ Fn
q . When

the codeword corresponding to a given source vector u is obtained by inserting so-called
parity check coordinates in the source vector (whose coordinates are then called information
coordinates), the code is called systematic (it equals then the graph {(x, F(x), x ∈ Fk

q} of a
function, up to coordinate permutation). The corresponding generator matrix is then called a
systematic generator matrix and has the form [Ik : M], where Ik is the k×k identity matrix,
up to column permutation. It is easily seen that every linear code has such a generator matrix:
any generator matrix (of rank k) has k linearly independent columns, and if we place these
columns at the k first positions, we obtain G = [A : M], where A is a nonsingular k × k

matrix; then A−1 ×G = [Ik : A−1 ×M] is a systematic generator matrix of the permuted

10 The square brackets around n, k, d specify that the code is linear, contrary to standard parentheses.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

8 Introduction to cryptography, codes, Boolean, and vectorial functions

code (since the multiplication by A−1 transforms a basis of the permuted code into another
basis of the permuted code).

Dual code and parity check matrix

The generator matrix is well suited for generating the codewords, but it is not for checking
if a received word of length n is a codeword or not. A characterization of the codewords is
obtained thanks to the generator matrix H of the dual code C⊥ = {x ∈ Fn

q ; ∀y ∈ C, x ·y =∑n
i=1 xi yi = 0} (such a matrix is called a parity check matrix and “·” is called the usual

inner product, or scalar product, in Fn
q): we have x ∈ C if and only if x×Ht is the null vector.

Consequently, the minimum distance of any linear code equals the minimum number of
Fq -linearly dependent columns in one of its parity check matrices (any one). For instance,
the binary Hamming code of length n = 2m − 1, which has by definition for parity check
matrix the m × (2m − 1) binary matrix whose columns are all the nonzero vectors of
Fm

2 in some order, has minimum distance 3. This code, which by definition is unique up
to equivalence, has played an important historical role since it is the first perfect code
found. It still plays a role since many computers use it to detect errors in their internal
communications. It is the basis on which BCH and Reed–Muller codes were built (see
pages 10 and 151). It depends on the choice of the order, but we say that two codes over
Fq are equivalent codes if they are equal, up to some permutation of the coordinates of
their codewords (and, for nonbinary codes, to the multiplication of each coordinate in each
codeword by a nonzero element of Fq depending only on the position of this coordinate).
Note that such codes have the same parameters.

The dual of the binary Hamming code is called the simplex code. A generator matrix of
this code being the parity check matrix of the Hamming code described above, and the rows
of this matrix representing then the coordinate functions in Fm

2 (sometimes called dictator
functions), on which the order chosen for listing the values is given by the columns of the
matrix, the codewords of the simplex code are the lists of values taken on Fm

2 \ {0m} by all
linear functions.

Note that the dual of a linear code C permuted by some bijection over the indices equals
C⊥ permuted by this same bijection, and that, if G = [Ik : M] is a systematic generator
matrix of a linear code C, then [−Mt : In−k] is a parity check matrix of C, where Mt is the
transposed matrix of M .

The linear codes that are supplementary with their duals (or equivalently that have
trivial intersection with their duals since the dimensions of a code and of its dual are
complementary to n) are called complementary dual codes (LCD) and will play an important
role in Subsection 12.1.5.

The advantages of linearity

Linearity allows considerably simplifying some main issues about codes. Firstly, the
minimum distance being equal to the minimum nonzero Hamming weight, computing it
(if it cannot be determined mathematically) needs only to visit qk − 1 codewords instead of
qk(qk−1)

2 pairs of codewords. Secondly, the knowledge of the code is provided by a k × n

generator matrix and needs then the description of k codewords instead of all qk codewords.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.2 Error-correcting codes 9

Thirdly, a general decoding algorithm is valid for every linear code. This algorithm is not
efficient in general, but it gives a framework for the efficient decoding algorithms that will
have to be found for each class of linear codes. The principle of this algorithm is as follows:
let y be the (known) received vector corresponding to the (unknown) sent codeword x. We
assume that there has been at most d − 1 errors of transmission, where d is the minimum
distance, if the code is used for error detection, and at most e errors of transmission, where
e = �(d−1)/2� is the correcting capacity of the code, if the code is used for error correction.
The error detection is made by checking if the so-called syndrome s = y × Ht is the zero
vector. If it is not, then denoting by ε the so-called (unknown) error vector ε = y − x,
correcting the errors of transmission is equivalent to determining ε. This can be done by
visiting all vectors z of Hamming weight at most e in Fn

q and checking if z × Ht = s

(indeed, by linearity of matrix multiplication, the syndrome of the error vector equals the
syndrome of the received vector, which is known). There exists a unique z of Hamming
weight at most e in Fn

q such that z×Ht = s; this unique z equals ε.

Concatenating codes

Given an Fq -linear [n, k, d] code C (where n is the length, k is the dimension, and d

is the minimum distance), where q = 2e, e ≥ 2, a binary [n′, e, d ′] code C′ and an
F2-isomorphism φ : Fq �→ C′, the concatenated code C′′ equals the [nn′, ke, d ′′ ≥ dd ′]
binary code {(φ(c1), . . . , φ(cn)); (c1, . . . , cn) ∈ C}. Codes C and C′ are respectively called
outer code and inner code for this construction.

MDS linear codes

Let C be an [n, k, d] code over a field K , let H be its parity check matrix, and G its
generator matrix. Then n − k is the rank of H , and we have then d ≤ n − k + 1 since
n − k + 1 columns of H are always linearly dependent and therefore any set of indices of
size n− k + 1 contains the support of a nonzero codeword. This proves again the Singleton
bound: d ≤ n− k + 1.

Recall that C is called MDS if d = n − k + 1. The following are the properties of MDS
linear codes:

1. C is MDS if and only if each set of n− k columns of H has rank n− k.
2. If C is MDS, then C⊥ is MDS.
3. C is MDS if and only if each set of k columns of G has rank k (and their positions

constitute then an information set; see page 161).

Other properties of linear codes

Puncturing, shortening, and extending codes preserve their linearity. Puncturing preserves
the MDS property (if n > k).

The following lemma will be useful when dealing with Reed–Muller codes in Chapter 4.

