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We study the most general class of eigenfunction expansions for abstract normal
operators with pure point spectrum in a complex Hilbert space. We find sufficient
conditions for such expansions to be unconditionally convergent in spaces with two
norms and also estimate the degree of this convergence. Our result essentially
generalizes and complements the known theorems of Krein and of Krasnosel’skĭı and
Pustyl’nik. We apply it to normal elliptic pseudodifferential operators on compact
boundaryless C∞-manifolds. We find generic conditions for eigenfunction expansions
induced by such operators to converge unconditionally in the Sobolev spaces W �

p

with p > 2 or in the spaces C� (specifically, for the p-th mean or uniform
convergence on the manifold). These conditions are sufficient and necessary for the
indicated convergence on Sobolev or Hörmander function classes and are given in
terms of parameters characterizing these classes. We also find estimates for the
degree of the convergence on such function classes. These results are new even for
differential operators on the circle and for multiple Fourier series.
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1. Introduction

Let (X, ‖ · ‖) be a complex or real Banach space. A series
∑∞

n=1 xn formed by
elements xn ∈ X is called unconditionally convergent in X if the rearranged series∑∞

n=1 xσ(n) converges in X for an arbitrary permutation σ : N ↔ N. In this case
there exists a unique element x ∈ X such that

∑∞
n=1 xσ(n) = x for every permuta-

tion σ. If
∑∞

n=1 ‖xn‖ < ∞, then the original series is called absolutely convergent
in X. Every absolutely convergent series in X converges unconditionally therein.
If the space is finite-dimensional, then the converse is true according to Riemann’s
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2 V. Mikhailets and A. Murach

theorem. However, if X is infinite-dimensional, then there exist unconditionally
convergent series in X that do not converge absolutely (as the Dvoretzky–Rogers
theorem states [13]).

In this paper, we study series in abstract and function spaces with two norms. The
weaker norm among the two is induced by an inner product. Terms of series are pair-
wise orthogonal and are eigenfunctions of a certain (generally, unbounded) normal
operator. Specifically, it may be a self-adjoint operator with discrete spectrum.

The simplest example of such type is given by the trigonometric Fourier series.
From the operator-theoretic viewpoint, this is the spectral expansion of a function
corresponding to the Laplace operator on the unit circle T. The study of the conver-
gence of such series has a very long history and huge literature (see e.g. monographs
[8, 14, 36], surveys [2, 3, 16] and references therein).

It is known that the trigonometric Fourier series of every function f(τ) from the
Lebesgue space Lp(T), with 1 < p < ∞, converges to f in this space. This is true
for the Fourier series with respect to any rearranged trigonometric system

f(τ) ∼ a0

2
+

∞∑
n=1

[
aσ(n) cos(σ(n)τ) + bσ(n) sin(σ(n)τ)

]
(1.1)

if and only if p = 2. Moreover, there exists a certain permutation σ and a continu-
ous function f on T such that series (1.1) does not converge to f in the space Lp(T)
whatever p > 2 [35, Theorem 8]. Let us indicate another example. The Carleson
theorem [12] states that the Fourier trigonometric series of any function f ∈ L2(T)
converges to f almost everywhere (a.e.) on T. However, as was shown by Kol-
mogorov [21], there exists a function f ∈ L2(T) such that its certain rearranged
Fourier series of form (1.1) diverges a.e. on T. Thus, conditions for function series
to be convergent or unconditionally convergent can be essentially different.

The study of solutions to initial-boundary-value problems for parabolic or hyper-
bolic differential equations in cylindrical domains by the Fourier method leads to
the analysis of the convergence of expansions in eigenfunctions of self-adjoint ellip-
tic differential operators in bounded Euclidean domains (see e.g. [19, 24, 30]). Let
G be a bounded domain in Rn with smooth boundary, and suppose that an elliptic
differential expression with smooth coefficients on G induces a self-adjoint operator
L with discrete spectrum in the Hilbert space L2(G). Then this space possesses
an orthonormal basis {ej(τ) : j ∈ N} formed by eigenfunctions of L. Choosing a
function f ∈ L2(G) arbitrarily, we consider its spectral expansion

f(τ) ∼ lim
λ→∞

∑
j:|λj |�λ

cj(f) ej(τ). (1.2)

Here, λj is the eigenvalue of L associated with the eigenfunction ej , and cj(f) is the
Fourier coefficient of f with respect to ej . This expansion converges in the L2(G)
norm. Therefore, it is reasonable to ask under which supplementary conditions for f
expansion (1.2) converges to f in the stronger Lp(G) norm with p > 2 or uniformly
on G. There are no comprehensive answers to this question yet even in the case
of ordinary differential equations. Results obtained in the many-dimensional case
show that it is necessary to narrow down the problem statement essentially and to
consider the convergence of the Fourier series (1.2) not for single functions but on
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Unconditional convergence of eigenfunction expansions 3

the classes of differential functions with compact supports in the domain G. Let us
formulate one complete result of this type, which became a starting point for us
[2, Chapter II, § 3, Subsection 2].

Let W s
p,0(G) denote the class of all functions that belong to the Lp-Sobolev space

of real order s > 0 over G and that their supports are compact subsets of the open
set G. Spectral expansion (1.2) of an arbitrary function f ∈ W s

p,0(G) converges
uniformly on every compact set K ⊂ G if and only if the following three conditions
are satisfied:

ps > n, s � n − 1
2

and p � 1. (1.3)

Note that the first inequality guarantees the continuity functions of class W s
p,0(G),

whereas the second inequality provides the validity of the localization principle for
spectral expansions on the class of elliptic operators under consideration. If p �
2n/(n − 1), then the second inequality in (1.3) follows from the first one. The claim
for the compactness of the support of f is stipulated by the fact that then f satisfies
certain homogeneous boundary conditions depending on the elliptic operator L.
The uniform convergence of the spectral expansions only on compact subsets of G
is connected with the presence of the boundary ∂G.

