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Abstract

We study the asymptotic behaviour of the least energy solutions to the following class of nonlocal
Neumann problems: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d(−Δ)su + u = |u|p−1u in Ω,
u > 0 in Ω,
Nsu = 0 in Rn \Ω,

where Ω ⊂ Rn is a bounded domain of class C1,1, 1 < p < (n + s)/(n − s), n > max{1, 2s}, 0 < s < 1,
d > 0 and Nsu is the nonlocal Neumann derivative. We show that for small d, the least energy solutions
ud of the above problem achieve an L∞-bound independent of d. Using this together with suitable
Lr-estimates on ud , we show that the least energy solution ud achieves a maximum on the boundary
of Ω for d sufficiently small.

2020 Mathematics subject classification: primary 35J60, 35B09, 35B40; secondary 35J61, 35R11,
35D30.

Keywords and phrases: semilinear Neumann problem, fractional Laplacian, positive solutions,
asymptotic behaviour.

1. Introduction

We discuss the asymptotic behaviour of nonconstant least energy solutions of the
following problem: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d(−Δ)su + u = |u|p−1u in Ω,
u > 0 in Ω,
Nsu = 0 in CΩ,

(1-1)
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2 S. Gandal and J. Tyagi [2]

where Ω ⊂ Rn is a bounded domain of class C1,1, 1 < p < (n + s)/(n − s),
n > max{1, 2s}, 0 < s < 1, d > 0, CΩ := Rn \Ω and Nsu is the nonlocal Neumann
derivative, which is defined next. The nonlocal operator (−Δ)s is called the fractional
Laplacian, which is defined for smooth functions as follows:

(−Δ)su(x) = cn,s PV
∫
Rn

u(x) − u(y)
|x − y|n+2s dy. (1-2)

Here, by PV, we mean the Cauchy principal value and cn,s is a normalising constant,
given by

cn,s =

( ∫
Rn

1 − cosx1

|x|n+2s dx
)−1

;

see for instance [12] for the details. Recently, Dipierro et al. [14] have introduced a
new nonlocal Neumann condition Ns, which is defined as follows:

Nsu(x) := cn,s

∫
Ω

u(x) − u(y)
|x − y|n+2s dy, x ∈ CΩ.

The advantage of this nonlocal Neumann condition is that it has simple probabilistic
interpretation and (1-1) has a variational structure. Further, it naturally arises from the
superposition of Brownian and Lévy processes; see [16] for the details. We recall that
Nsu approaches the classical Neumann derivative ∂νu as s goes to 1.

In the last few decades, mathematical analysis of biological phenomena has
gained much attention. For example, chemotaxis models, which are also known as
Keller–Segel models [28], have been widely studied in different directions in many
papers; see [3, 24, 25] for a survey on this subject. Chemotaxis refers to the movement
of cells or organisms in response to chemical gradients in their environment. The
analysis on the steady-state for a chemotactic aggregation model with linear or
logarithmic sensitivity function was thoroughly done in many papers; see for instance
[27, 31, 35].

Let us point out that the following semilinear Neumann problem is an example of
the Keller–Segel model with a logarithmic chemotactic sensitivity:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−dΔu + u = |u|p−1u in Ω,
u > 0 in Ω,
∂u
∂ν
= 0 on ∂Ω,

(1-3)

where d > 0, Ω ⊂ Rn is a bounded domain with smooth boundary and 1 < p ≤
(n + 2)/(n − 2) if n ≥ 3 and 1 < p < ∞ if p = 2; see [31] for the details. Problem
(1-3) admits a nonconstant solution for d sufficiently small; see [1, 30, 31]. Lin
et al. [31] and Lin and Ni [30] established the existence of solutions to (1-3) in the
subcritical case 1 < p < (n + 2)/(n − 2). In the critical case, when p = (n + 2)/(n − 2),
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[3] Asymptotic behaviour of the least energy solutions 3

Adimurthi and Mancini [1] obtained a solution of (1-3). There have been developments
on the asymptotic behaviour of solutions to such equations. In the subcritical case,
1 < p < (n + 2)/(n − 2), Ni and Takagi [34, 35] have studied the shape of the least
energy solutions of (1-3). They have shown that the least energy solutions tend to zero
as the diffusion constant d goes to zero except at a finite number of points. Moreover,
the maximum of a solution ud of (1-3) is attained at a unique point on the boundary of
Ω. The critical case was examined by Adimurthi et al. [2] using blow-up analysis. We
refer to [23] for the existence, nonexistence and the asymptotic behaviour of solutions
to fractional Choquard equations with local perturbations.

We mention that Problem (1-1), which we explore in this paper is a nonlocal
analogue of the classical problem (1-3).

The substitution of standard diffusion with fractional diffusion is a perceived
approach in modelling feeding procedures across a wide range of organisms. In
many situations observed in nature, Lévy flights are often used as an accomplished
search strategy by living organisms [5, 29]. Since the fractional Laplacian (−Δ)s is an
infinitesimal generator of a Lévy process, dispersal is better modelled by the nonlocal
operator (−Δ)s. The generalised Keller–Segel model with nonlocal diffusion term
d(−Δ)s, where d is a positive constant is used to investigate chemotaxis with anomalous
diffusion. For the fractional Keller–Segel model, we refer to [18, 26]. In [26], Huang
and Liu studied the existence, stability, uniqueness and regularity of solutions for the
following model in dimension n ≥ 2:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = d(−Δ)su − ∇ · (u∇φ), x ∈ Rn, t ≥ 0,
−Δφ = u,
u(x, 0) = u0(x),

where d is a positive constant, u(t, x) is the density of some biological cells and φ(t, x)
is the chemical substance concentration. We mention the work [9], where the authors
have investigated the asymptotic behaviour of solutions for nonlinear elliptic problems
for fractional Laplacians with Dirichlet boundary conditions. We refer to [15] for the
regularity, monotonicity and other results on fractional equations in Lipschitz sets, [22]
for the existence of solutions to critical Neumann problems and [32] for an in-depth
treatment of variational methods to nonlocal fractional problems.

Motivated by the above literature, the works on the fractional Laplacian [33, 36,
38, 39] and the very recent works on the nonlocal Neumann problem for fractional
Laplacians and its connections with fractional Keller–Segel models, we have the
following natural question to ask.

QUESTION. Can we establish the asymptotic behaviour of the least energy solutions
of (1-1)?

The aim of this paper is to answer the above question. More precisely, we discuss
the asymptotic behaviour of the least energy solutions of (1-1).
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4 S. Gandal and J. Tyagi [4]

A weak solution of (1-1) can be obtained as a critical point of the following energy
functional Jd:

Jd(u) :=
1
2

[dcn,s

2

∫
T(Ω)

|u(x) − u(y)|2

|x − y|n+2s dx dy +
∫
Ω

u2 dx
]
− 1

p + 1

∫
Ω

|u|p+1 dx, u ∈ Hs
Ω.

In the above equation, T(Ω) = R2n \ (CΩ)2 and the space Hs
Ω

is defined in (2-1).
The functional Jd is well defined and of class C2 by Theorem 2.1, stated next. An
application of the Mountain-Pass lemma applied to the functional Jd yields that

cd := inf
γ∈Γ

max
[0,1]

Jd(γ(t)) (1-4)

is a critical value of Jd. In the above equation, by Γ, we mean the following set:

Γ = {γ ∈ C([0, 1]; Hs
Ω) | γ(0) = 1, γ(1) = u},

where u ∈ Hs
Ω

, and u > 0 satisfies Jd(u) = 0. It turns out that cd is the least positive
critical value; see Lemma 3.3. For the details, one may refer to [4, Theorem 6.1] and
[7, Theorem 1.1], where the authors have obtained a nonnegative weak solution ud of
(1-1) with critical value cd, provided d is sufficiently small. Moreover, ud satisfies

0 < Jd(ud) ≤ Cdn/2s,

where the constant C is independent of d. Consequently, ud is nonconstant. From the
proof of [7, Theorem 1.1], it is immediate to see that the critical points of Jd are not
sign-changing in Ω. In fact, when ud ≤ 0, we can choose −ud to have a nonnegative
solution of (1-1). By the strong maximum principle (see [10, Theorem 2.6]), one can
see that ud > 0 almost everywhere (a.e.) in Ω. Further, since ud satisfies the Neumann
condition, Nsud(x) = 0 in CΩ, which implies that ud > 0 a.e. in Rn.

DEFINITION 1.1. We call a critical point ud of Jd with Jd(ud) = cd the least energy
solution or Mountain-Pass solution of (1-1).