Lemma 1 Let C be a linear code of length n over Fq and Ĉ its extended code. We have
Ĉ⊥ = {(y0, . . . , yn) ∈ Fn+1

q ; (y1 − y0, . . . , yn − y0) ∈ C⊥}.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

10 Introduction to cryptography, codes, Boolean, and vectorial functions

Proof We have Ĉ⊥ = {(y0, . . . , yn) ∈ Fn+1
q ; ∀(x1, . . . , xn) ∈ C, y0(−

∑n
i=1 xi) +∑n

i=1 xiyi = 0} = {(y0, . . . , yn) ∈ Fn+1
q ; ∀(x1, . . . , xn) ∈ C,

∑n
i=1 xi(yi − y0) = 0} =

{(y0, . . . , yn) ∈ Fn+1
q ; (y1 − y0, . . . , yn − y0) ∈ C⊥}.

Uniformly packed codes: These codes will play a role with respect to almost perfect
nonlinear (APN) functions, at page 381.

Definition 2 [50] Let C be any binary code of length N , with minimum distance d = 2e+1
and covering radius ρ. For any x ∈ FN

2 , let us denote by ζj (x) the number of codewords
of C at distance j from x. The code C is called a uniformly packed code, if there exist real
numbers h0, h1, . . . , hρ such that, for any x ∈ FN

2 , the following equality holds:

ρ∑
j=0

hj ζj (x) = 1.

As shown in [51], this is equivalent to saying that the covering radius of the code equals its
external distance (i.e., the number of different nonzero distances between the codewords of
its dual).

1.2.4 Cyclic codes

Two-error correcting Bose–Chaudhuri–Hocquenghem (BCH) codes

The binary Hamming code of length n = 2m − 1 has dimension n − m and needs m parity
check bits for being able to correct 1 error. It happens that 2-error binary correcting codes can
be built with 2m parity check bits. Let us denote by W1, . . . , Wn the nonzero binary vectors
of length m written as columns in some order. The parity check matrix of the Hamming code
of length n = 2m − 1 is as follows:

H = [W1, . . . , Wn].

To find a 2-error correcting code C of the same length, we consider the codes whose parity
check matrices H ′ are the 2m× n matrices whose m first rows are those of H . These codes
being subcodes of the binary Hamming code, they are at least 1-error correcting. For each
such matrix H ′, there exists a function F from Fm

2 to itself such that:

H ′ =
[

W1 W2 . . . Wn

F (W1) F (W2) . . . F (Wn)

]
.

Note that, when F is a permutation (i.e., is bijective), the code of generator matrix H ′ is a
so-called double simplex code (and plays a central role in [136]); it is the direct sum of two
simplex codes: the standard one and its permutation by F .

Going back to general F , assume that two errors are made in the transmission of a
codeword of C, at indices i �= j . The syndrome of the received vector equals that of the
error vector, that is, [

S1

S2

]
=

[
Wi

F(Wi)

]
+

[
Wj

F(Wj)

]
,

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.2 Error-correcting codes 11

with S1 �= 0m (where 0m is the length m all-zero vector) since i �= j . We have then the
following: {

Wi +Wj = S1 �= 0m

F(Wi)+ F(Wj) = S2 .

The code is then 2-error correcting if and only if, for every S1, S2 ∈ Fm
2 such that S1 �= 0m,

this system of equations has either no solution (i, j) (which happens when
[

S1
S2

]
is not the

syndrome of an error vector of Hamming weight 2) or only two solutions (one solution if
we impose i < j).

Note that since {W1, . . . , Wn} equals Fm
2 \ {0m} and these vectors are all distinct, it is

equivalent to consider the system{
x + y = S1 �= 0m

F(x)+ F(y) = S2 ,

where x and y range over Fm
2 \ {0m}. This is where finite fields of orders larger than 2

played a historical role in coding theory (see Appendix, page 480, for a description of finite
fields): considering such functions F and such systems of equations is easier when we have
a structure of field (even though the equations do not involve multiplications). This allows us
indeed to take F(x) in a polynomial form, and the first polynomials to be tried are of course
monomials. The monomials x and x2, being linear functions, do not satisfy the condition
needed for the code to be 2-error correcting, but the next monomial x3 does satisfy it (this
is easily seen since x3 + y3 = (x + y)3 + x y (x + y) implies that the system is equivalent

to

{
x + y = S1 �= 0

x y = S2+S3
1

S1

and such an equation results in an equation of degree 2, which has at

most two solutions over a finite field).
The condition on F (or more precisely on its extension by taking F(0) = 0) is equivalent

to saying that it is an APN function. This notion plays a very important role in cryptography;
see Chapter 11, page 369.

We need here the notion of primitive element; see page 487. Such element α satisfies that
F2n = {0, 1, α, α2, . . . , α2n−2} and exists for every n.

Definition 3 Let α be a primitive element of F2m . The binary 2-error correcting BCH code
of length n = 2m− 1 is the [n, n− 2m, 5] code due to Bose, Chaudhuri, and Hocquenghem,
of the following parity check matrix:

H ′ =
[

α α2 . . . αn

α3 α6 . . . α3n

]
.

Ordering the elements of F∗2n as α, α2, . . . , αn−1, αn = 1 (we could have also chosen
1, α, α2, . . . , αn−1) implies a property that does not seem so important at first glance but
which played a central role in the history of codes and still plays such role nowadays: the
code is (globally) invariant under cyclic permutations of the codeword coordinates. This
property, when added to the linearity of the code, confers to them a structure of principal
ideal, with very nice theoretical and practical consequences.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

12 Introduction to cryptography, codes, Boolean, and vectorial functions

General cyclic codes

A linear code C of length n is a cyclic code if it is (globally) invariant under cyclic shifts
of the codeword coordinates (see [809, page 188]). For this, it is enough that it is invariant
under one of the primitive cyclic shifts, for instance:

(c0, . . . , cn−1) �→ (cn−1, c0, . . . , cn−2).

Cyclic codes have been extensively studied in coding theory, because of their strong
properties.

Representation of codewords

Each codeword (c0, . . . , cn−1) is represented by the polynomial c0+c1X+· · ·+cn−1X
n−1,

viewed as an element of the quotient algebra A = Fq [X]/(Xn − 1) (each element of this
algebra is an equivalence class modulo Xn − 1, which will be always represented by its
unique element of degree at most n− 1, equal to the common rest in the division by Xn − 1
of the polynomials constituting the class). We shall call c0 + c1X + · · · + cn−1X

n−1 the
polynomial representation of codeword (c0, . . . , cn−1). Then it is easily shown that C is
cyclic if and only if it is an ideal of Fq [X]/(Xn − 1), that is, it satisfies f C ⊆ C for every
nonzero f ∈ A (C being assumed linear, it is a subgroup of A).

