
J. Fluid Mech. (2024), vol. 982, A25, doi:10.1017/jfm.2024.140
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This study investigates the dynamics of fingering convection on scales much smaller
than the typical size of individual salt fingers. On such scales, salinity patterns exhibit
the spontaneous emergence of sharp fronts induced by finger-scale strain. In contrast,
velocity and temperature fields are largely devoid of sub-microscale variability, which
is attributed to the rapid molecular dissipation of heat and momentum. The presence of
fine salinity structures fundamentally limits the efficiency of direct numerical simulations
(DNS) of double-diffusive processes. In the oceanographic context, the computational cost
of resolving sub-microscale salinity features exceeds that of temperature-only DNS by up
to four orders of magnitude, severely restricting the types of double-diffusive systems that
can be studied numerically. To address this complication, we introduce the sub-microscale
filtering (SMF) algorithm, which resolves temperature and velocity while parameterizing
the sub-microscale dynamics of salinity. The proposed closure draws inspiration from
the Smagorinsky scheme, which represents unresolved processes by the downgradient
strain-dependent momentum flux. The SMF model is successfully validated through fully
resolved simulations.

Key words: double diffusive convection

1. Introduction

The term double-diffusive convection represents a wide range of processes that are
driven by unequal diffusivities of properties affecting fluid density. Following the
seminal discovery of primary double-diffusive instabilities (Stern 1960), investigations
of multi-component flows evolved into a distinct and vibrant branch of fluid mechanics.
Double-diffusive phenomena have been studied most extensively in the oceanographic
context (Schmitt 1994; Kelley et al. 2003; Radko 2013), where the density of seawater is
controlled by its temperature and salinity. Since heat diffuses approximately a hundred
times faster than salt, double-diffusive processes in the ocean tend to be intense and
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widespread (You 2002). In several critical regions, they dominate the vertical mixing
of water masses (Schmitt et al. 2005; Guthrie, Fer, & Morison 2015), motivating
in-depth studies of double-diffusive dynamics and transport. The fingering mode of
double-diffusive convection is particularly common in the main thermocline, a stratified
region extending from the base of the surface mixed layer to depths of approximately
one kilometre. In the Atlantic Ocean, at least 90% of the main thermocline is fingering
favourable (Schmitt 1994). In addition to oceanic systems, double-diffusive convection is
also realized – and plays a significant role – in numerous astrophysical, geophysical and
engineering applications (e.g. Turner 1985; Radko 2013; Garaud 2018).

In the spirit of the times, much recent progress in understanding double-diffusive
convection has been brought by numerical modelling (e.g. Smyth & Kimura 2011;
Hieronymus & Carpenter 2016; Yang, Verzicco & Lohse 2016, 2020; Ouillon et al.
2020; Ma & Peltier 2021; Brown & Radko 2022). However, the principal limitation
of such efforts lies in the prohibitive computational cost of modelling many realistic
configurations. Double-diffusive processes are initiated by molecular diffusion and
therefore primary instabilities in seawater operate on spatial scales of centimetres, placing
them in the category of oceanic microstructure. While interesting in their own right,
an even broader geophysical significance of primary double-diffusive instabilities lies
in their ability to induce much larger flows. This dynamics is exemplified by salt
fingers, the vertically elongated microscale filaments that form in the ocean regions
where temperature and salinity increase upward. Salt fingers frequently induce secondary
circulation patterns, which include lateral intrusions (Stern 1967; Ruddick & Kerr 2003;
Ruddick & Richards 2003), collective instability waves (Stern 1969; Stern, Radko &
Simeonov 2001) and thermohaline staircases (Stern & Turner 1969; Stellmach et al.
2011). The spatial extents of these secondary double-diffusive patterns exceed the scale
of individual fingers by at least 2–3 orders of magnitude, which presents a fundamental
obstacle for numerical models. Despite continuous advancements in high-performance
computing, microstructure-resolving simulations of double-diffusive processes are still
extremely demanding. Even with a major investment of computational resources, users are
often forced to make painful concessions in terms of the realism of model configurations
and chosen parameters. Several models attempted to parameterize, rather than resolve,
double-diffusive microstructure (e.g. Stern & Simeonov 2002; Simeonov & Stern 2004;
Radko & Sisti 2017). The latter approach, however, suffers from uncertainties in the
formulation of such parameterizations and is expected to provide only qualitative
descriptions of the processes at play.

Yet another modelling challenge – and the one that the present study strives to
address – stems from the difference in the molecular diffusivities of heat and salt,
kT and kS, respectively. The dissipation scale of salinity is less than the dissipation

scale of temperature by a factor of
√

kTk−1
S ∼ 10 (e.g. Radko 2008), which conforms

to the Batchelor (1959) scaling of scalar dissipation. Thus, the requirement to resolve
sub-microscale salinity features increases the computational cost by a factor of 103 in
two-dimensional (2-D) simulations and 104 in three dimensions relative to the investment
in equivalent temperature-only direct numerical simulations (DNS). Unfortunately,
this complication makes several fundamental double-diffusive problems numerically
inaccessible even in two dimensions. Note that the difference in diffusivities captures the
very essence of double diffusion and therefore it must be reflected in any meaningful
simulations. Many earlier numerical studies reduced the associated computational burden
by considering the salt/heat diffusivity ratios τ ≡ kSk−1

T that are much larger than the
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oceanic value of τ ∼ 0.01 (e.g. Stern et al. 2001; Kimura, Smyth, & Kunze 2011;
Brown & Radko 2022). While acceptable for preliminary explorations, concerns regarding
the ability of such models to accurately represent oceanic processes call for a more
cardinal solution to the problem. Another approach involves using a much finer mesh
for salinity than for temperature and velocity (e.g. Kimura et al 2011; Smyth & Kimura
2011). However, since the fine mesh must still resolve the salinity dissipation scale, this
technique reduces the computational cost by less than a factor of five. Thus, while the
advent of double-grid DNS represents a welcome addition to the modelling toolbox, many
double-diffusive problems remain numerically inaccessible.