We show the asymptotic behaviour of the least energy solutions of (1-1) following a
similar approach to that of Ni and Takagi [35] for (1-3). They used a positive solution
w of the nonlinear Schrödinger equation

−Δu + u = |u|p−1u in Rn, 1 < p <
n + 2
n − 2

to study the asymptotic behaviour of the least energy solutions of (1-3). The fractional
nonlinear Schrödinger equation

(−Δ)su + u = |u|p−1u in Rn, (1-5)

where 1 < p < (n + 2s)/(n − 2s), n > max{1, 2s}, 0 < s < 1, is thoroughly studied; see
for instance [8, 13, 20, 21] and the references therein.

Let us discuss the main idea of this work, which goes as follows.
Let cd be the critical value of Jd, which is defined in (1-4). Following the arguments

of [35], we use a positive solution w of (1-5) to observe the asymptotic behaviour of
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[5] Asymptotic behaviour of the least energy solutions 5

cd as d ↓ 0. More specifically, w is used to build a suitable function φd to compare cd

with maxt≥0 Jd(tφd). In particular, we obtain an inequality

cd <
dn/2s

2
F(w)

for d sufficiently small, where F is the functional associated with (1-5), defined in
(2-2). This is closely related to the location of the maximum point of a solution ud of
(1-1) on the boundary of Ω.

Now, we summarise the above discussion in terms of the following three main
theorems. A priori, it is known that for 1 ≤ p < (n + s)/(n − s), any weak solution u
of (1-1) satisfies

‖u‖L∞(Ω) ≤ K,

where K > 0 is some constant depending on Ω, p and d; see [33, Theorem 3.1]. In
the next result, we obtain a bound for the least energy solution ud of (1-1), which is
independent of d.

THEOREM 1.2. Let ud be the least energy solution of (1-1). Then

d
cn,s

2

∫
T(Ω)

|ud(x) − ud(y)|2

|x − y|n+2s dx dy +
∫
Ω

u2
d dx =

∫
Ω

up+1
d dx ≤ C0dn/2s, (1-6)

where C0 > 0 is some constant depending on p. Moreover, there is a constant C1 > 0
depending only on p and Ω such that

sup
Ω

ud(x) ≤ C1.

In the next theorem, we show that the Lr-norm of the least energy solution ud is
bounded by dn/2s times some constant independent of d.

THEOREM 1.3. Let ud be the least energy solution of (1-1). Then

b(r)dn/2s ≤
∫
Ω

ur
d dx ≤ B(r)dn/2s if 1 ≤ r ≤ ∞, (1-7)

b(r)dn/2s ≤
∫
Ω

ur
d dx ≤ B(r)dnr/2s if 0 < r < 1, (1-8)

where b(r) and B(r) are positive constants such that b(r) < B(r) and are independent
of d.

We show the asymptotic behaviour in the next theorem.

THEOREM 1.4. Let Ω ⊂ Rn be a bounded domain of class C1,1. Let ud be the least
energy solution of (1-1). If ud achieves a maximum at a point zd ∈ Ω, then for all d
sufficiently small, we have zd ∈ ∂Ω.

The plan of the paper is as follows. In Section 2, we recollect known results that are
useful for our analysis. In Section 3, we study the regularity of the least energy solution
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6 S. Gandal and J. Tyagi [6]

of (1-1) and complete the proof of Theorem 1.2. In Section 4, we derive Lr-estimates
for the least energy solutions of (1-1). Section 5 contains the proof of Theorem 1.4.
The proof of inequality (3-8) is a part of Appendix A.

2. Auxiliary results

Let us recall some important results that are used in this paper.

THEOREM 2.1 (Fractional Sobolev embedding [12]). Let n > 2s and 2∗s = 2n/(n − 2s)
be the fractional critical exponent. Then, we have the following inclusions.

(1) For any function u ∈ C0(Rn) and for q ∈ [0, 2∗s − 1],

‖u‖2Lq+1(Rn) ≤ B(n, s)
∫
Rn

∫
Rn

|u(x) − u(y)|2

|x − y|n+2s dx dy

for some positive constant B. That means Hs(Rn) is continuously embedded in
Lq+1(Rn).

(2) Let Ω ⊂ Rn be a bounded extension domain for Hs(Ω). Then, the space Hs(Ω) is
continuously embedded in Lq+1(Ω) for any q ∈ [0, 2∗s − 1], that is,

‖u‖2Lq+1(Ω) ≤ B(n, s,Ω)‖u‖2Hs(Ω)

for some positive constant B. Further, the above embedding is compact for any
q ∈ [0, 2∗s − 1).

Let T(Ω) := R2n \ (Rn \Ω)2 be a cross-shaped set on a bounded domain Ω ⊂ Rn.
Define

Hs
Ω := {u : Rn −→ R measurable : ‖u‖Hs

Ω
< ∞}, (2-1)

which is equipped with the norm

‖u‖Hs
Ω

:=
(
‖u‖2L2(Ω) +

∫
T(Ω)

|u(x) − u(y)|2

|x − y|n+2s dx dy
)1/2

.

REMARK 2.2. Here, Hs
Ω

is a Hilbert space (see [14, Proposition 3.1]).

Let us define the following set:

Ls :=
{
u : Rn −→ R measurable :

∫
Rn

|u(x)|
1 + |x|n+2s dx < ∞

}
.

The condition u ∈ Ls is useful to give a sense to the pointwise definition of fractional
Laplacians (1-2).

LEMMA 2.3 [10, Lemma 2.3]. Let Ω ⊂ Rn be a bounded set. Then, Hs
Ω
⊂ Ls.

Next, we recall a few known results about the fractional Schrödinger equation (1-5).
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[7] Asymptotic behaviour of the least energy solutions 7

DEFINITION 2.4. A measurable function u : Rn −→ R is called a weak solution of
(1-5) if it satisfies the following equation:

cn,s

2

∫
Rn

∫
Rn

(u(x) − u(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy

+

∫
Rn

u(x)ψ(x) dx =
∫
Rn
|u(x)|p−1u(x)ψ(x) dx

for all ψ ∈ C1
0(Rn).

We define the corresponding energy functional F : Hs(Rn) −→ R as follows:

F(u) :=
1
2

[cn,s

2

∫
Rn

∫
Rn

|u(x) − u(y)|2

|x − y|n+2s dx dy +
∫
Rn

u2 dx
]
− 1

p + 1

∫
Rn
|u|p+1 dx. (2-2)

The weak solutions of (1-5) correspond to the critical points of F.

DEFINITION 2.5. A function u ∈ Ls(Rn) ∩ C2s+ε(Rn), when 0 < s < 1
2 , 2s + ε < 1, or

u ∈ C1,2s+ε−1(Rn) ∩ Ls(Rn), when 1
2 ≤ s < 1, 2s + ε − 1 < 1, is said to be a classical

solution of (1-5) if it satisfies (1-5) pointwise in Rn.

The next result gives us a positive, radially symmetric solution of (1-5), which
decays at infinity.

THEOREM 2.6 [20, Theorem 3.4]. Let u be the weak solution of (1-5). Then,
u ∈ Lq(Rn) ∩ Cα(Rn) for some q ∈ [2,∞) and α ∈ (0, 1). Moreover,

lim
|x|→∞

u(x) = 0.

THEOREM 2.7 [20, Theorem 1.3]. Equation (1-5) has a weak solution in Hs(Rn),
which satisfies u ≥ 0 a.e. in Rn. Moreover, u is a classical solution, which satisfies
u > 0 in Rn.

The following theorem shows that the solutions of (1-5) have a power type of decay
at infinity.

THEOREM 2.8 [20, Theorem 1.5]. Let u be a positive classical solution of (1-5) such
that

lim
|x|→∞

u(x) = 0.

Then, there exist constants 0 < C1 ≤ C2 such that

C1

|x|n+2s ≤ u(x) ≤ C2

|x|n+2s for all |x| ≥ 1.

One can see that there exist some m > 0 and s0 > 0 such that for f (u) = up − u,

f (v) − f (u)
v − u

≤ vp − up

v − u
≤ C(v + u)m for all 0 < u < v < s0,
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where C > 0 is some constant. Also, it is simple to see that f : [0,∞)→ R is locally
Lipschitz. Consequently, we have the following result on the radial symmetry and
monotonicity property of positive solutions of (1-5).

THEOREM 2.9 [21, Theorem 1.2]. Let u be a positive classical solution of (1-5) such
that

lim
|x|→∞

u(x) = 0.

Further, assume that there exists

t > max
{2s

m
,

n
m + 2

}
such that u satisfies u(x) = O(1/|x|t) as |x| → ∞. Then, u is radially symmetric and
strictly decreasing about some point in Rn.