Generator polynomial

The algebra Fq [X]/(Xn−1) is a principal domain. It is easily shown that any (linear) cyclic
nontrivial11 code has a unique monic element g(X) (whose leading coefficient equals 1)
having minimal degree, which generates the ideal and is called the generator polynomial of
the code. In fact, g(X) is a generator of the code in the strong sense that every polynomial
of degree at most n− 1 is a codeword if and only if it is a multiple of g(X) in Fq [X] (which
implies that it is a multiple of g(X) in Fq [X]/(Xn − 1)). The code equals then the set of all
those polynomials that include the zeros of g(X) (in the splitting field of g(X)) among their
own zeros. It is also easily seen that g(X) is a divisor of Xn − 1.

Zeros of the code

In our framework, the length will have the form n = qm− 1 (we call such length a primitive
length). In such a case, since g(X) divides Xn− 1, the zeros of g(X) all belong to F∗qm . The

generator polynomial having all its coefficients in Fq , its zeros are of the form {αi , i ∈ I }
(where α is a primitive element of Fqm), where I ⊆ Z/nZ is a union of cyclotomic classes
of q modulo n = qm − 1 (and vice versa). The set I is called the defining set of the code.
The elements αi , i ∈ I are called the zeros of the cyclic code, which has dimension n− |I |.
The elements αi , i ∈ Z/nZ \ I are called the nonzeros of the cyclic code. The generator
polynomial of C⊥ is the reciprocal of the quotient of Xn − 1 by g(X), and its defining set
therefore equals {n− i; i ∈ Z/nZ \ I }.

11 That is, it is different from {0n}; in fact, we shall consider that the trivial cyclic code has also a generator
polynomial: Xn − 1 itself.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.2 Error-correcting codes 13

McEliece’s theorem [833] states that a binary cyclic code is exactly 2l-divisible (that is,
l is the maximum such that all codeword Hamming weights are divisible by 2l) if and only
if l is the smallest number such that l + 1 nonzeros of C (with repetitions allowed) have
product 1 (and recall that αj = 1 if and only if 2n − 1 divides j).

Generating all cyclic codes of some primitive length

Since a polynomial over Fq is the generator polynomial of a cyclic code of length n if
and only if it divides Xn − 1, we obtain all cyclic codes from all the divisors of Xn − 1
in Fq . Any such divisor is the product of some irreducible factors of Xn − 1 in Fq . These
irreducible factors are the polynomials of the form

∏
j∈C(X− αj), where C is a cyclotomic

class of q modulo n. The number of cyclic codes of length n over Fq is then 2r , where
r is the number of these cyclotomic classes (including the trivial cyclic code {0n} and the
full one Fn

q). The Hamming code has for generator polynomial the irreducible polynomial
corresponding to the cyclotomic class containing 1. Its dual, the simplex code, has then for
generator polynomial the polynomial corresponding to all cyclotomic classes except that
of n− 1.

Nonprimitive length

If the length is not primitive, the zeros of Xn − 1 live in its splitting field Fqm (where n

divides qm − 1, and m is minimal). If n and q are coprime, the zeros of Xn − 1 are simple
since the derivative nXn−1 of this polynomial does not vanish on them, and the same theory
applies by replacing Fqm by the group of nth roots of unity in Fqm and α by a primitive nth
root of unity.

BCH bound

A very efficient bound on the minimum distance of cyclic codes is the BCH bound [809,
page 201]: if I contains a “string” {l + 1, . . . , l + δ − 1} of length δ − 1 of consecutive12

elements of Z/nZ, then the cyclic code has minimum distance larger than or equal to δ

(which is then called the designed distance of the cyclic code). A proof of this bound (in the
framework of Boolean functions) is given in the proof of Theorem 23, page 337.

BCH codes

Let n be coprime with q and δ < n, the BCH codes of length n and designed distance
δ are the cyclic codes that have such string of length δ − 1 in their zeros (and have then
minimum distance at least δ, according to the BCH bound) and maximal dimension (i.e.,
minimal number of zeros) with such constraint.

Reed–Solomon codes

When n = q−1, the cyclotomic classes of q modulo n are singletons and the set of zeros of
a cyclic code can then be any set of nonzero elements of the field (the generator polynomial

12 Considering of course that 0 is the successor of n− 1 in Z/nZ.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

14 Introduction to cryptography, codes, Boolean, and vectorial functions

can be any divisor of Xn − 1); when it is constituted of consecutive powers of a primitive
element, this particular case of a BCH code is called a Reed–Solomon (RS) code. Such
codes are important because they achieve the Singleton bound with equality (i.e., they are
maximum distance separable MDS). Indeed, the BCH bound gives δ ≤ d ≤ n− (n− (δ −
1))+ 1 = δ, and the Singleton bound is then achieved with equality.

Remark. There exists another equivalent definition of Reed–Solomon codes; see the
remark on page 45. RS codes are widely used in consumer electronics (CD, DVD, Blu-ray),
data transmission technologies (DSL, WiMAX), broadcast systems, computer applications,
and deep-space communications.

Extended Reed–Solomon codes

A cyclic code C of length n being given, recall that the extended code of C is the set of
vectors (c∞, c0, . . . , cn−1), where c∞ = −(c0+· · ·+cn−1). It is a linear code of length n+1
and of the same dimension as C. When C is a Reed–Solomon code whose defining set has
the form {1, 2, . . . , δ − 1}, its extended code is also MDS, because when (c0, . . . , cn−1) is a
codeword of C of minimal Hamming weight δ, we have c∞ �= 0 (again according to the BCH
bound: if c∞ = 0, then the polynomial c0+ c1X+· · ·+ cn−1X

n−1 has also α0 = 1 for zero
and has then Hamming weight at least δ+1, thanks to the BCH bound applied with the string
{0, . . . , δ−1}). Hence, either (c0, . . . , cn−1) is a codeword of C of minimal Hamming weight
δ and then (c∞, c0, . . . , cn−1) has Hamming weight δ + 1 or (c0, . . . , cn−1) has Hamming
weight at least δ + 1 and (c∞, c0, . . . , cn−1) has a fortiori Hamming weight at least δ + 1.
Hence the minimum distance of the extended code is δ + 1 = (n + 1) − (n − δ + 1) + 1.
The extended code is MDS.