The main results of this paper are formulated and proved in § 4 and 5. There we
study the unconditional convergence of expansions in eigenfunctions of an arbitrary
normal elliptic pseudodifferential operator of positive order on a closed smooth
manifold Γ. The convergence is considered with respect to the norm in the Sobolev
space W �

p(Γ) or in the space C�(Γ), with p > 2 and 0 � � ∈ Z. We find necessary
and sufficient conditions for this unconditional convergence to hold true on various
classes of differentiable functions and estimate its degree. To this end, we use the
Hörmander function classes Hα(Γ) whose differentiation order is a function α :
[1, ∞) → (0, ∞) that O-regularly varies at infinity in the sense of Avakumović. Such
classes and their connection with elliptic pseudodifferential operators are discussed
in § 3.

Sections 6 and 7 specify these results for differential operators on the circle and
for multiple Fourier series, which allows us to obtain a number of new valuable
results for these objects.

Our proofs of the aforementioned results are based on an abstract theorem about
the unconditional convergence (see definition 2.1) of expansions in eigenvectors of
a normal operator in a space with two norms. This theorem is stated and proved
in § 2. It develops and refines known theorems of Krein [23, Theorem 4] and of
Krasnosel’skĭı and Pustyl’nik [22, Theorem 22.1] with respect to normal operators
with pure point spectrum in a Hilbert space.

Final remarks and comments to the obtained results are given in § 8.

2. The basic abstract result

Throughout the paper, we consider complex linear spaces. Let H be an infinite-
dimensional (not necessarily separable) Hilbert space, and let N be a normed space.
Suppose that H and N are algebraically embedded in a certain linear space. As
usual, ‖ · ‖H and (·, ·)H respectively denote the norm and inner product in H, and
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‖ · ‖N stands for the norm in N . Thus, the linear space H ∩ N is endowed with two
norms.

Let L be a normal (specifically, self-adjoint) linear operator in H. We allow
the case where L is unbounded in H as well as the case where L is bounded on
H. We suppose that L has pure point spectrum, i.e. the Hilbert space H has an
orthonormal basis {ej : j ∈ Θ} formed by certain eigenvectors ej of L. Here, Θ is
an index set whose cardinality coincides with the Hilbert dimension of H. Thus,
every vector f ∈ H expands in the series

f =
∑
j∈Θ

(f, ej)H ej (2.1)

in the topology of H. (Of course, this series contains only a countable number of
non-zero terms, and its sum does not depend on their order.) Let λj denote the
eigenvalue of L such that Lej = λjej . As usual, σ(L) stands for the spectrum of L,
and σp(L) denotes the point spectrum of L, i.e. σp(L) is the set of all eigenvalues
of L. Note that eigenvalues of L may be of infinite geometric multiplicity and that
the set of all eigenvalues of L may have accumulation points.

Let Q denote the system of all finite subsets of Θ. We interpret Q as an upper
directed set with respect to the relation ⊆. Equality (2.1) means for f ∈ H that
the net {∑

j∈Υ

(f, ej)H ej : Υ ∈ Q
}

(2.2)

converges to f in H.

Definition 2.1. Let f ∈ H ∩ N . We say that the expansions of f in eigenvec-
tors of L converge unconditionally in the normed space N if net (2.2) lies in N
and converges to f in N for every orthonormal basis {ej : j ∈ Θ} in H formed
by eigenvectors of L. If this condition is satisfied for every vector f from some
class M ⊆ H ∩ N , we also say that the expansions in eigenvectors of L converge
unconditionally in N on the class M .

Remark 2.2. Providing H is separable, eigenvector expansion (2.1) becomes

f =
∞∑

j=1

(f, ej)H ej . (2.3)

In this case, the expansions of f in eigenvectors of L converge unconditionally
in N if and only if series (2.3) converges to f in N for every orthonormal basis
{ej : j ∈ N} formed by eigenvectors of L (i.e. for any choices of orthonormal bases
of eigenspaces of L associated with non-degenerate eigenvalues). It follows from this
condition that series (2.3) converges under an arbitrary permutation of its terms.

Theorem 2.3. Let ω, η : σ(L) → C \ {0} be Borel measurable bounded functions,
and define the bounded operators ω(L) and η(L) on H as functions of the normal
operator L. Assume that the mapping u �→ ω(L)u sets a bounded operator from H
to N , and denote this operator by R. Let f be an arbitrary vector from the image
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of the operator (ωη)(L). Then the expansions of f in eigenvectors of L converge
unconditionally in the space N . Moreover, the degree of this convergence admits the
estimate∥∥∥∥f −

∑
j∈Υ

(f, ej)H ej

∥∥∥∥
N

� ‖R‖H→N · ‖g‖H · sup
j∈Θ\Υ

|η(λj)| · rg,e(Υ) (2.4)

for each set Υ ∈ Q and every orthonormal basis e := {ej : j ∈ Θ} indicated in
definition 2.1 and with some net {rg,e(Υ) : Υ ∈ Q} ⊆ [0, 1] that tends monotoni-
cally to zero and depends neither on ω nor on η. Here, g ∈ H is the unique vector
such that (ωη)(L)g = f .

Proof. Since ω(L)η(L)ej = (ωη)(λj)ej whenever j ∈ Θ and since (ωη)(t) �= 0 when-
ever t ∈ σ(L), we conclude that each ej ∈ N because the image of ω(L) lies in
N . Thus, the left-hand side of (2.4) makes sense. Since the operator (ωη)(L) is
algebraically reversible, the vector g is well defined for every above-mentioned
f . Suppose that f �= 0, otherwise the conclusion of this theorem is trivial. Given
Υ ∈ Q, we let PΥ denote the orthoprojector of H on the span of {ej : j ∈ Υ} and
obtain the following estimate:

‖f − PΥf‖N = ‖(ωη)(L)g − PΥ(ωη)(L)g‖N

= ‖(ωη)(L)(I − PΥ)g‖N = ‖ω(L)η(L)(I − PΥ)2g‖N

� ‖R‖H→N · ‖η(L)(I − PΥ)‖H→H · ‖(I − PΥ)g‖H ,

(2.5)

with I being the identity operator on H. We put

rg,e(Υ) := ‖(I − PΥ)g‖H · ‖g‖−1
H (2.6)

and see that the net {rg,e(Υ) : Υ ∈ Q} is required. Note also that

‖η(L)(I − PΥ)‖H→H � sup
j∈Θ\Υ

|η(λj)|. (2.7)