This study addresses the twin challenges of explaining the sub-microscale dynamics of
double-diffusive convection and offering a physics-based representation of key processes
that can be implemented in coarse-resolution numerical models. The formation of the
sub-microscale salinity patterns is attributed to the strain by the finger-scale velocity
field, which stretches the salinity filaments and systematically reduces their effective
width. The resulting direct cascade of salinity variance is arrested only at scales that
are small enough to be effectively damped by the molecular dissipation of salt. This
chain of events is consistent with the classical description of the small-scale behaviour of
weakly diffusive scalars in the presence of turbulence by Batchelor (1959). To capture this
dynamics, we develop a strain-dependent subgrid salinity model. This closure is inspired
by the pioneering large eddy simulation (LES) approach of Smagorinsky (1963), where
an analogous scheme was implemented to parameterize the subgrid momentum transfer.
In contrast, the present algorithm targets salinity and makes no attempt to parameterize
momentum and temperature, which are fully resolved. This sub-microscale filtering (SMF)
model is used to simulate fingering convection in the oceanographically relevant regime
and is validated by the corresponding salinity-resolving experiments.

The material is organized as follows. The governing equations are described in § 2.
Section 3 presents the physical arguments and supporting simulations that establish the
link between the sub-microscale salinity dissipation and the finger-scale velocity strain.
Section 4 introduces the strain-based subgrid model of salinity. We validate the SMF
model using fully resolved 2-D and 3-D simulations in §§ 5 and 6, respectively. The results
are summarized, and conclusions are drawn, in § 7.

2. Formulation

To explore the circulation patterns in an effectively unbounded doubly stratified fluid, the
total temperature and salinity fields (T∗

tot, S∗
tot) are separated into the background state

(T∗
bg, S∗

bg), representing uniform vertical gradients, and a departure (T∗, S∗) from them:

T∗
tot = T∗

bg + T∗ = ATz∗ + AT0 + T∗,
S∗

tot = S∗
bg + S∗ = ASz∗ + AS0 + S∗,

}
(2.1)

where (AT ,AT0,AS,AS0) are constants and the asterisks denote dimensional field
variables. Our focus is on finger-favourable stratification, where ∂T∗

bg/∂z∗ = AT > 0 and
∂S∗

bg/∂z∗ = AS > 0. We ignore planetary rotation, compressibility and the nonlinearity
of the equation of state and express the governing Boussinesq equations in terms of
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perturbations (T∗, S∗):

∂T∗

∂t∗
+ v∗ · ∇T∗ + ATw∗ = kT∇2T∗,

∂S∗

∂t∗
+ v∗ · ∇S∗ + ASw∗ = kS∇2S∗,

∂v∗

∂t∗
+ v∗ · ∇v∗ = − 1

ρ∗
0
∇p∗ + g(αT∗ − βS∗)k + υ∇2v∗,

∇ · v∗ = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

where v∗ = (u∗, v∗,w∗) is the velocity, k is the vertical unit vector, p∗ is the dynamic
pressure, g is gravity, (α, β) are the thermal expansion and haline contraction coefficients
and ρ∗

0 is the reference density.
We adopt the traditional double-diffusive non-dimensionalization (e.g. Radko 2013)

based on scales of individual salt fingers. Thus, l = (kTυ/gαAT)
1/4, kT/l, l2/kT and

ρ∗
0υkT/l2 are used as the units of length, velocity, time and pressure, respectively, whereas

temperature and salinity are non-dimensionalized as follows:

T∗ = ATl T, S∗ = α

β
ATl S. (2.3a,b)

After non-dimensionalization, the governing equations are reduced to

∂T
∂t

+ v · ∇T + w = ∇2T,

∂S
∂t

+ v · ∇S + w
Rρ

= τ∇2S,

1
Pr

(
∂

∂t
v + v · ∇v

)
= −∇p + (T − S)k + ∇2v,

∇ · v = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

where Rρ = αAT/βAS is the background density ratio, τ = kS/kT is the diffusivity ratio
and Pr = υ/kT is the Prandtl number. Some calculations in this study are performed in
two dimensions (x, z), which reduces the Boussinesq system (2.4) to

∂T
∂t

+ J(ψ, T)+ ∂ψ

∂x
= ∇2T,

∂S
∂t

+ J(ψ, S)+ 1
Rρ

∂ψ

∂x
= τ∇2S,

∂

∂t
∇2ψ + J(ψ,∇2ψ) = Pr

[
∂

∂x
(T − S)+ ∇4ψ

]
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.5)

where ψ is the streamfunction associated with the velocity field (u,w) = (−∂ψ/∂z,
∂ψ/∂x), and J(a, b) ≡ (∂a/∂x)(∂b/∂z)− (∂a/∂z)(∂b/∂x) is the Jacobian.

3. Sub-microscale dynamics of double-diffusive convection

To illustrate the key features of fingering convection, we present a typical 2-D DNS.
The governing equations (2.5) are integrated in time using the Fourier-based spectral
model (e.g. Stern et al. 2001; Radko 2019a) with periodic boundary conditions assumed
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Figure 1. Salt finger DNS performed with (Pr, τ,Rρ) = (7, 0.01, 2). The instantaneous patterns of
temperature (left panels) and salinity (right panels) are shown for (a,b) t = 20, (c,d) t = 50 and (e, f ) t = 100.

for (ψ, T, S) in each direction. The periodicity of perturbations reflects the effectively
unbounded character of double diffusion in the ocean. Salt fingers are most common at
depths of several hundred metres and therefore are unaffected by the surface and sea-floor
boundaries. The unbounded model of double diffusion has been validated by oceanic
observations. The most recent and comprehensive analysis performed for a wide range of
environmental conditions (Brown & Radko 2024) unambiguously confirmed the model’s
ability to represent field measurements and the lack of systematic biases.