REMARK 2.10. Since
C1

|x|n+2s ≤ u(x) ≤ C2

|x|n+2s for all |x| ≥ 1,

we can take t = n + 2s in the above theorem.

Now, [37, Proposition 4.1] ascertains that if u ∈ Rn is a weak solution of (1-5), then
u satisfies the following Pohozaev identity:

P(u) :=
(n − 2s)cn,s

4

∫
Rn

∫
Rn

|u(x) − u(y)|2

|x − y|n+2s dx dy +
n
2

∫
Rn

u2 dx − n
p + 1

∫
Rn

up+1 = 0.

Let us define

G := {u ∈ Hs(Rn) \ {0} | P(u) = 0}.

In [8], the authors have obtained a weak solution w ∈ Hs(Rn) of (1-5) with the least
energy among all other solutions. In particular, they have proved the following result.

THEOREM 2.11 [8, Theorem 1.2]. Equation (1-5) has a weak solution w ∈ Hs(Rn) such
that

0 < F(w) = inf
u∈G

F(u).

Combining Theorems 2.7, 2.8, 2.9 and 2.11, we have the following result.

THEOREM 2.12. Equation (1-5) has a positive classical solution w ∈ Hs(Rn)
satisfying:

(a) w has a power type of decay at infinity, that is, there exist constants 0 < C1 ≤ C2
such that

C1

|x|n+2s ≤ w(x) ≤ C2

|x|n+2s for all |x| ≥ 1;
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[9] Asymptotic behaviour of the least energy solutions 9

(b) w is radially symmetric, that is, w(x) = w(r) with r = |x|;
(c) for any nonnegative classical solution u ∈ Hs(Rn) of (1-5), 0 < F(w) ≤ F(u) holds

unless u = 0.

DEFINITION 2.13. We call w, given by Theorem 2.12, a ground state solution of (1-5).

3. Regularity and bounds for the least energy solution ud

Let s ∈ (0, 1) and Ω ⊂ Rn be a bounded domain of class C1,1.

DEFINITION 3.1. A measurable function u : Rn −→ R is said to be a weak solution of
(1-1) if it satisfies the following equation:

dcn,s

2

∫
T(Ω)

(u(x) − u(y))(ψ(x) − ψ(y))
|x − y|n+2s dx dy

+

∫
Ω

u(x)ψ(x) dx =
∫
Ω

|u(x)|p−1u(x)ψ(x) dx (3-1)

for all ψ ∈ Hs
Ω

.

We have the following result on the existence of a weak solution of (1-1).

THEOREM 3.2 ([4, Theorem 6.1], [7, Theorem 1.1]). There exists a nonnegative weak
solution ud of (1-1) with critical value cd, provided d is sufficiently small. Moreover,
ud satisfies

0 < Jd(ud) ≤ Cdn/2s,

where the constant C is independent of d. Consequently, ud is nonconstant.

Define

M[v] := sup
t≥0

Jd(tv), v ∈ Hs
Ω.

In the next lemma, we indicate a useful characterisation of the critical value cd. We
follow similar lines of proof to [35, Lemma 3.1].

LEMMA 3.3. The critical value cd is independent of the choice of u ∈ Hs
Ω

such that
u ≥ 0, u � 0 and Jd(u) = 0. In fact, cd is the least positive critical value of Jd, which is
given by

cd = inf{M[v] | v ∈ Hs
Ω, v � 0, v ≥ 0 in Ω}. (3-2)

PROOF. For v ∈ Hs
Ω

, let

Ω+ = {x ∈ Ω | v(x) > 0}.

Now, for all those v satisfying |Ω+| > 0, define

gd(t) := Jd(tv) for t ≥ 0.
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10 S. Gandal and J. Tyagi [10]

First, we show that gd(t) has a unique maximum. For this,

g′d(t) = t
[dcn,s

2

∫
T(Ω)

|v(x) − v(y)|2

|x − y|n+2s dx dy +
∫
Ω

v2 dx
]
− tp
∫
Ω

vp+1 dx.

Therefore, g′d(t0) = 0 for some t0 > 0 if and only if

dcn,s

2

∫
T(Ω)

|v(x) − v(y)|2

|x − y|n+2s dx dy +
∫
Ω

v2 dx = tp−1
0

∫
Ω

vp+1 dx.

Note that the right-hand side is strictly increasing in t0. And hence there exists a unique
t0 > 0 such that g′d(t0) = 0. Since gd(t) > 0 for t > 0 small and gd(t)→ −∞ as t → +∞,
one easily find that gd(t) has a unique maximum.

Let us fix a function u � 0, u ≥ 0 in Hs
Ω

with Jd(u) = 0. Let ud be a positive solution
of (1-1) obtained by applying the Mountain-Pass lemma and cd the corresponding
critical value. We have Jd(ud) = cd and J

′

d(ud) = 0. Since ud > 0 and J
′

d(ud) = 0,

M[ud] = cd, (3-3)

and hence

cd ≥ inf{M[v] | v ∈ Hs
Ω, v � 0, v ≥ 0 in Ω}. (3-4)

In contrast, assume that strict inequality occurs in (3-4). Then,

M[v0] < cd,

for some v0 ≥ 0, v0 � 0 in Hs
Ω

. Therefore, there exists some t1 > 0 such that t1v0 = u0
satisfies Jd(u0) = 0. Denote by U the subspace of Hs

Ω
spanned by u and u0. Consider

the subset of U defined as follows:

U+ := {αu + βu0 | α, β ≥ 0}.

Suppose S is a circle on U of radius R so large that R > max{‖u‖, ‖u0‖} and Jd ≤ 0
on S ∩ U+. Assume that γ is the path made up of the line segment with endpoints
0 and Ru0/‖u0‖, the circular arc S ∩ U+ and the line segment with endpoints Ru/‖u‖
and u. One can easily see that, along γ, Jd is positive only on the line segment joining
0 and u0. Hence,

max
v∈γ

Jd(v) = M[v0] < cd,

which is a contradiction to (1-4). Thus, we have equality in (3-4), that is,

cd = inf{M[v] | v ∈ Hs
Ω, v � 0, v ≥ 0 in Ω}.

Note that Jd(v) = Jd(−v) for any v ∈ Hs
Ω

. Since any nontrivial critical point of Jd is
either positive or negative a.e. in Ω, from the above discussion, one can see that cd is
the least positive critical value of Jd. This completes the proof. �

The following lemma gives us the regularity estimate. A similar result is already
proved in [10, Lemma 3.6] and [11, Remark 4.9].
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[11] Asymptotic behaviour of the least energy solutions 11

LEMMA 3.4. Let u ∈ Hs
Ω

be a weak solution of (1-1). Let u ∈ L∞(Ω), then u ∈ L∞(Rn).
Moreover:

(1) for 0 < s < 1
2 , u ∈ C2(Ω) if p > 3 − 2s and u ∈ C1,p−2+2s(Ω) if 2 < p ≤ 3 − 2s;

(2) for 1
2 ≤ s < 1, u ∈ C2(Ω).

Now, we prove that the least energy solution ud is bounded by some constant
independent of d.

PROOF OF THEOREM 1.2. The proof of the first inequality of Theorem 1.2 is fairly
standard and simple, and can be seen in the literature; for instance, see [8, Theorem
1.1]. Since it is short, for the sake of completeness, we include it here. For this,

Jd(ud) :=
1
2

[cn,sd
2

∫
T(Ω)

|ud(x) − ud(y)|2

|x − y|n+2s dx dy +
∫
Ω

u2 dx
]
− 1

p + 1

∫
Ω

up+1
d dx.

Since ud is a critical point of Jd,

J′d(ud) = 0 on Hs
Ω.

This implies that

d
cn,s

2

∫
T(Ω)

|ud(x) − ud(y)|2

|x − y|n+2s dx dy +
∫
Ω

u2
d dx =

∫
Ω

up+1
d dx. (3-5)

Hence, from the above equations,

Jd(ud) =
(1
2
− 1

p + 1

) ∫
Ω

up+1
d dx (3-6)

=
(p − 1)

2(p + 1)

∫
Ω

up+1
d dx.

Now, by Theorem 3.2, we have Jd(ud) ≤ Cdn/2s, where the constant C depends only
on p. Using this inequality in the above equation,∫

Ω

up+1
d dx ≤ 2(p + 1)

p − 1
Cdn/2s.