Indeed, since

η(L)(I − PΥ)h = η(L)
∑

j∈Θ\Υ
(h, ej)H ej =

∑
j∈Θ\Υ

(h, ej)H η(λj)ej

for every h ∈ H (the convergence holds in H), we have the inequality

‖η(L)(I − PΥ)h‖2
H =

∑
j∈Θ\Υ

|(h, ej)H η(λj)|2 � ‖h‖2
H · sup

j∈Θ\Υ
|η(λj)|2,

which gives (2.7). Now (2.5)–(2.7) yield estimate (2.4), which implies the required
unconditional convergence. �

Remark 2.4. Assume that the norms in H and N are compatible on the linear
space H ∩ N . (By definition [15, Chapter I, Section 2.2], this compatibility means
the following: if a sequence lies in H ∩ N and converges to zero in one of these
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norms and is a Cauchy sequence with respect to the second norm, then it converges
to zero in the second norm.) Let R be a bounded linear operator on H (specifically,
R : u �→ ω(L)u where u ∈ H, as in theorem 2.3). Then the inclusion R(H) ⊆ N
implies that R acts continuously from H to N . Indeed, suppose that R(H) ⊆ N .
Then, owing to the closed graph theorem, the operator R : H → Ñ is bounded if and
only if it is closed; here, Ñ is the completion of the normed space N . We therefore
have to prove that this operator is closable. Assume that a sequence (uk)∞k=1 ⊂ H
satisfies the following two conditions: uk → 0 in H and

Ruk → v in Ñ for certain v ∈ Ñ , (2.8)

as k → ∞. Then Ruk → 0 in H because R is bounded on H. Besides, (Ruk)∞k=1 is
a Cauchy sequence in N . Hence, Ruk → 0 in N because the norms in N and H are
compatible on H ∩ N . Thus, v = 0 in view of (2.8), which means that the operator
R : H → Ñ is closable.

Theorem 2.3 contains Krein’s result [23, Theorem 4] according to which series
(2.3) converges in N for every f ∈ L(H) if L is a compact self-adjoint operator in
H and if L acts continuously from H to a Banach space N . The latter theorem
generalizes (to abstract operators) the Hilbert–Schmidt theorem about the uni-
form decomposability of sourcewise representable functions in eigenfunctions of a
symmetric integral operator.

If L is a positive definite self-adjoint operator with discrete spectrum and if ω(t) ≡
t−δ and η(t) ≡ t−τ for certain numbers δ, τ � 0 and if R := L−δ acts continuously
from H to a Banach space N , Krasnosel’skĭı and Pustyl’nik [22, Theorem 22.1]
proved that ∥∥∥∥f −

k∑
j=1

(f, ej)H ej

∥∥∥∥
N

= o(λ−τ
k ) as k → ∞

for any f from the domain of Lδ+τ (the Hilbert space H is assumed to be separable).
Here, the eigenvalues λk > 0 of L are numbered so that λk � λk+1. Formula (2.4)
implies a more general result for normal operators with discrete spectrum.

3. Hörmander spaces and elliptic operators

We will use them to estimate the degree of the convergence of expansions in eigen-
functions of some elliptic operators given on a closed manifold. Such spaces were
introduced over Rn and investigated by Hörmander [17, Section 2.2]. Their smooth-
ness index (or differentiation order) is a general enough function of the frequency
variables, which allows us to obtain finer estimates than those [1, Subsection 6.1 a]
received with the help of classical function spaces such as Sobolev spaces, whose
smoothness index is a number. We use a broad class of isotropic inner product
Hörmander spaces that admit a reasonable definition on smooth closed manifolds.
The class was introduced and investigated in [27], [28, Section 2.4.2] and [29]
(note that these works develop an approach proposed in [25, 26]). It has various
applications to elliptic operators [28, Section 2.4.3] and elliptic boundary-value
problems [4, 5].
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Unconditional convergence of eigenfunction expansions 7

This class is formed by certain function spaces Hα whose smoothness index α
ranges over a set denoted by OR. By definition, OR consists of all Borel functions
α : [1, ∞) → (0, ∞) such that

c−1 � α(λt)
α(t)

� c whenever t � 1 and 1 � λ � b,

with the numbers b > 1 and c � 1 being independent of t and λ (but may depend
on α). Such functions were introduced by Avakumović [7], are called OR-varying
(or O-regularly varying) at infinity, and are well investigated [9, 10].

The class OR admits the following description [9, Theorem 2.2.7]: α ∈ OR if and
only if

α(t) = exp

(
β(t) +

t∫
1

γ(τ)
τ

dτ

)
whenever t � 1 (3.1)

for some bounded Borel functions β, γ : [1, ∞) → R.
For every function α ∈ OR there exist numbers s0, s1 ∈ R, with s0 � s1, and

numbers c0, c1 > 0 such that

c0λ
s0 � α(λt)

α(t)
� c1λ

s1 whenever t � 1 and λ � 1. (3.2)

Given α ∈ OR, we let s∗(α) denote the supremum of the set of all numbers s0

that the left-hand inequality in (3.2) holds true (for certain c0 depending on s0),
and we let s∗(α) denote the infimum of the set of all numbers s1 that the right-
hand inequality in (3.2) holds true (for certain c1 depending on s1). Of course,
−∞ < s∗(α) � s∗(α) < ∞. The numbers s∗(α) and s∗(α) are equal to the lower and
upper Orlicz–Matuszewska indices of α, resp. These facts follow from [9, Theorem
2.1.7 and Proposition 2.2.1].

For instance, every continuous function α : [1, ∞) → (0, ∞) such that

α(t) = ts(log t)s1(log log t)s2 . . . (log . . . log︸ ︷︷ ︸
k times

t)sk whenever t � 1

belongs to OR; here, 1 � k ∈ Z and s, s1, . . . , sk ∈ R. It is well known that s∗(α) =
s∗(α) = s for this function.

An example of a function α ∈ OR with the different Orlicz–Matuszewska indices
is given by formula (3.1) in which

γ(τ) :=
{

r if τ ∈ [θ1 · · · θ2j−1, θ1 · · · θ2j−1θ2j ] for certain integer j � 1,
s otherwise (3.3)

provided that r < s, 1 = θ1 < θ2 < θ3 < . . . , and θk → ∞ as k → ∞. Then
s∗(α) = r and s∗(α) = s, as is noticed, e.g., in [4, Section 3].

