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1. Introduction

In 1903, Hilbert [4] introduced a ring of formal Laurent series with a skewed or
twisted multiplication to show the existence of a non-commutative ordered division
ring. Nowadays, the rings and their corresponding multiplication are thus referred to
as skew or twisted Laurent series rings and Hilbert’s twist [6], respectively. Thirty
years later, Ore [12] initiated the study of what he called ‘non-commutative polynomial
rings’, today more commonly known as Ore extensions. Since their introductions, skew
Laurent series rings, Ore extensions and the closely related skew Laurent polynomial rings
have been studied quite extensively (see e.g. [3, 6, 7] for comprehensive introductions).
Moreover, some years ago, Nystedt, Öinert and Richter [10] introduced a non-associative
generalization of Ore extensions.
In this article, we introduce a non-associative generalization of skew Laurent poly-

nomial rings and characterize when such rings are simple. Thereby, we extend results
on simplicity of skew Laurent polynomial rings by Jordan [5] (see Theorem 2.3) and
Voskoglou [14] (see Theorem 2.4) to the non-associative setting (Theorem 4.1 and
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Theorem 4.2, respectively). Moreover, our construction of non-associative skew Laurent
polynomial rings is a generalization of that by Nystedt and Öinert [9], and we obtain a
generalization (Theorem 4.2) of a simplicity result by them (see Theorem 2.2).
The article is organized as follows:
In § 2, we provide conventions and preliminaries from non-associative ring theory

(§ 2.1). We also recall some results about graded non-associative rings (§ 2.2) and remind
what skew Laurent polynomial rings are (§ 2.3).
In § 3, we introduce non-associative skew Laurent polynomial rings and examples

thereof.
In § 4, we characterize when non-associative skew Laurent polynomial rings are simple.

We then apply our results to the examples introduced in § 3.

2. Preliminaries

2.1. Non-associative ring theory

We denote by N the natural numbers, including zero. By a non-associative ring, we
mean a unital ring which is not necessarily associative. If R is a non-associative ring,
by a left R-module, we mean an additive group M equipped with a biadditive map
R ×M → M , (r,m) 7→ rm for any r ∈ R and m ∈ M . A subset B of M is a basis if for
any m ∈ M , there are unique rb ∈ R for b ∈ B, such that rb = 0 for all but finitely many
b ∈ B, and m =

∑
b∈B rbb. A left R-module that has a basis is called free.

For a non-associative ring R, the commutator is the function [·, ·] : R×R → R defined
by [r, s] = rs − sr for any r, s ∈ R. The commuter of R, denoted by C (R), is the
additive subgroup {r ∈ R : [r, s] = 0 for all s ∈ R} of R. The associator is the function
(·, ·, ·) : R × R × R → R defined by (r, s, t) = (rs)t − r(st) for all r, s, t ∈ R. Using
the associator, we define three sets: the left nucleus of R, Nl(R) := {r ∈ R : (r, s, t) =
0 for all s, t ∈ R}, the middle nucleus of R, Nm(R) := {s ∈ R : (r, s, t) = 0 for all r, t ∈ R},
and the right nucleus of R, Nr(R) := {t ∈ R : (r, s, t) = 0 for all r, s ∈ R}. From the
so-called associator identity

u(r, s, t) + (u, r, s)t+ (u, rs, t) = (ur, s, t) + (u, r, st)

which holds for all r, s, t, u ∈ R, it follows that Nl(R), Nm(R) and Nr(R) are all associa-
tive subrings of R. We also define the nucleus of R, N(R) := Nl(R) ∩ Nm(R) ∩ Nr(R),
and the centre of R, Z(R) := C(R) ∩N(R).
The next two propositions are standard results in non-associative ring theory (see, e.g.,

the proofs of [10, Proposition 2.1 and Proposition 2.3]).

Proposition 2.1. Let R be a non-associative ring. Then the following equalities hold:

(i) Z(R) = C(R) ∩Nl(R) ∩Nm(R);
(ii) Z(R) = C(R) ∩Nl(R) ∩Nr(R);
(iii) Z(R) = C(R) ∩Nm(R) ∩Nr(R).

Proposition 2.2. If R is a simple non-associative ring, then Z(R) is a field.
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Let R be a non-associative ring. Take u ∈ R. Recall that u is said to be left (right)
invertible if there is v ∈ R (w ∈ R) such that vu =1 (uw =1); in that case v (or w) is
called a left (or right) inverse of u. We let R× denote the set of elements of R that are
both left and right invertible.

Remark 2.1. Suppose u ∈ Nm(R) ∩ R×. It is easy to show that u has a unique left
inverse v, u has a unique right inverse w and v =w. We let u−1 denote the element v =w.

The following small result should be known. However, we have not been able to find a
reference, and so we provide a proof of it.

Lemma 2.1. Let R be a non-associative ring and let u ∈ Nm(R) ∩ R×. Then the
following assertions hold:

(i) If u ∈ Nl(R), then u−1 ∈ Nl(R);
(ii) If u ∈ Nr(R), then u−1 ∈ Nr(R);
(iii) If u ∈ Nr(R) and

(
u, u−1, R

)
= {0}, then u−1 ∈ Nm(R) ∩Nr(R).

Proof. Let r, s ∈ R and u ∈ Nm(R) ∩ R×. By Remark 2.1, u has a unique two-sided
inverse u−1, so the statement makes sense. Now we have the following:

(i) Let u ∈ Nl(R). Then

u−1(rs) = u−1
(((

uu−1
)
r
)
s
)
= u−1

((
u
(
u−1r

))
s
)
= u−1

(
u
((
u−1r

)
s
))

=
(
u−1u

) ((
u−1r

)
s
)
=

(
u−1r

)
s.