Taking C0 = 2(p + 1)/(p − 1)C proves the first inequality of Theorem 1.2. The proof
of the second inequality of Theorem 1.2 is a little constructive. We claim that

sup
Ω

ud(x) ≤ C1

for some constant C1 > 0 depending on p and Ω only. Multiplying (1-1) by u2t−1
d and

integrating over Ω,

cn,sd
2

∫
T(Ω)

(ud(x) − ud(y))(u2t−1
d (x) − u2t−1

d (y))

|x − y|n+2s dx dy +
∫
Ω

u2t
d dx =

∫
Ω

up+2t−1
d dx.

(3-7)
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12 S. Gandal and J. Tyagi [12]

Now, we use the following inequality. We give the proof of this inequality in the
Appendix. Let x, y ≥ 0 be real numbers and k ≥ 1, then

1
k

(xk − yk)2 ≤ (x − y)(x2k−1 − y2k−1). (3-8)

Consequently,

1
t

∫
T(Ω)

(ut
d(x) − ut

d(y))2

|x − y|n+2s dx dy ≤
∫

T(Ω)

(ud(x) − ud(y))(u2t−1
d (x) − u2t−1

d (y))

|x − y|n+2s dx dy.

(3-9)

From (3-7) and (3-9),

dcn,s

2t

∫
T(Ω)

(ut
d(x) − ut

d(y))2

|x − y|n+2s dx dy +
∫
Ω

u2t
d dx ≤

∫
Ω

up+2t−1
d dx. (3-10)

Further, by the fractional Sobolev embedding (Theorem 2.1),( ∫
Ω

|v|2∗s
)2/2∗s
≤ A

d

(
d

cn,s

2

∫
Ω

∫
Ω

|v(x) − v(y)|2

|x − y|n+2s dx dy +
∫
Ω

|v|2 dx
)
, (3-11)

where d ∈ (0, d0) for some d0 > 0, A > 0 some constant, v ∈ Hs(Ω) and 2∗s =
2n/(n − 2s). The embedding constant A depends only on n, s, d0 and Ω. To see
this, let us define

Ωd :=
{
y :

y

d1/2s ∈ Ω
}

and w(y) := v
( y

d1/2s

)
, where y ∈ Ωd.

Now,

d
∫
Ω

∫
Ω

|v(x) − v(y)|2

|x − y|n+2s dx dy +
∫
Ω

v2 dx

=
1

dn/2s

[ ∫
Ωd

∫
Ωd

|v( x′
d1/2s ) − v( y′

d1/2s )|2

|x′ − y′|n+2s dx′ dy′ +
∫
Ωd

v
( x′

d1/2s

)2
dx′
]

=
1

dn/2s

[ ∫
Ωd

∫
Ωd

|w(x′) − w(y′)|2

|x′ − y′|n+2s dx′ dy′ +
∫
Ωd

w(x′)2 dx′
]

≥ A
dn/2s

( ∫
Ωd

|w|2∗s dx′
)2/2∗s

= Ad(2/2∗s−1)n/2s
( ∫
Ω

|v|2∗s dx
)2/2∗s

.

Therefore, we observe that A is uniform for d ∈ (0, d0).
It is easy to see that Ω ×Ω ⊂ T(Ω). Then, by virtue of (3-10) and (3-11),( ∫

Ω

|ud |t2
∗
s

)2/2∗s
≤ tA

d

∫
Ω

up+2t−1
d dx. (3-12)
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[13] Asymptotic behaviour of the least energy solutions 13

Now, we define two sequences {Lj} and {Mj} by the following recurrence relations:

p − 1 + 2L0 = 2∗s ,
p − 1 + 2Lj+1 = 2∗sLj, j = 0, 1, 2, . . . (3-13)

M0 = (AC0)2∗s/2,

Mj+1 = (ALjMj)
2∗s/2, j = 0, 1, 2, . . . (3-14)

We note that Lj is explicitly given by

Lj =
1

(2∗s − 2)

((2∗s
2

)j+1
(2∗s − p − 1) + p − 1

)
. (3-15)

Since 1 < p < 2∗s − 1, it follows that Lj ≥ 1 for all j ≥ 0 and Lj → ∞ as j→ ∞. We
show that ∫

Ω

up−1+2Lj

d dx ≤Mjdn/2s for all j ≥ 0, (3-16)

and

Mj ≤ emLj−1 (3-17)

for some constant m > 0. Then,

sup
Ω

ud(x) ≤ C1,

where C1 > 0 depends only on C0 and Ω. In fact, (3-15) and (3-16) give

‖u‖L2∗s Lj−1 (Ω)
≤ (emLj−1 dn/2s)1/(2∗s Lj−1)

= em/2∗s d(n−2s)/4Lj−1

and hence letting j→ ∞,

‖u‖L∞(Ω) ≤ em/2∗s .

First, we verify (3-16). By virtue of (1-6) and (3-11),
( ∫
Ω

|ud |2
∗
s

)2/2∗s
≤ A

d

(cn,sd
2

∫
T(Ω)

|ud(x) − ud(y)|2

|x − y|n+2s dx dy +
∫
Ω

|ud |2 dx
)

≤ A
d

C0dn/2s

= AC0dn/s2∗s .

Hence, (3-16) holds for j = 0. Suppose that we have proved (3-16) for j ≥ 0. Then, by
(3-12),
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∫
Ω

|ud |p−1+2Lj+1 dx ≤
(LjA

d

∫
Ω

up+2Lj−1
d dx

)2∗s/2
≤ (ALjd−1Mjdn/2s)2∗s/2

= (ALjMj)
2∗s/2dn/2s.

This implies that (3-16) is also true for j + 1. Therefore, it remains to show (3-17). Put

λj =
2∗s
2
· log(ALj) and ηj = log(Mj). (3-18)

Hence,

ηj+1 =
2∗s
2
· ηj + λj.

The explicit value of Lj is given by

Lj = (2∗s − 2)−1((2−12∗s )j+1(2∗s − p − 1) + p − 1). (3-19)

Now,

λj =
2∗s
2

log
[ A
(2∗s − 2)

((2−12∗s )j+1(2∗s − p − 1) + p − 1)
]

=
2∗s
2

[
log(A(2∗s − 2)) + log((2−12∗s )j+1(2∗s − p − 1) + p − 1)

]
.

Therefore, we can find some C∗ such that

λj ≤ C∗(j + 1).

We now define a sequence {γj} by

γ0 = η0 and γj+1 =
2∗s
2
γj + C∗(j + 1) (3-20)

for j ≥ 1. Clearly, ηj ≤ γj for all j ≥ 0. Moreover, since

γj =

(2∗s
2

)j
(η0 + 2C∗2∗s (2∗s − 2)−2) − 2C∗(2∗s − 2)−1(j + 2∗s (2∗s − 2)),

in view of (3-19), there exists m > 0 such that γj ≤ mLj−1. Hence, log(Mj) ≤ mLj−1 and
we obtain (3-17). Observe that m depends only on η0, 2∗s and C∗, whereas C∗ depends
only on 2∗s , p and A. This completes the proof. �

REMARK 3.5. It is known that if u ∈ Ls(Rn) ∩ C2s+ε(Ω), when 0 < s < 1
2 , 2s + ε < 1 or

u ∈ Ls(Rn) ∩ C1,2s+ε−1(Ω), when 1
2 ≤ s < 1, 2s + ε − 1 < 1, one can compute (−Δ)su(x)

pointwise for all x in Ω. In fact, one can write

(−Δ)su(x) = cn,s PV
∫
Rn

u(x) − u(y)
|x − y|n+2s dy.
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DEFINITION 3.6. We call u : Rn −→ R a classical solution of (1-1) if it satisfies the
following:

(1) u ∈ Ls(Rn) ∩ C2s+ε(Ω), when 0 < s < 1
2 , 2s + ε < 1 or u ∈ Ls(Rn) ∩ C1,2s+ε−1(Ω),

when 1
2 ≤ s < 1, 2s + ε − 1 < 1;

(2) Nsu(x) = 0, x ∈ Rn \Ω;
(3) d(−Δ)su(x) + u(x) = |u(x)|p−1u(x) pointwise for all x ∈ Ω.

We make similar remarks as in [6], which offers a relation between the weak and
classical solutions of (1-1).

REMARK 3.7. Let ud be the least energy solution of (1-1) in Hs
Ω

. Then, by Lemma 2.3,
Theorem 1.2 and Lemma 3.4:

(1) for 0 < s < 1
2 , ud ∈ Ls(Rn) ∩ C2(Ω) if p > 3 − 2s and ud ∈ Ls(Rn) ∩ C1,p−2+2s(Ω)

if 2 < p ≤ 3 − 2s;
(2) for 1

2 ≤ s < 1, ud ∈ Ls(Rn) ∩ C2(Ω).

