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RECIPROCAL PROPERTIES OF RANDOM FIELDS ON
UNDIRECTED GRAPHS
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Abstract

We clarify and refine the definition of a reciprocal random field on an undirected graph,
with the reciprocal chain as a special case, by introducing four new properties: the factor-
izing, global, local, and pairwise reciprocal properties, in decreasing order of strength,
with respect to a set of nodes δ. They reduce to the better-known Markov properties if
δ is the empty set, or, with the exception of the local property, if δ is a complete set.
Conditions for each reciprocal property to imply the next stronger property are derived,
and it is shown that, conditionally on the values at a set of nodes δ0, all four properties
are preserved for the subgraph induced by the remaining nodes, with respect to the node
set δ \ δ0. We note that many of the above results are new even for reciprocal chains.
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1. Introduction

In this paper we are concerned with reciprocal random fields on undirected graphs. They
contain the reciprocal chains as a special case, but have up to now received comparably little
attention, and have suffered from a lingering ambiguity in their definition. We lay a solid
foundation for the study of reciprocal random fields on undirected graphs by defining four
properties, the factorizing, global, local, and pairwise reciprocal properties, in decreasing order
of strength, with respect to a set of nodes δ. The relations of the reciprocal properties to each
other, and to the better-known Markov properties, are described in detail, as are the reciprocal
properties of a reciprocal random field conditioned on the values at a set of nodes δ0. We first
provide some background.

Continuous-time reciprocal processes, also called Bernstein processes, were introduced in
[1] following an acclaimed paper by Schrödinger [24] on the relation between certain prob-
lems in classical and quantum dynamics. A rigorous definition of a reciprocal process was
provided in [11, 12], with proofs of their basic properties. According to this definition, a real-
valued process {Xt; t ∈ [0, 1]} is reciprocal if P(Xu ∈ · | Xs1 , . . . , Xsm , Xtn , . . . , Xt1 ) = P(Xu ∈ · |
Xsm , Xtn ) for all 0 ≤ s1 < · · ·< sm < u< tn < · · ·< t1 ≤ 1. In particular, a Markov process
is always a reciprocal process, but a reciprocal process is not always Markov. Reciprocal
chains, i.e. discrete-time reciprocal processes, were introduced in [4] and studied in [17],
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among others. A random sequence {Xt; t = 1, . . . , n}, n ≥ 3, is said to be a reciprocal chain
if P(Xk ∈ · | X1, . . . , Xj, Xl, . . . , Xn) = P(Xk ∈ · | Xj, Xl) for all 0 ≤ j< k< l ≤ n.

In much of the work on reciprocal processes, attention has been restricted to the station-
ary and/or Gaussian cases. In [2, 4, 11], characterizations of a stationary Gaussian reciprocal
process in terms of its autocovariance function were given, and [4] gave conditions for sta-
tionary Gaussian reciprocal processes to be Markov. Later work has to a large extent dealt
with the construction of representations of a reciprocal process by a second-order nearest-
neigbour model driven by a locally correlated noise process; see [3, 14, 17, 23, 29]. Such
representations are then used to construct smoothing algorithms for hidden reciprocal pro-
cesses. Examples of engineering applications of reciprocal chains include image simulation
[21] and track extraction [27].

It should also be noted that in [3, 27, 29] and other papers, a different definition of a recip-
rocal chain was used: a random sequence {Xt; t = 1, . . . , n}, n ≥ 3, was said to be a reciprocal
chain if P(Xk ∈ · | X1, . . . , Xk−1, Xk+1, . . . , Xn) = P(Xk ∈ · | Xk−1, Xk+1) for all 0< k< n. It
was pointed out in [9] that if the latter definition is used, some of the properties that a recipro-
cal chain is known to satisfy need not hold; for example that, conditionally on Xn, a reciprocal
chain is a Markov chain.

In the present paper we take a different approach to reciprocal chains, assuming neither
stationarity nor Gaussianity. Since any Markov chain is a reciprocal chain, and given the exis-
tence of a well-established theory for Markov random fields on undirected graphs, it is natural
to attempt to define in a proper way a class of reciprocal random fields on undirected graphs,
which should contain both Markov random fields and reciprocal chains as special cases. The
theory of Markov random fields on undirected graphs was developed in [7, 8, 22, 26], among
others, originally as an attempt to extend the Ising model for ferromagnetic materials to a wider
class of probabilistic models. Markov random fields have shown themselves useful in statistics
(e.g. graphical models) and in probabilistic expert systems; see [6, 15, 20, 30].

In the early literature, a random field {Xt; t ∈ V} is typically said to satisfy the Markov
property if P({Xt; t ∈ T} ∈ · | {Xs; s /∈ T}) = P({Xt; t ∈ T} ∈ · | {Xs; s ∈ NT}) for all T ⊂ V , where
NT is the set of nodes not in T that are neighbors of T in the graph. This property holds e.g.
if the random field has a Gibbs distribution; see [13]. Later, it became standard to distinguish
between four different Markov properties for random fields: the factorizing, global, local, and
pairwise Markov properties, in order of decreasing strength. They are all satisfied if the random
field has a Gibbs distribution. The relations between these properties have been studied by
several authors [18, 25, 28]. As for reciprocal properties of random fields, an early attempt to
define such a property was the quasi-Markov, or L-Markov, property for random fields of the
type {Xt; t ∈Z

d}, defined and investigated in [4].
The main contribution of the present paper is to define four so-called reciprocal properties

for random fields on an undirected graph, all of them with respect to an arbitrary set of nodes
δ ⊂ V: the factorizing, global, local, and pairwise reciprocal properties, in order of decreasing
strength. We find that these properties reduce to the corresponding Markov properties when
δ = ∅; in fact, the factorizing, global, and pairwise reciprocal properties reduce to the corre-
sponding Markov properties whenever δ is a complete set. Moreover, necessary and sufficient
conditions on the graph for the global and local properties to be equivalent, as well as for
the local and pairwise properties to be equivalent, and a sufficient condition for the pairwise
property to imply the factorizing property, are given.

We also consider the conditional distributions of a random field on an undirected graph
given the values at a subset of nodes δ0 ⊂ V , and show that, for the subgraph induced by
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V \ δ0, under such a conditioning, all reciprocal properties are preserved with respect to the set
of nodes δ \ δ0. The converse statement is wrong: even if a random field does not satisfy any
reciprocal property with respect to δ, the subgraph induced by V \ δ0 may still, conditionally
on the values at δ0, satisfy any reciprocal property with respect to δ \ δ0.

Specializing to reciprocal chains, we show that a random sequence is a reciprocal
chain according to the definition in [4, 17] if and only if, when seen as a random field
on an undirected graph, it has the global reciprocal property with respect to the node set
δ = {0, n}. Similarly, it is a ‘reciprocal chain’ according to the definition in [3] if and only if
it has the (weaker) local reciprocal property with respect to δ. More importantly, a random
sequence has the factorizing reciprocal property with respect to δ if and only if the joint
distribution has a density fX with respect to a product of σ -finite measures μ of the form
fX(x) = φn(x0, xn)

∏n−1
i=0 φi(xi, xi+1) μ-almost everywhere (a.e.) for some measurable func-

tions {φi : X{i,i+1} →R+; i = 0, 1, . . . , n − 1}, φn : X{0,n} →R+. The factorizing reciprocal
property does not hold for reciprocal chains in general, but it does hold if the density fX is
positive; a result which, to the best of our knowledge, is new.