(ii) Let u ∈ Nr(R). Then

r
(
su−1

)
=

(
r
(
su−1

)) (
uu−1

)
=

((
r
(
su−1

))
u
)
u−1 =

(
r
((
su−1

)
u
))

u−1

=
(
r
(
s
(
u−1u

)))
u−1 = (rs)u−1.

(iii) Let u ∈ Nr(R) and (u, u−1, R) = {0}. By (ii), u−1 ∈ Nr(R), and

r
(
u−1s

)
=

(
r
(
u−1u

)) (
u−1s

)
=

((
ru−1

)
u
) (

u−1s
)
=

(
ru−1

) (
u
(
u−1s

))
=

(
ru−1

) ((
uu−1

)
s
)
=

(
ru−1

)
s.

�

For a general introduction to non-associative algebra, see, e.g., Schafer’s book [13].

2.2. Graded non-associative rings

In [9], Nystedt and Öinert study group-graded non-associative rings. Recall that a
non-associative ring R is said to be graded by a group G, or G-graded, if there is a
collection of additive subgroups {Rg}g∈G of R, called homogenous components, such that
R =

⊕
g∈G Rg and RgRh ⊆ Rgh hold for all g, h ∈ G. An ideal I of R is called graded if
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I =
⊕

g∈G I ∩ Rg. The ring R is said to be graded simple if the only graded ideals of R
are {0} and R. The group G is called hypercentral if every non-trivial factor group of G
has a non-trivial centre. In particular, all abelian groups are hypercentral.
With the terminology introduced above, the authors then prove the following theorem:

Theorem 2.1 ([9, Theorem 4]). If a non-associative ring is graded by a hypercentral
group, then the ring is simple if and only if it is graded simple and the centre of the ring
is a field.

If R is a G-graded non-associative ring, then we define Supp(R) := {g ∈ G : Rg 6= {0}}.
The ring R is said to be faithfully G-graded if for any g, h ∈ Supp(R) and non-zero r ∈ Rg,
we have rRh 6= {0} 6= Rhr. Denoting the identity element of G by e, the authors then
use Theorem 2.1 to prove the following result:

Corollary 2.1 ([9, Corollary 32]). If R is a faithfully G-graded ring with Supp(R) =
G, where G is a torsion-free hypercentral group, then R is simple if and only if R is graded
simple and Z(R) ⊆ Re holds.

Let σ1, . . . , σn be automorphisms of R. We say that an ideal I of R is a (σ1, . . . , σn)-
ideal if σi(I) = I holds for any i ∈ {1, . . . , n}. Moreover, R is said to be (σ1, . . . , σn)-
simple if {0} and I are the only (σ1, . . . , σn)-ideals of R. Note that the definition of
(σ1, . . . , σn)-simplicity in [9] contains a mistake and should be the same as the one just
given, which has also been confirmed by its authors. In loc. cit., non-associative skew
Laurent polynomial rings are then introduced as a class of non-associative skew group
rings. With the corrected definition of (σ1, . . . , σn)-simplicity above, the authors then
prove the following theorem:

Theorem 2.2 ([9, Theorem 52]). Let R be a non-associative ring with pairwise
commuting automorphisms σ1, . . . , σn. Then R[X±

1 , . . . , X±
n ;σ1, . . . , σn] is simple if and

only if R is (σ1, . . . , σn)-simple and there do not exist u ∈ N(R)× and a non-zero
(m1, . . . ,mn) ∈ Zn, such that for all r ∈ R and i ∈ {1, . . . , n}, the following equalities
hold:

(i) (σ
m1
1 ◦ · · · ◦ σmn

n )(r) = u−1ru;
(ii) σi(u) = u.

In § 3, we will generalize the above construction of non-associative skew Laurent
polynomial rings, and in § 4, prove that a generalization of Theorem 2.2 holds for them.

2.3. Skew Laurent polynomial rings

Let us recall the definition of (associative) skew Laurent polynomial rings.

Definition 2.1 (Skew Laurent polynomial ring). Let S be a ring, R a subring of
S containing the multiplicative identity element 1 and x ∈ S×. Then S is called a skew
Laurent polynomial ring of R if the following axioms hold:

(S1) S is a free left R-module with basis {1, x, x−1, x2, x−2, . . .};
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(S2) xR=Rx;
(S3) S is associative.

To construct skew Laurent polynomial rings, one considers generalized Laurent polyno-
mial rings R[X±;σ] where R is an associative ring and σ : R → R is an automorphism.
As an additive group, R[X±;σ] equals the ordinary Laurent polynomial ring R[X±]. The
multiplication in R[X±;σ] is then defined by the biadditive extension of the relations

(rXm) (sXn) = (rσm(s))Xm+n (2.1)

for any r, s ∈ R and m,n ∈ Z. In particular, the product (2.1) makes R[X±;σ] a Z-
graded ring and a Laurent polynomial ring of R with x =X (see, e.g., the proof of
Proposition 3.2). Moreover, every skew Laurent polynomial ring of R is isomorphic to a
generalized Laurent polynomial ring R[X±;σ] (see, e.g., the proof of Proposition 3.3).
The next theorem, due to Jordan [5], characterizes when generalized Laurent polyno-

mial rings are simple:

Theorem 2.3 ([5, Theorem O]). Let R be an associative ring with a ring automor-
phism σ. Then R[X±;σ] is simple if and only if R is σ-simple and there do not exist
u ∈ R× and a non-zero n ∈ Z, such that for all r ∈ R, the following equalities hold:

(i) σn(r) = u−1ru;
(ii) σ(u) = u.