Now, using the nonlocal integration by parts formulae given in [14], one can easily
check that

d(−Δ)sud(x) + ud(x) = |ud(x)|p−1ud(x)

holds pointwise in Ω. This implies that ud is a classical solution of (1-1). Conversely,
if ud is a classical solution of (1-1) satisfying ud ∈ Hs

Ω
, then ud is a weak solution of

(1-1).

The following lemma shows that the maximum of the least energy solution is always
greater than unity.

LEMMA 3.8. Let ud be the least energy solution of (1-1). Let

Md = sup
x∈Ω

ud(x).

Then, Md > 1.

PROOF. Since ud is a weak solution of (1-1),

d
cn,s

2

∫
T(Ω)

(ud(x) − ud(y))(w(x) − w(y))
|x − y|n+2s dx dy +

∫
Ω

udw dx =
∫
Ω

up
dw dx

holds for all w ∈ Hs
Ω

. Taking w = 1 in the above equation,

∫
Ω

ud(x) dx =
∫
Ω

up
d (x) dx.
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This implies that ∫
Ω

ud(x)(1 − up−1
d (x)) dx = 0.

Now, if ud(x) ≤ 1 for all x ∈ Ω, then

1 − ud(x) ≥ 0 for all x ∈ Ω.

Thus, from the above equation, we get that ud(x) = 1 a.e. inΩ. Now, by Lemma 3.4,
we can assume that ud is continuous and hence ud ≡ 1 inΩ, which is a contradiction to
our assumption that ud is a nonconstant solution. Therefore, there exists x0 in Ω such
that ud(x0) > 1. Thus, Md > 1. �

4. Lr-estimates on ud

Here, we derive an Lr-estimate for ud. The following results are generalisations of
[31, Proposition 2.2 and Lemma 2.3] to the nonlocal case.

PROPOSITION 4.1. For d0 > 0 fixed, there is a constant K0 such that

d
cn,s

2

∫
T(Ω)

(ud(x) − ud(y))2

|x − y|n+2s dx dy +
∫
Ω

u2
d dx ≥ K0dn/2s, (4-1)

where ud is the least energy solution of (1-1) with 0 < d < d0.

PROOF. In contrast, suppose that there is a sequence {dk} contained in the interval
(0, d0) and a sequence of positive solutions {uk} to (1-1) with d = dk such that

ζk :=
1

dn/2s

(
d

cn,s

2

∫
T(Ω)

(uk(x) − uk(y))2

|x − y|n+2s dx dy +
∫
Ω

u2
k dx
)
→ 0 as k → ∞.

We are going to follow the same arguments as used in the proof of Lemma 1.2 to prove
this proposition. Once again, define the sequences {Lk} and {Mj} as defined earlier in
(3-13) and (3-14), respectively. Instead of C0, we write ζk in the definition of {Mj}:

p − 1 + 2L0 = 2∗s ,
p − 1 + 2Lj+1 = 2∗sLj, j = 0, 1, 2, . . .

and

M0 = (Aζk)2∗s/2,

Mj+1 = (ALjMj)
2∗s/2, j = 0, 1, 2, . . . .

Further, define the sequences {λj}, {ηj} and {γj} as defined earlier in (3-18) and (3-20).
From (3-16), ( ∫

Ω

u2∗s Lj−1

k dx
)(2∗s Lj−1)

≤ (Mjd
n/2s
k )1/(2∗s Lj−1). (4-2)
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[17] Asymptotic behaviour of the least energy solutions 17

Since

log(Mj) = ηj ≤ γj,

we have

log(Mj)

2∗sLj−1
≤

ηj

2∗sLj−1
.

Now,

lim
j→∞

ηj

2∗sLj−1
= lim

j→∞

( 2∗s
2
)j[η0 + 2C∗2∗s (2∗s − 2)−2] − 2C∗(2∗s − 2)−1[j + 2∗s (2∗s − 2)]

2∗s
(2∗s−2)

[( 2∗s
2
)j(2∗s − p − 1) + p − 1

]
=

(2∗s − 2)(η0 + 2C∗2∗s (2∗s − 2)−2)
2∗s (2∗s − p − 1)

.

Letting j→ ∞ in (4-2),

‖uk‖L∞(Ω) ≤ ea1(η0+a2), (4-3)

with a1 and a2 depending only on 2∗s , p and C∗. Since

η0 = log(M0) =
2∗s
2

log(Aζk),

as k → ∞, η0 → −∞. Thus, in view of (4-3),

‖uk‖L∞(Ω) → 0,

which leads to a contradiction to Lemma 3.8. �

PROOF OF THEOREM 1.3. First, we show the second part of (1-7).

Case I. r ≥ 2∗s = 2n/(n − 2s). Let {Lj} be the sequence defined in (3-13). If r ∈ {2∗sLj},
then the second inequality of (1-7) follows from (3-16). So assume that 2∗sLj < r <
2∗sLj+1 for some j ≥ 0. We have

r = t2∗sLj + (1 − t)2∗sLj+1 for some t ∈ (0, 1).

Using the Hölder inequality and (3-16),∫
Ω

ur
d dx =

∫
Ω

ut2∗s Lj+(1−t)2∗s Lj+1

d dx,

≤
( ∫
Ω

u2∗s Lj

d dx
)t( ∫

Ω

u2∗s Lj+1

d dx
)1−t

≤ (Mj−1dn/2s)t(Mjdn/2s)1−t

=Mt
j−1M1−t

j dn/2s.
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Case II. 2 ≤ r ≤ 2∗s . We write

r = 2t + (1 − t)2∗s ,

for some t ∈ [0, 1]. Then, using the Hölder inequality, from (1-6) and (3-16) with j = 0,∫
Ω

ur
d dx ≤

( ∫
Ω

u2
d dx
)t( ∫

Ω

u2∗s
d dx
)1−t

≤Ct
0M(1−t)

0 dn/2s,

where the constant C0 is independent of d.

Case III. 1 ≤ r < p + 1. Integrating both sides of (1-1) and using the condition
Nsu(x) = 0 for x ∈ CΩ, ∫

Ω

ud dx =
∫
Ω

up
d dx. (4-4)

It is easy to see that

p = t + (1 − t)(p + 1) with t =
1
p
∈ (0, 1).

Notice that p + 1 ∈ (2, 2∗s ). Therefore, using the Hölder inequality and (4-4),∫
Ω

up
d dx ≤

( ∫
Ω

ud dx
)t( ∫

Ω

up+1
d dx

)(1−t)
,∫

Ω

up
d dx ≤

∫
Ω

up+1
d dx ≤ C0dn/2s (by (1-6)),

where the constant C0 depends only upon p + 1.
Also, in view of (4-4) and (1-6), we observe that the second inequality of (1-7)

holds for r = 1. Now, repeating the interpolation between 1 and p + 1, we see that the
second inequality of (1-7) holds for all r ≥ 1.

Case IV. Let 0 < r ≤ 1. Taking F = ur
d, G = 1, p = 1

r , q = 1
1−r and using the Hölder

inequality, ∫
Ω

ur
d dx ≤ ‖F‖p‖G‖q = |Ω|1−r

( ∫
Ω

ud dx
)r
≤ |Ω|1−rB(1)rdnr/2s.

This proves the second inequality of (1-8).
Now, let us prove the first inequality of (1-7) and (1-8). In view of (3-5) and (4-1),∫

Ω

up+1
d ≥ K0dn/2s.

Since

sup
Ω

ud(x) ≤ C1 for some constant C1 > 0,
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we have

K0dn/2s ≤
∫
Ω

up+1
d =

∫
Ω

(up+1−r
d )(ur

d) dx

≤ Cp+1−r
1

∫
Ω

ur
d dx.

This implies that ∫
Ω

ur
d dx ≥ K0Cr−p−1

1 dn/2s, r < p + 1.

For r > p + 1, we write p + 1 = 1 + (1 − t)r. Therefore,

K0dn/2s ≤
∫
Ω

up+1
d dx

=

∫
Ω

u1+(1−t)r
d dx

≤ (ud dx)t(ur
d dx)1−t

≤ (B(1)dn/2s)t(ur
d dx)1−t.

This yields that ∫
Ω

ur
d dx ≥ (K0B(1)−t)1/(1−t)dn/2s. �

5. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. Its proof is intricate and requires some
scaling and compactness arguments. We prove the statements of the theorem one by
one. Let zd ∈ Ω be a point of maximum of ud. We approximate ud around zd by a
scaled positive radial solution of (1-5). It gives us an upper bound on cd, which is
closely related to the location of point zd.