The rest of the paper is organised as follows. Section 2 contains some preliminary material
on graphs, random fields, and conditional independence. In Section 3, definitions of the four
reciprocal properties of a random field are given, and several results concerning the relations
between these properties, and their relation to the Markov properties, are derived. In Section 4,
conditional distributions of reciprocal random fields given the values at a set of nodes δ0 are
considered. Lastly, in Section 5, the results obtained are applied to the special case of reciprocal
chains.

2. Preliminaries

This section contains some basic definitions and notation pertaining to undirected graphs
and random fields on graphs, and some basic results on conditional independence. For more
information, see [15].

2.1. Undirected graphs

Let G = (V, E) be a graph, where V is an ordered finite set of nodes, and E is a set of
edges. The edges are always assumed to be undirected. An undirected edge between two nodes
α, β ∈ V is denoted by 〈α, β〉, or equivalently 〈β, α〉. G is called simple if there is at most one
edge between any pair of nodes, and if there are no edges of type 〈α, α〉 for any α ∈ V (these
are called loops). In this paper we only consider simple graphs.

A graph GA = (A, E′) is called a subgraph of G if A ⊂ V and E′ ⊂ EA = {〈α, β〉 ∈ E;
α, β ∈ A}. The particular subgraph GA = (A, EA) is called the subgraph induced by A. A graph
G is said to be complete if E = {〈α, β〉; α �= β, α, β ∈ V}. A subset A ⊂ V is said to be complete
if the induced subgraph GA is complete. The collection of complete subsets of V is denoted K.
A complete subset which is maximal with respect to set inclusion is called a clique.

For any α, β ∈ V , a sequence {α0, α1, . . . , αn} of elements in V is called a path between
α and β of length n (n ≥ 1) if α0 = α, αn = β, and 〈αi, αi+1〉 ∈ E for each i = 0, 1, . . . , n − 1.
α and β are said to be connected if either α= β, or α �= β and there exists a path between α
and β. Two subsets A, B ⊂ V are said to be connected if either A ∩ B �= ∅, or A ∩ B = ∅ and
there exists a path in G between A and B, by which we mean a path between a node α ∈ A
and a node β ∈ B. Clearly, connectedness is an equivalence relation on V . The subgraphs of G
induced by the corresponding equivalence classes are called the connected components of G.
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For each triple (A, B, S) of disjoint subsets of V , S is said to separate A from B in G if there
is no path between A and B of length n = 1, and, for each path {α0, α1, . . . , αn} between A
and B of length n ≥ 2, there is an i ∈ {1, . . . , n − 1} such that αi ∈ S.

For each α ∈ V , the boundary of α is defined by bd(α) = {β ∈ V; 〈α, β〉 ∈ E}, and the closure
of α is defined by cl(α) = {α} ∪ bd(α).

2.2. Random fields

By a random field on an undirected graph G = (V, E), we mean a collection {Xt; t ∈ V} of
random variables defined on the same probability space and indexed by the node set V . For each
t ∈ V , Xt takes values in a measurable space (Xt,BXt ), which is assumed to be either (Rd,Rd),
i.e. Rd equipped with its Borel σ -algebra, or a finite or countably infinite set equipped with
its power σ -algebra (= the collection of all its subsets). For each A ⊂ V , we denote by XA the
random variable {Xt; t ∈ A}, taking values in the product space XA = X

i∈A
Xi, equipped with the

product σ -algebra BXA . The random variable XV is denoted by X, the product space XV by
X , and the σ -algebra BXV by BX . Also, for each x ∈X and each A ⊂ V , we denote by xA the
projection of x onto XA.

We denote by L(·) the probability distribution of a random variable. Throughout the
paper we assume that L(X) has a density fX with respect to a product measure μ=
X

i∈V
μi on (X ,BX ), where, for each i ∈ V , μi is a σ -finite (non-negative) measure on

(Xi,BXi). For each A ⊂ V , we denote by μA the product measure μA = X
i∈A
μi on (XA,BXA),

and by fXA the marginal density of L(XA) with respect to μA, defined by fXA(xA) =∫
XV\A

fX(xA, xV\A) dμV\A(xV\A) for all xA ∈XA.
We use the fact that, for each A ⊂ B ⊂ V , if NA ∈ BXA is such that μA(NA) = 0, then also

μB(NA ×XB\A) = 0, since μB\A is σ -finite. Furthermore, for each B ⊂ V ,

fXA(xA) = 0 ⇒ fXB(xA, xB\A) = 0 for all A ⊂ B μB-a.e. (2.1)

To prove (2.1), define the sets {NA ∈ BXA ; A ⊂ V} and {NA,B ∈ BXB ; A ⊂ B ⊂ V} by NA =
{xA ∈XA; fXA (xA) = 0} and NA,B = {xB ∈XB; fXA(xA) = 0} = NA ×XB\A. Then,

0 ≤
∫

NA,B∩Nc
B

fXB(xB) dμB(xB) =
∫

NA,B∩Nc
B

∫
XV\B

fX(xB, xV\B) dμV\B(xV\B) dμB(xB)

=
∫

NA,V∩Nc
B,V

fX(x) dμ(x)

≤
∫

NA,V

fX(x) dμ(x)

=
∫

NA

∫
XV\A

fX(xA, xV\A) dμV\A(xV\A) dμA(xA)

=
∫

NA

fXA (xA) dμA(xA) = 0 for all A ⊂ B ⊂ V .

In order for the first integral to be 0, it is necessary that μB(NA,B ∩ Nc
B) = 0. Since V has

finitely many subsets, we obtain μB
( ⋃

A⊂B (NA,B ∩ Nc
B)

) ≤ ∑
A⊂B μ(NA,B ∩ Nc

B) = 0 for all
B ⊂ V .
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2.3. Conditional independence

For each pair (B, C) of disjoint subsets of V , there exists a regular conditional
distribution of XB given XC that has a density fXB|XC with respect to μB. For each
xC ∈XC such that fXC (xC)> 0, fXB|XC (·| xC) can be (and is in this paper) chosen as
fXB|XC (xB | xC) = fXB∪C (xB, xC)/fXC (xC) for all xB ∈XB. For all xC ∈XC such that fXC (xC) = 0,
fXB|XC (·| xC) can be chosen as an arbitrary fixed density. Using (2.1), this gives

fXB∪C (xB, xC) = fXB|XC (xB | xC)fXC (xC) μB∪C-a.e. (2.2)

For each triple (A, B, C) of disjoint subsets of V , we say that XA and XB are conditionally
independent given XC, denoted XA ⊥ XB | XC, if there exists a version of fXA∪B∪C such that, for
each xC ∈XC such that fXC (xC)> 0,

fXA∪B∪C (xA, xB, xC) = fXA∪C (xA, xC)

fXC (xC)
fXB∪C (xB, xC) for all (xA, xB) ∈XA∪B. (2.3)

Using (2.1), XA ⊥ XB | XC implies that

fXA∪B∪C (xA, xB, xC) = fXA|XC (xA | xC)fXB∪C (xB, xC) μA∪B∪C-a.e. (2.4)

Note that (2.4) remains valid if fXB∪C is replaced on the right-hand side by any μB∪C-version
of fXB∪C .