If σ1, . . . , σn are pairwise commuting automorphisms, then we may construct an iter-
ated generalized Laurent polynomial ring of R as follows (see also Exercise 1W in [3]).
First, we set S1 := R[X±

1 ;σ1]. Then σ2 extends to a ring automorphism σ̂2 on S 1, defined
by σ̂2(rX

m
1 ) = σ2(r)X

m
1 for any m ∈ Z. Next, we set S2 := S1[X

±
2 ; σ̂2]. Once Si has been

constructed for some i <n, we define Si+1 := Si[X
±
i+1; σ̂i+1] where σ̂i+1 is the ring auto-

morphism on Si defined by σ̂i+1(rX
m1
1 · · ·Xmn

n ) = σi+1(r)X
m1
1 · · ·Xmn

n . We may now
construct an iterated generalized Laurent polynomial ring R[X±

1 ;σ1] · · · [X±
n ; σ̂n], which

we denote by R[X±
1 , . . . , X±

n ;σ1, . . . , σn].
Voskoglou [14] has generalized Theorem 2.3 and characterized when iterated general-

ized Laurent polynomial rings are simple:

Theorem 2.4 ([14, Corollary 3.7]). Let R be an associative ring with pairwise com-
muting automorphisms σ1, . . . , σn. Then R[X±

1 , . . . , X±
n ;σ1, . . . , σn] is simple if and only

if R is (σ1, . . . , σn)-simple and there do not exist u ∈ R× and a non-zero (m1, . . . ,mn) ∈
Zn, such that for all r ∈ R and i ∈ {1, . . . , n}, the following equalities hold:

(i) (σ
m1
1 ◦ · · · ◦ σmn

n )(r) = u−1ru;
(ii) σi(u) = u.

We note that Theorem 2.4 is the special case of Theorem 2.2 when R is associative.

https://doi.org/10.1017/S0013091524000683 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000683
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3. Non-associative skew Laurent polynomial rings

We wish to define non-associative skew Laurent polynomial rings in an analogous fashion
to how non-associative Ore extensions in [10] are defined; hence, we follow the same
line of reasoning as in loc. cit. First, we note that the product (2.1) equips the additive
group R[X±;σ] of generalized Laurent polynomials over any non-associative ring R with
a non-associative ring structure for any additive bijection σ on R respecting 1. In order
to define non-associative skew Laurent polynomial rings, we, therefore, wish to adopt the
axioms (S1), (S2) and (S3) so that these rings still correspond to the above generalized
Laurent polynomial rings. We suggest the following definition:

Definition 3.1 (Non-associative skew Laurent polynomial ring). Let S be a
non-associative ring, R a subring of S containing the multiplicative identity element 1
and x ∈ S×. Then S is called a non-associative skew Laurent polynomial ring of R if the
following axioms hold:

(N1) S is a free left R-module with basis {1, x, x−1, x2, x−2, . . .};
(N2) xR=Rx;
(N3) (S, S, x) = (S, x, S) = {0}.

Note that x−1 in the above definition does indeed exist by (N3) and Remark 2.1.
Moreover, (N3) together with (ii) in Lemma 2.1 ensure that the elements x and x−1 are
power associative, so that xm is well-defined for any m ∈ Z.
Let R be a non-associative ring. We denote byR[X±; ] the set of formal sums

∑
i∈Z riX

i

where ri ∈ R is zero for all but finitely many i ∈ Z, equipped with pointwise addition.
Now, let σ be an additive bijection on R respecting 1. The generalized Laurent polynomial
ring R[X±;σ] over R is defined as the additive group R[X±] with multiplication defined
by (2.1). One readily verifies that this makes R[X±;σ] a Z-graded non-associative ring.

Remark 3.1. If R is a non-associative ring with an additive bijection σ that respects
1, then R[X±;σ] is a so-called Ore monoid ring R[G;π] as introduced in [11]. Here G = Z
and π = {πa

b }a,b∈G where πa
b = σa if a = b and πa

b = 0 otherwise.

Proposition 3.1. Let R be a non-associative ring with an additive bijection σ that
respects 1. If S = R[X±;σ], then Xn ∈ Nm(S) ∩Nr(S) for any n ∈ Z.

Proof. This is a special case of [11, Proposition 3]. �

Proposition 3.2. Let R be a non-associative ring with an additive bijection σ that
respects 1. Then R[X±;σ] is a non-associative skew Laurent polynomial ring of R with
x=X.

Proof. R[X±;σ] is clearly a non-associative ring, and R can be identified with a
subring of R[X±;σ] that contains the multiplicative identity element. X has a two-
sided inverse, and so we only need to verify that the axioms (N1), (N2) and (N3) hold.
For the proof that (N1) holds, we refer the reader to the proof of [10, Proposition 3.2]
which is nearly identical. For (N2), we have XR = (1X)

(
RX0

)
= σ(R)X ⊆ RX and
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RX = σ
(
σ−1(R)

)
X = (1X)

(
σ−1(R)X0

)
= Xσ−1(R) ⊆ XR. That (N3) holds follows

from Proposition 3.1. �

Proposition 3.3. Every non-associative skew Laurent polynomial ring of R is
isomorphic to a generalized Laurent polynomial ring R[X±;σ].