Cyclic codes and Boolean functions

Cyclic codes over F2 and of length 2m − 1 can be viewed as sets of m-variable Boolean
functions. Indeed, any codeword in such cyclic code with defining set I can be represented in
the form

∑l
i=1 trn(aix

−ui), ai ∈ F2m , where u1, . . . , ul are representatives of the cyclotomic
classes lying outside I (see Relation (2.20) in Subsection 2.2.2, page 45).

1.2.5 The MacWilliams identity and the notion of dual distance

Linear codes

A nice relationship, due to F. J. MacWilliams [809, page 127], exists between the Hamming
weights in every binary linear code13 and those in its dual: let C be any binary linear code of
length n; consider the polynomial WC(X, Y) = ∑n

i=0 AiX
n−iY i , where Ai is the number

of codewords of Hamming weight i. This polynomial is called the weight enumerator of C

and describes14 the weight distribution (Ai)0≤i≤n of C. Then

WC(X + Y , X − Y) = |C|WC⊥(X, Y). (1.1)

13 It exists for every linear code over a finite field and even for more general codes, but we shall need it only for
binary codes.

14 WC is a homogeneous version of classical generating series for the weight distribution of C.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.2 Error-correcting codes 15

We give a sketch of proof15 of this MacWilliams’ identity: we observe first that WC(X, Y) =∑
x∈C

∏n
i=1 X1−xi Y xi ; substituting X by X + Y and Y by X − Y , we deduce that WC(X +

Y , X − Y) = ∑
x∈C

∏n
i=1(X + (−1)xi Y). We apply then the classical relation making

possible to expand products of sums: for every λ1, . . . , λn, μ1, . . . , μn, we have
∏n

i=1(λi +
μi) =

∑
b∈Fn

2

∏n
i=1(λ

1−bi

i μ
bi

i) (indeed, choosing λi in the ith factor when bi = 0 and μi

when bi = 1 provides when b ranges over Fn
2 all the possible terms in the expansion). This

gives here WC(X + Y , X − Y) =∑
x∈C

∑
b∈Fn

2

∏n
i=1

(
X1−bi ((−1)xi Y)bi

)
. We obtain then

WC(X + Y , X − Y) = ∑
b∈Fn

2

(
Xn−wH (b)YwH (b)

∑
x∈C(−1)b ·x

)
, where “·” is the usual

inner product in Fn
2, and we conclude by observing that, if b �∈ C⊥, then the linear form b ·x

over the vector space C is nonzero, and takes then values 0 and 1 on two complementary
hyperplanes, that is, the same number of times (we will find again this in Relation (2.38),
page 58). This proves Relation (1.1). Of course, we deduce that WC(X, Y) = 1

|C⊥| WC⊥(X+
Y , X − Y) and the same method shows, as observed in [37], that for every coset a + C, we
have Wa+C(X, Y) = 1

|C⊥|
(
2 WC⊥∩{0n,a}⊥(X + Y , X − Y)−WC⊥(X + Y , X − Y)

)
.

Remark. We have |C| = ∑n
i=0 Ai = WC(1, 1). The fact that the polynomial

1
WC(1,1)

WC(X + Y , X − Y) has nonnegative integer coefficients is very specific (among
all homogeneous polynomials P(X, Y) whose coefficients are nonnegative integers). As far
as we know, the characterization of all homogeneous polynomials P(X, Y) over N such that

1
P(1,1)

P (X + Y , X − Y) has nonnegative integer coefficients has never been investigated in
a paper.

Remark. The average Hamming weight of the codewords of a linear binary code
C equals (WC)′Y (1, 1) (the value at (1, 1) of the partial derivative of WC(X, Y) with
respect to Y), divided by |C|. MacWilliams’ identity writes WC(X, Y) = 1

|C⊥|WC⊥(X +
Y , X − Y). Differentiating with respect to Y gives (WC)′Y (X, Y) = 1

|C⊥| (WC⊥)
′
X(X +

Y , X − Y) − 1
|C⊥| (WC⊥)

′
Y (X + Y , X − Y) and thus (WC)′Y (1, 1) = 1

|C⊥| (WC⊥)
′
X(2, 0) −

1
|C⊥| (WC⊥)

′
Y (2, 0) = n2n−1

|C⊥| − 1
|C⊥| (WC⊥)

′
Y (2, 0), and the average Hamming weight of

codewords equals n
2 − 2−n(WC⊥)

′
Y (2, 0), which depends on the number of words of

Hamming weight 1 in C⊥ (see more in [809, page 131] on the moments of the weight
distribution of codes) and is bounded above by n

2 . In fact, it is easily seen directly that the
average Hamming weight of codewords equals n−r

2 , where r is the number of positions
where all codewords are null, since if there is a codeword with 1 at position i, the average
value of codewords at position i equals 1

2 .

Remark. Some authors call weight enumerator of C the univariate polynomial AC(Z) =∑n
i=0 AiZ

i . MacWilliams’ identity writes then (1 + Z)nAC

(
1−Z
1+Z

)
= |C|WC⊥(Z), where

n is the length of the binary code C.

15 The classical proof uses Fourier–Hadamard transform; since this transform will be addressed later in this
book, in Section 2.3, we give a proof more coding theory oriented.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

16 Introduction to cryptography, codes, Boolean, and vectorial functions

The MacWilliams identity gives information on self-dual codes (i.e., codes equal to their
duals) through the Gleason theorem, which says that the weight enumerator of a self-dual
code is in the ring generated by X2 + Y 2 and XY − Y 2 (see [809, page 602]).

Unrestricted codes

The principle of MacWilliams’ identity can also be applied to unrestricted codes. When C

is not linear, the weight distribution of C has no great relevance. The distance distribution
has more interest. We consider the distance enumerator of C:

DC(X, Y) = 1

|C|
n∑

i=0

BiX
n−iY i ,

where Bi is the size of the set {(x, y) ∈ C2; dH (x, y) = i}. Note that, if C is linear, then
DC = WC . Similarly as above, we see the following:

DC(X, Y) = 1

|C|
∑

(x,y)∈C2

n∏
i=1

X1−(xi⊕yi)Y xi⊕yi ;

we deduce as follows:

DC(X + Y , X − Y) = 1

|C|
∑

(x,y)∈C2

n∏
i=1

(X + (−1)xi⊕yi Y).