A sufficient condition for XA ⊥ XB | XC to hold is that there exists a version of fXA∪B∪C and
measurable functions h :XA∪C →R+ and k :XB∪C →R+ such that

fXA∪B∪C (xA, xB, xC) = h(xA, xC)k(xB, xC) for all (xA, xB, xC) ∈XA∪B∪C. (2.5)

To see this, note that the version of fXA∪B∪C given in (2.5) satisfies (2.3), since

fXC (xC) =
∫
XA

h(xA, xC)dμA(xA)
∫
XB

k(xB, xC) dμB(xB) for all xC ∈XC;

fXA∪C (xA, xC) = h(xA, xC)
∫
XB

k(xB, xC) dμB(xB) for all (xA, xC) ∈XA∪C;

fXB∪C (xB, xC) = k(xB, xC)
∫
XA

h(xA, xC) dμA(xA) for all (xB, xC) ∈XB∪C.

3. Reciprocal properties for random fields

Definition 3.1. A random field X on an undirected graph G = (V, E) is said to satisfy the fac-
torizing reciprocal property with respect to δ⊂ V , abbreviated F[δ], if L(X) has a density fX
with respect to a product of σ -finite measures μ of the form

fX(x) =
∏

C∈Kδ
φC(x) μ-a.e. (3.1)

for some measurable functions {φC :XC →R+; C ∈K
δ}, where Kδ is the collection of subsets

of V defined as Kδ = {C ⊂ V; (C \ δ) ∈K, (C \ δ) ∪ {α} ∈K for all α ∈ C ∩ δ}.
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Example 3.1. Consider an undirected graph G = (V, E) for which the subgraph GA induced by
A = {1, 2, 3, 4, 5, 6, 7} ⊂ V is

If δ ∩ A = {1, 2, 6, 7}, then the sets {1, 3, 4, 6} and {2, 4, 5, 7} both belong to K
δ , even

though neither of them belongs to K. However, the set {1, 2, 3, 4}, for example, does not belong
to K

δ , since the edge 〈2, 3〉 is not present.

Definition 3.2. A random field X on an undirected graph G = (V, E) is said to satisfy the global
reciprocal property with respect to δ ⊂ V , abbreviated G[δ], if, for each triple (A, B, S) of
disjoint subsets of V such that S separates A from B ∪ (δ \ S), XA ⊥ XB | XS.

Definition 3.3. A random field X on an undirected graph G = (V, E) is said to satisfy the
local reciprocal property with respect to δ ⊂ V , abbreviated L[δ], if, for each α ∈ V \ δ,
Xα ⊥ XV\cl(α) | Xbd(α).

Definition 3.4. A random field X on an undirected graph G = (V, E) is said to satisfy the pair-
wise reciprocal property with respect to δ ⊂ V , abbreviated P[δ], if, for each α, β ∈ V such that
α �= β, α ∈ V \ δ, and 〈α, β〉 /∈ E, Xα ⊥ Xβ | XV\{α,β}.

Remark 3.1. All four reciprocal properties reduce to the corresponding Markov properties in
the case when δ= ∅; cf. the definitions in [15, Section 3.2].

Remark 3.2. It is easily seen that if δ⊂ δ1 ⊂ V , then F[δ] ⇒ F[δ1], G[δ] ⇒ G[δ1], L[δ] ⇒
L[δ1], and P[δ] ⇒ P[δ1]. In particular, each of the four Markov properties implies the
corresponding reciprocal property with respect to any set δ ⊂ V .

Theorem 3.1. Let X be a random field on an undirected graph G = (V, E), and let δ ⊂ V. Then,
X satisfies F[δ], G[δ], L[δ], or P[δ] in G if and only if X satisfies the same property in the
undirected graph Gδ = (V, E+

δ ), where E+
δ = E ∪ {〈α, β〉; α �= β, α, β ∈ δ}.

Proof. The claims for F[δ] and L[δ] follow from the easily checked facts that neither the
collection K

δ nor, for any α ∈ V \ δ, the set bd(α) depends on which edges in {〈α, β〉; α �=
β, α, β ∈ δ} belong to E. Similarly, the claim for P[δ] follows since, for any α, β ∈ V such that
α �= β and α ∈ V \ δ, 〈α, β〉 ∈ E+

δ if and only if 〈α, β〉 ∈ E.
The claim for G[δ] follows from the fact that, for any triple (A, B, S) of disjoint subsets of

V , S separates A from B ∪ (δ \ S) in G if and only if S separates A from B ∪ (δ \ S) in Gδ . To
see this, we first observe that any path in G between A and B ∪ (δ \ S) that does not intersect S
must also be such a path in Gδ . Conversely, for n ≥ 1, let {α0, α1, . . . , αn} be a path in Gδ but
not in G between α0 ∈ A and αn ∈ B ∪ (δ \ S) that does not intersect S. Then, there must exist
0< k< n such that αk ∈ δ \ S and αi /∈ δ for each i = 1, . . . , k − 1. Hence, {α0, α1, . . . , αk} is
a path in G between A and δ \ S that does not intersect S. �

Theorem 3.2. For a random field X on an undirected graph G = (V, E), F[δ] ⇒ G[δ] ⇒
L[δ] ⇒ P[δ].
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Proof. To prove F[δ] ⇒ G[δ], let (A, B, S) be a triple of disjoint subsets of V such that S
separates A from B ∪ (δ \ S). Note that we implicitly assume that A ∩ δ = ∅. We also assume,
without loss of generality, that A ∪ B ∪ S = V , and that δ ⊂ B ∪ S. That this can be done is
seen as follows: let Ã ⊂ V \ S be the set of nodes in V \ S that are connected to A in GV\S. By

construction, Ã ∩ (B ∪ δ) = ∅, and S separates Ã from B ∪ (δ \ S) in G. Define B̃ = V \ (̃A ∪ S).
Then, Ã ∪ B̃ ∪ S = V , and S separates Ã from B̃.

Let C ∈K
δ , and assume first that C ∩ δ = ∅, so that C ∈K. Then, we must have either

C ⊂ A ∪ S or C ⊂ B ∪ S; both statements can hold only if C ⊂ S. Next, assume that C ∩ δ �= ∅.
By assumption, C ∩ δ ⊂ B ∪ S. If C ∩ δ ⊂ S, then again we must have either C ⊂ A ∪ S or C ⊂
B ∪ S, or both if C ⊂ S. On the other hand, if there is a node β ∈ C ∩ δ such that β ∈ B, then,
since (C \ δ) ∪ {β} ∈K, we must have C \ δ⊂ B ∪ S, implying that C ⊂ B ∪ S.

Define K
δ
A = {C ∈K

δ; C ⊂ A ∪ S} and K
δ
B = {C ∈K

δ; C ⊂ B ∪ S}; if C ⊂ S, we arbitrarily
assign C to one of KδA or KδB. By (3.1), the joint probability distribution function fX satisfies

fX(x) =
∏

C∈Kδ
φC(xC) =

∏
C∈KδA

φC(xC)
∏

C′∈KδB
φC′(xC′) μ-a.e.,

where the first product depends only on (xA, xS) ∈XA∪S, and the second product depends only
on (xB, xS) ∈XB∪S. It follows from (2.5) that XA ⊥ XB | XS, which implies the claim.