Let α ∈ OR and 1 � n ∈ Z. By definition, the linear space Hα(Rn) consists of
all tempered distributions w on Rn that their Fourier transform ŵ := Fw is locally
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Lebesgue integrable over Rn and satisfies the condition∫
Rn

α2(〈ξ〉) |ŵ(ξ)|2 dξ < ∞.

As usual, 〈ξ〉 := (1 + |ξ|2)1/2 is the smoothed absolute value of ξ ∈ Rn. The space
Hα(Rn) is endowed with the inner product

(w1, w2)Hα(Rn) :=
∫

Rn

α2(〈ξ〉) ŵ1(ξ) ŵ2(ξ) dξ

and the corresponding norm. This space is an isotropic Hilbert case of the
Hörmander spaces Bp,k considered in [17, Section 2.2] and [18, Section 10.1].
Namely, Hα(Rn) = B2,k provided that k(ξ) = α(〈ξ〉) whenever ξ ∈ Rn.

Consider a version of the space Hα(Rn) for smooth closed manifolds. In the
sequel, Γ is a closed (i.e. compact and boundaryless) manifold of dimension n � 1
and class C∞. Suppose that a positive C∞-density dx is given on Γ. We arbitrarily
choose a finite atlas from the C∞-structure on Γ; let this atlas be formed by κ
local charts πj : Rn ↔ Γj , with j = 1, . . . , κ. Here, the open sets Γ1, . . . , Γκ form
a covering of Γ. We also arbitrarily choose functions χj ∈ C∞(Γ), with j = 1, . . . , κ,
such that χ1(x) + · · · + χκ(x) = 1 whenever x ∈ Γ and that supp χj ⊂ Γj whenever
1 � j � κ. Thus, these functions form a partition of unity on Γ subordinate to the
above covering.

By definition, the linear space Hα(Γ) consists of all distributions f on Γ such that
(χjf) ◦ πj ∈ Hα(Rn) for each j ∈ {1, . . . , κ}. Here, (χjf) ◦ πj is the representation
of the distribution χjf in the local chart πj . The space Hα(Γ) is endowed with the
inner product

(f1, f2)H,α :=
κ∑

j=1

((χjf1) ◦ πj , (χjf2) ◦ πj)Hα(Rn)

and the corresponding norm ‖f‖H,α := (f, f)1/2
H,α. This space is complete (i.e.

Hilbert) and separable and does not depend up to equivalence of norms on the
choice of the atlas and partition of unity on Γ; the set C∞(Γ) is dense in Hα(Γ).
These properties are due to [28, Theorem 2.21].

If α(t) ≡ ts for some s ∈ R, then Hα(G), where G = Rn or G = Γ, becomes the
inner product Sobolev space W s

2 (G) of order s.
We also need an equivalent definition of the space Hα(Γ), with α ∈ OR, in terms

of a function of some elliptic pseudodifferential operators (PsDOs). Following [1,
Section 2.1], we let Ψm

ph(Γ) denote the class of all classical (i.e. polyhomogeneous)
PsDOs on Γ of order m ∈ R. Suppose that m > 0 and that a PsDO A ∈ Ψm

ph(Γ) is
elliptic on Γ, i.e. a0(x, ξ) �= 0 whenever x ∈ Γ and 0 �= ξ ∈ T ∗

x Γ, with a0(x, ξ) denot-
ing the principal symbol of A and with T ∗

x Γ standing (as usual) for the cotangent
space to Γ at x. We may and will consider A as a closed unbounded operator in the
Hilbert Lebesgue space L2(Γ) := L2(Γ, dx) and with the domain Dom A = Wm

2 (Γ)
(see [1, Theorem 2.3.5]). Suppose that A is a self-adjoint operator in L2(Γ) and
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Unconditional convergence of eigenfunction expansions 9

that σ(A) ⊆ [1, ∞). Then the operator α(A1/m) is well defined in the Hilbert space
L2(Γ, dx) via Spectral Theorem as the Borel function α(t1/m) of A.

Proposition 3.1. Let α ∈ OR. Then the norm in the space Hα(Γ) is equivalent to
the norm

f �→ ‖α(A1/m)f‖L2(Γ) (3.4)

on the dense set C∞(Γ). Thus, Hα(Γ) coincides with the completion of C∞(Γ)
with respect to norm (3.4). Hence, if the function 1/α is bounded on [1, ∞), then
Hα(Γ) is the domain of the operator α(A1/m) and this operator sets an isomorphism
between Hα(Γ) and L2(Γ).

This proposition is due to [28, Theorem 2.23]. We may put A := 1 − ΔΓ and
m = 2, where ΔΓ is the Laplace–Beltrami operator on Γ, with Γ being endowed
with the Riemannian metric inducing dx.

4. Mean convergence

Given s ∈ R and p ∈ (1, ∞), we let W s
p (Γ) denote the Sobolev space over Γ with

the smoothness index s and the integral-exponent p and let ‖ · ‖W,s,p stand for the
norm in this space. The space W s

p (Γ) is defined on the base of W s
p (Rn) with the

help of the above atlas and partition of unity like the definition of Hα(Γ) on the
base of Hα(Rn). Recall that the Sobolev space W s

p (Rn) consists of all tempered
distributions w on Rn such that the distribution v := F−1[〈ξ〉s ŵ(ξ)] belongs to the
Lebesgue space Lp(Rn), with the norm of w in W s

p (Rn) being equal to the norm
of v in Lp(Rn). Of course, F−1 stands for the inverse Fourier transform. Note that
W 0

p (Γ) coincides with the Lebesgue space Lp(Γ) := Lp(Γ, dx), and assume that this
holds with equality of norms.

We use the term ‘mean convergence’ to refer to the convergence in the normed
Sobolev space W �

p(Γ) subject to 0 � � ∈ Z and 1 < p < ∞, specifically in the
Lebesgue space Lp(Γ).