Step I. We prove that there exists a positive constant K∗ such that

ρ(zd, ∂Ω) ≤ K∗d1/2s. (5-1)

If the inequality in (5-1) is not true, then there is a decreasing sequence dj ↓ 0 such
that

ρj :=
ρ(zj, ∂Ω)

d1/2s
j

→ +∞ as j→ ∞, (5-2)

where zj := zdj is a point of maximum of udj on Ω. Define

φj(y) := udj (yd1/2s
j + zj) for y ∈ Rn.
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Since ud is a classical solution of (1-1),

(−Δ)sφj + φj = φ
p
j in Bρj , (5-3)

and:

(1) φj ∈ C0,2s+ε(Bρj ), when 0 < s < 1
2 , 2s + ε < 1;

(2) φj ∈ C1,2s+ε−1(Bρj ), when 1
2 ≤ s < 1, 2s + ε − 1 < 1.

First, we claim that the sequence {φj} contains a convergent subsequence. Let {Rk}
be a monotone increasing sequence of positive numbers with Rk → +∞ as k → ∞.
Therefore, we have for each k, there is a number jk such that 4Rk < ρj whenever j ≥ jk.
Since ud ∈ L∞(Rn) ∩ Ls(Rn), we have φj ∈ L∞(Rn) ∩ Ls(Rn) for each j ≥ 1. Now, we
can use [19, Theorem 1.4] to get the following estimates.

For 0 < s < 1
2 , 2s + ε < 1:

(i) let 4s + ε < 1, then

‖φj‖C0,4s+ε (B2Rk ) ≤ C(‖φj‖L∞(Rn) + ‖φp
j − φj‖C0,2s+ε (B4Rk ));

(ii) let 1 < 4s + ε < 2, then

‖φj‖C1,4s+ε−1(B2Rk ) ≤ C(‖φj‖L∞(Rn) + ‖φp
j − φj‖C0,2s+ε (B4Rk ));

and for 1
2 ≤ s < 1, 2s + ε − 1 < 1:

(iii) let 4s + ε − 1 < 1, then

‖φj‖C1,4s+ε−1(B2Rk ) ≤ C(‖φj‖L∞(Rn) + ‖φp
j − φj‖C1,2s+ε−1(B4Rk ));

(iv) let 1 < 4s + ε − 1 < 2, then

‖φj‖C2,4s+ε−1(B2Rk ) ≤ C(‖φj‖L∞(Rn) + ‖φp
j − φj‖C1,2s+ε−1(B4Rk )),

where the constant C > 0 is independent of j.
Let us recall the inequality (1-6) here:

d
cn,s

2

∫
T(Ω)

|ud(x) − ud(y)|2

|x − y|n+2s dx dy +
∫
Ω

u2 dx =
∫
Ω

up+1
d ≤ C0dn/2s,

where C0 is independent of d. This yields∫
Bρj

φ
p+1
j ≤ C0,

and

‖φj‖Hs(Bρj )
≤ C0 for all j ≥ 1. (5-4)
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Also, by Theorem 1.3, ∫
Ω

ur
d ≤ B(r)dn/2s for all r ≥ 1,

which implies that ∫
Bρj

φr
j ≤ B(r) for all j ≥ 1 and r ≥ 1. (5-5)

By Lemma 3.4 and Theorem 1.2,

‖ud‖L∞(Rn) ≤ C1, (5-6)

where the constant C1 is independent of the diffusion constant d. So, (5-5), (5-6) and
[19, Theorem 1.3] imply that

‖φj‖Xs(BRk ) < C2 for all j ≥ jk,

where the constant C2 > 0 is independent of j and the space Xs(BRk ) is identified
with one of the spaces C0,4s+ε(BRk ), C1,4s+ε−1(BRk ) or C2,4s+ε−1(BRk ) with the same
assumptions on s and ε as above. Therefore, {φj} is a relatively compact set in Xs(BRk ),
and hence by the standard diagonal process, we can extract a convergent subsequence
of {φj}, which we continue to denote by {φj} itself such that

φj → v in C0,2s+ε
loc (Rn) when 0 < s < 1

2 , 2s + ε < 1

or

φj → v in C1,2s+ε−1
loc (Rn) when 1

2 < s < 1, 2s + ε − 1 < 1

for some v. The limit v ∈ C0,2s+ε(Rn) ∩ Hs(Rn) when 0 < s < 1
2 , 2s + ε < 1 or v ∈

C1,2s+ε−1(Rn) ∩ Hs(Rn) when 1
2 < s < 1, 2s + ε − 1 < 1 follows from (5-4). Conse-

quently,

lim
|x|→∞

v(x) = 0.

Using [17, Theorem 1.1], we have (−Δ)sφj(x) converges to (−Δ)sv(x) point-wise in Rn.
Consequently, we see that the limit v satisfies the equation

(−Δ)sv + v = vp in Rn.

Clearly, v ≥ 0 because each φj ≥ 0. Since by Lemma 3.8 we have φj(0) = udj (zj) > 1
for each j ≥ 1, one can see that v � 0.

Using Theorem 2.9, one can see that v is radially symmetric and decreasing about
some point in Rn. Since

∇v(0) = lim
j→∞
∇φj(0) = 0,
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v is radially symmetric about the origin. Additionally, by Theorem 2.8, v has a power
type of decay at infinity, that is,

v(r) ≤ C2

rn+2s , r ≥ 1.

Now we derive a lower bound on the critical value cdj . Let us define

δR :=
C2

Rn+2s , (5-7)

where R > 0 is an arbitrarily large real number. Then, there exists a positive integer jR
such that if j ≥ jR, then ρj ≥ 2R and

‖φj − v‖C2(B2R) ≤ δR. (5-8)

By Lemma 3.3,

cdj = M[udj ] = Jdj (udj ).

Using this fact and (3-6),

cdj =

(1
2
− 1

p + 1

) ∫
Ω

up+1
dj

dx

≥
(1
2
− 1

p + 1

) ∫
|x−zj |<d1/2s

j R
up+1

dj
dx

= dn/2s
j

(1
2
− 1

p + 1

) ∫
|y|<R

φ
p+1
j dy.

Now,

cdj = dn/2s
j

((1
2
− 1

p + 1

) ∫
BR

vp+1 dy + Fj

)
, (5-9)

where

Fj :=
(1
2
− 1

p + 1

) ∫
BR

(
φ

p+1
j − vp+1

)
dy.

By Equation (5-8), we have for all y ∈ BR, j ≥ jR,

|φp+1
j − vp+1| ≤ C|φj − v| ≤ δR,

where C > 0 is some constant. This implies that

|Fj| ≤
(1
2
− 1

p + 1

)
C|BR|δR = C3RnδR,
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where

C3 =

(1
2
− 1

p + 1

)wn

n
C

and wn denotes the surface area of the unit sphere in Rn. Consequently, (5-9) becomes

cdj ≥ dn/2s
j

[(1
2
− 1

p + 1

) ∫
BR

vp+1 dy − C3RnδR

]
. (5-10)

Now, it is easy to see that(1
2
− 1

p + 1

) ∫
BR

vp+1 dy = F(v) −
(1
2
− 1

p + 1

) ∫
|y|>R

vp+1 dy,

where F(v) is defined earlier in (2-2). Simplifying the second term on right-hand side,

(1
2
− 1

p + 1

) ∫
|y|>R

vp+1 dy =
(1
2
− 1

p + 1

) ∫ ∞
R

rn−1wn

r(n+2s)(p+1)
dr

=

(1
2
− 1

p + 1

) wn

(n + 2s)p + 2s
1

R(n+2s)p+2s =
C4

R(n+2s)p+2s .

Therefore, one can write(1
2
− 1

p + 1

) ∫
BR

vp+1 dy = F(v) − C4

R(n+2s)p+2s . (5-11)

On combining (5-7), (5-10) and (5-11), we get for j ≥ jR,

cdj ≥ dn/2s
j

(
F(v) − C4

R(n+2s)p+2s −
C2C3

R2s

)
≥ dn/2s

j

(
F(v) − C5

R2s

)
, (5-12)

where C5 is independent of j and R.
Now, we derive an upper bound on the critical value cdj . Without loss of generality,

we may assume that the domainΩ is a subset of Rn
+ and 0 ∈ ∂Ω. Given Definition 2.13,

let w be the ground state solution of (1-5). Define

Ωd :=
{ x

d1/2s | x ∈ Ω
}
,

wd(x) := w
( x
d1/2s

)
, for x ∈ Rn.