To prove that G[δ] ⇒ L[δ], for any α ∈ V \ δ let A = {α}, B = V \ cl(α), and S = bd(α).
To prove that L[δ] ⇒ P[δ], for any α, β ∈ V such that α �= β, α ∈ V \ δ and 〈α, β〉 /∈ E, Xα ⊥

XV\cl(α) | Xbd(α). Therefore, fX(x) = fXα |Xbd(α)(xα |xbd(α))fXV\{α}(xV\{α}) μ-a.e. Since 〈α, β〉 /∈ E we
have β /∈ cl(α), so the first function in the product on the right-hand side depends only on
xV\{β} ∈XV\{β}, while the second function in the product depends only on xV\{α} ∈XV\{α}. It
follows from (2.5) that Xα ⊥ Xβ | XV\{α,β}. �

Theorem 3.3. For an undirected graph G = (V, E) and a set δ ⊂ V, the following conditions
are equivalent:

(i) For any random field X on G, L[δ] ⇒ G[δ].

(ii) No subset C ⊂ V exists of either of the following two types: C = {α1, α2, β1, β2} ⊂ V \ δ,
with induced subgraph GC = (C, {〈α1, α2〉, 〈β1, β2〉}); or C = {α1, α2, β} ⊂ V, where
{α1, α2} ⊂ V \ δ and β ∈ δ, with induced subgraph GC = (C, {〈α1, α2〉}).

Proof. To prove that (i) ⇒ (ii), assume, in order to derive a contradiction, that there exists
a subset C = {α1, α2, β1, β2} ⊂ V \ δ with induced subgraph GC = (C, {〈α1, α2〉, 〈β1, β2〉}).
Define a random field X on G by Xα1 = Xα2 = Xβ1 = Xβ2 = Y , where Y is a non-degenerate
random variable, and Xv = γ for each v ∈ V \ C, where γ ∈R is a constant. X trivially satisfies
L[δ]. It is also clear that S = V \ C separates {α1} from {β1} ∪ (δ \ S). However, since Xα1 and
Xβ1 are not conditionally independent given XS, X does not satisfy G[δ]. The case when C is
of the second type is handled similarly.

To prove that (ii) ⇒ (i), assume that the random field X on G satisfies L[δ]. Let (A, B,
S) be a triple of disjoint subsets of V such that S separates A from B ∪ (δ \ S). As in the
proof of Theorem 3.2, we assume without loss of generality that A ∪ B ∪ S = V , and that
δ ⊂ B ∪ S. By (ii), one of two (possibly overlapping) cases must hold: in the first case, no
nodes α1, α2 ∈ A exist such that 〈α1, α2〉 ∈ E; in the second case, B ∩ δ = ∅, and no nodes
β1, β2 ∈ B exist such that 〈β1, β2〉 ∈ E. In the first case, we have bd(α) ⊂ S for each α ∈ A. Let
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A = {αi; i = 1, . . . ,m}. Using L[δ], we get

fX(x) = fXα1 |Xbd(α1) (xα1 | xbd(α1))fXV\{α1}(xV\{α1})

= fXα1 |Xbd(α1) (xα1 | xbd(α1))fXα2 |Xbd(α2) (xα2 | xbd(α2))fXV\{α1,α2}(xV\{α1,α2})

= · · · =
m∏

i=1

fXαi |Xbd(αi)
(xαi | xbd(αi))fXV\A(xV\A) μ-a.e.

By (2.5), XA ⊥ XB | XS. The second case is handled analogously, with the roles of A and B
interchanged. Hence, X satisfies G[δ]. �

Example 3.2. Consider an undirected graph G = (V, E) for which the subgraph GC induced by
C = {1, 2, 3, 4} ⊂ V is

If δ ∩ C = ∅, then the implication L[δ] ⇒ G[δ] does not hold in G. Suppose instead that the
subgraph GD induced by D = {1, 2, 3} ⊂ V is

If δ ∩ D = {3}, then again the implication L[δ] ⇒ G[δ] does not hold in G.

Theorem 3.4. For an undirected graph G = (V, E) and a set δ ⊂ V, the following conditions
are equivalent:

(i) For any random field X on G, P[δ] ⇒ L[δ].

(ii) No subset C ⊂ V exists of the type C = {α, β1, β2} ⊂ V, where α ∈ V \ δ, with induced
subgraph GC = (C, {〈β1, β2〉}) or GC = (C, ∅).

Proof. To prove that (i) ⇒ (ii), assume that there exists a subset C = {α, β1, β2} ⊂ V , where
α ∈ V \ δ, with induced subgraph GC = (C, {〈β1, β2〉}) or GC = (C, ∅). Define a random field
X on G by Xα = Xβ1 = Xβ2 = Y , where Y is a non-degenerate random variable, and Xv = γ for
each v ∈ V \ C, where γ ∈R is a constant. X clearly satisfies P[δ]. Since bd(α) ⊂ V \ {β1, β2},
but Xα and Xβ1 are not conditionally independent given Xbd(α), X does not satisfy L[δ].

To prove that (ii) ⇒ (i), assume that the random field X on G satisfies P[δ]. Let α ∈ V \ δ.
By (ii), V \ cl(α) can contain at most one node. Assume that β ∈ V \ cl(α). Using P[δ], we get
fX(x) = fXα |Xbd(α) (xα | xbd(α))fXV\{α}(xV\{α}) μ-a.e. By (2.5), Xα ⊥ Xβ | Xbd(α). Hence, X satisfies
L[δ]. �

Example 3.3. Consider an undirected graph G = (V, E), for which the subgraph GD induced
by D = {1, 2, 3} ⊂ V is either of

If {3} ⊂ V \ δ, then the implication P[δ] ⇒ P[δ] does not hold in G.

Theorem 3.5. Let X be a random field on an undirected graph G = (V, E). Assume that X
satisfies the condition that, for any four disjoint subsets A, B,C,D ⊂ V such that either
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(A ∪ C) ∩ δ = ∅ or B ∩ δ= ∅,

XA ⊥ XB | XC∪D and XC ⊥ XB | XA∪D ⇒ XA∪C ⊥ XB | XD. (3.2)

Then, G[δ] ⇔ L[δ] ⇔ P[δ].

Proof. By Theorem 3.2, we need only prove that P[δ] ⇒ G[δ]. Let (A, B, S) be a triple of
disjoint subsets of V such that S separates A from B ∪ (δ \ S). As in the proof of Theorem 3.2,
we assume without loss of generality that A ∪ B ∪ S = V , and that δ ⊂ B ∪ S. We also assume,
again without loss of generality, that both A and B are non-empty. The assertion is proved using
backwards induction in the number of nodes of S.