The calculation in figure 1 was performed with the oceanographically relevant
(e.g. Radko 2013) values of governing parameters (Pr, τ,Rρ) = (7, 0.01, 2) on the
computational domain of size Lx × Lz = 50 × 50 , resolved by (Nx,Nz) = (2048, 2048)
grid points. The experiment was initiated by the random low-amplitude distribution
of (ψ, T, S), introduced to seed primary instabilities. The experiment is extended for
t = 1000 time units – dimensionally equivalent to 10 days for oceanic scales. The first stage
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Figure 2. The magnified view of temperature (a) and salinity (b) in the small area Ω for the state in
figure 1(e, f ). Panels (c) and (d) show the corresponding patterns realized in the analogous experiment
performed with τ = 5 × 10−4 at t = 100. Note the emergence of numerous sub-microscale fronts of salinity
in (d).

in the development of instability is marked by the spontaneous emergence of vertically
oriented salt fingers. The temperature and salinity patterns, shown in figure 1(a,b) at
t = 20, are relatively regular and vary on comparable spatial scales. However, by t = 50,
primary salt fingers develop secondary instabilities (e.g. Radko & Smith 2012) and the flow
field becomes more turbulent and disorganized (figure 1c,d). The statistical equilibration
of salt fingers is completed by t = 100 (figure 1e, f ). Afterward, the quasi-steady state is
maintained indefinitely.

A salient feature of the resulting solutions is the emergence of fine structures in the
salinity field that are not reflected in the corresponding temperature and velocity patterns.
To better illustrate this phenomenon, we present (figure 2a,b) a magnified view of T and S
over a small area of

Ω = {−2 < x < 2, −2 < z < 2}. (3.1)

The sub-microscale salinity patterns appear in the form of narrow fronts and their
width is controlled by the molecular dissipation of salt. The latter assumption is readily
confirmed by reproducing the simulation in figure 1 with a much lower diffusivity ratio
of τ = 5 × 10−4 (figure 2c,d). To fully resolve the ‘salinity’ spectrum, we employ a finer
mesh with (Nx,Nz) = (4096, 4096) grid points. The resulting salinity pattern (figure 2d)
is characterized by even narrower and more tightly packed fronts than in the baseline
experiment (figure 2b). This dynamics conforms to the view expressed by Batchelor
(1959), who attributed the fine features of weakly diffusive tracers to larger-scale strain.
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Further insight into the origin of these sub-microscale structures is provided by the
salinity variance equation:

∂

∂t
〈S2〉 + 2

Rρ
〈wS〉 = −χ, (3.2)

where angle brackets denote spatial averages and χ ≡ 2τ 〈|∇S|2〉. Equation (3.2) was
obtained by multiplying the salinity equation in (2.5) by S and averaging the result in
x and z. In statistically steady configurations, as considered in our study, the variance
production term Π = (2/Rρ)〈wS〉 is balanced by the molecular dissipation (–χ ). This
so-called production–dissipation balance (Osborn & Cox 1972) concisely describes the
link between the large-scale stirring of the salinity field represented by the �-term and
the molecular dissipation on small scales (χ -term). It is also instructive to examine the
production–dissipation balance for very low diffusivity ratios. In the limit τ → 0, the
magnitude of the production term approaches a finite value (e.g. Radko 2008), demanding
that |χ | = O(1). This, in turn, requires salinity gradients |∇S| ∼ √

χ/2τ = O(τ−0.5)
to increase without bound with decreasing τ . The amplification of salinity gradients
for small diffusivity ratios is spectacularly manifested by the emergence of numerous
sub-microscale fronts, clearly visible in figure 2(d).

The tendency for the formation of sub-microscale salinity patterns can also be quantified
(figure 3) by examining the dissipation spectra D(κ) that satisfy

χ =
∫

D(κ) dκ, (3.3)

where κ is the 2-D wavenumber. The spectra were computed for the baseline experiment
performed with τ = 0.01 (figure 3a) and for the low-diffusivity experiment based
on τ = 5 × 10−4 (figure 3b). In both cases, spectra were averaged in time over the
quasi-equilibrium interval 100 < t < 1000 . The DNS results in figure 3 are compared
with the canonical Batchelor (1959) spectrum, which in our non-dimensional units takes
the form

DB(κ) = CBτχ

√
Pr
ε
κ exp(−CB(κηB)

2), (3.4)

where ε is the mean non-dimensional dissipation rate of turbulent kinetic energy, ηB =
(Pr τ 2ε−1)1/4, and CB is the Batchelor constant. The latter was evaluated from the best fit
of (3.4) to the numerical data, resulting in CB = 4.01 and CB = 3.95 for the calculations
in (a) and (b), respectively. The estimates of CB for temperature dissipation by oceanic
turbulence (e.g. Dillon & Caldwell 1980; Oakey 1982) suggest that the Batchelor constant
is in the range of 3.4–4.1. The consistency of these values with the salinity-based CB in
double-diffusive experiments – which differ in many ways from the more conventional
turbulence problems – underscores the remarkable universality of Batchelor’s theory of
scalar dissipation.

It should be noted, however, that while the DNS spectra conform to the Batchelor
model for relatively low wavenumbers, they exhibit more gentle spectral decay at high
ones. Such shallow drop-off is better represented by Kraichnan’s (1974) model, which
accounts for the fluctuations of the strain rate. Overall, however, the general relevance
of Batchelor–Kraichnan ideas to the foregoing simulations is undeniable. Of particular
interest to our discussion is the link between scalar dissipation and the strain rate espoused
by these theories. To further explore this connection, we examine the statistics of the local
dissipation χloc ≡ 2τ |∇S|2 as a function of the strain rate (s). The strain rate is defined, in
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Figure 3. The dissipation spectra for the baseline (τ = 0.01) and low-diffusivity (τ = 5 × 10−4) simulations
are shown by solid curves in (a) and (b), respectively. The dashed curves represent the corresponding Batchelor
(1959) spectra computed as the best fits to the DNS data.

both 2-D and 3-D systems, as

s = √
2sijsij, sij = 1

2

(
∂vi

∂xj
+ ∂vj

∂xi

)
, (3.5a,b)

where

(v1, v2, v3) = (u, v,w), (x1, x2, x3) = (x, y, z). (3.6a,b)

For each value of strain (s), we estimate the mean dissipation (χs) by averaging
χloc over all locations where the strain is in the range [s − 0.5Δs, s + 0.5Δs]. In the
following calculation, we use Δs = 0.02 max(s) and average the results in time over the
quasi-equilibrium interval 100 < t < 1000.