Expanding these products by the same method as above, we obtain the following:

DC(X + Y , X − Y) = 1

|C|
∑

(x,y)∈C2

∑
b∈Fn

2

n∏
i=1

(
X1−bi ((−1)xi⊕yi Y)bi

)
;

that is,

DC(X + Y , X − Y) = 1

|C|
∑
b∈Fn

2

Xn−wH (b)YwH (b)

(∑
x∈C

(−1)b·x
)2

. (1.2)

Hence, DC(X+Y , X−Y) has nonnegative coefficients (but DC(X, Y) is not necessarily the
weight enumerator of a code; note, however, that it is one in the case of distance-invariant
codes, such as Kerdock codes; see Section 6.1.22).

Definition 4 The smallest nonzero exponent of Y with nonzero coefficient in the polynomial
DC(X + Y , X − Y), that is, the number

min

{
wH (b); b �= 0n,

∑
x∈C

(−1)b·x �= 0

}
,

often denoted by d⊥(C), is called the dual distance of C.

The dual distance of C is strictly larger than an integer t if and only if the restriction to
C of any sum of at least one and at most t coordinate functions in Fn

2 is balanced (i.e., has

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.3 Boolean functions 17

uniform distribution), that is, any of the punctured codes of length t of C equals the whole
vector space Ft

2 and each vector in Ft
2 is matched the same number of times.16 Hence, as we

shall see again at page 88, the size of a code of dual distance d is divisible by 2d−1; note that
for linear codes, this tells more than the Singleton bound applied to the dual.

This notion will play an important role with Boolean functions (see Definition 21, page
86; this is why we include Lemma 2 below) and with a recent kind of cryptanalysis that
plays an important role nowadays: side channel attacks (see Section 12.1, page 425).

Lemma 2 1. Any coset a + C of a binary unrestricted code has the same dual distance
as C. Any union of cosets of a linear code C has at least the same dual distance as C.

2. The dual distance of a punctured code is larger than or equal to the dual distance of the
original code (assuming that the latter has minimum distance at least 2).

3. The dual distance of the Cartesian product of two binary unrestricted codes equals the
minimum of their dual distances.

4. Let C1 and C2 be binary unrestricted codes of the same length n and

C′′ = {(c1, c1 + c2); c1 ∈ C1, c2 ∈ C2},
then d ′′⊥ = min(d⊥1 , 2 d⊥2).

The proof of this lemma is also an easy consequence of the properties of the Fourier–
Hadamard transform that we shall see in Section 2.3.

Remark. When C is linear, d⊥ equals the minimum distance of the dual code C⊥. Hence,
since the minimum distance of a linear code over Fq equals the minimum nonzero number
of Fq -linearly dependent columns in its parity check matrix, its dual distance equals the
minimum nonzero number of Fq -linearly dependent columns in its generator matrix.

1.3 Boolean functions

We call Boolean functions (and sometimes we specify n-variable Boolean functions or
Boolean functions in dimension n) the (single-output) functions from the n-dimensional
vector space Fn

2 over F2, to F2 itself. Their set is denoted by BFn. Number n will be
named the number of variables, or of input bits. More generally,17 we call n-variable pseudo-
Boolean functions the functions from Fn

2 to R.
Boolean functions will also be viewed in some cases as taking their input in the field F2n .

Indeed, this field is an n-dimensional vector space over F2 and it can then be identified with
the vector space Fn

2 through the choice of a basis.
Boolean functions play roles in both cryptographic and error-correcting coding activities

in information protection:

16 This is a consequence of the properties of the Fourier–Hadamard transform that we shall see in Section 2.3,
applied to the indicator of C; see Corollary 6, page 88, and Theorem 5.

17 When we will consider Boolean functions as particular pseudo-Boolean functions, by viewing their output
values 0 and 1 as elements of Z rather than F2 (for instance, when defining their numerical normal form in
Subsection 2.2.4 or their Fourier–Hadamard transform in Section 2.3), adding their values will be made in Z,
with notation +; otherwise, it will be made modulo 2, with notation ⊕.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

18 Introduction to cryptography, codes, Boolean, and vectorial functions

Table 1.1 Number of n-variable Boolean functions.

n 4 5 6 7 8

|BFn| 216 232 264 2128 2256

≈ 6 · 104 4 · 109 1019 1038 1077

– Every binary unrestricted code of length 2n, for some positive integer n, can be
interpreted as a set of Boolean functions, since every n-variable Boolean function can
be represented by its truth table (an ordering of the set of binary vectors of length n

being first chosen) and thus associated with a binary word of length 2n, and vice versa;
important codes (Reed–Muller, Kerdock codes; see Sections 4.1 and 6.1.22) can be
defined this way as sets of Boolean functions.

– The role of Boolean functions in conventional cryptography is even more important:
cryptographic transformations can be designed by appropriate composition of Boolean
functions.18

In both frameworks, n is rarely large, in practice:

– The error-correcting codes derived from n-variable Boolean functions have length 2n;
so, taking n = 10 already gives codes of length 1024.

– For reason of efficiency, the Boolean functions used in stream ciphers had about 10
variables until algebraic attacks were invented in 2003, and the number of variables is
now most often limited to at most 20, except when the functions are particularly fast to
compute.

Despite their low numbers of variables, the Boolean functions used in cryptography and
satisfying the desired conditions (see Section 3.1 below) cannot be determined or studied
by an exhaustive computer investigation: the number |BFn| = 22n

of n-variable Boolean
functions is too large when n ≥ 6. We give in Table 1.1 below the values of this number
for n ranging between 4 and 8.

Assume that visiting an n-variable Boolean function, and determining whether it has the
desired properties, requires one nanosecond (10−9 seconds); then it would need millions
of hours to visit all functions in six variables, and about 100 billions times the age of the
universe to visit all those in seven variables. The number of eight-variable Boolean functions
approximately equals the number of atoms in the whole universe! We see that trying to find
functions satisfying the desired conditions by simply picking up functions at random is also
impossible for these values of n, since visiting a nonnegligible part of all Boolean functions
in seven or more variables is not feasible, even when parallelizing. The study of Boolean
functions for constructing or studying codes or ciphers is essentially mathematical. But
clever computer investigation is very useful to imagine or to test conjectures, and sometimes
to generate interesting functions.