Assume first that |S| = |V| − 2, so that A and B each contain one node. Since A ∩ δ = ∅, P[δ]
implies that XA ⊥ XB | XS. Next, assume that the claim holds for |S| = n ≤ |V| − 2, and consider
the case when |S| = n − 1. Since |S|< n, at least one of A or B contains more than one node. If
A contains more than one node, choose any α ∈ A. By the induction assumption, both XA\{α} ⊥
XB | XS∪{α} and Xα ⊥ XB | XS∪(A\{α}) hold, so, by (3.2), XA ⊥ XB | XS. If B contains more than
one node, choose any β ∈ B. As before, both XA ⊥ XB\{β} | XS∪{β} and XA ⊥ Xβ | XS∪(B\{β})
hold, so again, by (3.2), XA ⊥ XB | XS. �

Theorem 3.6. Let X be a random field on an undirected graph G = (V, E) such that L(X) has
a positive density fX with respect to a product of σ -finite measures μ. Then, F[δ] ⇔ G[δ] ⇔
L[δ] ⇔ P[δ].

Proof. By Theorem 3.2, we need only prove that P[δ] ⇒ F[δ]. In the Markov case,
Theorem 3.6 is known as the Clifford–Hammersley theorem, a version of which appears as [15,
Theorem 3.9]. We shall use the proof of the latter, with appropriate modifications. Fix x∗ ∈X ,
and define, for all subsets C ⊂ V , HC(x) = ln fX(xC, x∗

V\C) and ψC(x) = ∑
A⊂C (−1)|C\A|HA(x)

for all x ∈X . By definition, HC and ψC both depend on x through xC ∈XC. By Möbius inver-
sion, cf. [15, Lemma A.2], ln fX(x) = HV (x) = ∑

C⊂V ψC(x) for all x ∈X , so we have proven
the claim if we can show that ψC ≡ 0 whenever C /∈K

δ; cf. Definition 3.1. If C /∈K
δ , then

there exists α ∈ C \ δ and β ∈ C such that α �= β and 〈α, β〉 /∈ E. Let C0 = C \ {α, β} and
D = V \ {α, β}. Then, as in the proof of [15, Theorem 3.9],

ψC(x) =
∑

B⊂C0

(−1)|C0\B|(HB(x) − HB∪{α}(x) − HB∪{β}(x) + HB∪{α,β}(x)
)

for all x ∈X ,

so, using property P[δ] and (2.3), we get

HB∪{α,β}(x) − HB∪{β}(x) = ln
fX(xα, xβ, xB, x∗

D\B)

fX(x∗
α, xβ, xB, x∗

D\B)

= ln
fX(xα, xB, x∗

D\B)fX(xβ, xB, x∗
D\B)

fX(x∗
α, xB, x∗

D\B)fX(xβ, xB, x∗
D\B)

= ln
fX(xα, xB, x∗

D\B)fX(x∗
β, xB, x∗

D\B)

fX(x∗
α, xB, x∗

D\B)fX(x∗
β, xB, x∗

D\B)

= HB∪{α}(x) − HB(x) for all x ∈X .

�
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Theorem 3.7. Let X be a random field on an undirected graph G = (V, E), and let δ ⊂ V. Then,
X satisfies F[δ], G[δ], or P[δ] if and only if X satisfies F[∅], G[∅], or P[∅] in the undirected
graph Gδ = (V, E+

δ ), where E+
δ = E ∪ {〈α, β〉; α �= β, α, β ∈ δ}.

Proof. If X satisfies F[∅], G[∅], or P[∅] in Gδ , then, by Remark 3.2, X satisfies F[δ], G[δ],
or P[δ] in Gδ , and, by Theorem 3.1, X also satisfies F[δ], G[δ], or P[δ] in G. It remains to prove
the reverse implications.

We first prove that F[δ] in G ⇒ F[∅] in Gδ . By Theorem 3.1, X satisfies F[δ] in Gδ . Since δ
is a complete set in Gδ , it is easy to see that Kδ is equal to the collection of complete sets in Gδ .
Hence, X satisfies F[∅] in Gδ .

We then consider G[δ] in G ⇒ G[∅] in Gδ . By Theorem 3.1, X satisfies G[δ] in Gδ . Let (A,
B, S) be a triple of disjoint subsets of V such that S separates A from B in Gδ . As in the proof of
Theorem 3.2, we assume without loss of generality that A ∪ B ∪ S = V . Since δ is a complete
set in Gδ , either A ∩ δ= ∅, meaning that S separates A from B ∪ (δ \ S) in Gδ , or B ∩ δ = ∅,
meaning that S separates B from A ∪ (δ \ S) in Gδ . Either way, it follows that XA ⊥ XB | XS.
Hence, X satisfies G[∅] in Gδ .

Finally, we prove that P[δ] in G ⇒ P[∅] in Gδ . By Theorem 3.1, X satisfies P[δ] in Gδ . Since
δ is a complete set in Gδ , for any α, β ∈ V such that α �= β and 〈α, β〉 /∈ E+

δ , at least one of α
or β belongs to V \ δ. It follows that Xα ⊥ Xβ | XV\{α,β}. Hence, X satisfies P[∅] in Gδ . �

An immediate consequence of the preceding theorem is that if a random field X on an
undirected graph G = (V, E) satisfies F[δ], G[δ], or P[δ], where δ ⊂ V is a complete set, then X
also satisfies F[∅], G[∅], or P[∅] in G. However, the corresponding statement for L[δ] is false,
as the final example of this section shows.

Example 3.4. Consider G = (V, E), where V = {0, 1, 2, 3, 4} and E = {〈i, i + 1〉; i =
0, 1, 2, 3}, and let X0 = X, X1 = X, X2 = X + Y , X3 = Y , and X4 = X, where X and Y are two
independent random variables having the common distribution P(X = 0) = P(X = 1) = 1

2 . It
can be seen that this random field has the local reciprocal property with respect to δ = {4}
(which is a complete subset of V), but not the local Markov property.

4. Conditioned reciprocal random fields

Let X be a random field on an undirected graph G = (V, E) such that L(X) has a density fX
with respect to a product of σ -finite measures μ. Recall that, for each δ0 ⊂ V , there exists a
regular conditional distribution of XV\δ0 given Xδ0 that has a density fXV\δ0 |Xδ0 with respect to
μV\δ0 . For all xδ0 ∈Xδ0 such that fXδ0 (xδ0 )> 0, fXV\δ0 |Xδ0 (·| xδ0 ) can be chosen as

fXV\δ0 |Xδ0 (xV\δ0 | xδ0 ) = fX(xV\δ0, xδ0 )

fXδ0 (xδ0 )
for all xV\δ0 ∈XV\δ0 . (4.1)

For all xδ0 ∈Xδ0 such that fXδ0 (xδ0 ) = 0, fXV\δ0 |Xδ0 (·| xδ0 ) can be chosen as an arbitrary fixed
density.