Since w ≥ 0, this implies that wd ≥ 0. Define

gd(t) := Jd(twd), t ≥ 0.
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Then, by Lemma 3.3, there exists a unique t0 = t0(d) > 0 at which gd attains a
maximum. It is easy to see that t0(d)→ 1 as d ↓ 0. Hence,

M[wd] = Jd

(
t0wd

)

=
t2
0

2

[dcn,s

2

∫
T(Ω)

|wd(x) − wd(y)|2

|x − y|n+2s dx dy +
∫
Ω

w2
d dx
]
−

tp+1
0

p + 1

∫
Ω

wp+1
d dx

=
t2
0

2

[dcn,s

2

∫
T(Ω)

∣∣∣∣∣w
( x
d1/2s

)
− w
( y

d1/2s

)∣∣∣∣∣2
|x − y|n+2s dx dy +

∫
Ω

w2
( x
d1/2s

)
dx
]

−
tp+1
0

p + 1

∫
Ω

wp+1
( x
d1/2s

)
dx.

The change of variables

x
d1/2s = a,

y

d1/2s = b,

gives us

M[wd] = dn/2s
( t2

0

2

[cn,s

2

∫
T(Ωd)

|w(a) − w(b)|2

|a − b|n+2s da db +
∫
Ωd

w2 da
]
−

tp+1
0

p + 1

∫
Ωd

wp+1 da
)

= dn/2sId

where Id is the expression

t2
0

2

[cn,s

2

∫
Ωd

∫
Ωd

|w(a) − w(b)|2

|a − b|n+2s da db + 2cn,s

∫
CΩd

∫
Ωd

|w(a) − w(b)|2

|a − b|n+2s da db +
∫
Ωd

w2 da
]

−
tp+1
0

p + 1

∫
Ωd

wp+1 da.

Since

t0(d)→ 1 as d ↓ 0,

we get for Id

1
2

[cn,s

2

∫
R

n
+

∫
R

n
+

|w(a) − w(b)|2

|a − b|n+2s da db + 2cn,s

∫
CRn
+

∫
R

n
+

|w(a) − w(b)|2

|a − b|n+2s da db +
∫
R

n
+

w2 da
]

− 1
p + 1

∫
R

n
+

wp+1 da + o(1)
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as d ↓ 0. Further, w being nonnegative and radially symmetric implies that∫
R

n
+

w2 da =
1
2

∫
Rn

w2 da,
∫
R

n
+

wp+1 da =
1
2

∫
Rn

wp+1 da,

∫
R

n
+

∫
R

n
+

|w(a) − w(b)|2

|a − b|n+2s da db =
1
4

∫
Rn

∫
Rn

|w(a) − w(b)|2

|a − b|n+2s da db,

∫
CRn
+

∫
R

n
+

|w(a) − w(b)|2

|a − b|n+2s da db =
1
4

∫
Rn

∫
Rn

|w(a) − w(b)|2

|a − b|n+2s da db.

Using these estimates,

Id <
1
2

(1
2

[cn,s

2

∫
Rn

∫
Rn

|w(a) − w(b)|2

|a − b|n+2s da db +
∫
Rn

w2 da
]
− 1

p + 1

∫
Rn

wp+1 da
)
+ o(1)

=
1
2

F(w) + o(1),

as d ↓ 0. Thus,

M[wd] = dn/2sId <
dn/2s

2
F(w) + o(1),

as d ↓ 0. Using part (c) of Theorem 2.12, we have 0 < F(w) ≤ F(v) for any nonnegative
nonzero classical solution v of (1-5) and by Lemma 3.3,

cdj ≤ M[wdj ] <
dn/2s

j

2
F(v)

for dj sufficiently small. By letting R be sufficiently large in (5-12), we reach a
contradiction. This proves (5-1).

REMARK 5.1. In the classical case [35], the authors have defined diffeomorphisms,
which straighten a boundary portion near Q ∈ ∂Ω. Further, using scaling and trans-
lations of the least energy solutions ud of (1-3), the classical problem (1-3) gets
transferred into a new elliptic equation. Due to the nonlocal nature of the fractional
Laplacian and of the boundary condition in our problem, it seems almost impossible
to introduce such scaling and translation arguments.

Step II. Now, we claim that zd ∈ ∂Ω. Suppose that there is a decreasing sequence dj ↓ 0
such that zdj := zj ∈ Ω. We have from Lemma 1.4 that the sequence {zj} converges to
some z ∈ ∂Ω. Without loss of generality, let us assume that z = 0. Define

ûj(x) :=

⎧⎪⎪⎨⎪⎪⎩udj (x) in Rn
+,

udj (x
′,−xn) in Rn

−,

where

x′ = (x1, x2, . . . , xn−1), R
n
+ = {(x′, xn) | xn ≥ 0}, Rn

− = {(x′, xn) | xn ≤ 0}.
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Also, define a scaled function

ψj(y) := ûj(yd1/2s
j + zj) for y ∈ Rn. (5-13)

Now, for zj = (z′j , zjn), we can write zjn = αjd
1/2s
j for some αj > 0. The sequence {αj} is

bounded, which follows from Lemma 1.4. Let

ρj :=
ρ(zj, ∂Ω)

d1/2s
j

,

where ρ(zj, ∂Ω) denotes the distance between zj and ∂Ω. One can see easily that the
function ψj satisfies the equation

(−Δ)sψj(y) + ψj(y) = ψj(y)p + djh(y) in Bρj

for some function h of y. To see this, let y ∈ Bρj , so

(−Δ)sψj(y) = cn,s PV
∫
Rn

ψj(y) − ψj(x)

|y − x|n+2s dx = cn,s lim
ε→0

∫
CBε (y)

ψj(y) − ψj(x)

|y − x|n+2s dx

= cn,s lim
ε→0

[ ∫
CBε (y)

ûj(yd1/2s
j + zj) − ûj(xd1/2s

j + zj)

|y − x|n+2s dx
]

= cn,s lim
ε→0

∫
{xn≥−αj}

⋂CBε (y)

ûj(yd1/2s
j + zj) − ûj(xd1/2s

j + zj)

|y − x|n+2s dx

+ cn,s lim
ε→0

∫
{xn≤−αj}

⋂CBε (y)

ûj(yd1/2s
j + zj) − ûj(xd1/2s

j + zj)

|y − x|n+2s dx. (5-14)

For yn ≥ −αj,

(−Δ)sψj(y)

= cn,s lim
ε→0

∫
{xn≥−αj}

⋂CBε (y)

uj(yd1/2s
j + zj) − uj(xd1/2s

j + zj)

|y − x|n+2s dx

+ cn,s lim
ε→0

∫
{xn≤−αj}

⋂CBε (y)

uj(yd1/2s
j + zj) − uj(x′d

1/2s
j + z′j ,−(xn + αjd

1/2s
j ))

|y − x|n+2s dx

= cn,s lim
ε→0

∫
{xn≥−αj}

⋂CBε (y)

uj(yd1/2s
j + zj) − uj(xd1/2s

j + zj)

|y − x|n+2s dx

+ cn,s lim
ε→0

∫
{xn≤−αj}

⋂CBε (y)

uj(yd1/2s
j + zj) − uj(x′d

1/2s
j + z′j ,−(xn + αjd

1/2s
j ))

|y − x|n+2s dx
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= cn,s lim
ε→0

∫
CBε (y)

uj(yd1/2s
j + zj) − uj(xd1/2s

j + zj)

|y − x|n+2s dx

+ cn,s lim
ε→0

∫
{xn≤−αj}

⋂CBε (y)

uj(xd1/2s
j + zj) − uj(x′d

1/2s
j + z′j ,−(xn + αjd

1/2s
j ))

|y − x|n+2s dx

= cn,s lim
ε→0

∫
CBε (y)

uj(yd1/2s
j + zj) − uj(xd1/2s

j + zj)

|y − x|n+2s dx

+ cn,s lim
ε→0

∫
{xn≤−αj}

⋂CBε (y)

uj(xd1/2s
j + zj) − ûj(xd1/2s

j + zj)

|y − x|n+2s dx.

Making the change of variables

yd1/2s
j + zj = a and xd1/2s

j + zj = b,

we get

(−Δ)sψj(y) = dj(−Δ)suj(a) + djcn,s lim
η→0

∫
{bn≤0}⋂CBη(a)

uj(b) − ûj(b)

|a − b|n+2s db

= dj(−Δ)suj(a) + djh(a), (5-15)

where

η = εd1/2s
j

and

h(a) = cn,s lim
η→0

∫
{bn≤0}⋂CBη(a)

uj(b) − ûj(b)

|a − b|n+2s db.