Proof. The proof is similar to the proof of [10, Proposition 3.3]. However, computa-
tions are a bit more involved, and hence we provide it here for the convenience of the
reader.
Let R be a non-associative ring, S a skew Laurent polynomial ring of R defined by x,

and r, s ∈ R. Then, from (N1) and (N2), xr = σ(r)x for some unique coefficient σ(r) ∈ R.
Moreover, from (N2), rx = xσ(r) for some σ(r) ∈ R, and since x ∈ Nm(S) from (N3),
x−1(rx) = x−1(xσ(r)) = (x−1x)σ(r) = 1σ(r) = σ(r)1. Using (N1), σ(r) is then unique,
and hence σ and σ define functions σ : R → R and σ : R → R. We have rx = xσ(r) =
σ(σ(r))x, and so by (N1), σ ◦ σ = idR. We also have that xr = σ(r)x = xσ(σ(r)). Using
that x ∈ Nm(S), r = (x−1x)r = x−1(xr) = x−1(xσ(σ(r))) = (x−1x)σ(σ(r)) = σ(σ(r)).
Hence σ ◦ σ = idR, and so we can conclude that σ is bijective with σ−1 = σ. Since
rx = xσ−1(r), we have (x−1r)x = x−1(rx) = x−1(xσ−1(r)) = (x−1x)σ−1(r) = σ−1(r)
and therefore x−1r = (x−1r)(xx−1) = ((x−1r)x)x−1 = σ−1(r)x−1. Now, on the one hand
x(r + s) = σ(r + s)x, and on the other hand, x(r + s) = xr + xs = σ(r)x + σ(s)x by
distributivity. Hence, by (N1), σ is additive. Since the multiplicative identity element in
R is the multiplicative identity element 1 in S by assumption, 1x = x1 = σ(1)x, and so
by (N1), σ(1) = 1.
We claim that (rxm) (sxn) = (rσm(s))xm+n for any m,n ∈ Z. To prove

this, as an intermediate step, let us first show that x(x−1u) = u for any u ∈
S. Indeed, by (N1), we may set u =

∑
i∈Z uix

i for some ui ∈ R. Then

x(x−1u) = x
(
x−1

(∑
i∈Z uix

i
))

= x
(∑

i∈Z x
−1(uix

i)
)

= x
(∑

i∈Z(x
−1ui)x

i
)

=

x
(∑

i∈Z(σ
−1(ui)x

−1)xi
)

= x
(∑

i∈Z σ
−1(ui)(x

−1xi)
)

= x
(∑

i∈Z σ
−1(ui)x

i−1
)

=∑
i∈Z x(σ

−1(ui)x
i−1) =

∑
i∈Z(xσ

−1(ui))x
i−1 =

∑
i∈Z(uix)x

i−1 =
∑

i∈Z uix
i = u. Since

x ∈ Nm(S) ∩ Nr(S) by assumption, from (iii) in Lemma 2.1, it now follows that
x−1 ∈ Nm(S) ∩ Nr(S). Recall from § 2.1 that Nm(S) and Nr(S) are rings, and hence
they are closed under multiplication. Therefore xn ∈ Nm(S) ∩Nr(S) for any n ∈ Z.
Now, let us return to the proof of the equality (rxm) (sxn) = (rσm(s))xm+n for any

m,n ∈ Z. First, we prove by induction on m that xms = σm(s)xm. The base case m =0 is
immediate. We now split the induction step into two cases. First, assume that m ≤ 0 and
set p = −m. We have x−(p+1)s = xm−1s = (xmx−1)s = xm(x−1s) = xm(σ−1(s)x−1) =
(xmσ−1(s))x−1 = (σm(σ−1(s))xm)x−1 = σm−1(s)xm−1 = σ−(p+1)(s)x−(p+1), which
completes the negative part of the induction step. Now assume thatm ≥ 0. Then xm+1s =
(xmx)s = xm(xs) = xm(σ(s)x) = (xmσ(s))x = (σm(σ(s))xm)x = σm+1(s)xm+1, which
completes the positive part of the induction step. Since xm, xn ∈ Nm(S) ∩ Nr(S), we
get (rxm)(sxn) = r(xm(sxn)) = r((xms)xn) = r((σm(s)xm)xn) = r(σm(s)(xmxn)) =
r(σm(s)xm+n) = (rσm(s))xm+n.
Last, define a function f : S → R[X±;σ] by the additive extension of the relations

f(rxm) = rXm for any r ∈ R and m ∈ Z. Then f is an isomorphism of additive groups,
and moreover, for any r, s ∈ R and m,n ∈ Z, f ((rxm) (sxn)) = f ((rσm(s))xm+n) =
(rσm(s))Xm+n = (rXm) (sXn) = f (rxm) f (sxn). �
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Proposition 3.4. Let R be a non-associative ring with an additive bijection σ that
respects 1. If S = R[X±;σ], then

(i) R ⊆ Nl(S) if and only if R is associative;
(ii) X ∈ Nl(S) if and only if σ is an automorphism;
(iii) S is associative if and only if R is associative and σ is an automorphism.

Proof.

(i) This follows from [11, Proposition 7].
(ii) By [11, Proposition 7], we know that (X,S, S) ⊆ (X,R,R)S. So it is enough to

prove that (X,R,R) = {0} if and only if σ is an automorphism. However, if r, s ∈ R,
then the condition X(rs) = (Xr)s is clearly equivalent to σ(rs) = σ(r)σ(s).

(iii) The conditions are clearly necessary. Conversely, if they are satisfied then also
X−1 ∈ N(S), so S is generated by elements that belong to N (S ) and must be
associative.