Theorem 4.1. Let X be a random field on an undirected graph G = (V, E) such that L(X) has
a density fX with respect to a product of σ -finite measures μ. Assume that X satisfies F[δ],
G[δ], L[δ], or P[δ]. Then, for each δ0 ⊂ V and each xδ0 ∈Xδ0 such that fXδ0 (xδ0 )> 0, under the
conditional distribution of XV\δ0 given Xδ0 = xδ0 , XV\δ0 satisfies F[δ \ δ0], G[δ \ δ0], L[δ \ δ0],
or P[δ \ δ0], respectively.
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Proof. We first show that F[δ] ⇒ F[δ \ δ0]. Since X satisfies F[δ], fX has the form (3.1).
Consider any function φC :XC →R+ where C ∈K

δ , and fix x∗
δ0

∈Xδ0 such that fXδ0 (x∗
δ0

)> 0.
Define φ∗

C\δ0
: XC\δ0 →R+ by φ∗

C\δ0
(xC\δ0 ) = φC(xC\δ0 , x∗

C∩δ0
) for all xC\δ0 ∈XC\δ0 . The

conditional density (4.1) satisfies

fXV\δ0 |Xδ0 (xV\δ0 | x∗
δ0

) = 1

fXδ0 (x∗
δ0

)

∏
C∈Kδ

φC(xC\δ0 , x∗
C∩δ0

)

= 1

fXδ0 (x∗
δ0

)

∏
C∈Kδ

φ∗
C\δ0

(xC\δ0 ) for all xV\δ0 ∈XV\δ0,

and it is easy to see that {C \ δ0; C ∈K
δ} ⊂K

δ\δ0 .
To prove that G[δ] ⇒ G[δ \ δ0], let (A, B, S) be a triple of disjoint subsets of V \ δ0 such

that S separates A from B ∪ ((δ \ δ0) \ S) = B ∪ (δ \ (S ∪ δ0)) in GV\δ0 . As in the proof of
Theorem 3.2, we assume without loss of generality that A ∪ B ∪ S = V \ δ0, and that δ \ δ0 ⊂
B ∪ S. This implies that S ∪ δ0 separates A from B ∪ (δ \ (S ∪ δ0)) in G. By (2.4), a μ-version
of fX is given by fX(x) = fXA|XS∪δ0 (xA | xS, xδ0 )fXB∪S∪δ0 (xB, xS, xδ0 ) for all x ∈X . Using this μ-
version of fX , for each fixed x∗

δ0
∈Xδ0 such that fXδ0 (x∗

δ0
)> 0, the conditional density (4.1) can

be written, for all xV\δ0 ∈XV\δ0 as

fXV\δ0 |Xδ0 (xV\δ0 | x∗
δ0

) = fXA|XS∪δ0 (xA | xS, x∗
δ0

)
fXB∪S∪δ0 (xB, xS, x∗

δ0
)

fXδ0 (x∗
δ0

)
.

By (2.5), under the conditional distribution of XV\δ0 given Xδ0 = x∗
δ0

we have XA ⊥ XB | XS

in GV\δ0 .
To prove that L[δ] ⇒ L[δ \ δ0], let α ∈ V \ (δ ∪ δ0). Then, Xα ⊥ XV\cl(α) | Xbd(α) in G, so a

μ-version of fX is given by fX(x) = fXα |Xbd(α) (xα | xbd(α))fXV\{α}(xV\{α}) for all x ∈X . Using this
μ-version of fX , for each fixed x∗

δ0
∈Xδ0 such that fXδ0 (x∗

δ0
)> 0, the conditional density (4.1)

can be written, for all xV\δ0 ∈XV\δ0 , as

fXV\δ0 |Xδ0 (xV\δ0 | x∗
δ0

) = fXα |Xbd(α) (xα | xbd(α)\δ0 , x∗
bd(α)∩δ0

)
fXV\{α}(xV\({α}∪δ0), x∗

δ0
)

fXδ0 (x∗
δ0

)
.

By (2.5), under the conditional distribution of XV\δ0 given Xδ0 = x∗
δ0

we have Xα ⊥
XV\(cl(α)∪δ0) | Xbd(α)\δ0 in GV\δ0 .

To show that P[δ] ⇒ P[δ \ δ0], let α ∈ V \ (δ ∪ δ0) and β ∈ V \ δ0 be such that α �= β

and 〈α, β〉 /∈ E. Then, Xα ⊥ Xβ | XV\{α,β} in G, so a μ-version of fX is given by fX(x) =
fXα |XV\{α,β}(xα | xV\{α,β})fXV\{α}(xV\{α}) for all x ∈X . Using this μ-version of fX , for each fixed
x∗
δ0

∈Xδ0 such that fXδ0 (x∗
δ0

)> 0, the conditional density (4.1) can be written, for all xV\δ0 ∈
XV\δ0 , as

fXV\δ0 |Xδ0 (xV\δ0 | x∗
δ0

) = fXα |XV\{α,β}(xα | xV\({α,β}∪δ0), x∗
δ0

)
fXV\{α}(xV\({α}∪δ0), x∗

δ0
)

fXδ0 (x∗
δ0

)
.

By (2.5), under the conditional distribution of XV\δ0 given Xδ0 = x∗
δ0

we have Xα ⊥ Xβ |
XV\({α,β}∪δ0) in GV\δ0 . �
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The next example shows that the converse of Theorem 4.1 is false, in the sense that even if a
random field X on an undirected graph G = (V, E) does not satisfy P[δ], the subgraph induced
by V \ δ0 may still satisfy F[δ \ δ0] conditionally on Xδ0 .

Example 4.1. Consider the undirected graph G = (V, E) where V = {0, 1, 2, 3, 4} and
E = {〈i, i + 1〉; i = 0, 1, 2, 3}. Let δ= δ0 = {0, 4}, and let X0 = Y , X1 = Y + U, X2 = Y ,
X3 = Y + V , and X4 = Z, where Y , Z, U, and V are independent random variables having the
common distribution P(Y = 0) = P(Y = 1) = 1

2 . Clearly, X does not satisfy P[δ], since X0 and
X2 are not conditionally independent given XV\{0,2}. However, conditionally on Xδ0 = (x∗

0, x∗
4)

for any fixed (x∗
0, x∗

4) ∈ {0, 1}2, X1 and X3 are conditionally independent given X2. For
any fixed (x∗

0, x∗
4) ∈ {0, 1}2, writing f ∗(x1, x2, x3) = fX1,X2,X3|X0,X4 (x1, x2, x3 | x∗

0, x∗
4) for all

(x1, x2, x3) ∈ {0, 1}3, we see that, by (2.4), f ∗ has the factorization f ∗(x1, x2, x3) = f ∗
X1|X2

(x1 |
x2)f ∗

X2,X3
(x2, x3) for all (x1, x2, x3) ∈ {0, 1}3. Hence, conditionally on Xδ0 , XV\δ0 satisfies F[∅].

Theorem 4.2. Let X and Y be random fields on an undirected graph G such that L(X) and
L(Y) have densities fX and fY with respect to a product of σ -finite measures μ. Let δ0 ⊂ V.
Assume that, for each x ∈X such that fYδ0 (xδ0 )> 0, fXδ0 (xδ0 )> 0 and

fX(xV\δ0, xδ0 )

fXδ0 (xδ0 )
= fY (xV\δ0, xδ0 )

fYδ0 (xδ0 )
.

If X satisfies F[δ], G[δ], L[δ], or P[δ], then Y satisfies F[δ ∪ δ0], G[δ ∪ δ0], L[δ ∪ δ0], or
P[δ ∪ δ0]. If, in addition, the function φδ0 :Xδ0 →R+ defined by

φδ0 (xδ0 ) =
⎧⎨
⎩

fYδ0 (xδ0 )/fXδ0 (xδ0 ) if fYδ0 (xδ0 )> 0,

0 if fYδ0 (xδ0 ) = 0

has the form
φδ0 (xδ0 ) =

∏
C∈Kδ

ψC(xC∩δ0 ) μδ0 -a.e. (4.2)

for some measurable functions {ψC :XC∩δ0 →R+; C ∈K
δ}, then Y satisfies F[δ], G[δ], L[δ],

or P[δ].

