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Relativistic electron beam transport through a high-density, magnetized plasma is
studied numerically and theoretically. An electron beam injected into a cold plasma
excites Weibel and two-stream instabilities that heat the beam and saturate. In
the absence of an applied magnetic field, the heated beam continues to propagate.
However, when a magnetic field of particular strength is applied along the direction
of beam propagation, a secondary instability of off-angle whistler modes is excited.
These modes then couple nonlinearly creating a large amplitude parallel-propagating
whistler that stops the beam. Here, we will show these phenomena in detail and
explain the mechanism of whistler mediated beam stagnation.
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1. Introduction

Transport and scattering of beams of energetic electrons in magnetized plasma are
long studied problems with applications in space physics, plasma astrophysics and
laboratory plasma physics (Melrose 1986; Karimabadi, Krause-Varban & Terasawa
1992; Balogh et al. 2013). They are particularly important in the fast ignition inertial
confinement fusion scheme (Tabak et al. 1994). Here a pellet of compressed D-T
(Deuterium-Tritium) fuel is ignited by a beam of energetic electrons, created at a
distance by an ultra-short, ultra-intense laser pulse. To reach the pellet, the beam must
propagate through the dense plasma from where it is created, the critical surface for
the laser pulse, to the location of the compressed pellet.

Typically, beam—plasma interactions are considered from the starting point of linear
theory. An electromagnetic mode is found to grow linearly, extracting energy from the
beam, until the distribution of electron momentum is altered and growth of the mode
is arrested. The beam is not necessarily stopped in this process, rather it continues to
propagate, albeit with a broadened momentum distribution. In this paper we present a
different scenario: we present an example of a nonlinear instability in which a large
amplitude whistler wave, which is co-propagating with the beam and is linearly stable,
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is nonlinearly pumped by obliquely propagating whistler waves and grows until the
beam is stopped.

As mentioned, a motivation for our study is the fast ignition scheme, the advantage
of which is that by using the beam generated by the short pulse laser, the energy
demands on the compressing laser are significantly reduced (Tabak er al. 1994). An
issue with the fast ignition scheme is that the electron beam, on its way to the pellet,
scatters off self-generated fluctuations, reducing the energy flux density on the pellet.
One set of fluctuations that appears is associated with the electrostatic two-stream
instability, which saturates mainly by heating the parallel momentum components of
the beam. A second set of fluctuations that appears is associated with the Weibel
instability (Weibel 1959). Specifically, the high-energy electron beam quickly induces
a return current in the cold plasma, and the counter-streaming electrons are then
unstable to the generation of transverse magnetic fields with transverse structure. This
instability saturates when the transverse temperature of the beam reaches a sufficient
level. However, at this level the beam is not well collimated.

In order to suppress electron deflection, several methods have been proposed. One
such method is the application of a strong external magnetic field along the direction
of beam propagation (Fujioka et al. 2013). In the experiments of the reference, a
kilo-tesla magnetic field is generated by a second intense laser—plasma interaction.
When such a strong magnetic field is applied, it is expected that the electron beam
will remain collimated. In addition, the growth of the Weibel instability should also be
reduced as the magnetic field restricts the transverse electron motion. This latter effect
is confirmed in both our theory and simulations. However, we find the surprising result
that within a broad range of magnetic fields, the beam is stopped by the appearance
of a large amplitude whistler wave.

2. Results of hybrid simulations

We conducted simulations using a 2.5-dimensional hybrid code in which the
energetic electrons are treated as particles, while the background electrons are treated
as a fluid (Taguchi, Antonsen Jr & Mima 2004). The ions are assumed to be immobile.
The basic equations of our hybrid code are the same as described in Taguchi et al
(2004) with the exception that the current code uses the full set of Maxwell’s
equations including the displacement current, whereas the Darwin approximation was
made in the reference.

Results of sample simulations are shown in figures 1(a—c) and 2(a—c). The
simulation domain is 0 < z/d, < 750 in the direction of beam propagation (z) and
0 < x/d, < 125 in one direction transverse to the direction of beam propagation
(x), where d, is the collisionless skin depth d, = ¢/w,. and the plasma frequency

wpe = v/ €*ny/eom, is based on the background electron density ny and the rest mass
of an electron m,. The boundary conditions in x are that all quantities are periodic.