�

Example 3.1. On the ring C we can define σq(a+ bi) = a+ qbi for any a, b ∈ R and
q ∈ R×. Then σq is an additive bijection that respects 1, and we can accordingly define
C[X±;σq]. Moreover, σq is a ring automorphism if and only if q = ±1, and so by (iii) in
Proposition 3.4, C[X±;σq] is associative if and only if q = ±1.

Example 3.2. Let T be a non-associative ring and let q ∈ Z(T )×. Define a ring
automorphism σq : T [Y

±] → T [Y ±] by the T -algebra extension of the relation σq(Y ) =
qY . The non-associative quantum torus over T is the generalized Laurent polynomial
ring T [Y ±][X±;σq]. By (iii) in Proposition 3.6, T [Y ±][X±;σq] is associative if and only
if T is associative.

Example 3.3. Let f : N → N be any bijection with f(0) = 0. Suppose K is a field
and put R = K[[Y ]]. Let σ be the additive bijection on R defined by the K -linear and
continuous (in the usual topology of formal power series rings) extension of the relations
σ(Y n) = Y f(n), if n 6=1, and σ(Y ) = Y f(1)+1. Note that σ respects 1 and is well-defined
since limn→∞ f(n) = ∞. However, σ is not a ring homomorphism since σ(Y 2) = Y f(2)

but σ(Y )2 = (Y f(1) + 1)2 = Y 2f(1) + 2Y f(1) + 1 6= Y f(2). By (iii) in Proposition 3.6,
R[X±;σ] is not associative. Later (see (iii) in Corollary 4.2) we will use a specific choice
of bijection denoted by g and defined by

g(n) =


0 if n = 0,

2k if n = 2k+1 for some k ∈ N,
min{j ∈ N : j > n and j is not a power of 2} otherwise.

Hence g(1) = 3, g(2) = 1, g(3) = 5 and so on. We denote the corresponding additive
bijection by σg.

Recall that a ring anti-automorphism σ on a non-associative ring R is an additive
bijection such that for any r, s ∈ R, σ(rs) = σ(s)σ(r). In particular, σ(1)σ(r) = σ(r1) =
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σ(r) = σ(1r) = σ(r)σ(1), so by the uniqueness of 1, σ(1) = 1. Hence any ring anti-
automorphism σ on R naturally gives rise to a generalized Laurent polynomial ring
R[X±;σ].

Lemma 3.1. Let R be a non-associative ring with a ring anti-automorphism σ. Then
R[X±;σ] is associative if and only if R is associative and commutative.

Proof. By (iii) in Proposition 3.6, R[X±;σ] is associative if and only if R is associative
and σ is a ring automorphism. We claim that σ is a ring automorphism if and only if R
is commutative. It is clear that σ is a ring automorphism if R is commutative. To prove
the converse, assume that σ is a ring automorphism. For any r, s ∈ R, r = σ(rprime)
and s = σ(sprime) for some rprime, sprime ∈ R. Since σ is both a ring automor-
phism and a ring anti-automorphism, rs = σ(rprime)σ(sprime) = σ(rprimesprime) =
σ(sprime)σ(rprime) = sr. �

Example 3.4. Let R be a non-associative ring and let σ be any of the n!(n2 − n)!
maps on the non-associative matrix ring Mn(R) defined by permuting diagonal and non-
diagonal elements separately. Then σ is an additive bijection that respects 1, and so we
can define Mn(R)[X±;σ]. As a concrete example, one could, e.g., take σ to be matrix
transpose, σT. Since σT is an anti-automorphism, by Lemma 3.1, Mn(R)[X±;σT ] is
associative if and only if n =1 and R is commutative, or if R is the zero ring.

Let K be an associative and commutative ring, and let A be a non-associative K -
algebra. Recall that an involution of A is a K -linear map ∗ : A → A, also written a 7→ a∗,
such that (ab)∗ = b∗a∗ and (a∗)∗ = a hold for any a, b ∈ A. In particular, ∗ is an
anti-automorphism. A non-associative algebra with an involution ∗ is referred to as a non-
associative ∗-algebra (for an introduction to ∗-algebras, see e.g. [8, Section 2.2]). If A is a
non-associative ∗-algebra, then A naturally gives rise to a generalized Laurent polynomial
ring A[X±; ∗], which by Lemma 3.10 is associative if and only if A is associative and
commutative.

Example 3.5. Mn(C) with ∗ given by conjugate transpose is an associative ∗-algebra
over R which is commutative if and only if n =1. Hence, by Lemma 3.10, Mn(C)[X±; ∗]
is associative if and only if n =1 (in which case we get the ring C[X±;σq] with q = −1
in Example 3.1).

Starting from any non-associative ∗-algebra, the so-called Cayley–Dickson construction
gives a new non-associative ∗-algebra. In particular, by starting from the real numbers
viewed as a real ∗-algebra with ∗ = idR and then repeatedly applying the Cayley–Dickson
construction, we get the following real, non-associative ∗-algebras where ∗ is given by
conjugation: the complex numbers, the quaternions (H), the octonions (O) and so on.
For more details on this construction, see e.g. [1].