The χs(s) patterns obtained in this manner for the baseline and low-diffusivity
experiments are shown in figure 4. Both simulations reveal a rapid monotonic increase
in the dissipation rate with increasing strain. To illustrate the physical mechanisms
governing the evolution of sub-microscale variability, we present explicit analytical
solutions (Appendix A) that underscore the link between finger-scale strain and the
emergence of much finer salinity patterns. We believe that this link captures the essence
of the dissipation of salinity in double-diffusive systems, and it should be reflected in any
physics-based subgrid closure model, such as described below.
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Figure 4. The mean dissipation rate realized for a given strain is presented for the baseline experiment
performed with τ = 0.01 (red curve) and for the low-diffusivity simulation performed with τ = 5 × 10−4

(blue curve).

4. The SMF model

The simulations of fingering convection reveal the presence of salinity features that are
much smaller than those found in the corresponding temperature and momentum fields.
Such disparity of scales is the Achilles heel of double-diffusive DNS, which severely
limits the scope of numerical investigations in this area and motivates the present effort
to develop a subgrid closure for salinity. The proposed algorithm makes no attempt to
parameterize momentum and temperature, which are fully resolved, and is referred to as
the SMF model.

Our first attempt represented the subgrid transfer of salinity as a Fickian diffusive
process with spatially variable eddy diffusivity K:

∂ S̄
∂t

+ v · ∇S̄ + w
Rρ

= ∇ · (K ∇S̄)+ ∂

∂z

(
K
Rρ

)
+ τ∇2S̄, (4.1)

where S̄ is the filtered salinity field, and diffusivity K is proportional to the large-scale
strain. This subgrid model is analogous to the widely used Smagorinsky (1963) scheme.
The key difference is that the original Smagorinsky closure represents the subgrid transfer
of momentum. We, on the other hand, are interested solely in modelling the sub-microscale
dynamics of salinity.

Closure (4.1) exhibited a reasonably rapid convergence to the corresponding DNS-based
solutions with increasing resolution. However, it was subsequently noticed that its
bi-harmonic counterpart

∂ S̄
∂t

+ v · ∇S̄ + w
Rρ

= −∇ · (K2 ∇S̄2)+ τ S̄2, S̄2 = ∇2S̄ (4.2)

offers a consistently more accurate representation of key mixing characteristics. The
coefficient K2 in (4.2) is parameterized as

K2 = Cδ4s, (4.3)

where δ = Lx/Nx = Ly/Ny = Lz/Nz is the grid spacing, and C is an adjustable parameter.
The superior performance of the bi-harmonic Smagorinsky closure is attributed to
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its selective suppression of sub-microscale components. The bi-harmonic forcing term
in (4.2) has a minimal direct impact on finger-scale components and therefore the
model is less invasive and, consequently, more precise. The impact of closure (4.2) on
sub-microscale salinity patterns is explored in greater detail in Appendix A, where we use
theoretical arguments to rationalize its ability to effectively control grid-scale processes.

An interesting question concerns the choice of the coefficient C in (4.3).
A straightforward option – and the one utilized in the Smagorinsky (1963) closure – is
a selection of a constant numerical value for C that is applied to all systems considered.
More involved are the dynamic models (e.g. Khani & Waite 2015) in which the calibration
of subgrid schemes is based on the properties of a particular flow. In the present study,
we consider both constant-C and adaptive-C models (§ 5) and find that their accuracy
and convergence rates are generally comparable. The selection of the optimal value of
C in the adaptive-C closure is based on the requirement to fully resolve the dissipation
spectrum of the filtered salinity variance D̄(κ). Specifically, we insist that the maximal
dissipation Dmax = maxκD̄(κ) significantly exceeds the high-wavenumber dissipation
Dhigh = maxκ>0.5κ0D̄(κ), where κ0 is the largest resolved wavenumber. At the same time,
we wish to avoid excessive damping of the salinity field. To achieve a reasonable balance
between these competing requirements, we assume the target ratio of Dmax/Dhigh = 30. In
the course of simulations, C is gradually increased (decreased) when the ratio Dmax/Dhigh
drifts below (above) its target value.

5. Validation: 2-D simulations

All subsequent SMF runs are based on the bi-harmonic Smagorinsky model (4.2) of the
salinity field. We start by analysing its performance in two dimensions. An obvious benefit
of 2-D simulations is their efficiency, which permits a more systematic exploration of the
parameter space. It should also be noted that externally induced large-scale flows, which
are ubiquitous in the ocean, favour the formation of salt sheets aligned in the direction
of the background shear (Linden 1974; Kimura & Smyth 2007; Radko et al. 2015). In
such cases, salt fingers become effectively two-dimensional. This tendency implies that
analyses based on 2-D models may be more oceanographically relevant.

To illustrate the efficacy of the proposed subgrid closure, we now reproduce the earlier
simulations (§ 3) with the SMF model. Equation (4.2) is used to integrate salinity, the
original equations in (2.5) are used for temperature and vorticity, and the previously
employed spectral code is altered only by including the subgrid forcing term. The key
benefit of the SMF model is its ability to perform integrations on much coarser grids.
For instance, figure 5 presents the analogue of the simulation in figure 1 performed
with only (Nx,Nz) = (128, 128) grid points using the adaptive-C model. This mesh can
barely represent the temperature and momentum fields, and most of the original salinity
dissipation spectrum (figure 3) is unresolved. Nevertheless, the SMF model offers the
description of fingering convection (figure 5) that is consistent with the corresponding
fully resolved simulation (cf. figure 1). By t = 20, vertically elongated patterns form
in both temperature and salinity (figure 5a,b). These primary salt fingers gradually
amplify and, by t = 50 (figure 5c,d), develop secondary instabilities, which lead to the
statistical equilibration of the flow field. After t = 100 (figure 5e, f ), the system maintains
a quasi-steady state.