The boundary conditions in z are more complicated. Two damping layers are added:
one to each end of the simulation box. In the layers, all field quantities, such as the
electromagnetic field components and the fluid variables describing the background
plasma, are gradually relaxed to ‘equilibrium values’ by adding a damping term in
the time evolution equation for each variable of the form:

Y -1, v(z):u,m<1—cos(”_z°)>. (1.1a.b)

dr damp 2 Ddamp
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FIGURE 1. (a) Line plots of field quantities averaged over the transverse direction in the
case of no external magnetic field. (b) The spatial distribution of the beam electron density
at w,.t =1600. (c) Contour plots of electron distribution function in the longitudinal phase

space (z-p;).

Here, f is one of the quantities and f; is represents its equilibrium value. The quantity
Djamp 1s the width of the damping layer and the maximum damping rate, v, is
empirically determined for each value so that each quantity smoothly approaches
its equilibrium value at both boundaries. The coupling strength between the beam
electrons and the electromagnetic fields is also gradually reduced in the damping layer.

An energetic beam of electrons is introduced in the layer near z=0, the boundary on
the left, with a distribution in momentum given by, f(p) =A exp[(m,yc* —p - uy)/T).

Here, p is the momentum of each particle, y = /1 +p?/m?c? is its Lorentz factor,
u, is the drift velocity and 7, is the temperature of the beam electrons. During each
time step of the simulation particles sampled from this distribution are placed in the
first cell.

Parameters in the simulation are set as follows: beam velocity, uy = 0.95¢, injected
beam density, n, = ny/10, beam temperature, 7, = 100 keV, while the background
electron temperature 7, is 10 keV. In a plasma realized in a fast ignition scheme,
the density of the background plasma varies in the range from 1 to 100 times
the critical density for the incident laser pulse. Thus, the density ratio we chose
corresponds to a background electron density of ny = 10*2 cm™ for a 1p-laser.
For these parameters the background electron collision time is estimated to be
approximately 3 x 107''/Z (s), where Z is an average charge state of ions, and the
plasma frequency is 5.6 x 10" s='. According to these estimates the collision time is
longer than the duration of the simulation (1600/w,, =3 x 107" s) even for a gold
cone and as a result the background is treated as being collisionless. Of course this
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FIGURE 2. (a) The line plots of field quantities averaged over the transverse direction
in the case that an external magnetic field (w./w,. = 0.3) is applied. (b) The spatial
distribution of the beam electron density at w,.t = 1600, (c) Contour plot of the electron
distribution function in the longitudinal phase space (z-p,).

estimate is influenced by the assumed value of the background temperature. Collisions
will become important if the temperature is significantly lowered. The processes we
observe and will describe occur on the time scale of a hundred plasma periods. The
temperature for which this equals the collision time is approximately 10 eV. Studying
the effects of collisions is important, but will be left for the future.

Figure 1(b) displays the beam density (colour scale indicates density relative to the
background density) at w,.t = 1600 with no applied magnetic field. This is well after
the front of the beam has passed through the simulation domain and a statistically
steady state has formed. The injected beam distribution is Weibel unstable and the
beam forms filaments and heats in the transverse direction. This is also illustrated by
the line plots attached in figure 1. These are line plots of the following x-averaged
quantities: the normalized beam density (i7;,), the normalized in-plane (B,) and out-of-
plane (B,) magnetic field fluctuations and the longitudinal electric field fluctuations
(E.). Here the magnetic fields are normalized by m.w,./e and the electric field is
normalized by m.w,.c/e. We also display the z—p, phase space distribution of the
beam electrons as a contour plot in figure 1(c). As shown in the figure, after the
beam passes through the primary unstable region of the Weibel instability (50 < z/d, <
120), it heats and decelerates. Since the Weibel instability becomes very weak for
high transverse beam temperature, the magnetic field fluctuations in the downstream
region are relatively small compared with those in the upstream region. While there
is the potential for a residual Weibel instability in the downstream region involving
the cold electrons (Fiuza et al. 2012), it does not lead to large magnetic fields in this
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region. As a result, the heated beam crosses the entire simulation domain as evidenced
by the line plot of the beam density. At the time of this image the ratio of beam
density leaving the right boundary to that injected is 1.25. This small density increase
is caused by the decrease of the flow velocity due to beam electron scattering by
the Weibel instability. This is confirmed by the fact that the ratio of the fluxes of
positively propagating beam electrons at the two ends of the simulation is close to
unity, Rp, (= nuyy (z/d. =400)/nuy, (z/d. = 0)), is 0.988.