Example 3.6. Let A be any of the real, non-associative ∗-algebras R,C,H, . . . with ∗
given by conjugation. Then A is commutative if and only if A = R or C. By Lemma 3.10,
A[X±; ∗] is associative if and only if A = R or C.
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4. Simplicity

In this section, we examine when generalized Laurent polynomial rings are simple. If R
is a non-associative ring with additive bijections σ1, . . . , σn that respect 1, then, just as
in the case of automorphisms in § 2.2, an ideal I of R is said to be a (σ1, . . . , σn)-ideal
if σi(I) = I holds for all i ∈ {1, . . . , n}. The ring R is called σ-simple if {0} and I are
the only (σ1, . . . , σn)-ideals of R. Also recall from § 2.2 that an ideal I of a G-graded
ring R =

⊕
g∈G Rg is called graded if I =

⊕
g∈G I ∩Rg, and that R is said to be graded

simple if the only graded ideals of R are {0} and R.
With R[X±;σ] viewed as a Z-graded ring, we have the following result:

Proposition 4.1. Let R be a non-associative ring with an additive bijection σ that
respects 1. Then R[X±;σ] is graded simple if and only if R is σ-simple.

Proof. If I is a proper non-zero σ-ideal of R, then the elements in S := R[X±;σ] with
coefficients from I form a proper, non-zero graded ideal of S.
Conversely, suppose that R is σ-simple. If I is a non-zero graded ideal of S, then it

has non-zero intersection with some homogeneous component. The coefficients of that
intersection is a non-zero σ-ideal of R, so I contains Xn for some n ∈ Z. However, then
I contains 1, and we have I =S. �

Proposition 4.2. Let R be a non-associative ring with an additive bijection σ that
respects 1. Then Z(R[X±;σ]) equals the set of elements of the form

∑
i∈Z riX

i, ri ∈
Nm(R) ∩Nr(R), such that for all r ∈ R and i ∈ Z, the following equalities hold:

(i) riσ
i(r) = rri;

(ii) σ(rri) = σ(r)ri.

Proof. Let S = R[X±;σ] and p =
∑

i∈Z riX
i ∈ Z(S). For any r ∈ R,

0 =
[∑

i∈Z riX
i, r

]
=

∑
i∈Z

[
riX

i, r
]
=

∑
i∈Z

(
riX

i
)
r − r

(
riX

i
)

=
∑

i∈Z
(
riσ

i(r)− rri
)
Xi,

so by comparing coefficients,

riσ
i(r) = rri, for any i ∈ Z. (4.1)

Moreover,

0 =
[∑

i∈Z riX
i, X

]
=

∑
i∈Z

[
riX

i, X
]
=

∑
i∈Z

(
riX

i+1 − σ(ri)X
i+1

)
=

∑
i∈Z(ri − σ(ri))X

i+1,

so σ(ri) = ri for any i ∈ Z. Also,

0 =
(
X, r,

∑
i∈Z riX

i
)
=

∑
i∈Z

(
X, r, riX

i
)
=

∑
i∈Z(Xr)

(
riX

i
)
−X

(
r
(
riX

i
))

=
∑

i∈Z(σ(r)X)
(
riX

i
)
− σ(rri)X

i+1 =
∑

i∈Z(σ(r)σ(ri)− σ(rri))X
i+1,
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so σ(rri) = σ(r)σ(ri) for any i ∈ Z. Since σ(ri) = ri, we have

σ(rri) = σ(r)ri, for any i ∈ Z. (4.2)

Last, for any r, s ∈ R,

0 =
(
r,
∑

i∈Z riX
i, s

)
=

∑
i∈Z

(
r, riX

i, s
)
=

∑
i∈Z

(
r
(
riX

i
))

s− r
((
riX

i
)
s
)

=
∑

i∈Z((rri)σ
i(s)− r(riσ

i(s)))Xi,

0 = (r, s,
∑

i∈Z riX
i) =

∑
i∈Z

(
r, s, riX

i
)
=

∑
i∈Z(rs)

(
riX

i
)
− r

(
s
(
riX

i
))

=
∑

i∈Z((rs)ri − r(sri))X
i,

and since σ is surjective, so is σi , and hence

ri ∈ Nm(R) ∩Nr(R). (4.3)

We now prove that the conditions (4.1)–(4.3) are also sufficient. First, we claim that (4.2)
is equivalent to

σj(rri) = σj(r)ri, foranyi, j ∈ Z. (4.4)

By letting j =1, we see that (4.4) implies (4.2). We show the opposite implication by
induction on j. The base case j =0 follows from the definition. We now split the induc-
tion step into two cases. First, assume that j ≥ 0 and that the induction hypothesis
and (4.2) hold. Then σj+1(rri) = σ

(
σj(rri)

)
= σ

(
σj(r)ri

)
= σ

(
σj(r)

)
ri = σj+1(r)ri.

Now assume that j ≤ 0, that the induction hypothesis and (4.2) hold, and set
p = −j. From (4.2), rri = σ−1(σ(r)ri), so σ−1(r)ri = σ−1

(
σ
(
σ−1(r)

)
ri
)
= σ−1(rri).

Hence σ−(p+1)(rri) = σj−1(rri) = σ−1
(
σj(rri)

)
= σ−1

(
σj(r)ri

)
= σ−1

(
σj(r)

)
ri =

σj−1(r)ri = σ−(p+1)(r)ri. Moreover, by letting r =1 in (4.4),

σj(ri) = ri, for any i ∈ Z. (4.5)

Now assume that the conditions (4.1)–(4.3) hold. As noted above, then (4.4) and (4.5) also
hold. We wish to show that

∑
i∈Z riX

i ∈ Z(S). We note that it is sufficient to show that
riX

i ∈ Z(S) for any i ∈ Z. By (iii) in Proposition 2.1, Z(S) = C(S)∩Nm(S)∩Nr(S), so
it is sufficient to show that

[
riX

i, sjX
j
]
=

(
sjX

j , tkX
k, riX

i
)
=

(
sjX

j , riX
i, tkX

k
)
= 0

hold for any sj , tk ∈ R and i, j, k ∈ Z. We have[
riX

i, sjX
j
]
=

(
riX

i
) (

sjX
j
)
−
(
sjX

j
) (

riX
i
)
=

(
riσ

i(sj)− sjσ
j(ri)

)
Xi+j

(4.1)
= (sjri − sjri)X

i+j = 0.