A more quantitative assessment of the SMF model is afforded by the analysis of kinetic
energy (E), as well as turbulent fluxes of heat (FT ), salt (FS) and density (Fρ):

FT = 〈wT〉, FS = 〈wS〉, Fρ = 〈w(S − T)〉, E = 1
2 〈vivi〉. (4.4a–d)
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Figure 5. The SMF analogue of the simulation in figure 1. The instantaneous patterns of temperature (left
panels) and filtered salinity (right panels) are shown for (a,b) t = 20, (c,d) t = 50 and (e, f ) t = 100.

The corresponding expression of the salt flux in terms of filtered salinity is given by

FS = 〈wS̄〉 −
〈
K2
∂

∂z
∇2S̄

〉
. (4.5)

The first term on the right-hand side of (4.5) represents the resolved salt flux, which greatly
exceeds the second (parameterized) component in all SMF simulations. The corresponding
density flux Fρ = FS − FT is evaluated using (4.5). The prediction of quantities (4.4) is
one of the key objectives of the double-diffusive convection theory. Therefore, the utility
of any reduced-dynamics double-diffusive model is ultimately determined by its ability to
accurately evaluate (4.4).

To that end, in figure 6 we plot the mean values of (FT ,FS,Fρ,E) for a series of
SMF runs performed with (Pr, τ,Rρ) = (7, 0.01, 2) in which we systematically vary the
resolution (δ). These simulations were performed with N ≡ Nx = Nz = 64, 96, 128 192,
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Figure 6. Convergence analysis of the SMF model. The magnitudes of heat flux (a), salt flux (b), density flux
(c) and energy (d) are plotted as functions of the resolution (δ). The simulations performed with the adaptive-C
model are shown in blue and the constant-C model (C = 0.1) are indicated by the red curves. The dashed lines
represent fully resolved DNS. The error bars reflect the uncertainties in the estimates of averages associated
with the finite length of records for the SMF model. The shaded regions represent the analogous uncertainties
for the DNS model.

256, 384, 512, 768 and 1024. We average the diagnostic quantities (4.4) in time over the
quasi-equilibrium interval 100 < t < 1000 . Both adaptive-C and constant-C models are
presented, along with the estimates based on the fully resolved DNS in figure 1. The
adaptive-C experiments indicate the optimal values of the Smagorinsky coefficient do
not exceed C = 0.11 regardless of the resolution. This finding guides the calibration of the
fixed-C model, and C = 0.1 is used for the latter. The adaptive-C and fixed-C experiments
are mutually consistent, revealing the monotonic convergence of quantities (4.4) to their
DNS-based counterparts with decreasing δ.

While the SMF model substantially underestimates the integral quantities (4.4) for
N = 64 and N = 96, its accuracy improves considerably in better-resolved runs. For
instance, the differences between the SMF-based and DNS-based estimates of the
salinity (temperature) flux reduce to less than 15% (5%) for N ≥ 128 (δ ≤ 0.39). It
should be noted that all quantities in (4.4) are characterized by substantial temporal
variability. The uncertainty of our estimates of the temporal averages that can be
attributed to this variability is assessed as follows. We compute a series of averages over
smaller intervals (Δtav = 450) within the equilibrium range 100 < t < 1000 and then
use the root-mean-square variability of the resulting estimates as a measure of error.
The length-of-record uncertainty, which is also indicated in figure 6, turns out to be
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Figure 7. The spectrum of kinetic energy for the fully resolved DNS (solid curve) and its SMF counterpart
(dashed curve).

particularly large for the temperature fluxes. The estimates of FT offered by the SMF
model for N ≥ 256 (δ ≤ 0.195) are statistically undistinguishable from their DNS-based
counterparts.

Figure 7 presents the spectra of kinetic energy Ê(κ), where

E =
∫

Ê(κ) dκ. (4.6)

The energy spectra are shown for the fully resolved simulation (figure 1) and its SMF
counterpart performed with N = 128 (figure 5). The two spectra are mutually consistent
for relatively low wavenumbers (κ � 3) but the SMF model appears to be more aggressive
in suppressing high-wavenumber harmonics. It should be emphasized, however, that both
models reveal the lack of any substantial velocity patterns on scales that are much less than
the typical size of salt fingers (κ � 10) . These diagnostics support the principal tenet of
the SMF model, which assumes that sub-microscale dynamics of velocity and temperature
is inconsequential.

Figure 8 presents the convergence analysis for the low-diffusivity case with τ = 5 ×
10−4. Once again, we observe the rapid reduction in the model error with decreasing δ.
For N = 196, the SMF experiments underestimate the vertical T and S transport by less
than 2% and 12%, respectively. The errors of such magnitude can be tolerated in most
double-diffusive applications, particularly considering the dramatic gain in efficiency
relative to the corresponding fully resolved DNS – recall, for instance, that the experiment
in figure 2(c,d) was performed with N = 4096. It is also possible that the relatively
poor performance of the SMF model for N = 64 and N = 96 is partially caused by the
incompletely resolved temperature and momentum fields, rather than by the deficiencies
of the subgrid closure itself.

6. Validation: 3-D simulations

Our next step is the validation of the SMF model in three dimensions. It is well known
that cross-scale energy transport is fundamentally different in 2-D and 3-D turbulence
(e.g. Kraichnan 1967). Therefore, despite its impressive performance in two dimensions,
the ability of the SMF model to represent 3-D systems should not be taken for granted.
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Figure 8. The same as in figure 6 but for the low-diffusivity SMF experiments performed with
τ = 5 × 10−4. All simulations employ the adaptive-C closure.
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Figure 9. The 3-D DNS performed with (Pr, τ,Rρ) = (7, 0.01, 2). Presented is the instantaneous pattern of
salinity at t = 100.