Note that a ∈ Ω.
Now, consider the case yn ≤ −αj. Equation (5-14) becomes

(−Δ)sψj(y) = I1 + I2

where

I1 =

∫
{xn≥−αj}

⋂CBε (y)

uj(y′d
1/2s
j + z′j ,−(ynd1/2s

j + αjd
1/2s
j )) − uj(xd1/2s

j + zj)

|y − x|n+2s dx

and

I2 =

∫
{xn≤−αj}

⋂CBε (y)

uj(y′d
1/2s
j + z′j ,−(ynd1/2s

j + αjd
1/2s
j )) − uj(x′d

1/2s
j + z′j ,−(xnd1/2s

j + αjd
1/2s
j ))

|y − x|n+2s dx

(5-16)

Let us introduce some notation. We write x̂ = (x′,−xn), x̃ = (̂x′, x̂n) and x̂n = −xn for
x = (x′, xn) ∈ Rn, n > 1. Using these, let us compute

https://doi.org/10.1017/S1446788724000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788724000107


28 S. Gandal and J. Tyagi [28]

I2 = cn,s lim
ε→0

[ ∫
{̂xn≥αj}

⋂CBε (̂y)

uj (̂y′d
1/2s
j + ẑ′j , ŷnd1/2s

j + α̂jd
1/2s
j ) − uj (̂x′d

1/2s
j + ẑ′j , x̂nd1/2s

j + α̂jd
1/2s
j )

|̂y − x̂|n+2s d̃x
]

= cn,s lim
ε→0

[ ∫
{̂xn≥αj}

⋂CBε (̂y)

uj (̃yd1/2s
j + z̃j) − uj (̃xd1/2s

j + z̃j)

|̂y − x̂|n+2s d̃x
]

= cn,s lim
ε→0

[ ∫
{̂xn≥αj}

⋂CBε (̃y)

uj (̃yd1/2s
j + z̃j) − uj (̃xd1/2s

j + z̃j)

|̃y − x̃|n+2s d̃x
]
.

Now, we simplify I1:

I1 = cn,s lim
ε→0

[ ∫
{xn≥−αj}

⋂CBε (y)

uj(y′d
1/2s
j + z′j ,−(ynd1/2s

j + αjd
1/2s
j )) − uj(x′d

1/2s
j + z′j ,−(xnd1/2s

j + αjd
1/2s
j ))

|y − x|n+2s

+

∫
{xn≥−αj}∩CBε (y)

uj(w′d
1/2s
j + z′j ,−(xnd1/2s

j + αjd
1/2s
j )) − uj(xd1/2s

j + zj)

|y − x|n+2s dx
]

= cn,s lim
ε→0

[ ∫
{̂xn≤αj}

⋂CBε (̃y)

uj (̃yd1/2s
j + z̃j) − uj (̃xd1/2s

j + z̃j)

|̃y − x̃|n+2s d̃x

+

∫
{xn≥−αj}∩CBε (̃y)

uj (̃xd1/2s
j + z̃j) − ûj (̃xd1/2s

j + z̃j)

|̃y − x̃|n+2s d̃x
]
.

Using these estimates for I1 and I2 in (5-16),

(−Δ)sψj(y) = cn,s PV
∫
Rn

uj(̃yd1/2s
j + z̃j) − uj(̃xd1/2s

j + z̃j)

|̃y − x̃|n+2s d̃x

+ cn,s lim
ε→0

∫
{xn≥−αj}

⋂CBε (̃y)

uj(̃xd1/2s
j + z̃j) − ûj(̃xd1/2s

j + z̃j)

|̃y − x̃|n+2s d̃x.

By the change of variables

ỹd1/2s
j + z̃j = e and w̃d1/2s

j + z̃j = f ,

we get

(−Δ)sψj(y) = dj(−Δ)suj(e)

+ djcn,s lim
η→0

∫
{ fn≤0}⋂CBη(e)

uj( f ) − ûj( f )

|e − f |n+2s d f , where fn is the n th coordinate of f

= dj(−Δ)suj(e) + djh(e). (5-17)

Note that e ∈ Ω. Further, for y ∈ Bρj ,

ψj(y) = ûj(yd1/2s
j + zj) =

⎧⎪⎪⎨⎪⎪⎩udj (yd1/2s
j + zj) if yn ≥ −αj,

udj (y
′d1/2s

j + z′j ,−(ynd1/2s
j + αjd

1/2s
j )) if yn ≤ −αj.

We can write

(y′d1/2s
j + z′j ,−(ynd1/2s

j + αjd
1/2s
j )) = ỹd1/2s

j + z̃j.
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Again re-naming the variables yd1/2s
j + zj and ỹd1/2s

j + z̃j by a and e, respectively,

ψj(y) =

⎧⎪⎪⎨⎪⎪⎩udj (a) if yn ≥ −αj,
udj (e) if yn ≤ −αj.

We know that uj satisfies (1-1) in the point-wise sense as well. Therefore, combining
above equation with (5-15), (5-17), we have for y ∈ Bρj ,

(−Δ)sψj(y) + ψj(y) = ψj(y)p + djh(y).

Now, arguing as in the proof of Step I with minor modifications, one can obtain a
convergent subsequence of {ψj}, which we denote again by {ψj} such that ψj → v in
C2

loc(Rn). Therefore, as dj ↓ 0,

(−Δ)sv + v = vp in Rn.

Since v ∈ Hs(Rn) and v is radially decreasing, v is spherically symmetric to y = 0.
Moreover, v has power-type decay at infinity, which follows from Theorem 2.8, that is,

v(r) ≤ C2

rn+2s , r ≥ 1,

for some constant C2 > 0. Let us define δR as in (5-7), that is,

δR :=
C2

Rn+2s

for R sufficiently large to be defined later. Then, there exists an integer jR such that for
j ≥ jR,

‖ψj − v‖C2(B4R) ≤ δR. (5-18)

We choose R sufficiently large that R > αj for all j, where the αj terms are the same as
defined earlier right after (5-13). We can choose such an R because {αj} is a bounded
sequence. The following lemma is very useful to prove our claim that zd ∈ ∂Ω.

LEMMA 5.2 (see [35, Lemma 4.2]). Let f ∈ C2(Bt) be a radial function. Assume that
f satisfies f ′(0) = 0 and f ′′(r) < 0 for 0 ≤ r ≤ t. Then, there exists a η > 0 such that if
g ∈ C2(Bt) satisfies:

(1) ∇g(0) = 0;
(2) ‖ f − g‖C2(Bt)

< η,

then ∇g � 0 for x � 0.

Now, we use this lemma to show that ψj has only one local maximum point in
BR. For this, we choose two numbers k, l (0 < k < l) such that v′′(r) < 0 for 0 ≤ r ≤ k.
Further, we see that v′′(0) < 0 and v(k) < 1. Let us define

θ = min{|v′(r)| | k ≤ r ≤ l}.
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It is easy to observe that θ > 0 because v′ < 0 for r > 0. Then for δR < θ, we have by
(5-18) that

0 < θ − δR ≤ |∇v(y)| − |∇ψj(y) − ∇v(y)| ≤ |∇ψj(y)| for k ≤ |y| ≤ l.

Applying Lemma 5.2 in the ball Bk, we conclude that y = 0 is the only local maximum
point of ψj in Bl. If yj is a maximum point of ψj in BR, then by Lemma 3.8, we have
ψj ≥ 1. Choose R > 0 sufficiently large so that δR < 1 − v(l). Therefore,

ψj(y) ≤ v(y) + δR ≤ v(l) + δR < 1.

Hence, yj ∈ Bl and therefore yj = 0.
If αj > 0, then by the definition of ûj, z∗R = (z′j ,−αjd

1/2s
j ) is also a maximum point

of ûj. This implies that (0,−αj) is another maximum point of ψj in BR, which is a
contradiction. This proves our claim and hence completes the proof of Theorem 1.4.

Appendix A

PROOF OF (3-8). For real numbers x, y ≥ 0 and k ≥ 1, we show that

1
k

(xk − yk)2 ≤ (x − y)(x2k−1 − y2k−1).

Clearly, the inequality holds when either x or y or both are zero or x = y. Thus, without
loss of generality, we may assume that x > y > 0. Now, our claim is reduced to showing
that

1
k

(
1 −
(y
x

)k)2
≤
(
1 − y

x

)(
1 −
(y
x

)2k−1)
,

that is, to show that

(1 − ak)2 ≤ k(1 − a)(1 − a2k−1),

where 0 < a := y
x < 1. Consider

f (a) := k(1 − a)(1 − a2k−1) − (1 − ak)2

≥ (1 − ak)(k(1 − a) − (1 − ak))

≥ (1 − ak)(1 − a)(k − (1 + a + a2 + · · · + ak−1))

≥ (1 − ak)(1 − a)(k − k) = 0.

This proves the inequality. �
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