18 Boolean functions play also a role in hash functions, but we shall not develop this aspect, for lack of space,
and in the inner protection of some chips.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.3 Boolean functions 19

Key

Plaintext ⊕ Ciphertext
. . .

Key

Ciphertext ⊕ Plaintext

Figure 1.1 Vernam cipher.

Remark. Boolean functions play an important role in computational complexity theory,
with the notion of NP-complete decisional problem (where “NP” stands for nondeterministic
polynomial time), for which satisfiability problems (in particular, the 3-SAT problem) are
central. These problems are related to representations of Boolean functions by disjunctive
and conjunctive normal forms, which do not ensure uniqueness and are not much used in
cryptography and error-correcting coding. We refer the reader interested in satisfiability
problems and in the related complexity theory of Boolean functions to [31, 81, 1117].

A nice site under construction at the moment this book is written can be found at the URL
http://boolean.h.uib.no/mediawiki.

1.3.1 Boolean functions and stream ciphers

Stream ciphers are based on the so-called Vernam cipher (see Figure 1.1) in which the
plaintext (a binary string of some length) is bitwise added to a (binary) secret key of
the same length, in order to produce the ciphertext. The Vernam cipher is also called the
one time pad because a new random secret key must be used for every encryption. Indeed,
the bitwise addition of two ciphertexts corresponding to the same key equals the addition of
the corresponding plaintexts, which gives much information on these plaintexts when they
code for instance natural language (it is often enough to recover both plaintexts, even when
one of them is reversed; some secret services and spies learned this at their own expense).

The Vernam cipher, which is the only known cipher offering unconditional security
(see [1034]) if the key is truly random and if it is changed for every new encryption, was
used for the communication between the heads of the USA and the USSR during the cold
war (the keys being carried by diplomats) and by some secret services.

In practice (except in the very sensitive situations indicated above), since in the Vernam
cipher, the length of the private key must be equal to the length of the plaintext (which
is impractical), a so-called pseudorandom generator (PRG) is used for producing a
long pseudorandom sequence (the keystream, playing the role of the private key in the
Vernam cipher) from the short random secret key. Only the latter is actually shared.19

The unconditional security is then no longer ensured (this is the price to pay for making
the cipher lighter). If the keystream only depends on the key (and not on the plaintext), the

19 The PRG is supposed to be public since taking a part of the secret for describing it would reduce in practice
the length of the key.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

http://boolean.h.uib.no/mediawiki
https://doi.org/10.1017/9781108606806.003

20 Introduction to cryptography, codes, Boolean, and vectorial functions

sn−1 . . . sn−L+1 sn−L

sn

⊕⊕⊕

×cL×cL−1×c1

Figure 1.2 LFSR.

cipher is called synchronous.20 Stream ciphers, because they operate on data units as small
as a bit or a few bits, are suitable for fast telecommunication applications. Having also a very
simple construction, they are easily implemented both in hardware and software. They need
to resist all known attacks (see in Section 3.1 those that are known so far). The so-called
attacker model for these attacks (that is, the description of the knowledge the attacker is
supposed to have) is as follows: some knowledge on the plaintext may be unavoidable and it
is then assumed that the attacker has access to a small part of it. Since the keystream equals
the XOR of the plaintext and the ciphertext, the attacker is then assumed to have access to a
part of the keystream, and he/she needs to reconstruct the whole sequence.

A first method for generating pseudorandom sequences from secret keys has used linear
feedback shift registers (LFSR) [550]. In such an LFSR (see Figure 1.2, where × means
multiplication), at every clock cycle, the bits sn−1, . . . , sn−L contained in the flip-flops of
the LFSR move to the right. The right-most bit is the current output (a keystream of length
N will then be produced after N clock cycles) and the leftmost flip-flop is fed with the linear
combination

⊕L
i=1 cisn−i , where the cis are bits. Thus, such an LFSR outputs a recurrent

sequence satisfying the relation

sn =
L⊕

i=1

cisn−i .

Such a sequence is always ultimately periodic21 (if cL = 1, then it is periodic; we shall
assume that cL = 1 in the sequel, because otherwise the same sequence can be output by an
LFSR of a shorter length, except for its first bits, and this can be exploited in attacks) with
period at most 2L − 1. The generating series s(X) = ∑

i≥0 siX
i of the sequence can be

expressed in a nice way (see the chapter by Helleseth and Kumar in [959] and Section 10.2,
“LFSR sequences and maximal period sequences”, by Niederreiter in [890]): s(X) = G(X)

F(X)
,

where G(X) = ∑L−1
i=0 Xi

(⊕i
j=0 ci−j sj

)
is a polynomial of degree smaller than L and

F(X) = 1 + c1X + · · · + cLXL is the feedback polynomial (an equivalent representation

20 There also exist self-synchronizing stream ciphers, in which each keystream bit depends on the n preceding
ciphertext bits, which makes possible resynchronizing after n bits if an error of transmission occurs between
Alice and Bob.

21 Conversely, every ultimately periodic sequence can be generated by an LFSR.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.3 Boolean functions 21

uses the characteristic polynomial, which is the reciprocal of the feedback polynomial). The
minimum length of the LFSR producing a sequence is called the linear complexity of the
sequence (and sometimes its linear span). It equals L if and only if the polynomials F and
G above are coprime and is equal in general to N − deg (gcd(XN + 1, S(X))), where N is
a period and S(X) is the generating polynomial S(X) = s0 + s1X + · · · + sN−1X

N−1. An
m-sequence (or maximum length sequence) is a sequence of period 2L − 1, where L is the
linear complexity. Assuming that L = L, this corresponds to taking a primitive feedback
polynomial (see page 488). The sequence can then be represented in the form si = trn(aαi),
where α is a primitive element of F2n (see page 487) and trn is the trace function from F2n

to F2 (see pages 42 and 489). The m-sequences have very strong properties; see the chapter
by Helleseth and Kumar in [959].

