Catalytic Mediation by Ti-deficient Ti1-xO2 Pillars at a Gold Nanoparticle-TiO2 Boundary T. Tanaka 1,4* , K. Sano1, A. Sumiya 2 , M. Ando1, H. Sawada 2,4 , F. Hosokawa 2,4 , E. Okunishi 2,4 , Y. Kondo 2,4 , K. Takayanagi 1,4 The remarkable catalytic activity of highly dispersed gold nanoparticles on TiO₂ for lowtemperature CO oxidation1 has been of tremendous interest. The catalytic activity has been attributed to structural features, such as particle size¹⁻⁵, shape^{1-2, 4-6}, and support¹⁻⁶, particularly at the periphery and/or surface of the gold particles. The adsorption and activation of O₂ at Au/oxide catalysts via electronic origin of the contact^{3-4,6} has been proposed as a critical step in the CO oxidation pathway. Recent *insitu* experiments with O₂ exposure to gold-deposited TiO₂(110) surfaces demonstrated the nucleation of TiO₂ islands on the TiO₂(110) surface^{5,7}. Thus, O₂ is adsorbed at the TiO₂ surface, which can give rise to zero-order kinetics for CO oxidation¹. It remains unclear how the edges and/or periphery of the gold particles behave under O₂ exposure. The periphery has been proposed as the activation site for the CO oxidation pathway, since the catalytic activity, which shows a d-2 dependence¹, increases markedly for small particles with diameters below 2-3 nm^{1,5,8}. Here, we observed Au/TiO₂ interfaces using *in*situ gas-injection transmission electron microscopy (TEM), and found $Ti1_{-x}O_2$ (x>0) regions in TiO₂ pillars (See Figs 1-2) growing beneath the gold nanoparticles during O₂ exposure at 100 Pa. Pillars grew in O_2 and O_2+H_2O environments, but not in N_2 or H_2 . The Ti 1-x O_2 (x>0) region had a different chemical composition from the TiO₂ substrate, with Ti³⁺ and O^(2- δ) - (δ > 0) in its electron energy loss spectra. The periphery of the Ti_{1-x}O₂ region at the Au/TiO₂ contact is a candidate source of activated oxygen in the CO oxidation pathway. ## References - [1] Haruta, M., et al. J. Catal. 144, 175-192 (1999). - [2] Haruta, M. *The Chemical Record* **3**, 75-87 (2003). - [3] Chen, M. S. & Goodman, D. W. Science **306**, 252-255 (2004). - [4] Chen, M. S. & Goodman, D. W. Chem. Soc. Rev. 37, 1860-1870 (2008). - [5] Valden, M., Lai, X. & Goodman, D. W. Science 281, 1647-1650 (1998). - [6] Liu, Z.-P., Gong, X.-Q., Kohanoff, J., Sanchez, C. & Hu, P. *Phys. Rev. Lett.* **91**, 266102 (2003). - [7] Benett, R. A., Stone, P. & Bowker, M. Faraday Discuss. 114, 267-277 (1999). - [8] Schimpf, S. Catalysis Today 72, 63–78 (2002). - [9] This work was supported by Grant-in-Aid for Scientific Research (A) of the Japan Society for the Promotion of Science (No. 16201020), and by CREST (Core Research for Evolutional Science and Technology) of the Japan Science and Technology Corporation (JST). ^{1*} Department of Physics / Tokyo Institute of Technology, Tokyo, Japan, ttanaka@phys.titech.ac.jp ² Department of Material Science and Engineering / Tokyo Institute of Technology, Tokyo, Japan, ttanaka@phys.titech.ac.jp ³ JEOL Ltd, Tokyo, Japan ⁴ CREST/JST, Tokyo, Japan FIG. 1. Schematic view of a pillar, grown by O₂ exposure underneath a gold nanoparticle deposited on a TiO₂ substrate. Light blue and red dots represent Ti and O atoms, respectively, in the TiO₂ substrate. Blue and light green dots represent Ti and O atoms, respectively, in the pillar. The pillar has a different chemical composition from the TiO₂ substrate. FIG. 2. *In-situ* TEM images (**a**) before and (**b**) after co-exposure of O_2 and O_2 at 100 Pa (O_2 : 95.6%, O_2 : 4.4%). Gold particles (dark contrast) in panel **a** have a distribution of diameters from 0.7-3.3 nm, centred at 2.2 nm. In panel **b**, the Au particles in panel **a** have been agglomerated, and the O_2 support protrudes at the positions of the Au deposits, as indicated by arrows. The agglomerated particles have a distribution of diameters from 1.3-4.2 nm, centred at 2.75 nm. The protrusions appeared after pillar growth during O_2 exposure. This morphology change was observed after exposure to O_2 or a mixture of O_2 and O_2 and O_3 but not after exposure to O_3 or O_3 mixture of O_3 and O_3 but not after exposure to O_3 or O_3 mixture of O_3 and O_3 but not after exposure to O_3 or O_3 mixture of O_3 and O_3 but not after exposure to O_3 or O_3 mixture of O_3 and O_3 but not after exposure to O_3 or O_3 mixture of O_3 and O_3 but not after exposure to O_3 or O_3 mixture of O_3 and O_3 but not after exposure to O_3 or O_3 but not after exposure to expo