The situation is different when a strong magnetic field is applied along the
direction of beam propagation. This is illustrated in figure 2 for the case of the
normalized external B-field, w./w, = 0.3, where w. = eBy/m, for the external
magnetic field By. This value corresponds to 9.6 kT in the case of ny = 10*? cm™.
In the simulation, the Weibel instability grows and heats the beam, as evidenced by
the out-of-plane magnetic field fluctuations. However, after the beam propagates to
a distance z/d, ~ 200, both in-plane and out-of-plane magnetic fields grow and the
beam electrons are reflected and their density accumulates as shown in figure 2(c).
This is further illustrated by the line plot of the beam density, where the downstream
density is half that of figure 1. For this case, the ratio of the electron fluxes entering
on the left and leaving on the right (Rg,) at the time of figure 2 is 0.292. This value
continuously decreases in time as the simulation progresses.

The in-plane and out-of-plane components of the magnetic field for 180 < z/d, <300
in figure 2 have the characteristics of a circularly polarized wave: they vary
sinusoidally in z with wavelength approximately A1 =~ 16d,, and they are 90° out
of phase. We thus identify the disturbance as a whistler wave. The dispersion relation
for long-wavelength (4 > d,) low-frequency (o <« w.) whistler waves propagating at
an angle to the magnetic field in cold plasma is (Kennel 1966)

w.C?

w=—"kk,, 2.2)

2
wpe

where k = /k? + k2. Here w is the wave frequency and k = kX + k2 is the wave
vector. For parallel propagation (k, = 0), as applies to the x-averaged fields, the
dispersion relation implies a positive phase velocity and a positive group velocity
along the magnetic field. The group velocity increases with magnetic field strength,
the implications of which will be discussed subsequently.

3. Mechanism of an excitation of a large amplitude whistler wave

Direct excitation of the purely parallel-propagating whistler by wave particle energy
exchange involving the energetic stream of electrons is not expected. Wave—particle
interaction is possible when the resonance condition

yw —nw. —k;p./m, =0, (3.1)

is satisfied, where the integer n = 1, 0, —1 denotes cyclotron, Cherenkov and
anomalous cyclotron resonances respectively (Kennel 1966). These resonances are
mediated by different components of the electromagnetic field. The Cherenkov
resonance is mediated by the axial electric field (which is small for whistler waves),
and the cyclotron and anomalous cyclotron resonances are mediated by one or the
other circular polarizations of the transverse electric field. The whistler wave is
circularly polarized in the same sense of rotation as is the gyro-motion of electrons,
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which means that only the n =1 resonance is active for purely parallel propagation.
Thus, for the low-frequency whistler wave (w < w.) only counter-propagating electrons
can be resonant, and since the wave phase velocity is positive, energy will flow from
particles to fields only if the perpendicular temperature of these counter-propagating
electrons is greater than parallel temperature. This is the mechanism of the heat flux
instability studied extensively by Gary (Gary et al. 1975; Gary 1985). To tap the
energy of the forward-propagating hot electrons it is necessary to consider off-angle
propagation, for which the transverse wave electric field becomes elliptically polarized
and non-zero Larmor radius effects enter. Both of these effects activate the n = —1
resonance and energy can be transferred from electrons to fields as the electrons
lower their energy while increasing their perpendicular momentum in the presence of
a wave with a positive phase velocity (Kennel 1966).