The initialization s0, . . . , sL−1 of the LFSR and the values of the feedback coefficients ci

must be kept secret (they are then computed from the secret key); if the feedback coefficients
were public, the observation of L consecutive bits of the keystream would allow recovering
all the subsequent sequence.

Berlekamp–Massey attack

The use of LFSRs as pseudorandom generators is cryptographically weak because of an
attack found in the late 1970s called the Berlekamp–Massey (BM) algorithm [826]: let L
be the linear complexity of the sequence, assumed to be unknown from the attacker; if
he knows at least 2L consecutive bits of the sequence, the BM algorithm allows him to
recover the values of L and of the feedback coefficients of an LFSR of length L generating
the sequence, as well as the initialization of this LFSR. The BM algorithm has quadratic
complexity, that is, works in O(L2) elementary operations. Improvements of the algorithm
exist, which have lower complexity: the main idea22 is to use the extended Euclidean (EE)
algorithm (or its variants). The way to use this algorithm is shown in the section “Linearly
recurrent sequences” (Section 12.3) of the book Modern Computer Algebra by J. von zur
Gathen and J. Gerhard [533] (Algorithm 12.9 in this book is essentially an EE algorithm).
The complexity of an EE algorithm being O(M(L) log(L)), where M(L) is the cost of the
multiplication between two polynomials of degree L, and this latter cost being quasilinear,
the complexity of finding the retroaction polynomial of an LFSR is roughly O(L log(L)).
The data complexity is still 2L, but these 2L bits of the sequence do not need to be strictly
consecutive: having k strings of 2L/k consecutive bits is enough, thanks to a matrix version
of the BM algorithm found by Coppersmith, coupled with an algorithm due to Beckerman
and Labahn, or with a simpler (and implemented) one due to Thomé; see more in [1085].

The role of Boolean functions

Many keystream generators still use LFSRs, and to resist the Berlekamp–Massey attack,
either combine several LFSRs (and possibly some additional memory) as in the case of E0,
the keystream generator that is part of the Bluetooth standard, or use Boolean functions; see
[1006]. The first model that appeared in the literature for such use is the combiner model
(see Figure 1.3).

22 We thank Pierrick Gaudry for his kind explanations.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

22 Introduction to cryptography, codes, Boolean, and vectorial functions

LFSR n

LFSR 2

LFSR 1

...

f

x1

xn

x2
Output si

Figure 1.3 Combiner model.

Notice that the feedback coefficients of the n LFSRs used in such a generator can be
public. The Boolean function is also public, in general, and the (short) secret key is necessary
only for the initialization of the n LFSRs (also depending on an initial vector, which being
public can be changed more often than the key): if we want to use for instance a 128-bit-long
secret key, this makes possible using n LFSRs of lengths L1, . . . , Ln such that L1 + · · · +
Ln = 128.

Such system clearly outputs a periodic sequence whose period is at most the LCM of
the periods of the sequences output by the n LFSRs (assuming that cL = 1 in each LFSR;
otherwise, the sequence is ultimately periodic and the period is shorter). So, this sequence
satisfies a linear recurrence and can therefore be produced by a single LFSR. However, as
we shall see, well-chosen Boolean functions allow the linear complexity of the sequence to
be much larger than the sum of the lengths of the n LFSRs. Nevertheless, choosing LFSRs
producing sequences of large periods, choosing these periods pairwise co-prime in order
to have the largest possible global period, and choosing f such that the linear complexity
is large enough too are not sufficient. As we shall see, the combining function should also
not leak information about the individual LFSRs and behave as differently as possible from
affine functions, in several different ways.

The combiner model is only a model, useful for studying attacks and related criteria. In
practice, the systems are more complex (see for instance at URL www.ecrypt.eu.org/stream/
to see how the stream ciphers of the eSTREAM Project [495] are designed).

A more recent model is the filter model, which uses a single LFSR (of a longer length). A
filtered LFSR outputs f (x1, . . . , xn), where f is some n-variable Boolean function, called a
filtering function, and where x1, . . . , xn are the bits contained in some flip-flops of the LFSR;
see Figure 1.4.

Such a system is equivalent to the combiner model using n copies of the LFSR. However,
the attacks, even when they apply to both systems, do not work similarly (a first obvious
difference is that the lengths of the LFSRs are different in the two models). Consequently,
the criteria that the involved Boolean functions must satisfy to allow resistance to these
attacks need to be studied for each model (we shall see that they are in practice not so
different, except for one criterion that will be necessary for the combiner model but not for
the filter model).

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

www.ecrypt.eu.org/stream/
https://doi.org/10.1017/9781108606806.003

1.3 Boolean functions 23

si+L−1 . . . si+1 si

⊕⊕⊕

x1 xi xn

f (x1, x2, . . . , xn)

Output

Figure 1.4 Filter model.

Note that in both models, the PRG is made of a linear part (constituted by the LFSRs),
the linearity allowing speed, and a nonlinear part (made of the combiner/filter function)
providing confusion (see the meaning of this term in Section 3.1). Generalizations of the two
models have been proposed with the same structure “linear part, nonlinear part” [495, 901].
In practice, models will not be used as is; we shall add memory and/or few combinatoric
stages and/or initialization registers; a high level security is ensured by the fact that the
model, as is, is proved resistant to all known attacks, and the additional complexity will
make the work of the attacker still more difficult.

Other kinds of pseudorandom generators exist that are not built on the same principle.
A feedback shift register (FSR) has the same structure as an LFSR, but the leftmost flip-
flop is feeded with g(xi1 , . . . , xin), where n ≤ L and xi1 , . . . , xin are bits contained in the
flip-flops of the FSR, and where g is some n-variable Boolean function called the feedback
function (if g is not affine, then we speak of NFSR, where N stands for nonlinear). The
linear complexity of the produced sequence can be near 2L (see [640] for general FSRs
and [344] for FSRs with a quadratic feedback function; see the definition of “quadratic” at
page 36). Some finalists of the eSTREAM project [495] such as Grain and Trivium use
NFSRs. But the theory of NFSRs is not completely understood. The linear complexity
is difficult to study in general. Even the period is not easily determined, although some
special cases have been investigated [630, 702, 1045, 1046]. Nice results similar to those
on the m-sequences exist in the case of feedback with carry shift-registers (FCSRs); see
[30, 559, 560, 703].