Proof. By assumption, and using (2.2), we have

fY (x) = fYV\δ0 |Yδ0 (xV\δ0 | xδ0 )fYδ0 (xδ0 )

= fXV\δ0 |Xδ0 (xV\δ0 | xδ0 )fYδ0 (xδ0 ) = fX(x)φδ0 (xδ0 ) μ-a.e. (4.3)

We first assume that X satisfies F[δ]. Since fX has the form (3.1), we conclude that fY has
the form (3.1) with δ replaced by δ ∪ δ0, implying that Y satisfies F[δ ∪ δ0]. If φδ0 has the form
(4.2), then fY has the form (3.1), implying that Y satisfies F[δ].

Assuming next that X satisfies G[δ], let (A, B, S) be a triple of disjoint subsets of V such
that S separates A from B ∪ ((δ ∪ δ0) \ S). As in the proof of Theorem 3.2, we assume without
loss of generality that A ∪ B ∪ S = V , and that δ ∪ δ0 ⊂ B ∪ S. From (4.3) and (2.4),

fY (x) = fXA|XS (xA | xS)fXB∪S (xB, xS)φδ0 (xδ0 ) μ-a.e. (4.4)

Since δ ∪ δ0 ⊂ B ∪ S, it follows from (2.5) that YA ⊥ YB | YS, implying that Y satisfies
G[δ ∪ δ0]. If φδ0 has the form (4.2), then we let (A, B, S) be disjoint subsets of V such that
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S separates A from B ∪ (δ \ S), and assume that A ∪ B ∪ S = V , and that δ ⊂ B ∪ S. It can be
shown, as in the proof of Theorem 3.2, that, for each C ∈K

δ , either C ∈ A ∪ S or C ∈ B ∪ S.
Therefore, it follows from (4.4) and (2.5) that YA ⊥ YB | YS, implying that Y satisfies G[δ].

We then assume that X satisfies L[δ]. For each α ∈ V \ (δ ∪ δ0), replace A, B, and S in (4.4)
by {α}, V \ cl(α), and bd(α), respectively, and conclude that Y satisfies L[δ ∪ δ0]. If φδ0 has the
form (4.2), then, for each α ∈ V \ δ, replace A, B, and S in (4.4) by {α}, V \ cl(α), and bd(α),
and conclude that Y satisfies L[δ].

Finally, we assume that X satisfies P[δ]. For each α ∈ V \ (δ ∪ δ0) and β ∈ V such that
〈α, β〉 /∈ E, replace A, B, and S in (4.4) by {α}, {β}, and V \ {α, β}, and conclude that Y satis-
fies P[δ ∪ δ0]. If φδ0 has the form (4.2), then, for each α ∈ V \ δ and β ∈ V such that 〈α, β〉 /∈ E,
replace A, B, and S in (4.4) by {α}, {β}, and V \ {α, β}, and conclude that Y satisfies P[δ]. �

Remark 4.1. (Schrödinger problems.) As an application of Theorem 4.2, we mention
Schrödinger problems for random fields on undirected graphs; for more details, see [5], [10,
Section 1.3], or [16, Section 3]. Let X be a random field on an undirected graph G = (V, E),
and let πX = L(X). πX is assumed to have a density fX with respect to a product of σ -finite
measures μ. For each A ⊂ V , define PA as the set of all probability distributions on (XA,BXA),
and let P =PV . Let δ0 ⊂ V , and let Po

δ0
be a fixed convex subset of Pδ0 . Denote by D(· ‖ ·) the

relative entropy, also known as the Kullback–Leibler divergence. By the static and dynamic
Schrödinger problems, we mean the following optimization problems:

Sstat : Minimize D(πδ0‖πXδ0
) over all πδ0 ∈Po

δ0
.

Sdyn : Minimize D(πY‖πX) over all πY ∈P such that πYδ0
∈Po

δ0
.

By the strict convexity of the relative entropy, both solutions are unique if they exist. If
the solution πδ0 to Sstat exists, it follows from the definition of relative entropy that πδ0 must
have a density fδ0 with respect to μδ0 , which can be chosen so that fXδ0 (xδ0 ) = 0 ⇒ fδ0 (xδ0 ) = 0.
Moreover, from the chain rule of relative entropy, see [10, Section 1.3], a solution πY to Sdyn
exists that has a density fY with respect to μ. fY can be chosen so that fYδ0 = fδ0 , and so that, for
each x ∈X such that fYδ0 (xδ0 )> 0,

fX(xV\δ0, xδ0 )

fXδ0 (xδ0 )
= fY (xV\δ0, xδ0 )

fYδ0 (xδ0 )
.

5. Reciprocal chains

In this section we apply the results of the previous sections to discrete-time reciprocal
processes, better known as reciprocal chains.

Definition 5.1. A sequence of random variables {Xt; t = 0, 1, . . . , n}, where n ≥ 2, is called a
reciprocal chain if

Xk ⊥ {X1, . . . , Xj−1, Xl+1, . . . , Xn} | {Xj, Xl} for all 0 ≤ j< k< l ≤ n. (5.1)

As before, we assume that L(X) has a density fX with respect to a product of σ -
finite measures μ. We observe that any random sequence X = {Xt; t = 0, 1, . . . , n} can be
seen as a random field on the undirected graph G = (V, E), where V = {0, 1, . . . , n} and
E = {〈i, i + 1〉; i = 0, 1, . . . , n − 1}. We identify X with this random field, since there is no
risk of confusion.
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Theorem 5.1. A random sequence X = {Xt; t = 0, 1, . . . , n} is a reciprochal chain if and only
if it satisfies G[δ] with respect to δ = {0, n}.

Proof. Assume that X satisfies G[δ] with respect to δ = {0, n}. For each fixed
0 ≤ j< k< l ≤ n, let A = {k}, S = {j, l}, and B = {0, 1, . . . , j − 1} ∪ {l + 1, . . . , n}. Then,
S separates A from B ∪ (δ \ S), so by property G[δ], X satisfies (5.1).

Assume instead that X satisfies (5.1). Let (A, B, S) be a triple of disjoint subsets of
V = {0, 1, . . . , n} such that S separates A from B ∪ (δ \ S). As in the proof of Theorem 3.2,
we assume without loss of generality that A ∪ B ∪ S = V , and that δ ⊂ B ∪ S. We also assume
without loss of generality that A �= ∅. It must then hold that A = ∪m

i=1Ai, where m is a positive
integer, and Ai = {
i, 
i + 1, . . . , ui} for i = 1, . . . ,m, where {(
i, ui); i = 1, . . . ,m} are pairs
of integers such that 0< 
1 ≤ u1 < 
2 − 1< 
2 ≤ u2 < 
3 − 1< · · ·< 
m ≤ um < n. Note also
that, for each i = 1, . . . ,m, {
i − 1, ui + 1} ⊂ S. Applying (5.1) and (2.4) to fX for each k ∈ A1
in increasing order, we get

fX(x) = fX
1 |X
1−1,X
1+1 (x
1 | x
1−1, x
1+1)

× fX0,...,X
1−1,X
1+1,...,Xn (x0, . . . , x
1−1, x
1+1, . . . , xn)

= fX
1 |X
1−1,X
1+1 (x
1 | x
1−1, x
1+1)fX
1+1|X
1−1,X
1+2 (x
1+1 | x
1−1, x
1+2)

× fX0,...,X
1−1,X
1+2,...,Xn (x0, . . . , x
1−1, x
1+2, . . . , xn)

=
...