In our simulations the mechanism of excitation of the parallel-propagating whistler
wave, once the Weibel has stabilized, is by the growth of hot electrons driven by
obliquely propagating whistlers excited through the anomalous Doppler resonance. The
oblique whistlers then nonlinearly couple to the weakly damped parallel-propagating
whistler wave, which grows with a wavelength determined by the condition that its
group velocity is sufficiently small so that the wave remains close to the point of
injection of the electron beam. This situation arises specifically in our simulations
due to the fact that the beam is continually injected from one end. In support of
this point we note that if we increase the magnetic field in our simulation to a value
w./w,e = 1.0 the whistler wave does not form. We attribute this to the increased
longitudinal group velocity of the whistler so that the stagnation structure is no longer
stationary in the simulation frame.

In order to investigate the beam dynamics theoretically we have performed a linear
stability analysis based on solution of the linearized, relativistic Vlasov equation
coupled with Maxwell’s equations (Ichimaru 1973). This system leads to a 3 x 3
tensor equation for the components of the electric field. The vanishing of the
determinant of the tensor gives rise to a dispersion relation,

|c2k* — w’D — ¢*kk| = 0. (3.2)

In forming the tensor D we assume that there are two populations of electrons (hot
and cold) having different drift velocities and temperatures. To help in the evaluation
of the elements of the tensor D we use a simplified relativistic Maxwell’s distribution
(Watson, Bludman & Rosenbluth 1960; Hao er al. 2009),

A (p—p) (33)
2me yx TY 2me Vs3 TX‘ ' ’

ﬁ)s(p) = @ exXp

s
‘.Ttme)/xs/3 T,)3/?

Here, the quantities y,7; and y>T, represent perpendicular and parallel temperatures
of species s, and n; and p, are the species density and mean parallel momentum. The
advantage of using this distribution is that the elements of D can be approximated
using the familiar non-relativistic plasma dispersion function, and using modified
Bessel functions to account for non-zero Larmor radius effects. Details of the
evaluations may be found in the references Watanabe (1991) and Hao et al. (2009).

Solving (3.2) numerically, we obtain the growth rate, Im[w], of the most unstable
mode as a function of wave vector (k,, k). These results are plotted as false
colour images in figure 3 for the case of (a) w./w, = 0.01, (b) w./wy = 0.3
and (¢) w./w,. =0.7. In the three cases the parameters of the electron beam, such as
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FIGURE 3. Growth rates of theoretically predicted unstable modes in two-dimensional
wavenumber space for different external magnetic fields, w./w,. = (a) 0.01, (b) 0.30 and
(c¢) 0.70, and (d) growth rate and frequency of oblique whistler versus k, for selected
values of k, for parameters of case (b).

the drift velocity, temperature and density are the same as those in figures 1 and 2.
The drift velocity and the number density of the background electrons are determined
by the charge and current neutrality conditions. We then pick the parameters for
the simplified distribution, equation (3.3), to populate a range of parallel momentum
similar to what is observed in the simulation, specifically we use y, = 2, which
corresponds to p, = 1.9m,c.

The beam temperature and the background electron temperature are set to be
100 keV and 10 keV, respectively. These values are the same as in the simulation
runs.
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FIGURE 4. Temporal evolution of the spatial spectrum of the out-of-plane magnetic field
in the case of w./w,, =0.3, which are obtained by Fourier transform in the domain 50 <
z/d, < 175.

As shown in figure 3 there are unstable modes occupying different regions of
wavenumber space. One mode occupies a region of wavenumber space with growth
rate maximum for ck,/w,.~1.3 and k. =0, and is identified as a two-stream instability.
The phase velocity of the mode with peak growth rate is found to be w/k, = 0.7c.
Thus, the mode is in Cherenkov resonance with the hot electrons. This mode is
suppressed but not eliminated by the applied magnetic field. Instability also appears
in the region where ck, < w,, and ck, ~ w,,. Two different mode types are present,
depending on the strength of the magnetic field. For low magnetic field values, as
in figure 3(a), growth is peaked at k, = 0 and the real part of the mode frequency
is small. We identify this mode as the Weibel instability. For larger magnetic field
values, as indicated in figure 3(b), the Weibel instability is suppressed. However,
growth occurs for values of wavenumber ck,/w,. ~ 0.1 and ck,/w,. =0.5. A plot of
the real frequency and growth rate of this mode is shown in figure 3(d) and indicates
that the mode is an off-angle whistler wave as described by (2.2). It has a maximum
growth rate in the range 0.0lw,. and a real frequency in approximate agreement with
the dispersion curves in figure 3(d). One thing to note from figure 3(d) is that the
group velocity in the transverse direction for the off-angle whistler wave is small.