To establish a baseline for the validation, we perform a set of 3-D DNS. The size of
the computational domain used in these simulations is Lx × Ly × Lz = 30 × 30 × 30, and
it is resolved by (Nx,Ny,Nz) = (800, 800, 800) grid points. Our first example (figures 9
and 10) is a DNS performed with (Pr, τ,Rρ) = (7, 0.01, 2). Figure 9 presents a typical
salinity field realized in the quasi-equilibrated evolutionary stage. In agreement with
earlier studies (e.g. Radko & Smith 2012; Radko et al. 2015), 3-D salt fingers (figure 9)
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Figure 10. Horizontal (a,b) and vertical (c,d) sections of temperature (a,c) and salinity (b,d) for the state in
figure 9.

proved to be structurally similar to – but more intense than – their 2-D counterparts
(figure 1). In figure 10, we plot horizontal and vertical cross-sections of temperature (a,c)
and salinity (b,d) for the state in figure 9 taken across the centre of the computational
domain. The (x,z) sections are characterized by the emergence of vertically elongated
filaments, whereas the (x,y) patterns are statistically isotropic. Particularly relevant for
our discussion is the abundance of sub-microscale features in both horizontal and vertical
sections of salinity – features that are not reflected in the corresponding temperature fields.

To determine whether the DNS results (figures 9 and 10) can be adequately reproduced
using the SMF model, we turn to simulations based on (4.2) with the adaptive-C closure.
The mesh used for these runs is systematically refined by increasing the number of grid
points in each direction: N ≡ Nx = Ny = Nz = 64, 96, 128 192, 256 and 384. Other
parameters match those of the simulation in figure 9. Figures 11 and 12 present the
SMF experiment performed with N = 128. Despite the dramatic difference in resolution,
the finger-scale processes in figures 9 and 11 are structurally similar. The fully resolved
DNS (figure 9) exhibits a wider range of salinity scales, but the typical magnitudes of
salinity perturbations in the two simulations are consistent. The comparison of the T–S
cross-sections in figures 10 and 12 carries the same message. The SMF model filters
the sub-microscale components of salinity in a way that does not significantly alter the
dynamics of larger scales of motion.

To be more quantitative in assessing the performance of the SMF model, we
now examine its convergence. In figure 13, we plot the quasi-equilibrium values of
(FT ,FS,Fρ,E) as functions of the resolution (δ) along with the corresponding prediction
based on the fully resolved simulation (figures 9 and 10). These diagnostics reveal
an impressive skill of the SMF model in predicting key integral characteristics of the
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Figure 11. The SMF experiment performed with N = 128 and (Pr, τ,Rρ) = (7, 0.01, 2). Presented is an
instantaneous pattern of salinity at t = 100. Note the qualitative similarity of the flow field to its fully resolved
counterpart in figure 9.
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Figure 12. Horizontal (a,b) and vertical (c,d) sections of temperature (a,c) and salinity (b,d) for the state in
figure 11.

flow field. In all cases, the model error rapidly decreases with increasing resolution.
Particularly impressive is the model performance for very low N. The errors of the
predicted salt and temperature fluxes for the smallest grid with N = 64 (δ = 0.469) are only
4% and 20%, respectively. It is interesting to note that the estimates of salt fluxes by the
SMF model are consistently better in three dimensions (figure 13) than in two dimensions
(figure 6). For instance, the accuracy of 4% for FS in two dimensions is attained only
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Figure 13. Convergence analysis of the 3-D SMF model performed with Rρ = 2. The magnitudes of heat
flux (a), salt flux (b), density flux (c) and energy (d) are plotted as functions of the resolution (δ).

for δ ≤ 0.2 (N ≥ 256). The superior performance of the SMF model in three dimensions
can be attributed to the downscale (upscale) transfer of energy in 3-D (2-D) turbulence
(Kraichnan 1967). The inverse 2-D cascade implies that inaccuracies in the representation
of sub-microscale salinity patterns could spread upscale and contaminate larger scales of
motion. On the other hand, the direct 3-D cascade effectively constrains the model errors
to the high-wavenumber part of the spectrum.

Finally, to explore the relevant parameter space, we perform two additional convergence
studies for Rρ = 1.5 and Rρ = 3, while keeping (Pr, τ ) = (7, 0.01). The density ratio
of Rρ = 1.5 leads to some of the more intense salt fingering in the ocean, such as
realized in the Caribbean Sea, whereas Rρ = 3 represents its relatively mild form, more
common in the Pacific thermocline. The results (figures 14 and 15) are consistent with our
earlier findings (cf. figure 13). The key flow properties (4.4) systematically approach their
DNS-based counterparts when δ is decreased. In the most violent regime (figure 14), the
SMF model is slightly less accurate than in its less energetic counterparts (figures 13 and
15), particularly in terms of predicting the density flux. However, in all cases, adequate
estimates are obtained even when the number of points in each dimension is less by an
order of magnitude than demanded by fully resolved DNS. Considering the associated
increase in the time step controlled by the CFL (Courant–Friedrichs–Lewy) condition, the
computational savings brought by the 3-D SMF model are of the order of 104.
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Figure 14. The same as in figure 13 but for the experiments performed with Rρ = 1.5.

A pragmatic question can be raised at this point regarding resolution guidelines
for the SMF model. Based on all simulations in this study, two-dimensional and
three-dimensional, we suggest that the grid spacing of δcr = 0.2 is sufficient to capture
the key processes at play. This criterion is equivalent to resolving the nominal Stern
(1960) finger scale l = (kTυ/gαAT)

1/4 by at least five grid points. Admittedly, our ad
hoc recommendation is based on the Fourier spectral model and may require modification
for other numerical algorithms.

7. Discussion

This study explores the sub-microscale dynamics of fingering convection. We are
interested in flow features with scales that are much less than the typical size of individual
salt fingers. On such scales, the slower diffusing property (salinity in the oceanographic
context) develops narrow fronts that play a prominent role in the dissipation of the salinity
variance. The emergence of these salinity structures stands in stark contrast with the
lack of sub-microscale patterns of velocity and the faster diffusing density component
(temperature in the ocean), which is attributed to the rapid molecular dissipation of heat
and momentum. The very dissimilar evolution of salinity is not surprising, given that
molecular viscosity and temperature diffusivity exceed the diffusivity of salt by two and
three orders of magnitude, respectively. It is shown that the formation of sub-microscale
salinity patterns is controlled by the finger-scale strain. Both shear and normal components
of strain tend to systematically stretch and tighten salinity fronts until they are narrow
enough to be affected by weak molecular dissipation of salt.