Let real m > 0, and let A ∈ Ψm
ph(Γ). Suppose that the PsDO A is elliptic on

Γ. If A is a normal operator in L2(Γ), the separable Hilbert space L2(Γ) has an
orthonormal basis formed by some eigenfunctions of A (see e.g. [32, Section 15.3]),
every eigenfunction of A pertaining to C∞(Γ) and each eigenvalue of A being of
finite multiplicity. Then every vector f ∈ L2(Γ) admits the spectral decomposition

f = lim
r→∞

∑
λ∈σp(A)
|λ|�r

P (λ)f, (4.1)

the series converging in L2(Γ). As usual, P (λ) denotes the orthoprojector on the
eigenspace of A associated with the eigenvalue λ. Note that the sum in (4.1) contains
only a finite number of terms for every r > 0. The convergence in L2(Γ) implies one
in each normed space Lp(Γ) with 1 � p < 2; hence, we are interested in conditions
for the convergence of (4.1) in the mean with index p > 2.
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10 V. Mikhailets and A. Murach

Given real m > 0, we let NEΨm
ph(Γ) denote the set of all PsDOs of class Ψm

ph(Γ)
that are elliptic on Γ and normal in L2(Γ). Specifically, every elliptic constant-
coefficient partial differential operator on Γ of order m belongs to NEΨm

ph(Γ). Recall
that n = dim Γ � 1.

Theorem 4.1. Suppose that 0 < m ∈ R, 0 � � ∈ Z, s, p, q ∈ R and 1 < q � 2 < p.
Then the following three conditions are equivalent:

(i) s � � + n/q − n/p;

(ii) there exists a PsDO A ∈ NEΨm
ph(Γ) that spectral decomposition (4.1) induced

by A converges in W �
p(Γ) on the class W s

q (Γ);

(iii) the expansions in eigenfunctions of an arbitrary PsDO from NEΨm
ph(Γ)

converge unconditionally in W �
p(Γ) on the class W s

q (Γ).

Proof. We will first prove that (i) ⇒ (iii). Assuming (i) to hold true, we arbitrar-
ily choose a PsDO A ∈ NEΨm

ph(Γ) and put L := (I + A∗A), with I denoting the
identity operator on L2(Γ). Let σ := � + n/2 − n/p > 0. Since L ∈ NEΨ2m

ph (Γ) and
σ(L) ⊆ [1, ∞), the operator Lσ/(2m) is well defined in L2(Γ) as a power function
of L and sets an isomorphism between Wσ

2 (Γ) and L2(Γ); see [1, Corollary 5.3.2].
The inverse of L, i.e. the operator L−σ/(2m), acts continuously from H = L2(Γ) to
N := W �

p(Γ) because of the continuous embedding Wσ
2 (Γ) ↪→ W �

p(Γ). This embed-
ding follows directly from its well-known analogue for Sobolev spaces over Rn

(see e.g. [33, Theorem 2.8.1(b)]). Using theorem 2.3, we put ω(t) := t−σ/(2m) and
η(t) := 1 whenever t � 1 and remark that Wσ

2 (Γ) is the image of the operator
(ωη)(L). We conclude by this theorem that the expansions in eigenfunctions of L
converge unconditionally in W �

p(Γ) on the class W σ
2 (Γ). Observe that W s

q (Γ) ↪→
W σ

2 (Γ) because s � σ + n/q − n/2 by (i). This yields (iii) since all eigenfunctions
of A are eigenfunctions of L as well. We have proved that (i) ⇒ (iii).

The implication (iii) ⇒ (ii) is obvious.
It remains to prove that (ii) ⇒ (i). Assuming (ii) to hold true, we obtain the

embedding of W s
q (Γ) in W �

p(Γ). The embedding implies (i), which is considered to
be a known fact. Specifically, this fact follows from [34, p. 60, property (ii)]. Namely,
the above embedding implies that W s

q (G) ↪→ W �
p(G) for any open ball G in Rn.

(Recall that W s
q (G), e.g. consists of the restrictions of all distributions w ∈ W s

q (Rn)
to G.) If (i) was not true, i.e. s + ε = � + n/q − n/p for some ε > 0, then the Besov
space Bs+ε

q,θ (G) (as a part of W s
q (G)) would be embedded in W �

p(G) for each θ � 1.
However, by [34, p. 60, property (ii)], the last embedding is equivalent to θ � p.
This contradiction shows that (ii) ⇒ (i). �

Let m > 0, and let A ∈ NEΨm
ph(Γ). Consider an orthonormal basis e := (ej)∞j=1

in L2(Γ) formed by eigenfunctions ej ∈ C∞(Γ) of A. Let λj denote the eigenvalue
of A such that Aej = λjej . We enumerate the eigenfunctions so that |λj | � |λj+1|
whenever j � 1. Then

|λj | ∼ c̃ jm/n as j → ∞, (4.2)
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where c̃ is a certain positive number that does not depend on j (see e.g.
[32, Section 15.3]). According to theorem 4.1, the series (2.3), where H = L2(Γ),
converges unconditionally in W �

p(Γ) on the class W
�+n/2−n/p
2 (Γ). This class is the

broadest one among the spaces W s
q (Γ) indicated by theorem 4.1 as classes of con-

vergence of the above series. Using the Hörmander spaces Hα(Γ) ⊂ W
�+n/2−n/p
2 (Γ)

as classes of the convergence, we can estimate its degree.

Theorem 4.2. Let 0 � � ∈ Z, 2 < p ∈ R and α ∈ OR. Suppose that

h(t) := t�+n/2−n/p (α(t))−1 → 0 as t → ∞
and that the function h decreases on [1, ∞). Then∥∥∥∥f −

∑
j:|λj |�λ

(f, ej)H ej

∥∥∥∥
W,�,p

� c · ‖f‖H,α · h(λ1/m) (4.3)

and ∥∥∥∥f −
k∑

j=1

(f, ej)H ej

∥∥∥∥
W,�,p

� c · ‖f‖H,α · h(k1/n) (4.4)

for all f ∈ Hα(Γ), λ � 1 and integer-valued k � 1. Here, c is a certain positive
number that does not depend on f , λ and k.