1.3.2 Boolean functions and error-correcting codes

As explained above, every binary unrestricted code whose length equals 2n for some positive
integer n can be interpreted as a set of Boolean functions. A particular class of codes has
its very definition given by means of Boolean functions. This class is that of Reed–Muller
codes. We shall see in Chapter 2 that an integer lying between 0 and n and called algebraic
degree can be associated to every Boolean function over Fn

2. The Reed–Muller code of
order k ∈ {0, . . . , n} is made of all Boolean functions over Fn

2 whose algebraic degree is
bounded above by k; see Section 4.1. This linear code has length 2n since each Boolean
function is identified to the list of its values over Fn

2, in some order. It is linear and has nice

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

24 Introduction to cryptography, codes, Boolean, and vectorial functions

particularities, thanks to which Reed–Muller codes are still used nowadays, even if their
parameters are not very good, except for the first-order Reed–Muller code. The second-order
Reed–Muller code contains a nonlinear code, called the Kerdock code, which has minimum
distance almost the same as that of the first-order Reed–Muller code of the same length and
size roughly the square of its size. In fact, the parameters of the Kerdock code are so good
that they are provably optimal among all unrestricted codes; see Section 6.1.22.

1.4 Vectorial functions

The functions from Fn
2 to Fm

2 are called (n, m)-functions. Such function F being given, the
Boolean functions f1, . . . , fm defined at every x ∈ Fn

2 by F(x) = (f1(x), . . . , fm(x)), are
called the coordinate functions of F . When the numbers m and n are not specified, (n, m)-
functions are called multioutput Boolean functions or vectorial Boolean functions. Those
vectorial functions whose role is to ensure confusion23 in a cryptographic system are called
substitution boxes (S-boxes).

Note that (n, m)-functions can also be viewed as taking their input in F2n as we have
seen with Boolean functions, and if m divides n, then we shall see that the output can then
be expressed as a polynomial function of the input. We shall be in particular interested in
power functions F(x) = xd , x ∈ F2n .

1.4.1 Vectorial functions and stream ciphers

In the pseudorandom generators of stream ciphers, (n, m)-functions can be used to combine
the outputs of n LFSRs or to filter the content of a single one, generating m bits at each clock
cycle instead of only one, which increases the speed of the cipher (but risks decreasing its
robustness). The attacks described about Boolean functions are obviously also efficient on
these kinds of ciphers. They are in fact often more efficient – see Section 3.3, page 129 –
since the attacker can combine in any way the m output bits of the function.

1.4.2 Vectorial functions and block ciphers

Vectorial functions play mainly a role with block ciphers. All known block ciphers are
iterative, that is, are the iterations of a transformation depending on a key over each block
of plaintext. The iterations are called rounds and the key used in an iteration is called a
round key. The round keys are computed from the secret key (called the master key) by a
key scheduling algorithm. The rounds consist of vectorial Boolean functions combined in
different ways and involve the round key.

Remark. Boolean functions also play an important role in block ciphers, each of which
admits as input a binary vector (x1, . . . , xn) (a block of plaintext) and outputs a binary
vector (y1, . . . , ym); the coordinates y1, . . . , ym are the outputs of Boolean functions
(depending on the key) over (x1, . . . , xn); see Figure 1.5.

But the number n of variables of these Boolean functions being large (often more than
100), they are hardly analyzed precisely.

23 See Section 3.1 for the meaning of this term.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

1.4 Vectorial functions 25

x1 xn

E

Key

Plaintext:

Ciphertext:

. . .

. . .

y1 ym

Figure 1.5 Block cipher.

++ S EP

Round key

Figure 1.6 A DES round.

+

S1 S16. . .

Linear permutation

Round key

Figure 1.7 An AES round.

We give in Figures 1.6 and 1.7 a description of the rounds of the Data Encryption Standard
(DES) [88] and of the Advanced Encryption Standard (AES) [404].

The input to a DES round is a binary string of length 64, divided into two strings of
32 bits each (in the figure, they enter the round, from above, on the left and on the right);
confusion is achieved by the S-box, which is a nonlinear transformation of a binary string

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

26 Introduction to cryptography, codes, Boolean, and vectorial functions

of 48 bits24 into a 32-bit -long one. So, 32 Boolean functions on 48 variables are involved.
But, in fact, this nonlinear transformation is the concatenation of eight sub-S-boxes, which
transform binary strings of six bits into 4-bit-long ones. Before entering the next round, the
two 32-bit-long halves of data are swapped. Such Feistel cipher structure does not need the
involved vectorial functions (in particular the S-boxes) to be injective for the decryption to
be possible. Indeed, any function of the form (x, y) �→ (y, x + φ(y)) is a permutation. The
number of output bits can be smaller than that of input bits like in the DES; it can also be
larger, like in the CAST cipher [6], where input dimension is eight and output dimension
is 32. However, if the S-boxes are not balanced (that is, if their output is not uniform), this
represents a weakness against some attacks, and it obliges the designer to complexify the
structure (for instance by including expansion boxes); see more in [957].

In the (standard) AES round, the input is a 128-bit-long string, divided into 16 strings of
eight bits each; the S-box is the concatenation of 16 sub-S-boxes corresponding to 16 × 8
Boolean functions in eight variables. Such a substitution permutation network (SPN) needs
the vectorial functions (in particular the S-boxes) to be bijective, so that decryption is
possible. Then n = m. Another well-known example of such cipher is PRESENT [100].
A third general structure for block ciphers is ARX structure; see [708].

Remark. Klimov and Shamir [705] have identified a particular kind of vectorial functions
usable in stream and block ciphers (and in hash functions), called T-functions. These are
mappings F from Fn

2 to Fm
2 such that each ith bit of F(x) depends only on x1, . . . , xi .

For example, addition and multiplication in Z, viewed in binary expansion, are T-functions;
logical operations (XOR and AND, that is, addition and multiplication in F2) are T-functions
too. Any composition of T-functions is a T-function as well. Their simplicity makes them
appealing for lightweight cryptography. But they may be too simple to provide enough
confusion; they have suffered attacks.

1.4.3 Vectorial functions and error-correcting codes

We shall see in Chapter 4 that interesting linear subcodes of the Reed–Muller codes and
other (possibly nonlinear) codes can be built from vectorial functions.

24 The E-box has expanded the 32-bit-long string into a 48-bit-long one.

https://doi.org/10.1017/9781108606806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108606806.003