982 A25-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.140


The sub-microscale dynamics of double-diffusive convection

38 58

57

56

55

54

53

52

14.4

14.2

14.0

13.8

13.6

13.4

36

34

32

30

28

25

24

23

22

21
0.1 0.2 0.3 0.4 0.5

δ

0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

δ

|FT|

Fρ E

|FS|

(a) (b)

(c) (d )

Figure 15. The same as in figures 13 and 14 but for the experiments performed with Rρ = 3.

The spontaneous development of sub-microscale salinity patterns presents a major
obstacle to numerical modelling of double-diffusive phenomena. The failure to represent
these structures has catastrophic consequences for the stability and accuracy of models,
rendering them largely unusable. At the same time, the requirement to fully resolve all
relevant scales makes double-diffusive DNS prohibitively expensive. The computational
cost can exceed that of the equivalent temperature-only simulations by three or four orders
of magnitude, placing several double-diffusive problems beyond the reach of even the most
advanced supercomputers.

Motivated by the principal limitation of the traditional DNS as a modelling tool
for many double-diffusive problems, we develop a model of two-component flows that
fully resolves velocity and temperature but parameterizes the subgrid transfer of salinity.
Based on the analysis of sub-microscale dynamics (§ 3), we consider the strain-dependent
subgrid closure for salinity. The proposed algorithm is reminiscent of the treatment of
the momentum transfer in the pioneering model of Smagorinsky (1963). The convergence
analysis indicates the proposed model (SMF) performs well for fingering convection in the
oceanographically relevant regime. It produces representative flow patterns and accurate
estimates of mixing even when the number of points in each dimension is less by an
order of magnitude than required by DNS. It is interesting to note that the attempts (not
shown) to implement explicit spectral cutoff filters for salinity have led to highly erratic
model behaviour and were eventually abandoned. Such a contrast in terms of reliability
and fidelity with the presented model is attributed to its robust, physics-based foundation.
Of particular significance is the link between the salinity dissipation and the finger-scale
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strain, exploited by the proposed algorithm. The connection between strain and dissipation
is the crux of the classical theories of scalar transfer in turbulent systems (Batchelor 1959;
Kraichnan 1974) and is shown here to control the dynamics of double-diffusive convection
as well.

While the developments reported here appear to be highly promising, they should
be viewed just as a first step in the search for the optimal SMF scheme. The first
LES turbulence models inspired a multitude of enhancements in several branches of
computational fluid dynamics – the efforts reviewed recently by Moser, Haering &
Yalla (2021). By the same token, we hope that the presented algorithm will place the
double-diffusive community on the path toward continuously evolving SMF modelling.
The essential physics of sub-microscale processes and traditional turbulence problems are
fundamentally different in many ways. As a result, the design of SMF models must be
guided by principles that are not reflected in conventional LES algorithms. Nevertheless,
such efforts will eventually make it possible to address grand-challenge problems in our
field, such as the realistic modelling of thermohaline staircases and double-diffusive
interleaving. The natural next step should involve the application of SMF models to
diffusive convection problems, where cold and fresh water masses overly the relatively
warm and salty ones.

Another major item on our wish list is the expansion of this analysis beyond the
heat–salt systems. In this regard, we note that some double-diffusive applications are
even more challenging computationally than the oceanic case (Schmitt 1983; Radko
2013). For instance, the diffusivity of silicate melt components can be extremely low
(τ ∼ 10−3–10−8) and so is the compositional diffusivity in stars (τ ∼ 10−6–10−8). As
a result, the disparity of dissipation scales of density components is dramatic, and the
fully resolved DNS are not only computationally expensive but currently impossible. For
such systems, SMF modelling may be the only resort in the foreseeable future.
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Appendix A. The spectral analysis of sub-microscale salinity patterns

The purpose of the following analysis is twofold. We offer a transparent physical
interpretation of the processes that lead to the formation of sub-microscale salinity fronts,
clearly visible in double-diffusive DNS (e.g. figure 2d). Concurrently, we explore in
greater detail the strain-based filtering algorithm (§ 4) and rationalize its ability to control
grid-scale processes with only a minimal impact on larger scales of motion.

The key feature of sub-microscale processes in fingering convection is the dominant role
of molecular viscosity. In the ocean, molecular viscosity exceeds the diffusivity of salt by
three orders of magnitude. The typical values of the Schmidt number for mid-latitude
thermocline are Sc ≡ υ/kS ≈ 900. The disparity in molecular dissipation of momentum
and salinity explains the stark contrast between the absence of velocity patterns in the
sub-microscale range and the abundance of salinity structures. The typical Reynolds
numbers based on the salinity dissipation scales are low (Re ∼ 10−2), which also points to
viscous control of sub-microscale double-diffusive processes. The dynamics that we wish
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to discuss represents an interesting example of a complex and highly disorganized low-Re
system.

To capture the sub-microscale dynamics, we turn to the advection–diffusion salinity
equation. In the interest of simplicity and dynamic transparency, the analysis is based on
the 2-D formulation:

∂S
∂t

+ u
∂S
∂x

+ w
∂S
∂z

+ w
Rρ

= τ∇2S. (A1)

We focus on processes with lateral extent that are much less than the finger scale
(Δx,Δz  1). On such scales, the velocity field, which lacks sub-microscale variability,
is approximated by linear patterns:

ū = U0 + Uxx + Uzz,
w̄ = W0 + Wxx + Wzz,

}
(A2)

where (U0,Ux,Uz,W0,Wx,Wz) are constants. The salinity field, on the other hand, varies
on both small and large scales:

S = S̄ + S′, (A3)

where S̄ and S′ are the suitably defined large-scale and small-scale components.
Subtracting (A1) and its small-scale average yields

∂S′

∂t
+ ū

∂S′

∂x
+ w̄

∂S′

∂z
= τ∇2S′. (A4)

Assuming Galilean invariance, we assign U0 = W0 = 0 without loss of generality. The
incompressibility approximation demands that

Ux + Wz = 0. (A5)

Given its linear character, the perturbation salinity equation (A4) naturally lends itself to
the analysis based on the evolution of individual Fourier modes

S = S̃ exp(ikx + imz). (A6)

The net strain rate (s) consists of shear (ss) and normal (sn) components:

s =
√

s2
n + s2

s , sn = ∂u
∂x

− ∂w
∂z
, ss = ∂w

∂x
+ ∂u
∂z
, (A7a–c)

and we find it instructive to consider their effects separately.