Moreover, for any r, s, t ∈ R and i, j, k ∈ Z,(
rXi, sXj , tXk

)
=

((
rXi

) (
sXj

)) (
tXk

)
−
(
rXi

) ((
sXj

) (
tXk

))
(4.6)

=
((
rσi(s)

)
Xi+j

) (
tXk

)
−
(
rXi

) ((
sσj(t)

)
Xj+k

)
=

((
rσi(s)

)
σi+j(t)− rσi

(
sσj(t)

))
Xi+j+k,
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(
sjX

j , tkX
k, riX

i
) (4.6)

=
((
sjσ

j(tk)
)
σj+k(ri)− sjσ

j
(
tkσ

k(ri)
))

Xi+j+k

(4.5)
=

((
sjσ

j(tk)
)
ri − sjσ

j(tkri)
)
Xi+j+k

(4.4)
=

((
sjσ

j(tk)
)
ri − sj

(
σj(tk)ri

))
Xi+j+k

(4.3)
=

((
sjσ

j(tk)
)
ri −

(
sjσ

j(tk)
)
ri
)
Xi+j+k = 0,(

sjX
j , riX

i, tkX
k
) (4.6)

=
((
sjσ

j(ri)
)
σi+j(tk)− sjσ

j
(
riσ

i(tk)
))

Xi+j+k

(4.5)
=

(
(sjri)σ

i+j(tk)− sjσ
j
(
riσ

i(tk)
))

Xi+j+k

(4.1)
=

(
(sjri)σ

i+j(tk)− sjσ
j(tkri)

)
Xi+j+k

(4.4)
= ((sjri)σ

i+j(tk)− sj
(
σj(tk)ri)

)
Xi+j+k

(4.1)
=

(
(sjri)σ

i+j(tk)− sj
(
riσ

i+j(tk)
))

Xi+j+k

(4.3)
=

(
(sjri)σ

i+j(tk)− (sjri)σ
i+j(tk)

)
Xi+j+k = 0.

�

Using Proposition 4.2, the following result is immediate:

Corollary 4.1. Let R be a non-associative ring with an additive bijection σ that
respects 1. Then Z(R[X±;σ]) ⊆ R holds if and only if there do not exist a non-zero
s ∈ Nm(R) ∩ Nr(R) and a non-zero n ∈ Z, such that for all r ∈ R, the following
equalities hold:

(i) sσn(r) = rs;
(ii) σ(rs) = σ(r)s.

Theorem 4.1 Let R be a non-associative ring with an additive bijection σ that respects
1. Then R[X±;σ] is simple if and only if R is σ-simple and there do not exist u ∈
Nm(R) ∩ Nr(R) ∩ R× and a non-zero n ∈ Z, such that for all r ∈ R, the following
equalities hold:

(i) σn(r) = u−1ru;
(ii) σ(ru) = σ(r)u.

Proof. We note that S := R[X±;σ] is a faithfully Z-graded ring with Supp(S) = Z,
and that Z is a torsion-free hypercentral group. Hence, by Corollary 2.1, Corollary 4.1
and Proposition 4.1, we need only show that if R is σ-simple and there is an s ∈ R
satisfying the conditions in Corollary 4.1, then s belongs to R×. To show this, consider
the ideal I of R generated by s. Since s ∈ Nm(R), we have I =RsR. By using (i) in
Corollary 4.1, we see that I =Rs. Hence, by (ii) in Corollary 4.1, we have σ(I) = I. Since
R is σ-simple and I is non-zero, it follows that I =R, and so there exist t ∈ R such that
ts =1. This implies that sσn(t) = 1 by (i) in Corollary 4.1 and that σn(t)s = 1 by (ii) in
Corollary 4.1, so s ∈ R×. �
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By using the above theorem, we may deduce when the examples in § 3 are simple, and
when they are not.

Corollary 4.2. The following assertions hold:

(i) C[X±;σq] in Example 3.1 is simple if and only if q 6= ±1;
(ii) If T is simple, then the non-associative quantum torus T [Y ±][X±;σq] in

Example 3.2 is simple if and only if q is not a root of unity;
(iii) K[[Y ]][X±;σg] in Example 3.3 is simple;
(iv) Mn(R)[X±;σ] in Example 3.4, Mn(C)[X±; ∗] in Example 3.5 and A[X±; ∗] in

Example 3.6 are not simple.

Proof.