Proof. Put σ := l + n/2 − n/p, L := (I + A∗A) and ω(t) := t−σ/(2m) and η(t) :=
h(t1/(2m)) whenever t � 1. Since (ωη)(t) = (α(t1/(2m)))−1 whenever t � 1, the oper-
ator (ωη)(L) sets an isomorphism between L2(Γ) and Hα(Γ) due to proposition 3.1.
Hence, according to theorem 2.3 and since h decreases, we have the estimates∥∥∥∥f −

∑
j:λ′

j�1+λ2

(f, ej)H ej

∥∥∥∥
W,�,p

� c0 · ‖g‖H · η(1 + λ2) (4.5)

and ∥∥∥∥f −
k∑

j=1

(f, ej)H ej

∥∥∥∥
W,�,p

� c0 · ‖g‖H · η(λ′
k), (4.6)

where c0 is the norm of ω(L) considered as a bounded operator from H = L2(Γ)
to N = W �

p(Γ) (see the proof of theorem 4.1), g := ((ωη)(L))−1f and the num-
ber λ′

j satisfies Lej = λ′
jej , i.e. λ′

j = 1 + |λj |2. Hence, ‖g‖H � ‖f‖H,α, η(1 + λ2) �
h(λ1/m) as λ � 1, and

η(λ′
k) = h((1 + |λk|2)1/(2m)) � h(k1/n) as k � 1,

due to h ∈ OR and (4.2). (As usual, the symbol � means the weak equivalence of
positive values.) Thus, (4.5) and (4.6) imply the required estimates (4.3) and (4.4),
resp. �
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12 V. Mikhailets and A. Murach

Remark 4.3. If A is a positive definite operator in L2(Γ), we have the equivalence
of norms

‖f‖H,α �
( ∞∑

j=1

α2(j1/n) |(f, ej)H |2
)1/2

�
( ∞∑

j=1

α2((1 + λj)1/m) |(f, ej)H |2
)1/2

,

which follows from proposition 3.1 (cf. [28, Theorem 2.7]).

Let us consider three examples of a function α that satisfy hypotheses of theorem
4.2. As above, 0 � � ∈ Z and 2 < p ∈ R. We arbitrarily choose a number ε > 0.

Putting α(t) := tl+ε+n/2−n/p whenever t � 1, we obtain the power estimates (4.3)
and (4.4) with h(λ1/m) = λ−ε/m and h(k1/n) = k−ε/n, resp. In this case, Hα(Γ) is
a Sobolev space.

Taking s := l + n/2 − n/p and r := s + ε in (3.3) and defining α by formula (3.1)
with β(t) ≡ 1, we receive the Hörmander space Hα(Γ) that is not a part of the union
of all Sobolev spaces W s

2 (Γ) such that s > � + n/2 − n/p. In this case, h(t) ↘ 0 as
t → ∞.

The third example is given by any function α ∈ OR such that

α(t) := tl+n/2−n/p (log . . . log︸ ︷︷ ︸
k times

t)ε whenever t � 1.

In this case, estimate (4.4) is of a logarithmic kind, and the space Hα(Γ) is broader
than the above union of Sobolev spaces.

Remark 4.4. Theorems 4.1 and 4.2 remain valid for every fractional � > 0, which
follows from their proofs.

Remark 4.5. Let 0 � � ∈ R, 1 � q < 2 < p and s = � + n/q − n/p. Assertions (ii)
and (iii) of theorem 4.1 hold true if we replace the normed space W �

p(Γ) with the
Triebel–Lizorkin space F �

p,θ(Γ), where 1 � θ � ∞, or with the Besov space B�
p,θ(Γ),

where 2 � θ � ∞, and replace the convergence class W s
q (Γ) with F s

q,η(Γ), where
1 � η � ∞, or with Bs

q,η(Γ), where 1 � η � 2. This follows from the continuous
embeddings

F s
q,η(Γ) ↪→ W

�+n/2−n/p
2 (Γ) ↪→ F �

p,θ(Γ)

and

Bs
q,η(Γ) ↪→ W

�+n/2−n/p
2 (Γ) ↪→ B�

p,θ(Γ)

[34, p. 60, properties (ii) and (iii)], as we can conclude analysing the proof of this
theorem. Of course, it is natural to restrict ourselves to the marginal cases where
η = ∞ and θ = 1 for F -spaces and where η = θ = 2 for B-spaces. In these cases we
obtain narrower normed spaces than W �

p(Γ) and get broader convergence classes
than W s

q (Γ). Of course, theorem 4.2 is also valid under this replacement of W �
p(Γ).
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5. Uniform convergence

We use this term to refer to the convergence in the normed space C�(Γ) of � times
continuously differentiable functions on the manifold Γ, with 0 � � ∈ Z. Specifically,
if � = 0, we get the convergence in the space C(Γ) of continuous functions on Γ, i.e.
the uniform convergence on Γ. Let ‖ · ‖C,� denote the norm in C�(Γ). If � � 1, we
use the norm

‖f‖C,� :=
κ∑

j=1

max
|�|��

sup
y∈Rn

|∂�((χjf) ◦ πj)(y)|,

with πj and χj being taking from the definition of Hörmander spaces over Γ. Here,
of course, � = (�1, . . . , �n) is a multi-index, |�| = �1 + · · · + �n, and ∂� is the partial
derivative corresponding to �.

Theorem 5.1. Suppose that 0 < m ∈ R, 0 � � ∈ Z and α ∈ OR. Then the following
three conditions are equivalent:

(i)
∞∫
1

t2�+n−1

α2(t)
dt < ∞;

(ii) there exists a PsDO A ∈ NEΨm
ph(Γ) that spectral decomposition (4.1) induced

by A converges in C�(Γ) on the class Hα(Γ);

(iii) the expansions in eigenfunctions of an arbitrary PsDO from NEΨm
ph(Γ)

converge unconditionally in C�(Γ) on the class Hα(Γ).

Proof. It follows from Hörmander’s embedding theorem [17, Theorem 2.2.7] that

condition (i) ⇐⇒ Hα(Γ) ⊂ C�(Γ), (5.1)

as is seen from [28, Proposition 2.6 (vi)].
Let us now prove that (i) ⇒ (iii). We assume (i) to hold true and arbitrarily

choose a PsDO A ∈ NEΨm
ph(Γ). Owing to (5.1), the space Hα(Γ) lies in L2(Γ).

Hence, the function 1/α is bounded on [1, ∞) in view of [17, Theorem 2.2.2].
We put ω(t) := 1/α(t1/(2m)) whenever t � 1 and consider the function ω(L) of the
operator L = (I + A∗A) ∈ NEΨ2m

ph (Γ) acting in L2(Γ). According to proposition
3.1, the operator ω(L) sets an isomorphism between L2(Γ) and Hα(Γ). Hence,
owing to (5.1), this operator acts continuously from H = L2(Γ) to N := C�(Γ), as
noticed in remark 2.4. We therefore conclude by theorem 2.3, where η(t) ≡ 1, that
the expansions in eigenfunctions of L converge unconditionally in C�(Γ) on the class
Hα(Γ). We have proved that (i) ⇒ (iii).