=
u1−
1∏
r=0

fX
1+r|X
1−1,X
1+r+1 (x
1+r | x
1−1, x
1+r+1)

× fX0,...,X
1−1,Xu1+1,...,Xn (x0, . . . , x
1−1, xu1+1, . . . , xn) μ-a.e.

Proceeding in the same fashion for each k ∈ A \ A1 in increasing order, we end up with

fX(x) =
m∏

i=1

ui−
i∏
r=0

fX
i+r|X
i−1,X
i+r+1 (x
i+r | x
i−1, x
i+r+1)fXV\A(xV\A) μ-a.e.

The expression on the right-hand side is a product of two functions, the first of which
depends only on XA∪S, while the second depends only on XB∪S. By (2.5), this implies that
XA ⊥ XB | XS, so X satisfies G[δ]. �

Theorem 5.2. A random sequence X = {Xt; t = 0, 1, . . . , n} satisfies F[δ] with respect to δ =
{0, n} if and only if fX has the form fX(x) = φn(x0, xn)

∏n−1
i=0 φi(xi, xi+1) μ-a.e. for some mea-

surable functions {φi :X{i,i+1} →R+; i = 0, 1, . . . , n − 1}, φn :X{0,n} →R+. In particular, if
X is a reciprocal chain and fX is positive, then X satisfies F[δ].

Proof. The first claim follows from Definition 3.1, and the second follows from
Theorems 5.1 and 3.6. �

Example 5.1. Let X = {Xt; t = 0, 1, . . . , n} be a random sequence with a centered, non-
singular Gaussian distribution. Then, by Theorem 5.2, X satisfies F[δ] with respect to
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δ = {0, n} if and only if the inverse covariance matrix C−1 has a cyclic tridiagonal structure,
meaning that all its elements are 0 except possibly {C−1

i,j ; |i − j| ≤ 1} and C−1
0,n = C−1

n,0. This
result was previously obtained in [17, Theorem 3.2] by a completely different argument.

In the general case, a reciprocal chain need not satisfy F[δ] with respect to δ = {0, n}, as the
following two examples show.

Example 5.2. Let X = {X0, X1, X2} be a random sequence, where each of the random vari-
ables {X0, X1, X2} takes values in X0 = {0, 1} with a probability mass function fX(x0, x1, x2) =
P
( ⋂2

i=0{Xi = xi}
)

for all x ∈ {0, 1}3 such that fX(0, 0, 0) = 0, fX(0, 0, 1)> 0, fX(0, 1, 0)> 0,
and fX(1, 0, 0)> 0. Define V = {0, 1, 2} and δ = {0, 2}. X is (trivially) a reciprocal chain.
Assume that X satisfies F[δ]. Then, we must have fX(x) = φ0(x0, x1)φ1(x1, x2)φ2(x0, x2) for
all (x0, x1, x2) ∈ {0, 1}3 for some functions {φi : {0, 1}2 →R+; i = 0, 1, 2}. However, the con-
dition fX(0, 0, 0) = 0 implies that at least one of the factors φ0(0, 0), φ1(0, 0), and φ2(0, 0)
must be 0, while the conditions fX(0, 0, 1)> 0, fX(0, 1, 0)> 0, and fX(1, 0, 0)> 0 imply that
φ0(0, 0), φ1(0, 0), and φ2(0, 0) must all be positive, which is a contradiction.

Example 5.3. Let X = {X0, X1, X2, X3} be a random sequence, where each of the
random variables {X0, X1, X2, X3} takes values in X0 = {0, 1}, with a probabil-
ity mass function fX(x0, x1, x2, x3) = P

( ⋂3
i=0{Xi = xi}

)
for all x ∈ {0, 1}4 defined by

fX(0, 0, 0, 0) = fX(1, 0, 0, 0) = fX(1, 1, 0, 0) = fX(1, 1, 1, 0) = fX(0, 0, 0, 1) = fX(0, 0, 1, 1) =
fX(0, 1, 1, 1) = fX(1, 1, 1, 1) = 1

8 . Define V = {0, 1, 2, 3} and δ = {0, 3}. X can be considered
as a random field on G = (V, E), where E = {〈0, 1〉, 〈1, 2〉, 〈2, 3〉}, but also as a random
field on Gδ = (V, E+

δ ), where E+
δ = {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈0, 3〉}. It was shown in [19] that X

satisfies G[∅], but not F[∅], in Gδ . Therefore, by Theorem 3.7, X satisfies G[δ], but not F[δ],
in G.

Remark 5.1. As mentioned in Section 1, in a number of papers, starting with [3], a different
definition of a reciprocal chain was used: a sequence of random variables {Xt; t = 0, 1, . . . , n},
where n ≥ 2, is said to be a reciprocal chain if

Xk ⊥ {X1, . . . , Xk−2, Xk+2, . . . , Xn} | {Xk−1, Xk+1} for all 0< k< n.

It follows from Definition 3.3 that X = {Xt; t = 0, 1, . . . , n} satisfies this different definition
if and only if it satisfies the local reciprocal property L[δ] with respect to δ = {0, n}. We propose
to call such a process a local reciprocal chain.

Remark 5.2. (Markov chains.) Let X = {Xt; t = 0, 1, . . . , n} be a random sequence such that
L(X) has a density fX with respect to a product of σ -finite measures μ. X is called a Markov
chain if Xk ⊥ {X0, . . . , Xk−2} | Xk−1 for all 0< k ≤ n. It is well known that fX has the factoriza-
tion fX(x) = fX0 (x0)

∏n−1
i=0 fXi+1|Xi(xi+1 | xi) μ-a.e. From this and Theorem 3.2, it follows that X

is a Markov chain if and only if X has the factorizing Markov property, F[∅]. As we have seen,
this is not true for reciprocal chains in general.

Remark 5.3. Let X = {Xt; t = 0, 1, . . . , n}, where n ≥ 2, be a reciprocal chain, i.e. a random
sequence satisfying G[δ], where δ= {0, n}, and let δ0 = {n}. By Theorem 4.1, under the condi-
tional distribution of XV\{n} given Xn = xn for any xn ∈Xn such that fXn(xn)> 0, XV\{n} satisfies
G[{0}]. Moreover, by Theorem 3.7 we have G[{0}] ⇒ G[∅], so, conditionally on Xn = xn for
any xn ∈Xn such that fXn (xn)> 0, XV\{n} is a Markov chain. In contrast, if X satisfies only L[δ],
then, conditional on Xn = xn, where xn ∈Xn is such that fXn (xn)> 0, XV\{n} need not satisfy
L[∅]; cf. Example 3.4.
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