(i) Since C is simple, it is also σq-simple. If q = ±1, then σ2
q = idC, so (i) and (ii)

in Theorem 4.1 hold with u =1. Hence C[X±;σq] is not simple. If q 6= ±1, then
σn
q (r) 6= r = u−1ur = u−1ru for any r ∈ C and u ∈ C×. By Theorem 4.1, C[X±;σq]

is simple.
(ii) The proof is an adaptation of that of [3, Corollary 1.18] to the non-associative

setting. Let R = T [Y ±] and S = R[X±;σq]. If q is a root of unity, say qn = 1 for
some non-zero n ∈ N, then σn

q (Y ) = qnY = Y and σn
q (Y

−1) = q−nY −1 = Y −1, so
σn
q (r) = r for all r ∈ R. Hence (i) and (ii) in Theorem 4.1 hold with u =1, so S is not

simple. Conversely, assume that q is not a root of unity. Let u ∈ Nm(R)∩Nr(R)∩R×

and assume that n ∈ Z is non-zero. Then σn
q (Y ) = qnY 6= Y = u−1uY = u−1Y u,

so (i) in Theorem 4.1 does not hold. We note that by Theorem 4.1, R = T [Y ±; idT ]
is not simple. We claim, however, that it is σq-simple. To this end, let I be a
non-zero σq-ideal of R. We must show that I =R. We observe that I ∩ T [Y ] is
non-zero, and so we can choose a non-zero p ∈ I ∩ T [Y ] of minimal degree, say
p = tmY m + · · · + t0 for some m ∈ N and tm, . . . , t0 ∈ T where tm 6= 0. If we can
show that p = tmY m, then we are done: I∩T is an ideal of T, and if p = tmY m, then
tm = pY −m ∈ I, so I ∩ T is non-zero. Since T is simple, we must have I ∩ T = T .
In particular, 1 ∈ T = I ∩T ⊆ I, so I =R. If m =0, then clearly p = tmY m. Hence,
assume that m is positive. Since I is a σq-ideal, we have σq(p) ∈ I ∩ T [Y ]. Now,
σq(p) = qmtmY m + · · · + t0, and so σq(p) − qmp is in I ∩ T [Y ] and of degree at
most m − 1. By the minimality of m, we must have σq(p)− qmp = 0, from which it
follows that qiti = qmti, that is, (q

m−i− 1)ti = 0, for any i ∈ {1, . . . ,m}. Since q is
not a root of unity, qm−i − 1 is non-zero and therefore an element of Z(T )\{0} for
any i ∈ {1, . . . ,m−1}. By Proposition 2.2, Z (T ) is a field, so qm−i−1 is invertible
for any i ∈ {1, . . . ,m − 1}. In particular, (qm−i − 1)ti = 0 implies ti = 0 for any
i ∈ {1, . . . ,m− 1}. Consequently, p = tmY m.

(iii) Let R = K[[Y ]] where K is a field. Then R is not simple, but we claim it is σg-
simple. To show this, let I be a non-zero ideal of R. It is well-known that I is
generated by some element Ym where m ∈ N. Hence I contains an element Yk,
where k is a power of 2. However, then it follows that if I is σg-invariant, then it
must contain Y, and hence also Y 3. Then 1 = Y 3 + 1− Y 3 = σg(Y )− Y 3 ∈ I, so
I =R.
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Clearly σn
g (Y ) 6= Y = u−1uY = u−1Y u for any u ∈ R× and non-zero n ∈ N. By

Theorem 4.1, R[X±;σ] is simple.
(iv) For Mn(R)[X±;σ] in Example 3.4, σ may be viewed as a permutation on a finite

set, and since any permutation on a finite set has finite order, there is some non-zero
n ∈ Z such that σn = idMn(R). Moreover, for any involution ∗ on a non-associative
ring R, we have ∗2 = idR. Hence we can conclude that for all three examples, (i)
and (ii) in Theorem 4.1 hold with u =1, so the corresponding generalized Laurent
polynomial rings are not simple.

�

Let R be a non-associative ring with pairwise commuting additive bijections σ1, . . . , σn

respecting 1. Then we may construct an iterated generalized Laurent polynomial
ring R[X±

1 ;σ1] · · · [X±
n ; σ̂n], denoted by R[X1, . . . , Xn;σ1, . . . , σn], in the same way as

described in § 2.3. We note that this is a generalization of the non-associative skew
Laurent polynomial rings introduced in [9]; the construction in loc. cit. corresponds
exactly to the case when σ1, . . . , σn are automorphisms. Moreover, we can now formulate
a generalization of Theorem 2.2:

Theorem 4.2 Let R be a non-associative ring with pairwise commuting additive bijec-
tions σ1, . . . , σn respecting 1. Then R[X±

1 , . . . , X±
n ;σ1, . . . , σn] is simple if and only if R

is (σ1, . . . , σn)-simple and there do not exist u ∈ Nm(R) ∩ Nr(R) ∩ R× and a non-zero
(m1, . . . ,mn) ∈ Zn, such that for all r ∈ R and i ∈ {1, . . . , n}, the following equalities
hold:

(i) (σ
m1
1 ◦ · · · ◦ σmn

n )(r) = u−1ru;
(ii) σi(ru) = σi(r)u.

Proof. The proof follows the proof of Corollary 4.1 and Theorem 4.1 closely. First, we
see that the arguments in Proposition 4.2 can easily be adapted to the current case. If
S = R[X±

1 , . . . , X±
n ;σ1, . . . , σn], then it follows immediately that Z(S) ⊆ R holds if and

only if there do not exist a non-zero s ∈ Nm(R)∩Nr(R) and a non-zero (m1, . . . ,mn) ∈
Zn, such that for all r ∈ R and i ∈ {1, . . . , n}, the following equalities hold:

(i) s(σ
m1
1 ◦ · · · ◦ σmn

n )(r) = rs;
(ii) σi(rs) = σi(r)s.

That graded simplicity of S is equivalent to (σ1, . . . , σn)-simplicty of R is clear.
The proof is then finished by an argument similar to the proof of Theorem 4.1. �
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