The implication (iii) ⇒ (ii) is obvious.
The implication (ii) ⇒ (i) is true because assertion (ii) entails the inclusion

Hα(Γ) ⊂ C�(Γ) and hence implies (i) by (5.1). �

Let m > 0 and A ∈ NEΨm
ph(Γ). As in the previous section, e := (ej)∞j=1 is an

orthonormal basis in H = L2(Γ) formed by eigenfunctions ej of A, with Aej = λjej
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14 V. Mikhailets and A. Murach

and |λj | � |λj+1| whenever j � 1. We complement theorem 5.1 by estimating the
degree of the uniform convergence of series (2.3) on Hörmander classes.

Theorem 5.2. Let 0 � � ∈ Z, and suppose that certain functions h, β ∈ OR satisfy
the following conditions: h(t) → 0 as t → ∞, h decreases on [1, ∞), and

∞∫
1

t2�+n−1

β2(t)
dt < ∞.

Put α := β/h, and note that the function α belongs to OR and satisfies hypothesis
(i) of theorem 5.1. Then∥∥∥∥f −

∑
j:|λj |�λ

(f, ej)H ej

∥∥∥∥
C,�

� c · ‖f‖H,α · h(λ1/m) (5.2)

and ∥∥∥∥f −
k∑

j=1

(f, ej)H ej

∥∥∥∥
C,�

� c · ‖f‖H,α · h(k1/n) (5.3)

for all f ∈ Hα(Γ), λ � 1, and integer-valued k � 1. Here, c is a certain positive
number that does not depend on f , λ and k.

Proof. Let, as above, L := (I + A∗A), and consider the bounded functions ω(t) :=
(β(t1/(2m)))−1 and η(t) := h(t1/(2m)) of t � 1. (As to ω note that every function of
class OR ∩ L1[1, ∞) is bounded on [1, ∞)). Since (ωη)(t) ≡ (α(t1/(2m)))−1, the
operator (ωη)(L) sets an isomorphism between H = L2(Γ) and Hα(Γ) due to
[28, Theorem 2.23]. Hence, according to theorem 2.3 and since the function h
decreases, we obtain the estimates of form (4.5) and (4.6), with the norm ‖ · ‖C,�

being instead of ‖ · ‖W,�,p. These estimates imply (5.2) and (5.3) with the help of
the same reasoning as that given in the proof of theorem 4.2. �

Let us indicate important examples of the function α satisfying hypotheses of
theorem 5.2. We let 0 � � ∈ Z and arbitrarily choose numbers ε and δ such that
0 < δ < ε.

Putting α(t) := tl+n/2+ε+δ whenever t � 1, we obtain power estimates (5.2) and
(5.3) with h(t) ≡ t−δ. Such power estimates hold true for functions

f ∈
⋃

s>l+n/2

W s
2 (Γ) � W

l+n/2
2 (Γ).

To achieve the limiting value s = l + n/2, we put α(t) := tl+n/2 log1/2+ε+δ(t +
1) whenever t � 1 and receive the estimates of a logarithmic kind with
h(t) ≡ log−δ(t + 1).

6. Applications to ordinary differential operators

Let us discuss results of § 4 and 5 in the case where Γ is a circle T of the unit
radius and when A is an (ordinary) differential operator on T of order m with
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Unconditional convergence of eigenfunction expansions 15

infinitely smooth complex-valued coefficients. Let τ , with 0 � τ � 2π, set a natural
parametrization of T. We suppose that the leading coefficient of A does not equal
zero for any τ , which is equivalent to the ellipticity of A on T. We also assume that
A is a normal operator in the Hilbert space H := L2(T). If all coefficients of A are
constant, this assumption holds true. In the case of variables coefficients, we recall
the following necessary and sufficient condition for A to be self-adjoint in L2(T)
[31, Chapter I, Section 1, Subsection 5]: A is a sum of differential operators of the
form

A2ku := (μku(k))(k) and A2k−1u :=
i

2
(
(νku(k))(k−1) + (νku(k−1))(k)

)
provided that μk and νk are real-valued functions of class C∞(T). Specifically, if
all coefficients of A are real-valued, the above condition means that m is even and
that A is the sum of A2k with k = 0, 1, . . . , m/2.

Let e := (ej)∞j=1 be an orthonormal basis in H = L2(T) formed by eigenfunctions
ej of A, with Aej = λjej and |λj | � |λj+1| whenever j � 1. Given a function f ∈
L2(T), we consider its expansion

f(τ) =
∞∑

j=1

(f, ej)H ej(τ), with 0 � τ � 2π, (6.1)

in these eigenfunctions, the expansion converging in L2(T). Let 0 � � ∈ Z and
2 < p ∈ R. If 1 < q � 2 and s � � + 1/q − 1/p, then theorem 4.1 implies that, for
every f ∈ W s

q (T), this expansion converges in the p-th mean unconditionally and
preserves this convergence after the termwise differentiation up to � times. If a
function parameter α ∈ OR satisfies

∞∫
1

t2�

α2(t)
dt < ∞,

then theorem 5.1 implies that, for every f ∈ Hα(T), the expansion converges
uniformly and unconditionally and preserve this convergence after the same dif-
ferentiation. Note that the derivatives of ej(τ) may not form an orthogonal basis
in L2(T). Assuming α to satisfy the hypotheses of theorem 4.2 or 5.2, we see that
estimates (4.3) and (5.2) become

�∑
k=0

( 2π∫
0

∣∣∣∣f (k)(τ) −
∑

j:|λj |�λ

(f, ej)H e
(k)
j (τ)

∣∣∣∣pdτ

)1/p

� c · ‖f‖H,α · h(λ1/m)

and

�∑
k=0

sup
0�τ�2π

∣∣∣∣f (k)(τ) −
∑

j:|λj |�λ

(f, ej)H e
(k)
j (τ)

∣∣∣∣ � c · ‖f‖H,α · h(λ1/m)

whenever f ∈ Hα(T) and λ � 1; here, h(λ1/m) → 0 as λ → ∞. Formulas (4.4) and
(5.3) are rewritten quite similarly.
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16 V. Mikhailets and A. Murach

Considering remark 4.3 in the A := 1 − d2/d2τ case, we conclude that the norm
‖f‖H,α in the space Hα(T) is equivalent to the norm(

|c0(f)|2 +
∞∑

j=1

α2(|j|) (|cj(f)|2 + |c−j(f)|2))1/2

,

with cj(f) being the Fourier coefficient of f with respect to the eigenfunction
ej(τ) := (2π)−1eijτ of the differential operator 1 − d2/d2τ .