We note that for the large beam speed, uy = 0.95¢, considered here, the two-stream
and Weibel/whistler mode branches are completely separated in wavenumber space,
and the two-stream growth is confined to small transverse wavenumbers. For other
parameters, specifically lower beam speeds, a different class of modes, ‘oblique
modes’, has been found (Bret, Firpo & Deutsch 2004, 2005; Taguchi et al. 2004),
for which two-stream growth extends to large transverse wavenumber. The method
we use here, in particular (3.2), returns these modes when the appropriate beam and
plasma parameters are imposed.

In order to further investigate the interaction of unstable modes in the simulation,
we have performed spatial, two-dimensional Fourier transforms of the out-of-
plane magnetic field B, in the region near the beam entrance (50 < z/d, < 175).
Figure 4(a—d) shows the results for the case of w./w, = 0.3 at different times in
the simulation. As shown in figure 4(a,b), longitudinal unstable modes (ck,/w,. ~ 1)
grow during the first stage. (While the spectrum of longitudinal modes appears to
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FIGURE 5. Transverse system size dependence of the flux of positively propagating beam
electrons at z/d, =400 in the case of w./w,, =0.3.

be peaked off axis, k, # 0, it must be recalled that we are plotting the out of plane
magnetic field spectral density, which carries an additional factor k? relative to the
longitudinal electric field spectral density.) These modes generate a large modulation
in the beam density, and the nonlinear coupling generates higher harmonic modes as
shown in figure 4(b).

Figure 4(b) shows the emergence at small longitudinal wavenumber (ck./w,. ~0.1)
of disturbances that we interpret to be the off-angle whistler waves. These modes
grow slowly and begin to dominate the longitudinal modes as shown in figure 4(c).
By the time of figure 4(d), the original longitudinal modes are no longer discernible
and the spectrum of fluctuations has condensed into a peaked distribution at small
wavenumbers corresponding to the fields in figure 2.

The role of fields with transverse structure and associated mode couplings can
be examined by varying the transverse size of the simulation domain. We note
that the whistler mode that grows to stop the beam has essentially zero transverse
wavenumber. However, whether or not it appears depends on the transverse size of
the simulation domain. Figure 5 shows the dependence of the flux ratio, Ry, (flux of
hot electrons leaving on the right to flux entering on the left) on the transverse size of
the simulation box, L./d, for the case of w./wp =0.3. The flux ratio is unity in the
absence of the large amplitude whistler wave. The figure shows that as the transverse
dimension is increased, the flux ratio drops, indicating the effect of fields with
transverse structure on the growth of the longitudinal whistler wave. The ratio stops
changing when L./d, > 50, which corresponds to about 2.5 pwm for ny = 10 ¢cm~3,
and indicating that the fields have important spectral content for k.d, > 0.02. This
result further supports contention that the generation of the obliquely propagating
modes plays a crucial role for the amplification of the large whistler wave.

4. Conclusion

In conclusion, we have found that a beam of energetic electrons in a strong
magnetic field can drive up a large amplitude, linearly stable whistler wave through
the excitation and nonlinear coupling of obliquely propagating whistler waves. The
parallel-propagating wave grows until the electron beam is reflected. This mechanism
is likely to be important to efforts to collimate hot electrons in fast ignition fusion
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experiments. It may also be important in a wide range of space and astrophysical
plasma settings. The role of this phenomenon in the generation of collisionless shocks
will be of particular interest (Riquelme & Spitkovsky 2011; Fiuza er al. 2012).

The results presented here are for a beam temperature, 100 keV, which may be an
underestimate of the temperature in fast ignition experiments. In the case of higher
temperatures, that is, more than 1 MeV, the growth rate of the Weibel instability
decreases but does not vanish (Fiuza et al. 2012). Thus, a more extensive parameter
scan is needed to apply our results directly to fast ignition experiments. However,
the growth of the off-axis whistlers, and the stagnation induced by the vanishing of
the group velocity of the longitudinal whistler wave are basic effects that can be
expected to be important in a variety of settings.
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