A.1. Shear strain
To illustrate the impact of shear strain on sub-microscale structures, we consider a flow
pattern with Uz > 0 and Ux = Wx = Wz = 0 – the unbounded plane Couette model. In this
case, s = ss = Uz and sn = 0 . Because of the z-dependence of the coefficient ū in (A4),
the traditional spectral stability analysis requires substantial modification (e.g. Knobloch
1984; Shepherd 1985; Radko 2019b,c). The linear solutions of the Couette system can
still be represented by a superposition of the plane-wave components (A6), but with
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time-dependent wavenumbers and amplitude. Combining (A4) and (A6), we arrive at the
explicit expression for wavenumbers

k = k0,
m = m0 − sk0t,

}
(A8)

and the ordinary differential equation for the amplitude

1

S̃

dS̃
dt

= −τ(m2 + k2), (A9)

where (S̃0, k0,m0) denote the initial amplitude and wavenumbers of the plane wave
(A6). Equation (A8) shows that, even if the z-wavenumber is relatively small initially,
it continually increases in time:

|m| ∼ sk0t for t → ∞, (A10)

which manifests itself in the formation of very narrow salinity fronts, clearly visible in
simulations. If the diffusivity ratio is small (τ → 0), then (A9) implies that the amplitude
remains relatively uniform in time:

S̃ ∼ S̃0. (A11)

Equations (A10) and (A11) characterize the evolution of all small-scale spectral salinity
components. As a result, the salinity variance, which is produced by finger-scale
instabilities, inexorably spreads to smaller and smaller scales, eventually reaching the
grid scale δ. The accumulation of salinity variance at the highest resolved wavenumber
mcr = π/δ can have catastrophic consequences for the stability and accuracy of numerical
models used for double-diffusive simulations.

In this context, it is interesting to determine how the proposed SMF closure (§ 4) affects
the sub-microscale evolutionary dynamics. To that end, we replace the explicit diffusion
term in (A4) with its Smagorinsky-type counterpart:

∂S′

∂t
+ ū

∂S′

∂x
+ w̄

∂S′

∂z
= −Cδ4∇ · (s ∇(∇2S′)). (A12)

This modification does not affect the temporal variation of wavenumbers (A8), but the
amplitude equation changes dramatically:

1

S̃

dS̃
dt

= −Cδ4s(m2 + k2)2. (A13)

Thus, as time progresses, the vertical wavelength of each plane Fourier mode continuously
reduces, and so does its amplitude. It is of interest to estimate the amplitude (S̃cr) of
each mode at the stage (t = tcr) when its vertical wavelength approaches the marginally
resolved range (m = mcr). We integrate (A13) over the interval 0 < t < tcr and simplify
the result by retaining only the leading-order component in the limit δ → 0 and assuming
that C is an order-one quantity:

ln

(
S̃0

S̃cr

)
∼ Cπ5

5k0δ
� 1. (A14)

Thus, by the time the wavenumber of each mode reaches the critical value of |mcr| �
|k0|, |m0|, its amplitude is dramatically reduced. This finding explains why salinity
variance does not accumulate at the grid scale in SMF experiments (§§ 5 and 6), which
prevents numerical complications that plague under-resolved double-diffusive DNS.
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A.2. Normal strain
To examine the evolution of sub-microscale salinity features in the flow dominated by
normal strain, we consider Ux = −Wz > 0 and Uz = Wx = 0. In this case s = sn = 0.5Ux
and ss = 0. As in the case of shear strain, the solution of (A4) and (A12) are sought in
terms of Fourier components with time-dependent wavenumbers. The counterpart of (A8)
for normal strain takes form

k = k0 exp(−0.5st),
m = m0 exp(0.5st).

}
(A15)

Equation (A15) indicates that m continuously increases in time, even more rapidly than in
shear strain. The variation in the amplitude due to molecular diffusion is still described by
(A9). Hence, in the limit τ → 0, the amplitude remains largely unchanged. Inevitably, m
reaches the critical level (m = mcr) where it is no longer resolved by the numerical mesh.
Because of its substantial amplitude, such accumulation of salinity variance at the grid
scale compromises model’s performance.

The central question that arises at this point is whether closure (A12) could prevent
this chain of events and permit extended integrations of double-diffusive systems. In
normal-strain-dominated flows, the variation in amplitude is still described by (A13),
which we combine with (A15) and integrate in time over the interval 0 < t < tcr. The
result is simplified by considering its leading-order component in the limit δ → 0 :

ln

(
S̃0

S̃cr

)
∼ π4C

2
. (A16)

Thus, the Smagorinsky-type closure can effectively suppress the magnitudes of all
harmonics, regardless of the strain magnitude. For C = 0.1 used in constant-C simulations
(§ 5), (A16) implies that the amplitude of harmonics in normal strain reduces by a factor
of S̃0/S̃cr ∼ 130, which proves to be sufficient to control the grid-scale processes without
substantial contamination of larger scales of salinity.

It should be emphasized that both (A14) and (A16) – the expressions that quantify
filtering of grid-scale components of salinity in shear-strain and normal-strain-dominated
flows – do not depend on any characteristics background flow field. We credit this property
for the universal applicability and impressive performance of the Smagorinsky-type
closure (4.2).
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