In this case or if A = d/dτ , expansion (6.1) becomes the Fourier series with
respect to the complex trigonometric system on [0, 2π]. The above results on the
mean convergence are new even for this series.

Ending this section, we remark that theorems 4.1, 4.2, 5.1 and 5.2 remain valid
in the case where the coefficients of the ordinary differential operator A have finite
smoothness depending, of course, on the parameters involved in these theorems.
We will not specify the smoothness.

7. Applications to multiple Fourier series

Let 2 � n ∈ Z, and consider the n-dimensional torus Tn; as above, T is a cir-
cle of the unit radius. Let A denote the Laplace–Beltrami operator on Tn. It
belongs to NEΨ2

ph(Γ), is a self-adjoint operator in the Hilbert space H := L2(Tn)
and takes the form A = ∂2/∂2τ1 + · · · + ∂2/∂2τn, where τk, with 0 � τk � 2π,
sets a natural parametrization of the k-th specimen of T. The eigenfunctions
ej(τ) := (2π)−nei(j1τ1+···+jnτn) of A, where τ = (τ1, . . . , τn) ∈ [0, 2π]n and j =
(j1, . . . , jn) ∈ Zn, form an orthonormal basis in the Hilbert space L2(Tn). Given a
function f ∈ L2(Tn), we consider its expansion in the multiple Fourier series

f(τ) =
∑
j∈Zn

cj(f) ej(τ), with τ ∈ [0, 2π]n, (7.1)

the expansion converging in L2(Tn). Here, cj(f) denotes the Fourier coefficient of
f with respect to ej ,

Since the termwise differentiation of series (7.1) gives the multiple Fourier series
again, we restrict ourselves to the � = 0 case applying results of § 4 and 5 to expan-
sion (7.1). Let 2 < p < ∞. If 1 < q � 2 and s � n/q − n/p, it follows from theorem
4.1 that, whatever f ∈ W s

q (Tn), expansion (7.1) is unconditionally convergent in
the p-th mean. If a function parameter α ∈ OR satisfies

∞∫
1

tn−1

α2(t)
dt < ∞, (7.2)

it follows from theorem 5.1 that, for every f ∈ Hα(Tn), this expansion converges
unconditionally uniformly (on Tn). Considering the last result in the case of power
functions α(t) ≡ ts, we conclude that expansion (7.1) converges unconditionally
uniformly on each class W s

2 (Tn) where s > n/2. If n is odd, such a conclusion is
substantiated in [20, Theorem A.1] concerning the uniform convergence over the
torus.
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Assuming α to satisfy hypotheses of theorem 4.2 or 5.2, we rewrite estimates
(4.3) and (5.2) as follows:

( ∫
[0,2π]n

∣∣∣∣f(τ) −
∑

j∈Zn:‖j‖�λ

cj(f) ej(τ)
∣∣∣∣pdτ

)1/p

� c · ‖f‖H,α · h(λ)

and

sup
τ∈[0,2π]n

∣∣∣∣f(τ) −
∑

j∈Zn:‖j‖�λ

cj(f) ej(τ)
∣∣∣∣ � c · ‖f‖H,α · h(λ),

whenever f ∈ Hα(T) and λ � 1. Here, h(λ) → 0 as λ → ∞, and we take into
account that Aej = −‖j‖2ej , with ‖j‖ := (j2

1 + · · · + j2
n)1/2. According to remark

4.3, the norm ‖f‖H,α in Hα(Tn) is equivalent to the norm

(
|c0(f)|2 +

∑
j∈Zn,j �=0

α2(‖j‖) |cj(f)|2
)1/2

.

If α belongs to OR and satisfies (7.2), then∑
j∈Zn

|cj(f)| < ∞ (7.3)

for every f ∈ Hα(Tn), which means the absolute convergence of the Fourier series
(7.1) of f and follows from the unconditional uniform convergence of this series.
As is known [2, Section 6, Subsection 3], property (7.3) is fulfilled provided that f
belongs to the Hölder space C�(Tn) for some � > n/2 and is not fulfilled for certain
functions f ∈ Cn/2(Tn). Our sufficient condition for (7.3) to hold true is weaker than
that indicated in terms of Hölder spaces. This is demonstrated by the example when
α(t) ≡ tn/2 log1/2+ε(t + 1) for some ε > 0, which gives the broader space Hα(Tn)
(satisfying (7.2)) than the union of all C�(Tn) with � > n/2.

Note that of considerable interest is also the study of conditions for multiple
Fourier series to converge almost everywhere. Relevant results are expounded in [2,
3, 6, 11, 16] and references therein.

8. Concluding remarks

Remark 8.1. Our results are also applied to the case where the operator A ∈
NEΨm

ph(Γ) is of negative order m because the resolvent of A belongs to NEΨ−m
ph (Γ),

is of positive order and has the same eigenfunctions as A does.

Remark 8.2. According to theorem 2.3, the left-hand side of (2.4) (i.e. the norm
of a remainder of series (2.1)) depends monotonically on the corresponding set of
eigenvectors of L. Hence, the estimates in theorems 4.2 and 5.2 remain true if the
written sums additionally contain some other terms of the eigenfunction expansion.
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Specifically, estimates (4.3) and (5.2) are valid if we replace the sum∑
j:|λj |�λ

(f, ej)H ej

with any partial sum of the series in the arbitrarily numbered eigenfunctions ej

provided that the later sum contains all ej subject to |λj | � λ.

Remark 8.3. If the closed manifold Γ is a sphere (of any dimension), the results
of § 4 and 5 admit further detailing and are also new.

Remark 8.4. Our approach allows other applications, specifically, to elliptic
matrix pseudodifferential operators and elliptic differential operators in a bounded
Euclidean domain.
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